
Arguing About Firewall Policy

Andy Applebaum a, Karl Levitt a, Jeff Rowe a, and Simon Parsons b

aDept. of Computer Science, University of California, Davis,
applebau@ucdavis.edu

bDept. Comp. and Info. Science, Brooklyn College, City University of New
York.

Abstract. In this paper, we present a new framework to analyze firewall

policy by using argumentation. At the core of this new idea is extend-
ing firewall rules with the concept of “reasons” and arguing about the

reasons, not the rules. Depending on how the reasons are designed, the

resulting framework can be useful in a number of ways: new anomalies
in a firewall policy can be identified while, at the same time, stronger

recommendations can be given to resolve those anomalies that are de-

tected.

Keywords. Argumentation, value-based framework, firewall, anomaly

1. Introduction

A firewall is a program that controls the flow of information in to and out of a
computer or network. Traditionally, most firewalls act as a barrier between a local
network or personal user and the Internet; when a file (referred to as a “packet”)
from the Internet is sent to the protected computer, the firewall determines if that
file should be allowed or blocked. Due to the widespread amount of malicious ac-
tivity on the Internet, it’s essential that a user’s firewall be configured properly —
allowing too many packets in subjects the user to potential harm, while blocking
too many packets would prevent the user from doing anything useful. As a result,
much work has been done (see section 4) to analyze firewall policy to ensure that
a given policy behaves as desired. In this paper, we propose a new framework to
analyze firewall policy that combines traditional firewall anomaly detection with
argumentation by extending the standard firewall model to include “reasons”.

2. Firewalls

2.1. Design and Operation

Firewalls are typically configured as a set of rules that describe how to behave
when given a specific packet. Behavior is almost always either “allow” or “block”,
and while there are many parameters of a packet that a rule can check, in our
model we only consider the following three: protocol (TCP or UDP), source IP



order action protocol source IP port

1 allow * * 20

2 allow * * 80

3 block * 123.456.78.90 *

4 allow * * 21

5 block * * 53

6 allow TCP 123.456.78.11 23

7 block * 123.456.78.* *

8 allow UDP 123.456.78.11 5027

9 allow UDP * *

10 block * * 6969

11 allow * 75.75.75.75 53

12 block * * *

Table 1. An example firewall policy.

(sender), and port (usually the intended purpose). As multiple rules may apply
to the same packet, there is almost always a well-ordering of the rules to resolve
conflicts. During operation, when a packet comes in to a firewall, it is first checked
against rule 1. If that rule applies to the packet, whatever action the rule specifies
is taken and execution stops. If rule 1 does not apply, then the packet is checked
against rule 2 and acted on accordingly. This process is repeated until either a
rule matches the packet, or all the rules are exhausted and a default rule applies.
The following is a more precise specification of a rule:

rule ::= order : action, protocol, sourceIP, port

with each part is defined as follows (∗ being a keyword for “any”, and Z standing
for the set of positive integers.):

order ∈ Z action ∈ {allow, block}
protocol ∈ {TCP,UDP, ∗} sourceIP ::= x.x.x.x
x ∈ [0, ..., 255] ∪ {∗} port ∈ Z ∪ {∗}

A “firewall policy” is simply a set of rules as specified above, where each rule has
a unique value for “order” such that the lower-ordered rules have higher priority.
Table 1 presents an example firewall policy, and Table 2 outlines the execution
of that policy on some hypothetical packets — when packet A comes in, it’s
compared to rule 1: since A’s port is 20, rule 1 applies, so it’s allowed. When
packet B comes in, rules 1 and 2 are skipped (as B’s port is 23), and then rule
3 is applied. Packet C ignores rules 1–4, and then 5 is chosen. Packet D fits the
specification for rule 5, so it’s blocked. Packet E does not match any rule, so the
“catch-all” of 12 is chosen. Finally, packet F is allowed from rule 9.

2.2. Anomalies

The motivation for applying argumentation in this domain is the idea of an
“anomaly” in a firewall policy. This idea is taken from Al-Shaer et. al in [1,2]. In



name protocol source IP port resulting action specified rule

A TCP 1.1.1.1 20 allow 1

B UDP 123.456.78.90 23 block 3

C TCP 75.75.75.75 53 block 5

D UDP 123.456.78.56 15 block 7

E TCP 1.1.1.1 99 block 12

F UDP 1.1.1.1 6969 allow 9

Table 2. Hypothetical packets and the appropriate actions.

Shadowing Correlation Generalization Redundancy

(5, 11) (1, 3) (1, 7) (1, 12) (2, 12)

(7, 8) (2, 3) (2, 7) (4, 12) (6, 7)

(3, 4) (3, 9) (6, 12) (8, 12)

(4, 7) (5, 9) (9, 12) (11, 12)

(7, 9) (9, 10)

Table 3. All anomalies in the example policy. Each pair (x, y) is an anomaly.

these papers, the authors define four anomalies as relations between rules — we
summarize them here:1

Shadowing: Rule a is said to shadow rule b if a has higher-priority than b, a and
b specify different actions, and every packet that satisfies b also satisfies a.
In the example policy, rule 5 shadows rule 11 and rule 7 shadows rule 8.

Correlation: Rules a and b are correlated if a and b specify different actions and
some packets that satisfy a also satisfy b and vice-versa. There are many
correlation anomalies in the policy above, some examples being between
rules 1 and 3 and between rules 4 and 7.

Generalization: Rule a is said to generalize rule b if b has higher-priority than
a, a and b specify different actions, and every packet that satisfies b also
satisfies a. In our policy, rule 12 generalizes rule 9.

Redundancy: Rules a and b are redundant if a and b specify the same action,
rule a is higher priority than rule b, and every packet that satisfies b also
satisfies a. There are no examples of redundancy in our example.

In the context of [1], anomalies are presented to the administrator for resolution
— the anomalies defined above outline potential “problems” in the policy that
need to be addressed. Take, for example, the shadowing anomaly between rule
5 and rule 11: rule 5 blocks all packets coming in through port 53, while rule
11 intends to allow these packets if and only if they come from IP 75.75.75.75.
During the execution of this policy, rule 11 will never be enforced as the packets
that it specifies correspond to the packets specified by higher-priority rule 5.
The administrator, however, most likely added rule 11 for some reason, so an
appropriate way to handle this anomaly is to notify the administrator to make sure
that the over-arching security policy is still being adhered to. Table 3 identifies
all anomalies in the example policy.

1Our descriptions differ slightly from those in the literature; namely, our definition of redun-

dancy is simpler.



3. Incorporating Argumentation

3.1. Goals

Argumentation applied directly to firewall rules is unlikely to yield any interesting
results. The reason for this is straightforward: since there is an order over the
rules, any conflicts that arise in rule selection can always be resolved by analyzing
the order of the rules. However, a very natural extension of the way that firewalls
are specified is to supplement the rules with the reasons for setting them. Such
an extension then permits argumentation to be applied to resolve rules on the
basis of these reasons, and that is what we investigate here. We will consider three
scenarios: a policy where each rule specifies its order value as well as its reason, a
policy that only specifies the reasons for each rule, and a policy that only specifies
the ordering of the rules. We present a few brief details regarding these scenarios:

Rules with an ordering and reasons: In this scenario, we are given a policy where
each rule has a distinct order and is supplemented with the reasons that
the rule exists. Our goal in this scenario is to perform anomaly analysis and
use the reasons to arrive at strong recommendations for anomaly resolution
as well as to identify new anomalies that lie in the reasons themselves. For
this paper, we will be primarily working with this scenario.

Rules with reasons but no ordering: Here, our goal is to identify anomalies while
treating each rule as having the same priority. Using the reasons, we at-
tempt to arrive at an ordering that minimizes the number of conflicts and
anomalies.

Rules with an ordering but no reasons: Here we want to look at the rules and
abstract an overall security policy from how they are ordered. To do this,
we need to require that “reasons” be defined somewhere and any rule can
be compared to this definition — we ultimately guess what the reason may
be for each rule and then use the ordering of the rules themselves to arrive
at a relative ordering of the reasons, which we treat as a “security policy”.

All of these scenarios are realistic from the security point of view but we will
only cover the first in this paper. We do this partially in the interest of brevity,
but also because a solution to the first scenario can be abstracted out to the
second two. This can be done by setting all rules to equal weight for the second
scenario and performing anomaly resolution from there (the recommendations are
the ordering), or treating the ordering of the rules as “law” in the third scenario.
In any case, it seems the critical test of this system will be to ensure its validity
for the first scenario.

3.2. System Design

In a nutshell, the system we propose to analyze firewall rules is a multi-domain (or
hierarchical) set of value-based argumentation frameworks ([6]). In a rough sense,
the ground level has an argument for each rule where arguments attack each other
if the corresponding rules share any packets and specify different actions. Each
rule/argument has a value associated with it that specifies a domain that that



rule attacks

1 3, 7, 12

2 3, 7, 12

3 1, 2, 4, 9

4 3, 7, 12

5 9, 11

6 7, 12

rule attacks

7 1, 2, 4, 6, 8, 9

8 7, 12

9 3, 5, 7, 10, 12

10 9

11 5, 12

12 1, 2, 4, 6, 8, 9, 11

Table 4. All overlaps within the example policy. The rule in the left-hand column attacks the

rule(s) in the right-hand column.

rule’s reason appeals to. This then leads to higher-level domains which contain
arguments to analyze the strength of a specific rule in the previous domain; i.e.,
if a rule exists “because a sender is trustworthy”, then we will have a domain to
argue about the trustworthiness of senders where that rule will need to establish
its claim. Attacks at the ground domain may represent attacks in a higher domain
(such as two rules disagreeing about the trustworthiness of a sender) or an attack
between values (one rule appealing to trustworthiness the other to vulnerability).
This system is repeated until the domain of reasons runs out.

3.3. Standard Domains

The above description of our system is very high-level and not particularly specific.
In order to better describe how this system operates, we work through modeling
the example policy in Table 1 by first presenting a few standard domains. At the
ground level, we have that each rule attacks each other rule that shares a packet
and specifies a different action. We model this in Table 4, where the left hand
column is the rule name and the right hand column is the set of rules that the
rule in the left hand column attacks.

It’s certainly possible to take the above attacks and use argumentation alone
to yield some analysis. Such a method, though, is lacking in that the existence of
a conflict isn’t nearly as important as why that conflict exists — the shadowing of
rule 5 over rule 11 is a far different conflict than the correlation of rules 1 and 12.
To identify this, we introduce reasons. At the ground level, we have the following
reasons: accessibility, prophylaxis, legitimate/malicious sender, enable/disable a
protocol, and enable/disable a program. The first two are catch-alls, the former
for allowing and the latter for blocking, while the other three yield higher-level
domains. We now modify Table 4 to to include the “reason” (or value) of each
argument/rule and obtain Table 5.

In a traditional value-based framework [6], there exists an ordering of the
values of the arguments that can be used to resolve conflicts. If such an ordering
is already in place, then the above work-through is technically sufficient, and any
anomalies detected can be resolved by using the preference of values (for example,
if “legitimate sender” is more important than “disable protocol”, 11 should be put
above 5). However, if an ordering is absent/incomplete or we want more in-depth
analysis, we need to analyze higher-level domains. The first such domain is the
sender domain where we reason about the trustworthiness of senders. This domain
can be defined in many ways (such as utilizing trust-computing measures to gauge
each sender), but for the purpose of this paper, we treat this domain as being



rule values attacks

1 enable protocol 3, 7, 12

2 enable protocol 3, 7, 12

3 malicious sender 1, 2, 4, 9

4 enable protocol 3, 7, 12

5 disable protocol 9, 11

6 legitimate sender, enable program 7, 12

7 malicious sender 1, 2, 4, 6, 8, 9

8 legitimate sender, enable program 7, 12

9 accessibility 3, 5, 7, 10, 12

10 disable protocol 9

11 legitimate sender, enable protocol 5, 12

12 prophylaxis 1, 2, 4, 6, 8, 9, 11

Table 5. Overlap of rules in example policy. Here the left-hand column gives the rule name, the

center column gives the reason behind the rule, and the right-hand column gives the rule(s)

attacked by the rule in the left-hand column.

very basic — if a rule says that a sender is trustworthy or malicious, we take that
rule at its word, with conflicts being resolved by some preferential relationship.
The sender conflicts are presented in Table 6(a), with the intra-domain conflicts
specified in the right hand column.

The next domain to look at is the protocol domain. Here, we replace the
“enable/disable protocol” labels with the actual protocol being acted on — Table
6(b) displays the transformation.

The resulting pruned table is not particularly interesting from an argumenta-
tion perspective — protocols will rarely attack each other as they typically spec-
ify different ports. The only real exception to this is if one rule specifies “enable
protocol” while another does “disable protocol”, as in 5 and 11. Conflicts like this
would need to appeal to a different level for resolution. One potential method
of analysis at the protocol level is to argue that a certain protocol “is typically
used for some purpose”. As an example, BitTorrent is frequently used for illegal
file sharing, while DNS is frequently used for critical network communications.
Depending on the context, one might argue that HTTP is used for research, or
that HTTP is used for unwarranted recreation. If the administrator pre-defines
protocol use like this beforehand, analysis can be done regarding the security of

(a) Analysis of senders.

rule sender attacks

3 123.456.78.90

6 123.456.78.11 7

7 123.456.78.* 6, 8

8 123.456.78.11 7

11 75.75.75.75

(b) Analysis of protocol.

rule protocol attacks

1 FTP data

2 HTTP

4 FTP control

5 DNS 11

10 BitTorrent

11 legitimate sender, DNS 5

Table 6. Analysis of rules in terms of the senders (a) and the protocol (b) that they refer to.
In (b), the protocols were obtained by comparing the ports specified by the rules to the list of
registered ports.



rule name program rule attacks

6 gaming client

8 gaming client

Table 7. Program analysis. While 6, 7 and 8 are in conflict, since 7 isn’t a program rule, the

analysis is done at a different level.

the ports themselves, abstracting the rules to a higher domain — most likely a
value-based framework with the protocols as arguments and typical use as values.
This idea of “typically used” can also be applied to higher domains, which we
touch on below.

The program domain is a bit more interesting than protocols as a program
can require multiple rules. In our example, rules 6 and 8 are facilitating some
program, and in order for that program to work, both rules must be present.
This highlights our first new anomaly: rules 6, 7 and 8 are out of order. The
reason for this is that rule 7 segments rules 6 and 8, which are really part of a
larger meta-rule. More specifically, rules 6 and 8 allow a specific sender access
via specific ports to allow for the running of a program; however, since rule 7
shadows rule 8, that trustworthy sender will never be able to interact via rule 8,
and thus the program won’t run. Thus, the correct ordering would be to either
completely remove 6 and 8, or put 7 after 8 to allow unmitigated access for sender
123.456.78.11. Note that a resolution of this conflict also resolves the conflicts
that were present in the sender domain.

3.4. Abstract Domains:

The aforementioned domains provide a strong basis for firewall policy analysis.
The next step is to define the higher level domains, which is going to be more
context based as defined by the administrator — instead of trying to outline each
possible domain, we present two hypothetical domains that could be potentially
useful. The first is the “suite domain” — a suite is some sort of functionality that
requires certain properties in the rules. Suites are specified in the form of “if I
want a, then I must have b0, b1, ..., bn”. In the context of our example:

If I want web browsing, then I need HTTP and DNS.
If I want FTP, then I need FTP data and FTP control.

(a)

rule desired suite attacks

1 FTP

2 web browsing

4 FTP

6 game client

8 game client

(b)

rule instance of attacks

1 file transfer

2 recreation, research

4 file transfer

5 network tool 11

6 recreation

8 recreation

10 file transfer

11 network tool 5

Table 8. (a) Rules and their suites. Since no suites are explicitly disabled, there are no direct
conflicts on the suite level. (b) Rules related to the instance-of domain.



These two suites present two new anomalies in the policy. The first is that while
rule 2 explicitly allows HTTP, rule 5 blocks DNS, thereby disabling the web
browsing suite. Working in this domain, then, we can see a new conflict between
rule 2 and rule 5 — since rule 5 explicitly blocks DNS, rule 2’s desire for web
browsing will never be realized. The other new anomaly is between rules 1, 3
and 4: this is similar to the anomaly between 6, 7 and 8. More specifically, the
IP blocked by rule 3 will have access to some FTP data but not FTP control,
disabling the FTP suite for it. While this may not be a huge violation, it seems
that a proper ordering would have rule 3 before rules 1 and 4. Table 8(a) shows
the rules with their suites.

The last domain we will address is the “instance of” domain. This domain
maps rules, protocols, programs and suites to “ideas” that describe the general
purpose of the lower-level objects. For example, the FTP suite and BitTorrent pro-
tocol are instances of “file transfer”, web browsing is an instance of “recreation”,
and DNS is an instance of a “network tool”. One could argue that network tools
should be enabled for the stable operation of a local network, while recreation
should be disabled as it unnecessarily slows down more important tasks. Addition-
ally, file transfer can be viewed as important for telecommunication/productivity,
while at the same time, it opens the administrator up to liability if things are
downloaded illegally or vulnerability if malicious files are installed. Table 8(b)
maps protocols and suites to instance of categories. Lastly, the instance of domain
can be seen as a larger version of the “typically used” domain that was defined in
section 3.3 (the instance of domain applying to programs, protocols, suites, etc.,
while in 3.3, typically used only referred to protocols).

3.5. Anomaly Resolution

The previous sections dealt almost exclusively with the concept of anomaly iden-
tification. While our framework does yield new anomaly discoveries, argumenta-
tion does not play a significant role in their identification. Instead, we primarily
want to use argumentation to recommend actions regarding how to resolve the
conflicts. In this section, we look at how this can be done by examining the new
anomalies and then the standard anomalies. The new anomalies that were men-
tioned in sections 3.3 and 3.4 are reproduced below in Table 9. We present a few
potential ways to argue for and against specific paths of resolution.

The “gaming client” anomaly has three potential resolutions: place 6 and 8
above 7, place 7 above 6 and 8, or ignore it. To help the administrator pick the
correct solution, we present him or her with the following questions:

• Is the sender 123.456.78.11 more trustworthy than the group of senders
123.456.78.*? (resolving the sender-domain conflict)

desired effect rules in favor rules against domain of attack

enable gaming client 6, 8 7 ground (sender (7) vs.

program (6, 8)), sender

allow web browsing 2, 11 5 suite (2, 5), protocol (5, 11)

allow FTP 1, 4 3 ground (sender (3) vs. suite (1, 4))

Table 9. New anomalies.



order value name

1 allow programs

2 block malicious senders

3 allow legitimate senders

4 block protocols

order value name

5 block programs

6 allow protocols

7 prophylaxis

8 accessibility

Table 10. A potential ordering of the ground-based values with lower order meaning higher
priority.

• Is the program specified by rules 6 and 8 more important than blocking
the group of senders 123.456.78.*? (resolving the value-based conflict)

If the answer to either of these questions is a strong yes, then we re-order 7 below
6 and 8, otherwise we may as well remove 6 and 8. In order to assist in answering
these questions, we present arguments from the relevent domains: on the sender
domain, the argument against the trustworthiness of 123.456.78.* might be that
a few bad packets were sent by 123.456.78.90, so the entire range is being blocked,
while the argument for allowing 123.456.78.11 could be as simple as “that sender
is a trusted relative”. In this case, the answer to the questions would be that yes,
the specific sender is more trustworthy than the range, so we should prioritize
6 and 8 before 7. On the flip side, we could note that “game client” is used for
recreation, and if the administrator previously claimed “reducing vulnerability is
always more important than recreation”, then we would have evidence to remove
6 and 8. Ultimately, the administrator will need to make the decision, and if
the arguments for both sides are presented in a clear manner, we can be more
confident in the security of the final outcome. As a last remark, the shadowing
anomaly between rules 7 and 8 will be resolved pending the resolution to the
“game client” anomaly — here, by extending the firewall model to include these
reasons, we’ve introduced an argumentation-based scheme that helps to resolve
the traditional anomalies.

There are three main ways to resolve the web browsing anomaly: ignore it,
remove rule 5, or place rule 11 before rule 5. Resolution here depends on the fol-
lowing questions: (1) Is blocking DNS more important than allowing web brows-
ing? (the suite-domain conflict), and (2) Is blocking DNS more important than
allowing the legitimate sender 75.75.75.75? (the value-based conflict).

If the answer to both these questions is no, then we should either remove rule
5 or order rule 11 above rule 5. If the answers are both yes, then we should remove
rule 2 and rule 11. If the answers are a mixture, then we’d need more information:
if 75.75.75.75 is in fact shown to be malicious in the sender domain, and we know
that 75.75.75.75 is the only possible DNS server, then DNS should remain blocked
and rules 2 and 11 should be removed. In the case that web browsing is more
important than blocking DNS and 75.75.75.75 is a legitimate sender, then rule
11 should go above rule 5. When presented to the administrator, arguments can
appeal to ideas such as “DNS (as a protocol) is usually secure and should be
allowed” or “network tools are usually secure” or “recreational activities should
never take priority over security” or “75.75.75.75 is a trusted and secure DNS
server”. When the administrator chooses how to fix this problem, having a web of
relationships and “big picture” ideas can help him or her best conform the firewall



rules in conflict anomaly name recommendation justification

(5, 11) shadowing place 11 before 5 allow sender > block protocol

(7, 8) shadowing place 8 before 7 allow program > block sender

(1, 3), (1, 7) correlation place 3, 7 before 1 block sender > allow protocol

(2, 3), (2, 7) correlation place 3, 7 before 2 block sender > allow protocol

(3, 4) correlation ignore block sender > allow protocol

(3, 9) correlation ignore block sender > accessibility

(4, 7) correlation place 7 before 4 block sender > allow protocol

(5, 9) correlation ignore block protocol > accessibility

(7, 9) correlation ignore block sender > accessibility

(9, 10) correlation place 10 before 9 block protocol > accessibility

(1, 12), (2,12), (4, 12) generalization ignore allow protocol > prophylaxis

(6, 7) generalization ignore allow program > block sender

(6, 12), (8, 12) generalization ignore allow program > prophylaxis

(9, 12) generalization remove 9 prophylaxis > accessibility

(11, 12) generalization ignore allow sender > prophylaxis

Table 11. Anomalies and their corresponding recommendation based on the ordering in Table 10.

policy to the overall security policy. Lastly, like the above anomaly, resolution
here would also resolve the shadowing between 5 and 11.

We will not perform an in-depth analysis for resolution of the FTP anomaly,
instead only remarking on a few arguments that can be made in favor of pri-
oritizing 3 before 1 and 4: “file transfer is easily exploitable to send malicious
data”, “malicious senders should not be given access to exploitable systems”,
“123.456.78.90 has been known to exploit the FTP control protocol”, etc. It might
also be the case that the administrator is actually managing a file-sharing site, so
allowing everyone access to FTP is crucial. Again, as with the other anomalies,
we rely on the administrator to make the final decision, but ensure that he or she
has enough access to the background information to make an informed decision.

Resolution of the standard anomalies can be done in a manner similar to the
above. However, if the policy being analyzed is very large, then such a process
might be tedious for the administrator. Instead, we note that resolution of these
conflicts tends to revolve around questions of the form “is a preferred to b?”
— with this in mind, our goal for standard anomalies might be to recommend
general policy rules that remove or ignore the detected conflicts. As an example,
we see in Table 1 that rule 12 generalizes all “allow” rules; if prophylaxis were
a number-one priority, it’s possible that that rule should be shadowing all of the
allowed ones. If, conversely, prophylaxis isn’t particularly important, the rules are
correct as they are. Resolution of standard anomalies like this should correspond
to resolution of unresolved conflicts between values in each domain. In Table 10
we present a possible ordering of ground-level values, and in Table 11 we present
a recommendation for each anomaly and the reason for that recommendation.

4. Related Work

Due to the widespread deployment of firewalls across all fields, it’s no surprise
that there’s a large amount of literature on the subject of firewall policy analysis.



Many of these systems use some sort of analysis on the rules themselves: [14]
uses static analysis, treating the rules as a program, while [9] uses a data mining
technique. Policy analysis, in this regard, is frequently viewed in the “anomaly”
sense similar to the Al-Shaer definitions; in [7], they introduce a variation that
includes multi-rule anomalies. Another extension of policy analysis is role-based
systems, which can be seen in [10].

More related to our framework are systems that utilize some form of high-level
security policy that low-level rules are related to. Common themes among these
systems are either generation of a high-level policy from low-level rules (as in [12]),
or generation of low-level rules from a high-level policy (as in [5]). Perhaps most
noticeable is [4], where the authors seek to use argumentation to help generate
the low-level rules from high-level (and possibly conflicting) policies. In fact, the
authors of [4] have another work, [3], where they use argumentation in the context
of anomalies and policy analysis — our framework differentiates itself from these
last two through the introduction of “reasons”, which is intended as a somewhat
hierarchical and generic expression of high-level policy.

In the context of argumentation, our paper does not provide any particularly
new concepts, taking from the general idea of frameworks in [8], and more directly,
the value-based framework in [6]. In fact, reasoning about higher-level policy
via the preferencing of values is an idea that can be seen in [11], where they
provide meta-arguments to reason about preference levels. Additionally, the idea
of multiple domains of argumentation is an adaptation of the hierarchical model
in [13] — ours differs slightly in the relationship of the domains, however, this
idea can most likely still be modeled in their framework.

5. Conclusions and Future Plans

The above framework is still some way from implementation. More work needs
to be done to better outline and diagram the actual domains: the sender domain
needs a concrete metric, the protocol domain should be pre-defined, syntaxes are
needed for suites and programs, and mapping into the instance of domain should
be straightforward. Additionally, languages are needed to quickly view arguments
that attack protocols (the “typically used” idea) or instances (i.e., attacking file
transfer via vulnerability). Once this is done, there are other scenarios that we
would like to apply our framework to, including generating high-level policy from
the rules, and generating rules from high-level policy. We’ve also been consid-
ering models that involve multiple agents arguing about a semi-distributed fire-
wall policy, using a hierarchical model for the agents and arguments. Still, even
incomplete, the framework provides new insight and strong potential for a new
application of argumentation. With more work, a tool that realizes this system
can be designed to help system administrators securely govern their networks;
such a tool would be essential in an environment that has high turnaround of IT
personnel to help standardize and learn security policy. In any case, this design
should at the very least serve to strengthen the idea that argumentation has a
wide range of applicable scenarios, firewall policy analysis among them.



Acknowledgements: Research was partially funded by the National Science
Foundation (CNS 1117761) and the Army Research Laboratory and Cooperative
Agreement Number W911NF-09-2-0053. The views and conclusions contained in
this document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the Army Research
Laboratory, the National Science Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

[1] E. Al-Shaer and H. Hamed. Firewall policy advisor for anomaly discovery and rule edit-
ing. In IFIP/IEEE Eighth International Symposium on Integrated Network Management,

pages 17–30, 2003.

[2] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classification and analysis
of distributed firewall policies. Selected Areas in Communications, IEEE Journal on,

23(10):2069 – 2084, oct. 2005.

[3] A. K. Bandara, A. Kakas, E. C. Lupu, and A. Russo. Using argumentation logic for firewall
policy specification and analysis. In Proceedings of the 17th IFIP/IEEE international

conference on Distributed Systems: operations and management, DSOM’06, pages 185–

196, Berlin, Heidelberg, 2006. Springer-Verlag.
[4] A. K. Bandara, A.C Kakas, E. C. Lupu, and A. Russo. Using argumentation logic for

firewall configuration management. In Proceedings of the 11th IFIP/IEEE international
conference on Symposium on Integrated Network Management, IM’09, pages 180–187,

Piscataway, NJ, USA, 2009. IEEE Press.

[5] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: a novel firewall management
toolkit. In Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on,

pages 17 –31, 1999.

[6] T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[7] T. Chomsiri and C. Pornavalai. Firewall rules analysis. In Proc. of The 2006 International

Conference on Security and Management, June 2006.
[8] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321 – 357,

1995.
[9] K. Golnabi, R.K. Min, L. Khan, and E. Al-Shaer. Analysis of firewall policy rules using

data mining techniques. In Network Operations and Management Symposium, 2006.

NOMS 2006. 10th IEEE/IFIP, pages 305 –315, april 2006.
[10] J. D. Guttman. Filtering postures: Local enforcement for global policies. In Proceedings,

1997 IEEE Symposium on Security and Privacy, pages 120–129. IEEE Computer Society
Press, 1997.

[11] S. Mogdil and T. Bench-Capon. Integrating object and meta-level value based argumen-

tation. In Proceedings of the 2008 Conference on Computational Models of Argument:
Proceedings of COMMA 2008, 2008.

[12] A. Tongaonkar, N. Inamdar, and R. Sekar. Inferring higher level policies from firewall
rules. In Proceedings of the 21st conference on Large Installation System Administration
Conference, pages 2:1–2:10, Berkeley, CA, USA, 2007. USENIX Association.

[13] M. Wooldridge, P. McBurney, and S. Parsons. On the meta-logic of arguments. In Pro-

ceedings of the fourth International Conference on Autonomous agents and Multiagent
systems, AAMAS ’05, 2005.

[14] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mohapatra. Fireman: a toolkit for
firewall modeling and analysis. In Security and Privacy, 2006 IEEE Symposium on, pages
199. –213, may 2006.


