
FIREMAN: A Toolkit for FIREwall Modeling and
ANalysis

Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah and Prasant Mohapatra
{lyuan@ece, jnmai@ece, su@cs, hchen@cs, chuah@ece, prasant@cs}.ucdavis.edu

University of California, Davis

Abstract— Security concerns are becoming increasingly criti-
cal in networked systems. Firewalls provide important defense
mechanisms for network security. However, misconfigurations in
firewalls are very common and significantly weaken the desired
security. This paper introduces FIREMAN, a static analysis
toolkit for firewall modeling and analysis. By treating firewall
configurations as specialized programs, FIREMAN applies static
analysis techniques to check misconfigurations, such as policy
violations, inconsistencies, and inefficiencies, in individual fire-
walls as well as among distributed firewalls. FIREMAN performs
symbolic model checking of the firewall configurations for all
possible IP packets and along all possible data paths. It is both
sound and complete because of the finite state nature of firewall
configurations. FIREMAN is implemented by modeling firewall
rules using binary decision diagrams (BDDs), which have been
used successfully in hardware verification and model checking.
We have experimented with FIREMAN and used it to uncover
several real misconfigurations in enterprise networks, some of
which have been subsequently confirmed by these networks’
administrators.

I. INTRODUCTION

Firewall is a critical, widely deployed mechanism for im-
proving the security of enterprise networks. However, con-
figuring a firewall is daunting and error-prone even for an
experienced administrator. As a result, misconfigurations in
firewalls are common and serious. In examining 37 firewalls
in production enterprise networks in 2004, Wool found that
all the firewalls were misconfigured and vulnerable, and that
all but one firewall were misconfigured at multiple places [1].
As another evidence, Firewall Wizards Security Mailing List
has discussed many real firewall misconfigurations [2]. The
wide and prolonged spread of worms, such as Blaster and Sap-
phire, demonstrated that many firewalls were misconfigured,
because “well-configured firewalls could have easily blocked
them” [1].

The following scripts illustrates how easy firewall miscon-
figurations can happen:

permit tcp 192.168.0.0/16 any
deny tcp 192.168.1.0/24 any 3127

The second rule is configured to deny all the outbound traffic
to a known backdoor TCP port for the MyDoom.A worm, and
is correct by itself. However, since a firewall examines each
rule sequentially and accepts (or rejects) a packet immediately
when the packet is matched to a rule, a preceding rule may
shadow subsequent rules matching some common packets. The
first rule, which accepts all the outbound traffic from the local

network 192.168.0.0/16, shadows the second rule and leaves
the hole wide open.

Correctly configuring firewall rules has never been an easy
task. In 1992, Chapman [3] discussed many problems that
make securely configuring packet filtering a daunting task.
Some of them, e.g., omission of port numbers in filtering
rules, have been addressed by firewall vendors. However, many
others are yet to be addressed successfully. Since firewall
rules are written in platform-specific, low-level languages, it
is difficult to analyze whether these rules have implemented a
network’s high-level security policies accurately. Particularly,
it is difficult to analyze the interactions among a large number
of rules. Moreover, when large enterprises deploy firewalls
on multiple network components, due to dynamic routing, a
packet from the same source to the same destination may be
examined by a different set of firewalls at different times. It is
even more difficult to reason whether all these sets of firewalls
satisfy the end-to-end security policies of the enterprise.

We propose to use static analysis to discover firewall mis-
configurations. Static analysis has been applied successfully
to discover security and reliability bugs in large programs [4,
5], where it examines the control-flow and/or the data-flow
to determine if a program satisfies user-specified properties
without running the program. A firewall configuration is a
specialized program, so it is natural to apply static analysis to
check firewall rules. Compared to testing, static analysis has
three major advantages: (1) it can proactively discover and
remove serious vulnerabilities before firewalls are deployed;
(2) it can discover all the instances of many known types of
misconfigurations, because it can exhaustively examine every
path in the firewall efficiently; (3) when multiple firewalls are
deployed in a complex network topology and are subject to
dynamic routing configurations, static analysis can discover
vulnerabilities resulting from the interaction among these
firewalls without the need to configure these routers.

Testing has been proposed to discover firewall misconfig-
urations [6–9], where a tool generates packets and examines
whether a firewall processes these packets as intended. How-
ever, due to the enormous address space of packets, one cannot
test all possible packets practically. Al-Shaer and Hamed
describe common pairwise inconsistencies in firewall rules
and propose an algorithm to detect these inconsistencise [10,
11]. Our work is inspired by them, but our tool can detect a
much wider class of misconfigurations, such as inconsistencies
and inefficiencies among multiple rules and security policy

violations, and misconfigurations due to the interaction among
multiple firewalls. To the best of our knowledge, our work is
the first to apply rigorous static analysis techniques to real
firewalls and to have found real misconfigurations.

We have implemented our approach in the tool FIREMAN1.
FIREMAN discovers two classes of misconfigurations: (1)
violations of user-specified security policies—For example,
allowing incoming packets to reach the TCP port 80 on an in-
ternal host violates the security policies of most networks; (2)
inconsistencies and inefficiency among firewall rules, which
indicate errors or warnings regardless of the security policies—
For example, a rule intended to reject a packet is shadowed
by a preceding rule that accepts the packet. FIREMAN can
discover problems not only in individual firewalls but also in
a distributed set of firewalls that collectively violate a security
policy.

We summarize our major contributions as follows:
1) We give a comprehensive classification of firewall mis-

configurations for both single firewalls and distributed
firewalls (Section III);

2) We present a static analysis algorithm to examine fire-
wall rules for policy violations and inconsistencies at
different levels: intra-firewall, inter-firewall, and cross-
path (Section IV);

3) We provide an implementation of our algorithm in
the tool FIREMAN based on binary decision diagrams
(BDDs). Using FIREMAN, we have discovered pre-
viously unknown misconfigurations in production fire-
walls. (Section V)

The rest of this paper is organized as follows. Section II
describes the operational model of firewalls, which lays the
foundation for static analysis and error detection. Section III
classifies misconfigurations into policy violations, inconsisten-
cies, and inefficiencies. Section IV presents our static analysis
algorithm for checking firewall misconfigurations. Section V
describes our implementation and evaluation of FIREMAN,
and the previously unknown misconfigurations that FIREMAN
discovered in production firewalls. Section VI reviews related
work and Section VII concludes this paper.

II. MODELING FIREWALLS

A. Model of Individual Firewall

Firewalls from different vendors may vary significantly in
terms of configuration languages, rule organizations and inter-
action between lists or chains. However, a firewall generally
consists of a few interfaces and can be configured with several
access control lists (ACLs). Both the ingress and egress of
an interface can be associated with an ACL. If an ACL is
associated to the ingress, filtering is performed when packets
arrive at the interface. Similarly, if an ACL is associated to
the egress, filtering will be performed before packets leave the
interface.

Each ACL consists of a list of rules. Individual rules can
be interpreted in the form 〈P, action〉, where P is a predicate

1FIREMAN stands for FIREwall Modeling and ANalysis.

describing what packets are matched by this rule and action
describing the corresponding action performed on the matched
packets. Packets not matched by the current rule will be
forwarded to the next rule until a match is found or the end of
the ACL is reached. At the end of an ACL, the default action
will be applied. This is similar to an “if-elif-else” construct in
most programming languages. Implicit rules vary on different
firewall products. On Cisco PIX firewall and routers, the
implicit rule at the end of an ACL denies everything. On Linux
Netfilter, the implicit rule is defined by the policy of the chain.

Traditional stateless firewalls treat each packet in isolation
and check every packet against the ACL, which is computa-
tion intensive and often the performance bottleneck. Modern
stateful firewalls can monitor TCP 3-way handshake and
build an entry in the state table. If the firewall matches a
packet to an ESTABLISHED flow, it can permit it without
checking the ACL, thus significantly reduce the computation
overhead. However, the ACLs still determine whether a state
can be established in the first place. Therefore, the correct
configuration of ACLs is important even for stateful firewalls.

Format Action for Matched Packets

〈P, accept〉 permit the packet
〈P, drop〉 drop the packet

〈P, chain Y〉 goto user chain “Y”
〈P, return〉 resume calling chain

TABLE I: Firewall rule formats.

Depending on the available “actions,” we classify firewalls
into two typical models: (1) the simple list model, which is
represented by Cisco PIX firewall and router ACLs and (2) the
complex chain model, which is represented by Linux Netfilter.
Firewalls using the simple list model allow only “accept”
and “drop” actions. The complex chain model, in addition
to “accept” and “drop”, also supports calling upon another
user-defined chain or “return.” We use rule graphs to model
the control-flow of ACLs. As can be seen in Section IV-A, the
rule graph of ACLs using the simple list model is just itself.
The rule graphs for ACLs using the complex chain model are
similar to control-flow graphs in programming languages.

1) Simple List Model: Figure 1(a) depicts the simple list
model of an ACL. Since only “accept” or “drop” actions
(first two forms shown in Table I) are allowed, any packet
will traverse the list in order until a decision is made on each
packet. An implicit rule at the end of the list will match the rest
of the packets and apply the default action to these remaining
packets. We make the implicit rule explicit by appending them
to the end of the list.

2) Complex Chain Model: The Linux-based firewall im-
plementation, Netfilter [12], has a more complicated grammar
for the rules, which may take any of the four forms shown
in Table I. In addition to “accept” or “drop,” the action field
can call upon another user-defined chain for further processing.
The user-defined chain can also choose to “return” to the next
rule of the calling chain. One can view the action of calling
a user-defined chain as a function call and the corresponding
“return” as a function return. This feature, similar to the use

<X1, accept>

<X2, accept>

<Xk, drop>

<Xn, accept>

implicit drop all

start

(a) Simple List
Model

Built-In Chain XUser-Chain Y

<X1, drop>

<X2, return>

<Xk, chain Y>

policy action

<Xk+1, accept>

<Y1, accept>

<Xn, drop>

<Y2, return>

<Yk, accept>

<Yn, drop>

end

Input I

(b) Complex Chain Model

Fig. 1: Model of individual firewalls

of functions in programming languages, facilitates reusable
configurations and improves firewall efficiency.

Figure 1(b) depicts a typical firewall using the chain-based
model. The built-in chain “X”, which is the starting point,
can call upon a user-defined chain “Y” for further processing.
Chain “Y” can either explicitly return to the calling chain “X”
when certain predicate is satisfied or the end of chain “Y” is
reached. Other chains may call chain “Y” as well.

B. Network of Firewalls

W0

X1

Y0

X0

Z0Internal Network

Z

X

Y

Internet

IS
P

 B

IS
P

 A

eth1

eth1

eth0

eth0eth0

eth1

eth0

W

DMZ

eth1

eth2

eth2

Fig. 2: Network of firewalls

In a typical network environment, multiple firewalls are
often deployed across the network in a distributed fashion.
Although firewalls are configured independently, a network
depends on the correct configuration of all related firewalls to

achieve the desired end-to-end security behavior. By “end-to-
end security behavior,” we refer to the decision on whether
a packet should be allowed to reach a protected network. It
can be from one side of a Virtual Private Network (VPN) to
another side of the VPN. It can also be from the wild untrusted
Internet to the trusted secured intranet.

Take Figure 2 for example, an enterprise network is con-
nected to the Internet through two different ISPs and firewalls
W and X are deployed to guard the Demilitarized Zone
(DMZ). Services such as Web and email that must allow
public access are more vulnerable (hence less trustworthy)
and normally put in the DMZ. Further inside, the internal
network is guarded by additional firewalls Y and Z. In
general, firewalls Y and Z will have a tighter security policy.
Important applications and sensitive data are often running
inside the internal trusted networks, and only limited accesses
are allowed.

Since there exists multiple paths from the Internet to the
internal network. The filtering action taken depends on the path
a packet actually traverses. A packet does not actually choose
its data path. But the dynamics of the underlying routing plane
may assign different paths for the same set of packets at
different time. Ideally, firewalls should perform consistently
regardless of the underlying routing decisions. To guarantee
reachability of desired packets, the administrator must ensure
that none of the firewalls on the path drops them. On the other
hand, the administrator must ensure that no possible paths
permits any malicious packets from accessing the protected
network.

III. MISCONFIGURATIONS

A firewall does not provide security in its own right. The
way the firewall is configured determines the overall security
effectiveness. In this section, we discuss firewall misconfig-
urations and classify them. Section III-A discusses policy
violations, which can be checked against well-defined policies.
Not all misconfigurations can be caught by policy definitions.
In Section III-B, we discuss inconsistent configurations and
how to use these to infer misconfigurations. Section III-C
discusses some inefficient configurations that are not errors,
but may still adversely affect the firewall performance.

The sample scripts used in this paper are written in the
format of: <action, protocol, src ip, src port, dst ip, dst
port> where src ip and src port denote respectively source IP
address and source port number respectively. Similarly, dst ip
and dst port refer to destination IP address and port number
respectively. Both source and destination ports are optional.
The IP addresses used in this paper are written in private
IP address blocks on purpose only to avoid exposing address
information.

A. Policy Violation

Administrators often have a high-level policy describing
what should be prohibited (blacklists) or ensured (whitelist)
access to the network. It is crucial that firewall configura-
tions exactly reflect the security policy. Any nonconforming

configurations may result in undesired blocking, unauthorized
access, or even the potential for an unauthorized person to alter
security configurations. Therefore, a firewall must be verified
against any policy violations.

Although policy definition is subjective to individual in-
stitutions, the network security community has some well-
understood guidelines on firewall configurations. From an
external auditor’s point of view, Wool [1] studied 37 config-
urations of Check Point’s FireWall-1 product and noticed 12
common firewall configuration errors. Among them, allowing
“any” destination on outbound rules, “any” service on inbound
rules happens to 90% of the configurations. Allowing NetBIOS
and Portmapper/Remote Procedure Call service is also a com-
mon class of errors that exposes the network to very insecure
services. A major number of firewalls are not configured
correctly to provide proper protection. Approximately 46% of
the firewalls are not configured with a stealth rule to hide itself,
and above 70% of them are open to insecure management
protocols or external management machines. All these “errors”
affect the security of the entire network and must be carefully
checked.

Another source of input for the blacklist is the bogon
list [13], which describes IP blocks or port numbers not
currently allocated by IANA and RIRs plus those reserved
for private or special use. Attackers often use these IP blocks
or ports for DoS attacks, spamming or hacking activities.
Most firewall administrators would want to ensure that traffic
from/to these IP blocks or port numbers are neither explicitly
nor implicitly permitted to reach their networks.

B. Inconsistency

Firewall configurations represent the administrator’s inten-
tion, which should be consistent. Therefore, inconsistencies
are often good indicator of misconfigurations. Unlike pol-
icy violations, for which there are well-defined references
(blacklists and whitelists) to compare against, checking for
inconsistencies is solely based on the configuration files and
does not need external input. Inconsistencies happen at three
levels: intra-firewall, inter-firewall, and cross-path.

1. deny tcp 10.1.1.0/25 any
2. permit udp any 192.168.1.0/24

3. drop tcp 10.1.1.128/25 any
4. drop udp 172.16.1.0/24 192.168.1.0/24

5. permit tcp 10.1.1.0/24 any
6. drop udp 10.1.1.0/24 192.168.0.0/16

7. permit udp 172.16.1.0/24 any

TABLE II: Sample script 1

1) Intra-firewall Inconsistency:

1) Shadowing: refers to the case where all the packets
one rule intends to drop (accept) have been accepted
(dropped) by preceding rules. This often reveals a mis-
configuration and is considered an “error.” A rule can be
shadowed by one preceding rule that matches a superset
of the packets. In Table II, rule 4 is shadowed by rule
2 because every UDP packet from 172.16.1.0/24 to

192.168.1.0/24 is permitted by rule 2, which matches
any UDP packets destined to 192.168.1.0/24. Alterna-
tively, a rule may also be shadowed by a set of rules
collectively. For example, rule 5 is shadowed by the
combination of rules 1 and 3. Rule 1 drops TCP packets
from 10.1.1.0/25, and rule 3 drops TCP packets from
10.1.1.128/25. Collectively, they drop all TCP packets
from 10.1.1.0/24, which are what rule 5 intends to
accept.

2) Generalization: refers to the case where a subset of
the packets matched to this rule has been excluded by
preceding rules. It is the opposite of shadowing and
happens when a preceding rule matches a subset of this
rule but takes a different action. In Table II, rule 7 is
a generalization of rule 4 because UDP packets from
172.16.1.0/24 and to 192.168.1.0/24 form a subset
of UDP packets from 172.16.1.0/24 (rule 7), yet the
decision for the former is different from the later.

3) Correlation: refers to the case where the current rule
intersects with preceding rules but specifies a differ-
ent action. The predicates2 of these correlated rules
intersect, but are not related by the superset or subset
relations. The decision for packets in the intersection
will rely on the order of the rules. Rules 2 and 6 are
correlated with each other. The intersection of them is
“udp 10.1.1.0/24 192.168.1.0/24,” and the preceding
rule determines the fate of these packets.

Generalization or correlation may not be an error but a
commonly used technique to exclude part of a larger set
from certain action. Proper use of these techniques could
result in fewer number of rules. However, these techniques
should be used very consciously. ACLs with generalizations
or correlations can be ambiguous and difficult to maintain. If
a preceding rule is deleted, the action for some packets in the
intersection will change. On a large and evolving list of rules,
it may be difficult to realize all the related generalizations
and correlations manually. Without a priori knowledge about
the administrators intention, we cannot concretely tell whether
this is a misconfiguration. Therefore, we classify them as
“warnings.”

X0 1. drop tcp any 10.1.0.0/16

2. permit tcp any any
X1 1 permit any any any
Z0 1. drop tcp any 10.0.0.0/8

2. permit tcp any any
3. drop udp any 192.168.0.0/16

W0 1. drop tcp any 10.0.0.0/8

2. permit tcp any any
3. drop udp any 192.168.0.0/16

Y 0 1. permit tcp any any
2. permit udp 172.16.0.0/16 192.168.0.0/16

TABLE III: Sample script 2

2In this context, we view a predicate as both a set of matching packets and a
logical predicate specifying this particular set. We use these two interpretations
interchangeably.

2) Inter-Firewall Inconsistency: Inconsistencies among dif-
ferent firewalls might not be errors. When a few firewalls are
chained together, a packet has to survive the filtering action of
all the firewalls on its path to reach its destination. Therefore,
a downstream firewall can often rely on upstream firewall
to achieve policy conformance and can be configured much
loosely. On the other hand, a downstream firewall at the inner
perimeter often needs a tighter security policy. Consider the
topology in Figure 2 with the configuration scripts in Table III,
packets destined to 10.0.0.0/8 but not to 10.1.0.0/16, e.g.,
10.2.0.0/16, will be permitted by X0 (rule 2) and therefore
have access to the DMZ. However, they are dropped by Z0
(rule 1) to protect the internal network.

Without input from the administrator, the only inter-firewall
inconsistency we, as tool writer, can classify as an “error” is
shadowed accept rules. By explicitly allowing certain predi-
cates, we infer that the administrator intends to receive these
packets. For example, in Table III, rule 2 of Y 0 permits
UDP packets from 172.16.0.0/16 to 192.168.0.0/16, yet these
packets are filtered by W0 (rule 3) at the upstream. To
the downstream users, this may manifest as a connectivity
problem.

3) Cross-Path Inconsistency: As discussed in Section II-B,
it is likely to have multiple data paths from the Internet to the
same protected network. Cross-path inconsistency refers to the
case where some packets dropped on one path are accepted
through another path. It depends on the underlying routing
table whether these anomalies are exploitable. However, an
attacker needs to succeed only once, and attacks that affect
routing table do exists. Cross-path inconsistencies may also
manifest as intermittently disruptive services. Packets origi-
nally reachable to the network may switch over to another
path that drops such packets because of routing changes.

Consider again the topology in Figure 2 with the config-
uration scripts in Table III, paths X → dmz → Z and
W → dmz → Y both drop “udp any 192.168.0.0/16,”
which probably should not be allowed to reach the internal
network. Yet one may also notice that these packets can leak
into the internal network through the path X → dmz → Y .
This path may not always be available since the actual path
is determined by the underlying routing protocol. However,
routing is designed to be adaptive to link failures and heavy
load. In addition, it is relatively easy to inject false routing
messages [14]. A safe firewall configuration should not rely
on that, and should assume that all paths are topologically
possible.

Checking cross-path inconsistencies based on active testing
is very difficult. It may disrupt the production network since
routing tables must be altered to test different scenarios.
Manually auditing such anomalies is also difficult. Even for
a network of moderate size, the number of possible paths
between two nodes can be large.

C. Inefficiency

A firewall needs to inspect a huge number of packets.
Therefore, it is difficult not to be concerned with firewall

efficiency. Numerous work have been dedicated to improve
the speed of firewall through better hardware and software
designs and implementations. To administrators, the most
practical way to improve firewall efficiency is through better
configuration of the firewall.

An efficient firewall configuration should require the mini-
mum number of rules, use the least amount of memory, and in-
cur the least amount of computational load while achieving the
same filtering goals. Although inefficiency does not directly
expose a vulnerability, a faster and more efficient firewall
will encourage firewall deployment and therefore makes the
network safer. In addition, the efficiency of a firewall can
determine a network’s responsiveness to Denial-of-Service
(DoS) attacks.

1. permit tcp 192.168.1.1/32 172.16.1.1/32

2. permit tcp 10.0.0.0/8 any
3. permit tcp 10.2.1.0/24 any
4. drop tcp any any
5. drop udp 10.1.1.0/26 any
6. drop udp 10.1.1.64/26 any
7. drop udp 10.1.1.128/26 any
8. drop udp 10.1.1.192/26 any
9. drop udp any

TABLE IV: Sample script 3

1) Redundancy: Redundancy refers to the case where if a
rule is removed, the firewall does not change its action on any
packets. Reducing redundancy can reduce the total number
of rules, and consequently reduce memory consumption and
packet classification time [15].

A rule can be considered redundant if the preceding rules
have matched a superset of this rule and specifies the same
action. For example, in Table IV, rule 3 is redundant since
rule 2 has already specified the same action for all packets
that match rule 3. A rule can also be made redundant by
the subsequent rules. Rules 5, 6, 7 and 8 are all redundant
because if we remove them, these packets are still going to
be dropped by rule 9. In fact, for firewalls with a “drop all”
policy implicitly appended to the end of an ACL, we do not
need rules 4 − 9 altogether.

Redundant accept or drop rules are “errors” within the same
firewall. This is, however, not true in distributed firewalls.
A packet must be accepted on all the firewalls on its path
to reach the destination. Redundant accept rules on different
firewalls, such as the second rules of X0 and Z0 in Table III,
are both necessary. Redundant drop rules on different firewalls
are unnecessary, but are often considered good practice to
enhance security. This redundancy provides an additional line
of defense if the outer-perimeter is compromised.

2) Verbosity: Verbosity refers to the case where a set of
rules may be summarized into a smaller number of rules. For
example, rules 5, 6, 7, and 8 in Table IV can be summarized
into a single rule “drop udp 10.1.1.0/24 any.” Verbosity often
happens in practice when administrators build up the filter list
over a period of time. Such cases are frequently observed in
the real configurations we have collected.

IV. PROBLEM FORMULATION AND CHECKING

ALGORITHM

In this section, we present the framework of FIREMAN
that consists of two phases. First, FIREMAN parse a firewall
configuration into an compact representation based on the
operational semantics of a firewall. An ACL is translated
into a rule graph and distributed firewalls, with additional
information about network topology, are translated into an
ACL-tree. We then check for anomalous configurations based
on the rule graph and ACL-tree.

A. Parsing and Flow Graph Analysis

The purpose of this phase is twofold. First, a production net-
work may consist of firewall products from different vendors,
each with their own configuration languages and operation
models. Our parser translates firewall configuration files orig-
inally written in their own languages into a uniform internal
representation. Second, and more importantly, based on the
configuration, network topology and routing information, we
perform control-flow analysis to find all possible rule paths
packets may go through. Each path represents a list of filtering
operations packets may receive.

1) Rule Graph of Individual ACLs: For firewalls using
the simple list model, there is no possibility of branching
and the rule graph is the same list. For firewalls using the
complex chain model, branching can be caused by calling
“chain Y” and “return” from it. To handle such branching,
we introduce 〈P, pass〉 to indicate that only packets matching
this predicate will remain in this path. For a 〈P, chain Y〉
rule, we insert 〈P, pass〉 before going to “chain Y”. We also
insert 〈¬P, pass〉 for the path that does not jump to “chain Y”.
Figure 3 visualizes all the four possible rule paths the ACL of
Figure 1(b) could have.

Recursive function calls should be avoided since this could
create loops. Loops can be easily prevented by ensuring that no
rules appear twice on a rule path. Earlier versions of Netfilter
drop a packet when it is found to be in a loop. But this
problem is probably best to be avoided at configuration time.
After eliminating loops, the rule graph can be constructed by
linearization.

We denote the input to an ACL as I , which is the collection
of packets that can possibly arrive at this access list. For an
ACL using the complex chain model, the rule graph may give
n rule paths from the input to the output. For each of the n
rule paths, we traverse the path to collect information.

For the jth rule 〈Pj , actionj〉 in this rule path, we define
the current state as 〈Aj , Dj , Fj〉, where Aj and Dj denote
the network traffic accepted and denied before the jth rule,
respectively; Fj denotes the set of packets that have been
diverted to other data paths. We use Rj to denote the collection
of the remaining traffic that can possibly arrive at the jth rule.
Rj can always be found using the input I and the current state
information, as shown in Equation 1.

Rj = I ∩ ¬(Aj ∪ Dj ∪ Fj) (1)

rule path 1 rule path 2 rule path 3 rule path 4

input

<X1, drop>

<X2, pass>

policy action

input

<X1, drop>

<not X2, pass>

<Xk, pass>

<Y1, accept>

<Y2, pass>

<Xk+1, accept>

<Xn, drop>

policy action

input

<X1,drop>

<not X2, pass>

<Xk, pass>

<Y1, accept>

<not Y2, pass>

<Yk, accept>

<Yn, drop>

<Xk+1, accept>

<Xn, drop>

policy action

input

<X1, drop>

<not X2, pass>

<not Xk, pass>

<Xk+1, accept>

<Xn, drop>

policy action

Fig. 3: Rule graph of the ACL in Figure 1(b)

For the first rule of an ACL, we have the initial value of
A1 = D1 = F1 = ∅ and R1 = I . After reading each rule, we
update the state according to the state transformation defined
in Equation 2 until the end of each rule path. A state transform
“Si, r ` Si+1” means if we read in rule r at state Si, we will
result in state Si+1. Note that R is automatically updated when
< A,D,F > changes.

〈A,D,F 〉, 〈P, accept〉 ` 〈A ∪ (R ∩ P), D, F 〉

〈A,D,F 〉, 〈P, drop〉 ` 〈A, D ∪ (R ∩ P), F 〉

〈A,D,F 〉, 〈P, pass〉 ` 〈A, D, F ∪ (R ∩ ¬P)〉

(2)

At the end of rule path pathi, we can determine the packets
accepted and dropped through this path to be Apathi

and
Dpathi

, respectively. Since any packet can take only one path,
packets accepted by this ACL is the union of those accepted
on all paths, as shown in Equation 3. In addition, since the
default action of an ACL matches all packets, all packets will
be either accepted or dropped.

AACL =
⋃

i∈path

Apathi
(3)

DACL =
⋃

i∈path

Dpathi

AACL ∪ DACL = IACL

RACL = ∅

2) ACL Graph of Distributed Firewalls: In the network of
distributed firewalls, a packet will go through a series of ACLs
to reach the destination. In this case, it needs to survive the
filtering of all the ACLs on the path. On the other hand, a well-
engineered network often has multiple paths and uses dynamic
routing to improve performance and reliability. As a result, a
packet could traverse different ACL paths at different times.

Given the topology as a directed graph, one can determine
all the possible paths from one node to another. Since ACLs
are associated with individual interface and a direction, one
can build a tree of ACLs. Based on the information of
network connectivity, one can compute the ACL tree rooted
at a destination using either DFS or BFS algorithms. This
tree graph reveals all the ACL paths packets may traverse
to reach the destination. Note that we choose to be blind
about the underlying routing and assume all the paths that are
topologically feasible could be taken. This is because routing
is designed to be dynamic and adaptive to link failures and
loads. And firewall configuration should behave correctly and
consistently regardless of the underlying routing dynamics.

For a large and well-connected graph, the number of paths
can be large. For the portions of network that are not involved
in packet filtering, and therefore do not interfere with the
firewall configurations, we use abstract virtual nodes as repre-
sentations. This approach can greatly reduce the complexity of
the graph but can still keep the relevant information. For the
network illustrated in Figure 2, we use three abstract virtual
nodes “outside”, “DMZ” and “inside” to indicate the untrusted
Internet, DMZ and trusted internal network, respectively. Data
paths between these three virtual nodes are often the primary
concern of firewall administrators3.

W0 W0X0

X1

X0

X1

Outside Outside OutsideOutside

Z0Y0

Inside

Fig. 4: ACL tree

Figure 4 shows the ACL tree built for Figure 2. In such
ACL tree graph, ACLs are either in series, parallel, or a
combination of them. For a set of n ACLs in series, packets
must survive the filtering decision of all of them. Therefore,
the accepted set of packets is the intersection of these ACLs
accepted independently.

3Note that this paper uses the traffic from “outside” to “inside” for
discussion. Our algorithm is general enough to consider traffic between any
two points in the network.

A =
⋂

acl∈n

Aacl (4)

D =
⋃

acl∈n

Dacl

For n ACLs in parallel, packets can come through either of
the ACLs. Therefore, the accepted set of packets is the union
of all ACLs accepted independently.

A =
⋃

acl∈n

Aacl (5)

D =
⋂

acl∈n

Dacl

Consequently, in the tree structure, the input to the parent
node is the union of accepted packets of the children nodes.

I =
⋃

acl∈children

Aacl (6)

Based on Equations 4 and 5, we can analyze firewall rules
in the context of networks and distributed firewalls. Consider
Figure 4 as an example, we assume the input from “outside”
to be Ω, the entire set of possible packets, which is a very
conservative approach. However, we believe this is justified
for security reasons since “outside” is beyond the control of
local administration.

One can determine that IY 0, the input for Y 0, is IY 0 =
AW0 ∪ (AX0 ∩AX1). The entire set of packets that can reach
the internal network from the Internet is

A =AW0 ∪ (AX0 ∩ AX1) ∩ AY 0

∪ AW0 ∪ (AX0 ∩ AX1) ∩ AZ0

=AW0 ∪ (AX0 ∩ AX1) ∩ AY 0 ∪ AZ0

(7)

B. Checking for Anomalies

Based on the rule graph, we perform local checks for
individual firewall. Distributed firewall checks are based on
both the ACL-tree and rule graph. We describes the algorithms
below in detail.

1) Local Check for Individual Firewalls: FIREMAN per-
forms local check for individual ACLs without considering
the interaction with other firewalls in the network. Since a
firewall can rely on the filtering action of other firewalls to
achieve policy conformance, local checks focus on checking
inconsistency and inefficiency. The local check is performed
after parsing each rule, and just before updating the state as
defined in Equation 2.

The input to an ACL is the entire set (I = Ω), and A1 =
D1 = F1 = ∅.

• For 〈P, accept〉 rules:

1) Pj ⊆ Rj ⇒ good: This is a good rule. It defines
an action for a new set of packets, and it does not
overlap with any preceding rules.

2) Pj∩Rj = ∅ ⇒ masked rule: This is an “error”. This
rule will not match any packets and action defined
here will never be taken.

a) Pj ⊆ Dj ⇒ shadowing: This rule intended to
accept some packets which have been dropped
by preceding rules. This contradiction reveals a
misconfiguration.

b) Pj ∩ Dj = ∅ ⇒ redundancy: All the packets
have been accepted by preceding rules or will
not take this path.

c) else ⇒ redundancy and correlation: Part of the
packets for this rule have been dropped. Others
are either accepted or will not take this path.
Rule j itself is redundant since it will not match
any packets. Some preceding rule has correlation
with rule j also.

3) Pj * Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule
a) Pj ∩ Dj 6= ∅ ⇒ correlation: Part of the

packets intend to be accepted by this rule have
been dropped by preceding rules. This raises a
“warning”.

b) ∀ x < j,∃ 〈Px, drop〉 s.t. Px ⊆ Pj ⇒
generalization: Rule j is a generalization of rule
x since rule x matches a subset of the current
rule j but defined a different action. This is a
“warning”.

c) Pj∩Aj 6= ∅ and ∀ x < j,∃〈Px, accept〉s.t.Px ⊆
Pj ⇒ redundancy: If rule 〈Px, accept〉 is
removed, all the packets that match Px can
still be accepted to the current 〈Pj , accept〉.
Therefore, rule 〈Px, accept〉 is redundant. This
is an “error”.

• Similarly for 〈P, drop〉 rules:
1) Pj ⊆ Rj ⇒ good:
2) Pj ∩ Rj = ∅ ⇒ masked rule:

a) Pj ⊆ Aj ⇒ shadowing: This rule intended to
drop some packets which have been accept by
preceding rules. This could be a serious security
violation.

b) Pj ∩ Aj = ∅ ⇒ redundancy: All the packets
have been dropped by preceding rules or will
not take this path.

c) else ⇒ redundancy and correlation: Part of
packets for this rule have been accepted. Others
are dropped or will not take this path.

3) Pj * Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule
a) Pj ∩ Aj 6= ∅ ⇒ correlation: Part of the packets

intend to be dropped by this rule have been
accepted by earlier rules.

b) ∀ x < j,∃ 〈Px, accept〉 s.t. Px ⊆ Pj ⇒
generalization: Rule j is a generalization of rule
x since rule x matches a subset of the current
rule j but defined a different action.

c) Pj ∩Aj 6= ∅ and ∀ x < j,∃〈Px, drop〉s.t. Px ⊆
Pj ⇒ redundancy: If rule 〈Px, drop〉 is re-
moved, all the packets that match Px can still
be dropped by the current rule. Therefore, rule
〈Px, drop〉 is redundant. This is an “error”.

2) Checks for Distributed Firewalls: After passing the
local checks, FIREMAN will perform distributed checks for
network of firewalls. Such a check is performed based on the
ACL-tree derived in Section IV-A.2. We start from the top
level ACLs of the tree and go downwards level by level. At
the top level, input to an ACL is the entire set (I = Ω), and
A1 = D1 = F1 = ∅. Starting from the second level, we use
Equations 4, 5 and 6 to derive the I set to the ACL. Based on
the input I , we again traverse through rules in the ACL based
on the same transformations defined in Equation 2.

• For 〈P, accept〉 rules:
1) P ⊆ I ⇒ good: This is not a redundancy as in the

case of local checks. A packet need to be permitted
by all firewall on its path to reach destination.

2) P ⊆ ¬I ⇒ shadowing: This rule is shadowed by
upstream ACLs. It tries to accept some packets that
are blocked by all upstream firewalls. This kind of
inconsistency can manifest as connectivity problems
which are difficult to troubleshoot manually.

• For 〈P, drop〉 rules:
1) P ⊆ I ⇒ raised security level?: This probably re-

veals a raised security level. In the case of Figure 2,
certain packets might be allowed to access the DMZ
but not the internal network. Therefore, ACLs W0,
X1 and X0 will permit these packets but ACL Y 0
will drop them.

2) P ⊆ ¬I ⇒ redundancy?: This is probably a
redundancy since the packets to be dropped will not
reach this ACL anyway. However, multiple lines of
defense are often encouraged in practice to increase
overall security level. This should be performed
with caution by the administrator.

3) Checks at the Root of the ACL Tree: The root of the
ACL tree is the destination, which is also the network we want
to secure. Assume the root has m children, and child j gives
input to the root as Ij . We want to ensure that all the inputs
are the same. Otherwise, this is a “cross-path inconsistency”
as discussed in Section III-B.3.

∀j ∈ m, Ij = I (8)

Policy conformance is checked by comparing the input I to
the root of the ACL tree with the blacklist and whitelist. Since
firewalls can rely on others to achieve policy conformance,
checking at the root allows us to make the judgement based
on the complete information of the entire ACL tree.

• I∩blacklist 6= ∅ ⇒ policy violation: The firewalls permit
some packets forbidden by the stated policy. This is a
security violation.

• whitelist * I ⇒ policy violation: The firewalls drop
some protected packets. This causes disrupted service.

C. Formal Properties and Discussions

With respect to our definitions of misconfigurations in
Section III, we have a soundness and completeness theorem
for our analysis.

Theorem 1 (Soundness and Completeness): Our checking
algorithm is both sound and complete:

• If the algorithm detects no misconfigurations, then there
will not be any misconfigurations (soundness).

• Any misconfiguration detected by the algorithm is a real
misconfiguration (completeness).

We can achieve both soundness and completeness (i.e.,
neither false negatives nor false positives) because firewalls are
essentially finite-state systems. We perform symbolic model
checking covering every path and every packet, that is we are
doing exhaustive testing in an efficient manner.

Our algorithm is sound and complete with respect to our
classification of misconfigurations. However, certain miscon-
figurations viewed as error by one administrator may not be
viewed as errors by others. The concrete judgments for these
cases depends on the intention of the particular administrator.
There are cases that we cannot make concrete judgments and
can only raise “warnings.” These cases include, for example,
correlations and generalizations for intra-firewall checks, and
raised security level and redundancy for inter-firewall checks.
This happens because we, as tool writers, do not know the
intention of the administrator. This intention gap, however,
does not affect our claim that the algorithm is sound and
complete. Our tool raises “warnings” and leaves the decision
to the administrator, who surely knows his/her own intention.

V. IMPLEMENTATION AND EVALUATION

A. BDD Representation of Firewall Rules

Updating state information for firewall rules and ACL
graphs requires an efficient representation of the predicates
of individual rules or any collection of the predicates. In
addition, we must be able to implement efficient set opera-
tions with this representation. FIREMAN uses binary decision
diagrams (BDDs) [16] to represent predicates and perform
all the set operations. The BDD library used in FIREMAN
is BuDDy [17], which provides efficient dynamic memory
allocation and garbage collection.

BDD is an efficient data structure which is widely used
in formal verification and simplification of digital circuits.
A BDD is a directed acyclic graph that can compactly and
canonically represent a set of boolean expressions [16]. The
predicates of firewall rules describe constraints on certain
fields of the packet header. We can represent them com-
pactly and compute them efficiently using BDDs. For ex-
ample, a source IP block 128.0.0.0/8 can be represented
as x

′

32x
′

31x
′

30x
′

29x28x
′

27x26x
′

25, whose corresponding BDD
is shown in Figure 5(a). In such graph, the non-terminal
vertices represent the variables of the boolean function, and
the two terminal vertices represent the boolean values 0 and
1. To check if another source IP block is a subset of this
IP block requires only a single bdd_imp (i.e., ⇒, the logical
implication) operation.

Performing set operations such as intersection, union and
not on BDDs is also straightforward using BuDDy. Figure 5(c)
presents the union of source IP 128.0.0.0/8 (Figure 5(a)) and

192.0.0.0/8 (Figure 5(b)). Note that BDDs can automatically
summarize the two IP blocks and produce a canonical form
for the union.

B. Building Blacklist

FIREMAN checks for policy violations based on given
blacklist and whitelist. Although policy definitions are subjec-
tive to individual institution, there are some well-understood
guidelines we believe that most administrators would want to
observe.

The default blacklist of FIREMAN is built based on the
bogon list [13] and 12 common mistakes pointed out by
Wool [1]. For each IP blocks B listed on the bogon list, we
read them as “drop any B any” and “drop any any B” rules to
indicate that packets with either source IP in B or destination
IP in B should be dropped.

Most rules listed in [1] can be encoded into the blacklist as
well. Insecure or external access to firewall management can
be encoded as “drop tcp any firewall telnet” which prevents
telnet access to the firewall or “drop any external firewall”
which prevents external access to the firewall. Insecure ser-
vices like NetBios and Portmapper/Remote Procedure Call can
be encoded as “drop any any any netbios” which prevents
access to NetBios.

As discussed in Section IV-B.3, the blacklist describes
prohibited behaviors and FIREMAN checks the firewall con-
figurations against each item defined in the blacklist. The
current implementation of FIREMAN does not define a default
whitelist and this check is thus omitted. However, it is easy
to write a list of predicates and FIREMAN can read them as
“permit” rules and use it to compare against the input set I at
the root of ACL tree.

C. Misconfigurations Discovered

Obtaining production firewall configuration scripts is not
easy because they contain sensitive security information. Ta-
ble V lists the configuration files that we were able to obtain
to test FIREMAN: PIX1 is for a Cisco PIX firewall used
at an enterprise network; BSD1 is using OpenBSD packet
filter at a campus network; and PIX2 is used by another
enterprise network. Both PIX1 and BSD1 are actively used
in production. All the script excerpts presented here have been
modified to private IP address blocks. In Table V, the columns
“P ”, “C”, and “E” list respectively the number of policy
violations, the number of inconsistencies, and the number of
inefficiencies detected for each firewall configuration.

Firewall Product #ACLs #rules P C E

PIX1 PIX 6.03 7 249 3 16 2
BSD1 OpenBSD PF 2 94 3 0 0
PIX2 PIX 6.03 3 36 2 0 5

TABLE V: Configuration files and misconfigurations

1) Policy Violation (P): Policy violations are observed on
all three configurations. BSD1 explicitly denied 10.0.0.0/8,
172.16.0.0/12 and 192.168.0.0/16. In addition, the adminis-
trator commented that he/she wanted to deny all unroutable

0 1

sip[8]

sip[7]

sip[6]

sip[5]

sip[4]

sip[3]

sip[2]

sip[1]

(a) Source IP 128.0.0.0/8

0 1

sip[8]

sip[7]

sip[6]

sip[5]

sip[4]

sip[3]

sip[2]

sip[1]

(b) Source IP 192.0.0.0/8

0 1

sip[8]

sip[7]

sip[6]

sip[5]

sip[4]

sip[3]

sip[1]

(c) Source IP 128.0.0.0/8 or
192.0.0.0/8

Fig. 5: Using BDDs to represent and operate on firewall rules.

packets. Therefore, we infer that BSD1 is tasked to drop
all unroutable packets. However, FIREMAN reveals that other
unallocated IP address blocks such as 2.0.0.0/8 and 5.0.0.0/8,
are implicitly allowed by rules like “permit udp any any port
domain, ntp.”

A similar problem is identified in PIX1. Only two of the
three private IP blocks are explicitly dropped. It is interesting
to note that while most administrators will not hesitate to
block private IP address blocks, they may be reluctant to setup
rules to filter unallocated IP address blocks as discussed in
Section III-A. FIREMAN can be configured to read the latest
bogon file every time it runs so that the bogon list is up to date.
It can be used to enforce the policy to block all unroutable IP
blocks.

Some of the 12 errors pointed by Wool [1] are observed
on these three configurations. In particular, none of the three
firewalls pays special attention to secure the firewall itself.
They are not configured with a stealth rule to hide itself or
limit the access to internal addresses and secure protocols.
The default blacklist has a rule which denies any packets
to the firewall itself not from internal network (“deny any
!internal_IP firewall_IP”). FIREMAN diagnoses this problem
by noting that the conjunction of input to the root of the ACL
tree (I) and the blacklist is not empty.

Our results agree well with Wool’s observation that firewalls
are often not configured to well-understood security policy. In
addition, FIREMAN is fully automated and does not require an
experienced firewall/security expert to diagnose the problems.

2) Inconsistency (C): FIREMAN reported 8 correlations
and 8 generalizations on one of the ACL in PIX1 which
contains 141 rules. The rules causing the alarms are listed in
Table VI. Rules 1–4 are permitting icmp access to individual
hosts, and rules 5–8 are blocking icmp echo and traceroute to
their networks. Therefore rules 1,3, and 4 are correlated with
rules 5 and 6, and similarly, for rule 2 and rules 7, 8. Rule 9

1. permit icmp any 10.2.53.192/32

2. permit icmp any 10.2.54.3/32

3. permit icmp any 10.2.53.249/32

4. permit icmp any 10.2.53.250/32

5. deny icmp any 10.2.53.0/24 echo
6. deny icmp any 10.2.53.0/24 traceroute
7. deny icmp any 10.2.54.0/24 echo
8. deny icmp any 10.2.54.0/24 traceroute
9. permit icmp any any

TABLE VI: Inconsistencies found in PIX1

is a generalization of rules 1–8.
This script probably does not have any misconfigurations.

As discussed, correlations and generalizations can often be
tricks used by administrators to represent rules efficiently.

3) Inefficiency (E): FIREMAN noted 5 redundancies in
PIX2. As shown in Table VII, rules 2 and 3 will not match
any packets because they are matching a subset of those
matched by rule 1. In addition, rule 4 is a generalization of
rules 1, 2 and 3. One could keep only the rule 4 and achieve
the same effect.

1. permit ip 192.168.99.0/24 192.168.99.0/24

2. permit ip 192.168.99.56/32 192.168.99.57/32

3. permit ip 192.168.99.57/32 192.168.99.56/32

4. permit ip 192.168.99.0/24 any

TABLE VII: Inefficiencies found in PIX2

Another redundancy FIREMAN caught is in PIX1, which
explicitly denies 10.0.0.0/8 and 192.168.0.0/16 in some of its
ACLs. However, since these two rules are the last two rules
in the ACL, and the default action of PIX is to deny anything
remaining, these two rules are unnecessary and reported as
redundancy. Private communication with the administrator
confirmed this observation, and the redundant rules will be
removed.

D. Performance Impact on Firewall

Since inefficiency in firewall configurations does not violate
an enterprise’s network policies, administrators seldom notice
or correct this problem. However, we will show that by
using FIREMAN to identify redundant rules in a firewall
configuration, we can improve the firewall throughput and
reduce the CPU load significantly.

DSTSRC

(a) Experiment Setup

� ����� ����� ����� ����� ����� 	����
���� �����
�����	����
	����
	�	��
	����

����

����

����

�	��

�� ��
���
���
���
���

� ����� ����� ����� ����� ����� 	����
���� �����
�������� �"!$#&%$!$'"%$()� #$* �"+
�
���
���
	��
���
�����

,-
./ �
01
�2
�

(b) Impact of Redundant Rules on Throughput and CPU Load

Fig. 6: Performance impact of redundancies in firewalls

Figure 6(a) depicts our testbed consisting of two Linux
machines, SRC and DST , both running Fedora Core 3 with
kernel 2.6.1 and directly connected via a Gigabit Ethernet.
An Iperf client [18] on SRC sent packets to an Iperf server
on DST . DST was also running a Netfilter firewall on the
incoming interface. In our experiment, the firewall initially
had a synthetically generated configuration where the rule
that accepted all the packets from SRC was preceded by
900 rules that let these packets pass through (therefore, these
900 rules were redundant). We measured the throughput using
Iperf over a 60-second period and the CPU load using the top
command. We then graduately removed all the redundant rules
and measured how it affected the throughput and CPU load.

Figure 6(b) presents the performance of the firewall under
different levels of redundancies. The CPU load was close to
100% when the firewall had many redundant rules; however,
the CPU load was reduced to only 30% when we removed all
the redundancies. This indicates that removing redundancies
in firewalls can reduce the CPU load significantly.

Removing redundancies can also improve the throughput.
Figure 6(b) shows that FIREMAN improved the throughput
from 620 Mbps to 740 Mbps by removing all the redun-
dancies. We conjecture that removing redundancies increased
throughput because: (1) it reduced the processing time on each
packet and hence increased the throughput, and (2) it decreased

the RTT(round-trip time) of the corresponding TCP session,
and the achievable throughput of a TCP session is inversely
proportional to its RTT [19].

The practical performance benefits of reducing redundancies
in firewall configurations depend on the implementation of
individual firewalls and the traffic profile at the firewalls.
Particularly, we expect that large, complex firewalls would
benefit more significantly than small, simple firewalls. But
in all cases, since FIREMAN is a static analysis tool and
therefore incurs no runtime cost, any firewall may benefit from
FIREMAN with no performance penalty.

E. Performance and Scalability of FIREMAN

The complexity of intra-firewall checking is determined
by the complexity of checking each rule and the number of
rules in a configuration. Our algorithm performs the usual set
operations, conjunction, disjunction, and complementation, on
the A, D, and F sets for each rule. Our implementation (cf.
Section V) uses binary decision diagrams (BDDs) to represent
these sets canonically for efficient processing. On firewalls
using the simple list model, our algorithm traverses each rule
exactly once, so the total running time is O(n), where n is
the number of rules. This is witnessed in Figure 7, which
shows that the average time required to check an ACL is
proportional to its length for synthetically generated ACLs of
different lengths. For example, it took FIREMAN less than 3
seconds to check an 800-rule ACL. Our algorithm scales better
than Al-Shaer’s, which compares two rules at a time and has
an O(n2) complexity [11].

For firewalls using the complex chain model, we can achieve
O(n) time complexity with the following optimizations: (1)
storing the state information and reusing it; and (2) merging
the state information whenever possible. Next, we discuss
in more detail these optimizations together with distributed
firewall checking.

3 4�3�3 5�3�3 6�3�3 7�3�3 8�3�3 9�3�3 :�3�3 ;�3�3<>=)?A@)B&C DEC D$F&G&H�I
3KJ 3
3KJ 8
4�J 3
4�J 8
5KJ 3
5�J 8
6KJ 3

LM
NO
P QO
RS
TU Q
V

Fig. 7: FIREMAN’s performance on checking individual
firewalls

For distributed firewalls, the number of paths from “outside”
to “inside” may be exponential. For example, for a graph with
m nodes and an average outdegree k, there can be O(km)
simple paths in the worst-case. As firewalls often reside on
normal routers, m and k may be large. Since checking each
path separately would not scale, FIREMAN uses the following

� � � ��� ��� ��� ��� ��� ����
	 �
�
	 �
�
	 �
�
	 �
�
	 �
��	 �
��	 �
��	 �
��	 �

�
���

� � � ��� ��� ��� ��� ��� ����
���
���
���
���
���
���

� �
��
���
� �
�
��
��
��
��
��
 �
!

�
��"

� � � ��� ��� ��� ��� ��� ���#%$'&)('*,+.-0/21
3 +
*5476,8 8 9
�

�����
�����
�����
�����
�������
�������

�
��:

Fig. 8: FIREMAN’s performance on checking distributed
firewalls

techniques to improve its scalability. First, FIREMAN avoids
unnecessary nodes and branching. Since firewalls and ACLs
are rarely deployed in the network core, FIREMAN can reduce
the number of nodes by combining a network of routers
without ACLs into a single abstract virtual node. For instance,
FIREMAN treats the DMZ in Figure 2 as a single node.
Second, FIREMAN merges the paths where possible using
Equations 4, 5 and 6 from Section IV. For example, consider
the ACL tree in Figure 4. Instead of traversing

outside → W0 → Z0 → inside

and
outside → X0 → X1 → Z0 → inside

separately, FIREMAN merges the two paths at Z0. Finally,
FIREMAN saves intermediate results for reuse later. In Fig-
ure 4, FIREMAN checks the ACLs W0, X0 and X1 only once
because the left and the right branches are symmetric. When
an ACL appears multiple times in an ACL tree, FIREMAN
rechecks the ACL while traversing the tree only if the ACL
receives different input sets on different paths.

In Figure 8, we randomly generated a network of m fire-
walls, where each firewall connects to k other firewalls. When
either m or k was small, distributed checking finished within
seconds. When m > 15 and k > 5, distributed checking took
several minutes. Even in the worst case with m = 20 and k =
5 (which we think is rare in enterprise networks), FIREMAN
completed in under 20 minutes. Because FIREMAN runs
offline, we believe that FIREMAN is scalable enough to check
most distributed firewalls effectively.

VI. RELATED WORK

There are numerous studies on network topology, IP con-
nectivity [20–22], and router configurations [23–26]. Maltz

et al. [27] reverse engineered routing design in operational
networks from static analysis of dumps of the local config-
uration state of each router. These configuration files were
automatically processed to abstract routing process graphs,
route pathway graphs and address space structures. With these
abstractions, network structure and routing operation in a
global view were retrieved for further analysis. The subsequent
work by the same authors [28] presented a unified modeling
of packet filters and routing protocols to characterize reach-
ability of a network. Our work makes another step towards
understanding how distributed firewalls, as one of the “packet
transformers” in the network, influence end-to-end behavior.

Firmato and Fang [6, 7] are a set of management and
analysis tools that interact with users on queries about firewall
rules. Lumeta [8] improved usability of Fang by automating
the queries to check if firewalls are configured according
to users’ expectations. Both tools take a minimum network
topology description and firewall configurations as input to
build an internal representation of firewall rules which users
can query. Such tools are essentially lightweight testing tools
and do not offer the advantage of full coverage as static
analysis tools do. Our goal is different and focus on checking
for misconfigurations.

The work closest to ours is “Firewall Policy Advisor” by
Al-Shaer and Hamed [10, 11]. Our classification of miscon-
figurations are inspired by them, but are more general and
complete. The key distinction of FIREMAN is its capability
to evaluate firewall configurations as a whole piece, not just
limited to relation between two firewall rules. In addition to
inconsistencies, FIREMAN also checks for policy violations
and inefficiencies. Furthermore, FIREMAN works on any
network topology and requires only a linear traversal through
the rules. Our experiment running FIREMAN captured all
misconfigurations in their sample scripts [11]

Gouda and Liu [29] used a firewall decision diagram to
assist the design of firewalls, in order to compact configuration
size while maintaining its consistency and completeness. Their
focus is on the efficiency of a single firewall. Eronen and
Zitting [30] described an expert system based on Eclipse, a
constraint logic programming language to render Cisco router
access lists.

Hazelhurst et al. [9] proposed to use BDD to represent
firewall rules and access lists. Their goal was to achieve fast
lookup through better hardware router implementation using
BDDs. We chose BDD to represent not only individual rules
but also the collective behavior of whole set of rules. Our
focus is on checking the security properties of firewall rules
on existing architectures.

VII. CONCLUSIONS

In this paper, we have presented a novel static analysis
approach to check firewall configurations. First, we have
proposed a framework for modeling individual and distributed
firewalls. Second, we have designed a static analysis algorithm
to discover various misconfigurations such as policy violations,
inconsistencies and inefficiencies, at various levels including

intra-firewall, inter-firewall, and cross-path. Our technique is
based on symbolic model checking, using binary decision
diagrams to compactly represent and efficient process firewall
rules. Compared to other related research, our method is
scalable and offers full-coverage of all possible IP packets and
data paths. Our analysis algorithm is both sound and complete,
thus has no false negatives and false positives.

We have implemented our approach in a toolkit called
FIREMAN, which uses BDDs to represent firewall rules.
Inspecting misconfigurations is fast, scalable and requires
minimum amount of memory. In our experiments, FIREMAN
was able to uncover misconfigurations on firewalls running in
production environment. We believe FIREMAN is a useful and
practical tool for network administrators as well as personal
firewall users.

REFERENCES

[1] A. Wool, “A quantitative study of firewall configuration errors,” IEEE
Computer, vol. 37, no. 6, 2004.

[2] F. Wizards, “Firewall wizards security mailing list,”
http://honor.icsalabs.com/mailman/listinfo/firewall-wizards.

[3] D. B. Chapman, “Network (in)security through IP packet filtering,” in
Proceedings of the Third Usenix Unix Security Symposium, Baltimore,
MD, September 1992, pp. 63–76.

[4] H. Chen, D. Wagner, and D. Dean, “Setuid demystified,” in Proceedings
of the Eleventh USENIX Security Symposium, San Francisco, CA, 2002.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as de-
viant behavior: A general approach to inferring errors in systems code,”
in Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), October 2001.

[6] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel
firewall management toolkit,” in Proc. 20th IEEE Symposium on Security
and Privacy, 1999.

[7] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
in Proc. IEEE Symposium on Security and Privacy, 2000.

[8] A. Wool, “Architecting the Lumeta firewall analyzer,” in Proc. 10th
USENIX Security Symposium, Washington, D.C., 2001.

[9] S. Hazelhurst, A. Attar, and R. Sinnappan, “Algorithms for improving
the dependability of firewall and filter rule lists,” in DSN ’00: Proceed-
ings of the 2000 International Conference on Dependable Systems and
Networks, 2000.

[10] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly
detection and rule editing,” in Proc. IEEE/IFIP Integrated Management
Conference (IM’2003), 2003.

[11] ——, “Discovery of policy anomalies in distributed firewalls,” in Proc.
IEEE Infocomm, Hong Kong, 2004.

[12] Netfilter, “Linux netfilter,” http://www.netfilter.org.
[13] T. Cymru, “The Team Cymru Bogon List v2.5 02 AUG 2004,”

http://www.cymru.com/Documents/bogon-list.html, 2004.
[14] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and Internet

Security: Repelling the Wily Hacker. Addison-Wesley, 2003.
[15] A. X. Liu and M. G. Gouda, “Removing redundancy from packet

classifiers,” University of Texas at Austin, Tech. Rep., 2004.
[16] H. R. Andersen, “An introduction to binary decision diagrams,”

http://www.itu.dk/people/hra/notes-index.html, 1997.
[17] J. Lind-Nielsen, “Buddy version 2.4,”

http://sourceforge.net/projects/buddy, 2004.
[18] DAST/NLANR, http://dast.nlanr.net/Projects/Iperf/, Mar 2005.
[19] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior

of the congestion avoidance algorithm,” Computer Communications
Review, vol. 27, no. 3, 1997.

[20] CAIDA, “Skitter tool,” http://www.caida.org/tools/measurement/skitter.
[21] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet Map

Discovery,” in IEEE INFOCOM, 2000.
[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies

with Rocketfuel,” in ACM SIGCOMM, 2002.
[23] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,G. Hjalmtysson, and J.

Rexford, “The cutting edge of IP router configuration,” in ACM HotNets,
2003.

[24] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
Misconfiguration,” in ACM SIGCOMM, 2002.

[25] N. Feamster, “Practical verification techniques for wide-area routing,”
in ACM SIGCOMM HotNets-II, 2003.

[26] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults
with static analysis,” in Proc. NSDI, 2005.

[27] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg,
“Routing design in operational networks: A look from the inside,” in
Proc. SIGCOMM’04, 2004.

[28] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, and J. Rexford, “On
static reachability analysis of IP networks,” in IEEE INFOCOM, 2005.

[29] M. G. Gouda and X.-Y. A. Liu, “Firewall design: consistency, complete-
ness and compactness,” in Proc. ICDCS 24, 2004.

[30] P. Eronen and J. Zitting, “An expert system for analyzing firewall rules,”
in Proc. 6th Nordic Worksh. Secure IT Systems, 2001.

