
Reverse Engineering of Design Patterns from Java Source Code

Nija Shi and Ronald A. Olsson
Department of Computer Science
University of California, Davis

Davis, California 95616-8562 USA
{shini,olsson}@cs.ucdavis.edu

Abstract

Recovering design patterns can enhance existing source
code analysis tools by bringing program understanding to
the design level. This paper presents a new, fully automated
pattern detection approach. The new approach is based on
our reclassification of the GoF patterns by their pattern in-
tent. We argue that the GoF pattern catalog classifies de-
sign patterns in the forward-engineering sense; our reclas-
sification is better suited for reverse engineering. Our ap-
proach uses lightweight static program analysis techniques
to capture program intent. This paper also describes our
tool, PINOT, that implements this new approach. PINOT
detects all the GoF patterns that have concrete definitions
driven by code structure or system behavior. Our tool is
faster, more accurate, and targets more patterns than exist-
ing pattern detection tools. PINOT has been used success-
fully in detecting patterns in Java AWT, JHotDraw, Swing,
Apache Ant, and many other programs and packages.

1 Introduction

Program understanding tools today are able to extract
various source information, such as class structures, inter-
class relationships, call graphs, etc. Some may even pro-
duce a subset of UML diagrams. However, without proper
documentation, it would still take a lot of effort for a devel-
oper to become proficient with the source code. Therefore,
a powerful program understanding tool should be able to
extract the intent and design of the source code. To ful-
fill this goal, we need some kind of code pattern that bears
intent and design as source facts to analyze against. A de-
sign pattern abstracts a reusable object-oriented design that
solves a common recurring design problem in a particular
context [15]. A design pattern has its own unique intent
and describes the roles, responsibilities, and collaboration
of participating classes and instances. Thus, by extracting
design patterns from source code, we are then able to reveal

the intent and design of a software system.
Design patterns are typically used as guidelines during

software development. Thus, the GoF book [15] presents a
pattern catalog for forward engineering, but the same classi-
fication can be misleading for reverse engineering. Current
approaches lack a proper pattern classification for reverse
engineering. A pattern classification for reverse engineer-
ing should indicate whether or not each pattern is detectable
and if there exist traceable concrete pattern definitions to
categorize detectable patterns. Thus, we reclassified the
GoF patterns into five categories in the reverse-engineering
sense (see Section4). Based on this reclassification, we
automated the entire pattern recognition process using only
static program analysis. This relatively simple approach has
proven effective. We have some promising results — both
accuracy and speed — from our initial prototype, PINOT
(Pattern INference and recOvery Tool), in recovering de-
sign patterns from the Java AWT package, JHotDraw (a
GUI framework), Swing, and Apache Ant.

The rest of this paper is organized as follows. Section2
critiques current pattern detection tools. Section3 presents
examples that motivated our approach. Section4 explains
our reclassification of the GoF patterns. Section5 illus-
trates how we identify structure- and behavior-driven pat-
terns. Section6 describes our initial prototype of PINOT
Section7 discusses results from using PINOT. Section8
concludes the paper and covers our future work.

2 Critique of Current Approaches

Approaches to design pattern recognition fall into two
main categories: those that identify the structural aspectof
patterns and others that take a further step to distinguish the
behavioral aspect of patterns.

2.1 Targeting Structural Aspects

These approaches analyze inter-class relationships to
identify the structural aspect of patterns, regardless of their



behavioral aspect. The targeted inter-class relationships in-
clude: class inheritance; interface hierarchies; modifiers of
classes and methods; types and accessibility of attributes;
method delegations, parameters and return types.

Some approaches first extract inter-class relationships
from source code and then perform pattern recognition
based on the extracted information. For example, DP++ [7],
SPOOL [20], Osprey [5], and Reference [28] extract inter-
class relationships from C++ source to a database; patterns
are then recovered through queries to the database. Ref-
erence [13] combines the Columbus reverse-engineering
framework with the MAISA architectural metrics analyzer
(which analyzes software at the design level and had re-
ported limited results on recovering anti-patterns [23]) to
build a pattern recognizer. However, pattern recognition re-
quires analyzing program behavior, which can be abstracted
away at the design level. Reference [6] use the Columbus
schema for the extracted abstract semantics graphs (ASG)
and recover patterns based on graph comparison. Refer-
ence [4] extracts inter-class relationships and then uses soft-
ware metrics to reduce search space. SOUL [11] is a logic
inference system, which has been used to recognize patterns
(in Java and SmallTalk) based on inter-class-based code id-
ioms and naming conventions. SPQR [26] uses denotational
semantics to find patterns on the ASG obtained by gcc. The
accuracy of these approaches depends in part on the capa-
bility of the program facts extractors they use.

FUJABA [21] extends the work from [25] and uses a
bottom-up-top-down approach to speed up the search and
to reduce the false positive rate (due to more complicated
inter-class relationship, such as aggregation [25, 21]). It
uses a combination of inter-class relationships to indicate a
pattern. Thus, when such information is obtained from the
bottom-up search, even partially, FUJABA assumes the ex-
istence of a possible pattern and tries to complete the rest
of the search — i.e., the top-down search — to confirm that
such a pattern actually exists. This iterative approach allows
going back to their annotated abstract syntax tree (AST) for
further analysis on demand.

2.2 Targeting Behavioral Aspects

The approaches discussed in Section 2.1 are unable to
identify patterns that are structurally identical but differ in
behavior, such as State vs. Strategy and Chain of Respon-
sibility (CoR) vs. Decorator. Approaches that target be-
havioral aspects seek to resolve this problem using machine
learning, dynamic analysis, and static program analysis.

Machine Learning

These approaches attempt to reduce false positives by train-
ing a pattern recognition tool to identify the correct im-
plementation variants of a pattern. Such approaches are

semi-automatic: user intervention guides pattern recogni-
tion. Follow-on work of FUJABA [22] associates fuzzy
values to pattern definitions. Pattern recognition is driven
by a semi-automatic iterative process. PTIDEJ [3] recog-
nizes distorted implementations of patterns, thus detected
pattern instances are associated with a similarity rate. A re-
lated work of PTIDEJ [17] uses program metrics (such as
size, cohesion, and coupling) and a machine learning algo-
rithm tofingerprintroles of a pattern’s participating classes.
These fingerprints are learnable facts for the pattern con-
straint solver. Reference [12] (follow-on to [6, 13]) incorpo-
rates machine learning techniques to train its pattern recog-
nition tool. Each pattern is defined with a set of predictors,
whose values are used in the learning process. They tested
their method on the Adapter and Strategy patterns.

Most GoF patterns (including the two above) have con-
crete definitions on their realization in code structure and
system behavior. Such concrete definitions are traceable
(see Section4). Thus this category does not seem to solve
the fundamental problem (see further Section7).

Dynamic Analysis

These approaches use runtime data to help identify the be-
havioral aspects of patterns. KT [10] hard-coded its detec-
tion algorithms to search for patterns in programs written
in SmallTalk. KT uses only dynamic analysis to identify
the CoR pattern, but the result was unsuccessful, due to
improper message logging mechanism and insufficient test
data. Follow-on work to FUJABA [29] and Reference [19]
suggest using dynamic analysis to analyze behavior. First,
they obtain inter-class information from source code. Next,
for a particular pattern, they compute a list of candidate
classes. Then, assuming how these candidates should be-
have, they verify the behavior during runtime.

Dynamic analysis relies on a good coverage of test data
to exercise every possible execution path; such test data is
not often available. Even if test data is available in a distri-
bution, the runtime results may be misleading since the data
was not originally designed for recognizing the behavior of
a particular pattern (e.g., a distribution might include a val-
idation or benchmark suite). Moreover, dynamic analysis is
not able to verify pattern intent that is not observable, such
as verifyinglazy instantiationandsingle instance assurance
for the Singleton pattern,

Static Program Analysis

These approaches apply static program analysis techniques
to the AST in method bodies. FUJABA, in its current
implementation, identifies path-insensitive object creation
statements for recognizing Abstract Factory and Factory
Method patterns. Reference [9] is a design pattern veri-
fication tool for Java. The tool consists of the HEDGE-



HOG proof engine and the Prolog-like SPINE specification
language. HEDGEHOG identifies inter-class relationships
and then applies some inter-procedural but path-insensitive
analysis techniques to verify some weak semantics (e.g.,
whether a method modifies the value of a field) defined
in method bodies. SPINE is not able to capture program
intent, thus patterns that are vaguely defined or lack clear
realization are not representable in SPINE. HEDGEHOG
has an accuracy rate of 85.5% for all SPINE-representable
patterns. Since the analysis for verifying weak semantics
are hard-coded in HEDGEHOG, the false negatives comes
from HEDGEHOG’s limitation of recognizing implementa-
tion variants (see further Section7).

3 Motivating Examples

Current pattern recognition approaches fail to properly
verify pattern intent, which is an important aspect of pat-
terns.. For example, the Singleton and the Flyweight pat-
terns are both object-creational patterns, but each has a
unique intent that can be implemented in various ways.

Example: the Singleton Pattern

The Singleton pattern is probably the most commonly used
pattern. Figure1 shows a common implementation of the
Singleton pattern. It is generally perceived to be the sim-
plest pattern to detect [28, 24], since it does not require an-
alyzing its interaction with other classes. The intent of the
Singleton pattern is to ensure that a class has only one in-
stance [15]. However, to verify this intent is not an easy
task and is typically omitted or limited in current recogni-
tion tools.

public class SingleSpoon {
private SingleSpoon();
private static SingleSpoon theSpoon;
public static SingleSpoon getTheSpoon() {

if (theSpoon == null) theSpoon = new SingleSpoon();
return theSpoon;

} }

Code based on http://www.fluffycat.com/Java-Design-Patterns/Singleton

Figure 1. An Example of a Singleton Class

For example, FUJABA’s recognition is solely based on
inter-class relationships, which identifies a Singleton class
with the following criteria: (1) has class constructors re-
gardless of accessibility, (2) has astatic reference, re-
gardless of accessibility, to the Singleton class, and (3)
has apublic-static method that returns the Singleton class
type. Thus, without further static behavioral analysis in the
method bodies, FUJABA identifies a Singleton class as long
as it matches these constraints. In fact, (1) and (2) are in-
correct. The constructors have to be declaredprivate (unless

the class isabstract) to control the number of objects cre-
ated, and the Singleton reference also has to beprivate to be
prevent external modification. Even with these constraints
modified, the Singleton class structure only prevents exter-
nal instantiation and modification. The real pattern intentis
embedded in thepublic-static method’s body.

As another example, HEDGEHOG uses limited static se-
mantic analysis to verify implementation of lazy instantia-
tion (illustrated ingetTheSpoon() of Figure1). The lazy-
instantiation analysis is hard-wired in HEDGEHOG. Based
on the other semantic analysis techniques discussed in Ref-
erence [9], HEDGEHOG is not able to recognize other
forms of lazy instantiation, such as using boolean (or other
data types) flags to guard the lazy instantiation or using a
different program structure (illustrated in Figure2).

public static SingleSpoon getTheSpoon() {
if (theSpoon != null) return theSpoon;
theSpoon = new SingleSpoon();
return theSpoon;

}

Figure 2. Lazy Instantiation Variant

Example: the Flyweight Pattern

The Flyweight pattern has various interpretations. Because
it is categorized as a structural pattern by GoF, many believe
the pattern is based on inter-class relationships. However,
the pattern consists of a flyweight factory (that manages a
pool of sharable-unique flyweight objects), which makes it
more of a creational pattern and thus requires verifying pat-
tern intent. The GoF book specifies that a flyweight object is
created upon request. Each created flyweight object stored
in a flyweight pool is associated with a unique key for later
retrieval. Figure3 shows an implementation of the GoF in-
terpretation. The real pattern intent resides in the method
body ofgetFlyweight(...).

public class FlyweightFactory {
Hashtable hash = new Hashtable();
public BallFlyweight getFlyweight(

int r, Color col, Container c, AStrategy a) {
BallFlyweight tempFlyweight =

new BallFlyweight(r,col,c,a),
hashFlyweight =

((BallFlyweight)hash.get(tempFlyweight));
if(hashFlyweight != null) return hashFlyweight;
else {

hash.put(tempFlyweight,tempFlyweight);
return tempFlyweight;

} } }

Code based on
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/FlyweightPattern.htm

Figure 3. Implementation of getFlyweight()

FUJABA interprets a flyweight class of having a con-
tainer and a method that keeps and creates flyweight ob-



jects, respectively. This strategy fails to capture the pattern
intent and significantly increases the false positive rate.

HEDGEHOG, on the other hand, interprets an im-
mutable class as a flyweight class and anystatic-final vari-
ables as sharable flyweight objects. However, such interpre-
tations tend to be overly restrictive and fail to recognize the
GoF interpretation of the Flyweight pattern.

4 GoF Patterns Reclassified

The GoF book [15] illustrates 23 common design pat-
terns and categorizes them based on their purposes (for cre-
ational, structural, or behavioral) and scopes (that are either
class- or object-based). Based on the GoF categorization,
some researchers [6, 29] believe structural patterns can be
identified based on only inter-class relationships and require
the least effort to analyze. Creational patterns come next,
since statements of object creation can be easily detected.
Behavioral patterns are considered the most difficult to de-
tect, since analysis on the behavior in the method body is
required. However, that view is not entirely accurate. As
discussed in Section3: the Singleton pattern (a creational
pattern) requires not only detecting the existence of object
creation, but it also requires verifying the behavior of the
method body that creates and returns the Singleton instance;
the Flyweight pattern (a structural pattern) requires behav-
ioral analysis to verify whether all flyweight objects in the
flyweight pool are singletons and are created on demand.
The Template Method and Visitor pattern (both behavioral
patterns) define their behavior in the class definitions, which
can be identified based on static structural analysis (see Sec-
tions4.2). While this categorization is useful for program-
mers, it is not helpful for pattern detection.

Instead of using purposes and scopes, patterns should be
categorized, in the reverse-engineering sense, by their def-
initions from the structural and behavioral aspects. Some
patterns are driven by code structure and are designed to
structurally decouple classes and objects; but, other patterns
are driven by system behavior and require specific actions
implemented in the method bodies. Thus, we divide the
GoF patterns based on their structural and behavioral re-
semblances into five categories: patterns that are already
provided in the language (Section4.1); patterns that are
driven by structural design and can be detected using static
structural analysis (Section4.2); patterns that are driven
by behavioral design and can be detected using static be-
havioral analysis (Section4.3); patterns that are domain-
specific (Section4.4); patterns that are only generic con-
cepts (Section4.5). Figure4 illustrates this reclassification
and highlights our search strategies. The squares are the de-
sign patterns, and ovals are structural sub-patterns (which
are the building blocks of the design patterns; some of the
sub-patterns here are used in References [21, 26]). The un-

boxed texts indicate the searching criteria along the edge to
another design pattern. A standalone square indicates that
the pattern is detectable either by its inter-class properties or
using additional domain-specific knowledge and heuristics.

4.1 Language-provided Patterns

Design patterns are so widely used today that many
languages (e.g., Java, Python) and packages (e.g, JDK,
STL) implement some common design patterns to fa-
cilitate programming. Java provides the Iterator (as
in java.util.Enumeration, java.util.Iterator, and the for-
each loop) and Prototype (as theclone() method in
java.lang.Object) patterns. In practice, developers tend to
use such built-in facilities1 to efficiently and effectively
build software systems. Such pattern instances can be rec-
ognized by matching specific names for methods or check-
ing if a class implements a specific Java interface, which is
used in HEDGEHOG [8].

4.2 Structure-driven Patterns

Patterns in this category can be identified by inter-class
relationships. Such relationships establish the overall sys-
tem architecture but do not specify the actual system behav-
ior. Inter-class relationships are used to separate class re-
sponsibilities that contain declarations, generalization, as-
sociation, and delegation relationships. Structure-driven
patterns include the Bridge, Composite, Adapter, Facade,
Proxy, Template Method, and Visitor patterns. The Bridge
and Composite patterns separate class hierarchies based on
generalization and association relationships; the Adapter,
Facade, and Proxy patterns separate class roles based on
class association and method delegation relationships; the
Visitor and Template Method patterns defer class responsi-
bilities through method declarations and delegation.

4.3 Behavior-driven Patterns

Some patterns are designed to realize certain behavioral
requirements. Such a design pattern is embedded with a
program intent that is carried in inter-class relationships
and method bodies. Behavior-driven patterns include the
Singleton, Abstract Factory, Factory Method, Flyweight,
Chain of Responsibility (CoR), Decorator, Strategy, State,
Observer, and Mediator patterns.

The GoF creational patterns are driven by some con-
straints on object creation, such as the number and type of

1 java.util.Observable implements the Observer pattern; it implements a
fixed subject-listeners communication mechanism, and the orderin which
notifications will be delivered is unspecified (see the Java2API). In prac-
tice, the Observer pattern is applied to various contexts with different inter-
nal data structures and communication mechanisms. Thus, we include the
Observer pattern in the Behavior-driven Patterns category(Section4.3).



Figure 4. A Reclassification for Reverse Engineering of the 2 3 GoF Patterns

objects to be created. For example, the Singleton pattern en-
sures that a class has at most one instance during the entire
program execution. The Flyweight pattern, although clas-
sified as a GoF structural pattern, is designed to effectively
manage a pool of sharable objects.

The CoR and Decorator patterns define different behav-
ior based on how a request is passed along a list of handlers.
The Decorator pattern lets every handler process the same
request, while the CoR pattern passes a request along the
list until the right handler processes it.

The Strategy and State patterns share identical inter-class
structures but differ in behavior. Each pattern involves a
context class that has an attribute that takes a role of either
a strategy or a state. The two patterns differ in how the at-
tribute gets modified. In the State pattern, the attribute is
passively modified by other state objects. In the Strategy
pattern, the attribute is actively modified by other class en-
tity through the context class.

The Observer (subject vs. observers) and Mediator (me-
diator vs. colleagues) patterns share the same 1:N aggre-
gation relationship but differ in communication styles. The
subject class of the Observer pattern broadcasts messages
to its observers, while the mediator of the Mediator pattern
serves as a communication hub for its colleagues.

4.4 Domain-specific Patterns

The Interpreter and Command patterns combine other
GoF patterns and are specialized to suit a particular domain.
The Interpreter pattern uses the structure of the Composite
pattern and the behavior of the Visitor pattern. Based on
this formation and a grammar of a language, the Interpreter
pattern interprets the language. We consider this pattern as
a special case of realizing the Composite and the Visitor
patterns. The Command pattern is basically a realization
of the Bridge pattern that separates the user interface from

the actual implementation for command execution. The
Command pattern also suggests incorporating the Compos-
ite pattern to support multi-commands and undoable oper-
ations and using the Memento pattern to store the history
of executed commands. Such patterns are possible to de-
tect, but their detection requires analysis that incorporates
domain-specific knowledge.

4.5 Generic Concepts

While useful in practice, the Builder and Memento pat-
terns are only generic concepts lacking traceable implemen-
tation patterns. The Builder pattern is a creational pattern
that separates the building logic from the actual object cre-
ation, so that the building logic is reusable [15]. In practice,
this pattern is often used for system bootstrapping, of which
object creation may not be involved with initial configura-
tion. The Builder pattern was detected in Reference [6] with
a 86% false positive rate. The Memento pattern “captures
and externalizes an object’s internal state so that the object
can be restored to this state later” [15]. However, the pattern
neither defines the representation for a state nor the require-
ment of a data structure for the memo pool. This pattern
has not been addressed in any pattern detection tools dis-
cussed in Section2, because similar to the Builder pattern,
these patterns are generic concepts that lack definite struc-
tural and behavioral aspects for pattern detection.

5 Approach to Pattern Detection

A design pattern is an abstraction of source code design
and can be realized in many ways, which makes it non-
trivial to detect. However, a pattern can be effectively de-
tected using various program analysis techniques if it has a
concrete definition of how it realizes its structural and be-
havioral aspects. Thus in our current scope, we exclude de-



tection for domain-specific patterns and generic concepts.
We also exclude language-provided patterns, since they are
included in the language and require only trivial keyword
analysis. In this paper, we focus on detecting the structure-
and behavior-driven patterns.

5.1 Detecting Structure-driven Patterns

Section4.2discussed how such patterns can be detected
by their inter-class relationships. Information on various
inter-class relationships can be obtained through parsing.
Then, specific analysis is applied to different patterns.

The Bridge, Composite, and Template Method patterns
have been successfully identified in previous work (that tar-
get structural aspects) based on inter-class relationships. We
use the same approach in this case.

The Visitor pattern provides a way to define a new op-
eration to be performed on an already-built object structure
without changing the classes of the elements on which it
operates [15]. The inter-class relationships involved are: a
method declarationaccept (e.g.,void Accept(Visitor v)), de-
fined in the element class to invite a visitor; and a method
invocationvisit (e.g.,v.visit(this)), where an element exposes
itself to the visitor.

The Object Adapter (adapter vs. adaptee), Facade (fa-
cade vs. subparts), and Proxy (proxy vs. real) patterns share
a common goal: to define a new class to hide other class(es)
for system integration or simplification. We will refer to the
Object Adapter pattern as the Adapter pattern. The Adapter
and Proxy patterns each hides one class, whereas the Facade
pattern hides multiple classes (to be distinguished from the
Adapter pattern). By “hiding”, we mean the hidden classes
are not directly accessed (by reference or delegation) from
others except for the one that is hiding.

Some other basic inter-class structures also need to be
identified for detecting behavior-driven patterns (see fur-
ther Section5.2). The Singleton class structure is based
on the structural features described in Section3. The sub-
patterns (as the ovals in Figure4) are also identified for
further behavioral analysis. These inter-class sub-patterns
can be identified by analyzing class inheritance, class and
method declarations, and method delegations. The next sec-
tion further discusses these structures.

5.2 Detecting Behavior-driven Patterns

The inter-class analysis (defined in Section5.1) identi-
fies the structural aspect of a pattern, and most importantly
narrows down our search space to particular methods for
further static behavioral analysis. For example, identifying
the Singleton class structure determines whether the single-
ton instance is created (1) once upon declaration or (2) by

lazy instantiation. Then, static behavioral analysis is ap-
plied to each candidate method’s body to verify whether for
(1) it simply returns the instance or for (2) it correctly im-
plements lazy instantiation.

There are several ways to understand program behavior.
A common technique is template matching, which is often
used in detecting malicious or buggy code (e.g., [18]). If ap-
plied to pattern detection, we can perhaps characterize cer-
tain pattern behavior into a sequence of states, then make
it a template to match a target method. However, design
patterns are not defined for detection or verification. In-
stead, they serve as guidance for various reification. Such
sequence matching techniques can be limited in recognizing
more common implementation variants.

Traditional data-flow analysis analyzes the entire AST
of the method body. However, each behavior-driven pat-
tern has a unique behavior that defines a target variable or
statement for detection. To determine if an implementa-
tion is a correct pattern instance, we only need to verify
whether the target does the right thing under the right con-
dition. For example, if thegetInstance() method of the Sin-
gleton pattern implements lazy instantiation, then it guaran-
tees that the singleton instance gets created only once upon
initialization. Here only the sub-AST that covers the lazy-
instantiation mechanism requires full data-flow analysis.

Therefore, our approach uses data-flow analysis on ASTs
in terms of basic blocks. As it processes each method body,
it identifies the basic blocks, each of which contains state-
ments that are executed under the same condition(s). Our
approach links together the basic blocks based on execution
flow to form a control-flow graph (CFG) for the method
body. To illustrate, we present two examples: the Singleton
and Flyweight patterns.

Example: the Singleton Pattern

Consider our static behavioral analysis to determine lazy
instantiation in a method body ofgetTheSpoon() in Fig-
ure1. First, we build the CFG shown in Figure5. (Control

Figure 5. CFG of getTheSpoon() from Figure 1

flow is indicated through directed edges.) Then, the CFG
is scanned to determine which basic block instantiates and
which returns the singleton instance. The main actor here is
the singleton variable that has the roles of being instantiated
and returned. Based on the pre-determined actor and roles,



our algorithm tells usBasicBlock0 creates the singleton in-
stance andBasicBlock1 returns the singleton variable.

Then, we examine the conditions guardingBasicBlock0.
Since only the last program state before return matters, here
we use backward data-flow analysis on the flag variables in-
volved in the conditions to verify if the contained sequence
of statements guarantee single entrance to this basic block.
Next, we check for the rest of the basic blocks if the flag
variables can be modified, using backward data-flow analy-
sis, elsewhere besidesBasicBlock0.

Lazy instantiation can take many different forms. For
example, one may use boolean types as flags, or use a dif-
ferent program structure, such as reversing the create-and-
then-return order (shown in Figure2). Such realistic vari-
ants of code map to (structurally) the same CFG as that in
Figure5, so we can use the same algorithm to track vari-
able activities. Other behavior-driven patterns can also be
detected using similar approaches.

Example: the Flyweight Pattern

Our approach to detecting the Flyweight pattern is based
on a similar technique, which analyzes the method that po-
tentially returns a flyweight object. For example, consider

Figure 6. CFG of getFlyweight() from Figure 3

the code in Figure3. Our inter-class analysis pinpoints that
getFlyweight(...) is a candidate method that returns a fly-
weight object; then our static behavioral analysis is applied
to this method. We build the CFG shown in Figure6 (which
shows roles, described later). Similar to detecting the Sin-
gleton pattern, the actors, which are the flyweight instance
and flyweight pool, and their roles must then be determined.
In this case, a flyweight instance is determined at a return
statement. A flyweight pool is indicated by its data type,
which is often a container class (such as a hashtable in this
case). Based on the actors and their use and interaction in a
statement, our algorithm assigns a role to each flyweight in-
stance. Using backward analysis on this CFG, we can easily
verify that the implementation either returns an existing or
a new flyweight object.

Transforming to basic blocks not only flattens an AST of a
method body, but also facilitates the detection of whether
a target statement is executed in all paths. For example,
the similarity between the CoR (with chained handlers) and
the Decorator (with linked decorators) patterns is that each
invokes the same polymorphic method of the adjacent node,
but the difference is that this call is conditional for CoR and
mandatory for Decorator. The same technique also applies
to detection of loops to distinguish between the Observer
and Mediator patterns.

6 PINOT

Based on our methodology (Section5), we implemented
a fully automated pattern detection tool, called PINOT (Pat-
tern INference recOvery Tool). The current implementation
of PINOT recognizes all the GoF patterns in the structure-
and behavior-driven categories.

PINOT is built from Jikes (an opensource Java compiler
written in C++) with an embedded pattern analysis engine.
There are number of advantages of using a compiler as the
basis of a pattern detection tool. A compiler constructs sym-
bol tables and AST that facilitate the inter-class and static
behavioral analyses. Compilers also perform some seman-
tic checks that help pattern analysis. For example, Jikes
prints out warnings when a local variable shadows (has the
same name as) a global variable, which helps disambiguate
delegation relationships. Most importantly, compilationer-
rors reflect the incompleteness of symbol tables and AST,
which result in incorrect pattern detection results. How-
ever, some tools, such as FUJABA and PTIDEJ, are able to
partially (with a fuzzy number) detect patterns from incom-
plete source. Such tools can be desirable if pattern detec-
tion is used as part of software forward-engineering, such
as building and incorporating patterns on the run. In our
case, pattern detection is reserved for reverse-engineering,
where accuracy is vital.

PINOT begins its detection process for a given pattern
based on what is most likely to be most effective in iden-
tifying that pattern (i.e., declarations, associations, or dele-
gations). This reduces the search space by pruning the least
likely classes or methods. The completeness of a pattern de-
tection tool is determined by the ability of recognizing pat-
tern implementation variants. For practical reasons, PINOT
focuses on detecting common implementation variants used
in practice. Thus, some behavioral analysis techniques are
not fully applied to each behavior-driven pattern. As an ex-
ample, data-flow analysis is applied to analyzing the activi-
ties of the flag variable that guards the lazy instantiation in
the Singleton pattern. The flag can have any data type, but
java.lang.Object (when the reference for the Singleton in-
stance also acts as the flag) andboolean are more common.
Although a flag may be an integer, it is not as common in
this case and would require much more computation. Thus,



PINOT only analyzes lazy instantiation that uses boolean or
java.lang.Object types. Inter-procedural data-flow and alias
analyses are only used for detecting patterns that often in-
volve method delegations in practice, such as Abstract Fac-
tory, Factory Method, Strategy and State patterns.

Some patterns, such as Decorator, CoR, Observer, and
Mediator patterns, require only identifying the conditionof
which the target method delegation statement takes place.
In particular, the Observer pattern involves a subject no-
tifying a list of listeners. In Java, the listeners are usu-
ally stored in an array or ajava.util.Collection class. If the
latter, the iteration is often handled usingjava.util.Iterator.
PINOT identifies arrays and array indexing, as well as
classes that implementsjava.util.Collection and their use
of java.util.Iterator. PINOT does not recognize any user-
defined or user-extended data structures.

7 Results

We compared PINOT with two other similar tools:
HEDGEHOG [9] and FUJABA 4.3.1 (with Inference En-
gine version 2.1).

HEDGEHOG (see Section2.2) reads pattern specifica-
tions from SPINE, which allows users to specify inter-class
relationships and other path-insensitive semantic analysis
(e.g., for Factory Method pattern, the predicate “instanti-
ates(M, T)” checks whether a method M creates and re-
turns an instance of type T.), but other more complicated se-
mantic analysis is hard-wired to its built-in predicates (e.g.,
“lazyInstantiates(...)”). Thus, SPINE is bounded by the ca-
pability of semantic analysis provided by HEDGEHOG. To
use the tool, the user specifies a target class and a target
pattern to verify against (i.e., attempt to recognize).

FUJABA has a rich GUI for software re-engineering. Its
pattern inference engine provides a UML-like visual lan-
guage for user-defined patterns. The language allows spec-
ifying inter-class relationships and a “creates” relationship
(which is the same as the “instantiates” predicate defined in
SPINE). FUJABA is easy to use: the user simply specifies
the location of the source code and then runs the pattern in-
ference engine. FUJABA displays the results graphically.
FUJABA can run entirely automatically or incorporate in-
teractive user guidance to reduce its search space.

PINOT is fully automated; it takes a source package and
detects the pattern instances. All detection algorithms are
currently hard-coded to prove the correctness of our tech-
niques on the structure- and behavior-driven patterns.

Although these three tools were built for different uses,
they all involve pattern recognition. Thus, we compare
these tools in terms of accuracy. Table1 shows the results
of testing each tool against the demo source from “Applied
Java Patterns”(AJP) [27]. Each AJP pattern example is sim-
ilar to the one illustrated in the GoF book [15], except for

Tools
PINOT HEDGEHOG FUJABA

Creational
Abstract Factory†

√ √
×

Builder – – –
Factory Method†

√ √
×

Prototype – × –
Singleton†

√ √ √

Structural
Adapter⋆

√ √
×

Bridge⋆
√ √ √

Composite⋆
√ √

×
Decorator†

√ √
×

Facade⋆
√

–
√

Flyweight†
√ √

×
Proxy⋆

√ √
–

Behavioral
CoR†

√
– ×

Command – – –
Interpreter – – –
Iterator –

√
×

Mediator†
√

– ×
Memento – – ×
Observer†

√ √
×

State†
√

× –
Strategy†

√ √ √

TemplateMethod⋆
√ √ √

Visitor⋆
√ √

–
⋆: a Structure-driven Pattern;†: a Behavior-driven Pattern

√
the tool claims to recognize this pattern and is able to correctly iden-
tify it in the AJP example.

× tool claims to recognize this pattern but fails to identify itin AJP.

– the tool excludes recognition for this pattern.

Table 1. Pattern Recovery Results on AJP

the Flyweight pattern. The AJP Flyweight example does
not define a flyweight pool; instead, the flyweight objects
are statically instantiated and arestatic-final fields of the
flyweight factory class. Table1 shows that PINOT is able
to recognize all the structure- and behavior-driven patterns
in AJP. Because PINOT is a pattern detection tool, it as-
sumes a class can participate in any pattern. Thus, PINOT
tests a class against all pattern definitions. FUJABA was
also tested in the same fashion. HEDGEHOG, however, is
not an automated verification tool and users are responsi-
ble of picking the patterns to verify against the target class.
Thus, HEDGEHOG’s results shown in Table1 were based
on prior knowledge of the source and only likely patterns
were verified against a class [9].

Patterns can have various reification, and it is impossible
for a pattern recognition tool to be complete. Thus, a tool’s
pattern-recognition ability depends on its interpretation of
pattern implementation. As an example, the Observer pat-
tern defines how aSubject class notifies itsListener classes.
FUJABA recognizes a variant of this pattern and calls it the
“Broadcast Mediator” pattern. It specifies thatSubject has
a container class for theListeners, and there exists a method



delegations fromSubject to Listener. HEDGEHOG, on the
other hand, first checks for a container (as does FUJABA)
and then checks ifSubject defines the following methods:
a method that starts with prefix name “add”, another that
starts with “remove”, and finally one method delegation that
invokes some method inListener. HEDGEHOG checks if
the first two methods actuallyaddandremovean object of
Listener type from the container [8]. However, FUJABA’s
and HEDGEHOG’s approaches do not capture the real in-
tent of the pattern, which is the “broadcasting of notifica-
tions” as in a push-model communication. PINOT recog-
nizes this intent by first identifying a container in aSub-
ject class (based on inter-class relationships) and then using
static behavioral analysis (using techniques similar to those
illustrated in Section5.2) to identify a loop control (e.g, in
a notify method) that iterates through the container and in-
vokes the same method (e.g., in an update method) of each
containedListener object.

We also tested PINOT on several real Java applications.
Figure 7 shows only the results for Java AWT 1.3, JHot-
Draw 6.0, Java Swing 1.4, and Apache Ant 1.6; see [2]
for results on other applications, such as javac, java.io,
and java.net packages. PINOT analyzes all classes, in-

Figure 7. Pattern Instances Recovered

cluding anonymous and inner classes. A pattern in-
stance is a collection of participating classes, and a class
may participate in several other patterns. For example,
in AWT, java.awt.Component andjava.awt.ComponentPeer
form one Bridge pattern instance;java.awt.Component and
java.awt.Container together form one Composite and one
CoR pattern instances.

We ran PINOT on each of these packages on a Linux ma-
chine running on a 3GHz Intel processor with 1G of RAM.
Compared to times for PINOT (Figure7), FUJABA took 22
minutes to analyze the AWT and PTIDEJ took 2-3 hours

to analyze JHotDraw. FUJABA was tested on a Pentium
III 933MHz processor with 1G of memory. The reported
time excludes parsing [21], but we are not certain if this
time includes displaying the results graphically. PTIDEJ
was tested on an AMD Athlon 2GHz 64b processor. PINOT
is faster because the recognition algorithms are hard-coded
and compute common sub-patterns patterns once.

The PINOT website [2] comprehensively discusses the
recovered pattern instances. Our test results were ver-
ified against an authoritative discussion pattern discus-
sion board [1], documentation written by original devel-
opers [14], and manual verification. We found some false
positives in PINOT’s results: 23.75% of Factory Method
instances are considered Prototype instances, of which the
classes implementjava.util.Cloneable and override theclone
method. Such Prototype instances are trivial to identify us-
ing keyword matching. However, user-defined variants that
do not implement the Java built-in types may require heuris-
tics to verify the “cloning” intent within method bodies.

Due to the impreciseness of some GoF definitions,
PINOT recognizes other common implementation variants
of the Flyweight and Mediator patterns. In particular,
PINOT recognizesimmutableclasses as a common imple-
mentation variant of the Flyweight pattern [8]. We found
13.69% of Flyweight instances asimmutableclasses. More-
over, PINOT detects a Mediator variant (in AJP and GoF
sample code) that allows colleagues to be individual in-
stances in a Mediator class (i.e., a variant 1:N relation). In
this case, the Mediator class serves as a facade that shields
direct communication from one colleague to another. We
found 24.93% of the Mediator classes as Facade classes.

Unfortunately, we are not able to compare our results
with other pattern recognition tools. HEDGEHOG verified
5 correct pattern instances [8] (that have also been identified
by PINOT, see [2]) within the AWT, but the tool is not pub-
licly available (unlike PTIDEJ and FUJABA). PTIDEJ [16]
analyzes patterns at the bytecode-level and was tested on
AWT and JHotDraw, but the results were not comprehen-
sive and only presented recall results for the Composite
pattern. FUJABA [21, 22, 25] was tested on the entire
AWT 1.3, but only 3 pattern instances were reported (also
identified by PINOT) and it is not clear whether the pub-
lished results of pattern instances were comprehensive. Our
experimentation with PTIDEJ and FUJABA indicates that
PTIDEJ is not stable and lacks user documentation, while
FUJABA works on small programs but has limited pattern
recognition capability on larger programs.

8 Conclusion and Future Work

This paper discussed the state-of-the-art pattern detec-
tion tools. Our contributions include: reclassifying the GoF
patterns to facilitate pattern recognition; claiming thatpat-



tern definitions are either driven by code structure or sys-
tem behavior; using our lightweight static program analysis
techniques to efficiently recognize complicated program be-
havior; and implementing PINOT, a fully automated pattern
detection tool that is faster, more accurate, and more com-
prehensive than existing tools. Our future work with PINOT
will: expand its pattern recognition capability to recognize
more complicated user-defined data structures; explore its
use to detect design patterns in specific application domains,
such as concurrent and real-time patterns; experiment with
its use in tracking software evolution by design; and ex-
tend its overall usability by providing a visual specification
language for defining patterns and exporting our analysis
results as XMI for external viewing.

Acknowledgments

Todd Williamson helped greatly with testing PINOT.

References

[1] Pattern Stories: JavaAWT.http://wiki.cs.uiuc.
edu/PatternStories/JavaAWT.

[2] The PINOT Website. http://www.cs.ucdavis.
edu/∼shini/research/pinot.

[3] H. Albin-Amiot, P. Cointe, Y.-G. Gueh́eneuc, and
N. Jussien. Instantiating and detecting design patterns:
putting bits and pieces together. InProceedings of the
16th Annual International Conference on Automated Soft-
ware Engineering, pages 166–173. IEEE Computer Society
Press, Nov. 2001.

[4] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pat-
tern recovery in object-oriented software. InProc. of the 6th
International Workshop on Program Comprehension, pages
153–160. IEEE Computer Society Press, June 1998.

[5] A. Asencio, S. Cardman, D. Harris, and E. Laderman. Relat-
ing expectations to automatically recovered design patterns.
In WCRE, pages 87–96, 2002.

[6] Z. Balanyi and R. Ferenc. Mining design patterns from C++
source code. InProc. of the International Conference on
Software Maintenance, pages 305–314. IEEE Computer So-
ciety Press, September 2003.

[7] J. Bansiya. Automating design-pattern identification –
DP++ is a tool for C++ programs.Dr. Dobbs Journal, 1998.

[8] A. Blewitt. HEDGEHOG: Automatic Verification of Design
Patterns in Java. PhD thesis, University of Edinburgh, 2005.

[9] A. Blewitt, A. Bundy, and I. Stark. Automatic verification
of design patterns in Java. InASE, pages 224–232, 2005.

[10] K. Brown. Design Reverse Engineering and Automated De-
sign Pattern Detection in SmallTalk. Master’s thesis, North
Carolina State University, 1998.

[11] J. Fabry and T. Mens. Language Independent Detection
of Object-Oriented Design Patterns.Computer Languages,
Systems and Structures, February 2004.

[12] R. Ferenc,Á. Besźedes, L. Fulop, and J. Lele. Design pat-
tern mining enhanced by machine learning. InICSM, pages
295–304, 2005.

[13] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki. Rec-
ognizing design patterns in C++ programs with the integra-
tion of Columbus and Maisa.Acta Cybern., 15(4):669–682,
2002.

[14] E. Gamma. Becoming a Programming Picasso with JHot-
Draw. http://www.javaworld.com/javaworld/
jw-02-2001/jw-0216-jhotdraw.html.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachusetts, 1995.

[16] Y.-G. Gueh́eneuc and N. Jussien. Using explanations for de-
sign patterns identification. InProceedings of the 1st IJCAI
Workshop on Modelling and Solving Problems with Con-
straints, pages 57–64, August 2001.

[17] Y.-G. Gueh́eneuc, H. Shraoui, and F. Zaidi. Fingerprinting
design patterns. InProceedings of the 11th Working Confer-
ence on Reverse Engineering, pages 172–181, Nov 2004.

[18] S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system
and language for building system-specific, static analyses.
In PLDI, pages 69–82, 2002.

[19] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe. Auto-
matic design pattern detection. InProc. of the 11th IEEE
International Workshop on Program Comprehension, pages
94–103. IEEE Computer Society Press, May 2003.

[20] R. Keller, R. Shauer, S. Robitaille, and P. Pagé. Pattern-
based reverse-engineering of design components. InProc. of
the 21st International Conference on Software Engineering,
pages 226–235. IEEE Computer Society Press, May 1999.

[21] J. Niere, W. Shafer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. InICSE,
pages 338–348. IEEE Computer Society Press, May 2002.

[22] J. Niere, J. P. Wadsack, and L. Wendehals. Handling large
search space in pattern-based reverse engineering. InProc.
of the 11th IEEE International Workshop on Program Com-
prehension, pages 274–279. IEEE Computer Society Press,
May 2003.

[23] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I.
Verkamo. Software metrics by architectural pattern mining.
In Proceedings of the International Conference on Software:
Theory and Practice, pages 325–332. 16th IFIP World Com-
puter Congress, August 2000.

[24] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann.
An approach for reverse engineering of design patterns.Soft-
ware Systems Modeling, pages 55–70, 2005.

[25] J. Seemann and J. W. von Gudenberg. Pattern-based design
recovery of Java software. InProceedings of the 6th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 10–16. ACM Press, 1998.

[26] J. M. Smith and D. Stotts. SPQR: flexible automated design
pattern extraction from source code. InASE, pages 215–224.
IEEE Computer Society Press, October 2003.

[27] S. Stelting and O. Maassen.Applied Java Patterns. Prentice
Hall, Palo Alto, California, 2002.

[28] M. Vokáč. An efficient tool for recovering design patterns
from C++ code.Journal of Object Technology, 5(2), March-
April 2006.

[29] L. Wendehals. Improving design pattern instance recogni-
tion by dynamic analysis. InProc. of the ICSE Workshop on
Dynamic Analysis (WODA), pages 29–32. IEEE Computer
Society Press, May 2003.

http://wiki.cs.uiuc.edu/PatternStories/JavaAWT
http://wiki.cs.uiuc.edu/PatternStories/JavaAWT
http://www.cs.ucdavis.edu/~shini/research/pinot
http://www.cs.ucdavis.edu/~shini/research/pinot
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html

	Introduction
	Critique of Current Approaches
	Targeting Structural Aspects
	Targeting Behavioral Aspects

	Motivating Examples
	GoF Patterns Reclassified
	Language-provided Patterns
	Structure-driven Patterns
	Behavior-driven Patterns
	Domain-specific Patterns
	Generic Concepts

	Approach to Pattern Detection
	Detecting Structure-driven Patterns
	Detecting Behavior-driven Patterns

	PINOT
	Results
	Conclusion and Future Work

