
Context-Aware Statistical Debugging:
From Bug Predictors to Faulty Control Flow Paths∗

Lingxiao Jiang Zhendong Su
University of California at Davis
{jiangl,su}@cs.ucdavis.edu

ABSTRACT
Effective bug localization is important for realizing automated de-
bugging. One attractive approach is to apply statistical techniques
on a collection of evaluation profiles of program propertiesto help
localize bugs. Previous research has proposed various specialized
techniques to isolate certain program predicates as bug predictors.
However, because many bugs may not be directly associated with
these predicates, these techniques are often ineffective in localizing
bugs. Relevant control flow paths that may contain bug locations
are more informative than stand-alone predicates for discovering
and understanding bugs. In this paper, we propose an approach to
automatically generate such faulty control flow paths that link many
bug predictors together for revealing bugs. Our approach com-
bines feature selection(to accurately select failure-related predi-
cates as bug predictors),clustering(to group correlated predicates),
and control flow graph traversal in a novel way to help generate
the paths. We have evaluated our approach on code including the
Siemens test suite and rhythmbox (a large music management ap-
plication for GNOME). Our experiments show that the faulty con-
trol flow paths are accurate, useful for localizing many bugs, and
helped to discover previously unknown errors in rhythmbox.

Categories and Subject Descriptors:D.2.4/D.2.5 [Software En-
gineering]: Testing and Debugging, Software/Program Verification—
Reliability, Statistical methods, Debugging aids

General Terms: Experimentation, Reliability

Keywords: Bug localization, Statistical debugging, control flow
analysis, machine learning

1. INTRODUCTION
Debugging is an important part of the software development pro-

cess because developers spend significant fraction of theirtime on
debugging. Traditionally, debugging is a manual process and often
done in two steps: (1) under testing, an application exhibits un-
expected behavior, and (2) the developer examines the execution

∗This research was supported in part by NSF NeTS-NBD Grant No.0520320, NSF
CAREER Grant No. 0546844, NSF CyberTrust Grant No. 0627749,and a generous
gift from Intel. The information presented here does not necessarily reflect the position
or the policy of the Government and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07,November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

states looking for causes of the problem. Such a manual task can
be tedious, challenging, and error-prone because the statespace is
typically very large and may not even be completely available (e.g.,
in the case of a failed user run). It is desirable to automate the de-
bugging process as much as possible.

Bug localizationis a step towards automated debugging: much
code unrelated to bugs is filtered out and only the remaining code
needs further debugging. Effective bug localization techniques can
potentially save much developer time by not only pinpointing bug
locations in code but also providing useful contextual information
for understanding the bug causes.

In recent years, much research has been devoted to this area.
One general, attractive approach is to rely on feedback datafrom
the large number of users of deployed software, as shown in Fig-
ures 1(a)–(d): (1) an application is first (lightly) instrumented to
profile certain program properties; (2) users of the instrumented
application send execution profiles to a central database; and (3)
postmortem analyses, such asstatistical debugging, are performed
on the gathered profiles to identify bug predictors that may refer
to actual bug locations. Statistical debugging [2, 38, 39, 41, 59] is
based on a low-overhead, privacy-safe instrumentation infrastruc-
ture within the context of Cooperative Bug Isolation (CBI) [36]. In
this infrastructure, program predicates, such as the number of times
a branch condition is taken, are recorded, then statisticalmodels are
applied to rank the predicates in terms of how closely they relate to
bugs. Developers can then inspect highly ranked predicates(in iso-
lation) for actual bugs. If users are willing to tolerate more perfor-
mance overhead, more heavyweight instrumentation mechanisms
may be deployed to gather more information for identifying bug
predictors. For example, Tarantula [30, 31] instruments almost ev-
ery statement in a program, and ranks and visualizes the statements
according to their potential relations with bugs.

These techniques may be effective at locatingwherebugs may
lie, but often do not provide sufficient information for debugging,
which may require additional contextual information (e.g., control
and data dependency, or concrete execution traces) to understand
howhighly ranked predicates lead to program failures orwhy they
are related to real bugs. In this paper, we aim at answering both
whereandhowprogram failures happen and thus improving exist-
ing statistical debugging techniques. In particular, we introduce a
context-awareapproach that considers not only individual bug pre-
dictors but also predicate correlations and control flow paths that
connect the bug predictors and correlated predicates for better di-
agnosis of bugs. We extend the general approach shown in Fig-
ures 1(a)–(d) in two aspects: (1) we exploit the profiles gathered
from users further to discover correlations among program predi-
cates (Figure 1(e)), and (2) we propose an efficient algorithm for
constructing such faulty control flow paths to help diagnosepoten-
tial bugs (Figure 1(f)).

function header (---) -----------

--if (condition 1) ---------------

----------if (condition 2) -------

-----while (condition 3) -------

----------------if (condition 4) --

Bug

end

(f) faulty control flow paths

--------instrumentation-----------

--instrumentation-----------------

-----------------instrumentation--

instrumentation-------------------

-----instrumentation--------------

-------instrumentation------------

Bug

(b) instrumented programs

--if (condition 1) ---------------

----------if (condition 2) -------

-----while (condition 3) -------

Bug

(d) identified bug predictors

(a) program with bugs

Bug

Instrument

Profile 1

Profile 2

Profile n

Deploy & Execute Statistical Debugging

if-condition 1

if-condition 2

while-condition 3

if-condition 4

(e) predicate

correlation clusters

(c) feedbacks from users

Control Flow Analysis

Figure 1: The framework of a general bug localization approach.

Correlation Analysis

void rb_entry_view_select_entry (RBEntryView *view,) {

 ...
if(1) (view == NULL)

return;
view->priv->selection_lock = TRUE;
rb_entry_view_select_none (view);

 if(2) () {

// The selection_lock is FALSE now,

 // so it may cause a race condition:

 ...modify entries...;
}
view->selection_lock = FALSE;

}

void rb_entry_view_selection_changed_cb (view,…) {
 ...

GList *sel;
if(4) (view->priv->selection_lock == TRUE)

return;

sel = ...get a list of pointers to the selected entries...;

 if(5) ()

 {

...access to the entries...;
 }
 ...

 g_list_free (sel);
}

void rb_entry_view_select_none (view) {
 view->priv->selection_lock = TRUE;

...clear all selected entries...;
 view->priv->selection_lock = FALSE;
}

gboolean rhythmdb_query_model_entry_to_iter (...) {
...

if(3) (G_UNLIKELY ()) {

…; return FALSE;
}
…; return TRUE;

}

callbranching

branching

branching

branching

branching

call

(d) (e) (f)

return

return

-56484 Lines of Code-

sel != NULL

rhythmdb_query_model_entry_to_iter() > 0

(a) source code of rhythmbox

sel != NULL true

rhythmdb_query_model_entry_to_iter() > 0 true

ptr == NULL false

(b) identified bug predictors

(c) one predicate correlation cluster

with predicted branching directions

Instrument, Deploy, Execute,

and Statistical Debugging

Figure 2: Sample code fragment extracted from rhythmbox 0.6.4 (solid arrows indicate control flow transfers).

We use a real-world example to illustrate how our extended ap-
proach can be more useful for localizing bugs than existing statisti-
cal debugging. Figures 2(d)–(f) show code extracted fromrhythmbox

0.6.4, a music management application for GNOME with a totalof
56484 lines of code [39]. In fact, the code in Figures 2(d) and 2(e)
can be executed concurrently with the code in Figure 2(f), and races
may occur because all the code snippets write to the unprotected
variableview->priv->selection_lock.

Without considering bug context, our approach can predict many
program predicates, including the seemingly unrelated twoshown
in Figure 2(b), as bug predictors. Although the predicates are close
to actual bug locations, presenting developers such predicates in
isolation is not very helpful for them to understand the bug.To
improve the situation, (1) our approach further discovers predi-
cate correlations and predicts branching directions basedon exe-
cution profiles. E.g., the two predicates in Figure 2(b) and more re-
lated predicates are grouped into the same correlation cluster (Fig-
ure 2(c)), indicating that they may be all responsible for the bug
under the predicted branching directions; (2) Control flow paths
that connect these predicates are constructed to help reveal the bug
cause (Figures 2(d)–(f)).

The paths in Figures 2(d)–(e) involve three functions and approx-
imately20 lines of code (excluding blank lines). By inspecting this
control flow path, one can see thatview->priv->selection_lock

is alwaysFALSE on the line ofif(2) and the condition forif(2) is

TRUE. Thus, the modification in the true-branch may easily cause
races if different threads in rhythmbox run the code at the same
time. In addition, the path in Figure 2(f) (involving approx. 10 lines
of code) shows thatview->priv->selection_lock is never set
to TRUE afterif(4) and the operations in the true-branch ofif

(5)

may cause another race.1 If we had isolated the bug predictors
without predicate clustering and control flow paths, it would have
been more difficult to understand the bug.

Our approach is based on a novel combination of the CBI in-
strumentation infrastructure [36], feature selection andclustering in
machine learning, and control flow graph analysis. Figure 3 shows
the organization of our approach. First, a program is instrumented
and execution profiles for certain program predicates are collected
(Section 2.1). Second, the data are preprocessed and fed into ma-
chine learning algorithms to produce two kinds of information. One
is about which program predicates are most likely bug predictors.
We obtain this information viafeature selection(Section 3.1) using
two well-known classification algorithms: support vector machines
(SVMs) and random forests (RFs) (Section 2.2). The other is about
which predicates are correlated in terms of similar evaluation his-
tories viaclustering(Section 3.2) using a variant of thek-means
clustering algorithm. Next, we utilize this information toheuristi-

1The latest version of rhythmbox has been modified to use the programming
models (real locks and critical sections) provided byGTK+, instead of the naive
selection_lock, to avoid such races.

M
ach

in
e L

earn
in

g
 M

o
d

u
le

D
ata p

re-p
ro

cessin
g

 (S
ec. 4

.1
)

Clustering (Sec. 3.2)

k-means

CFG Analysis (Sec. 3.4)

Classification (Sec. 2.2)

SVMs RFs

Faulty Control Flow Paths

with Bug Predictors

Feature Selection (Sec. 3.1)

Execution

Profiles

Branch Prediction (Sec. 3.3)

Predicate

Correlations

Bug

Predictors

Instrumented

Programs
(Sec. 2.1)

Figure 3: The organization of our approach.

cally predict the directions of conditional branches (Section 3.3).
Then, guided by such branch predictions, our approach traverses
the program’s control flow graph (CFG) to identify faulty control
flow paths that connect the bug predictors and correlated predicates
(Section 3.4). Finally, the developer can inspect the identified paths
to locate actual bugs.

We also present an empirical evaluation of our approach and dis-
cuss potential threats to its validity (Section 4). The results show
that our context-aware approach helps developers more easily di-
agnose program errors, in terms of numbers of revealed bugs and
the amount of code examined, than existing bug localizationtech-
niques which provide only stand-alone bug predictors. In particu-
lar, we located79 bugs out of132 in the Siemens test suite [24] by
inspecting the constructed faulty control flow paths,38 of which
were located by inspecting at most1% of the code in each pro-
gram. Also, five real bugs in rhythmbox 0.6.4 (a real-world, multi-
threaded music management application [51] for GNOME) with
two previously unknown were discovered; each bug required in-
specting tens to hundreds of lines of code (out of56484 lines).

2. TECHNICAL BACKGROUND
2.1 Program Instrumentation Infrastructure

Our approach uses execution profiles collected by the CBI in-
frastructure [36]. CBI lightly instruments a program with statically
fixed n predicates, and an execution of the instrumented program
is recorded as ann-dimensional vector, where thei-th value of the
vector counts the number of times that thei-th predicate is observed
to be true during the execution. The vector for each execution also
has a label, indicating failure or success of the execution.A key
observation from CBI andstatistical debugging[2,38,39,41,59] is
that although it is practically impossible to recover program behav-
ior (or user specific information) from one vector, a large collection
of such vectors from many users can be useful for understanding
its (mis)behavior. In this paper, we use the following threekinds of
predicates instrumented by CBI:
branches: Given a branch conditionC, two predicatesC ==

true (abbr. CT) andC == false (abbr. CF) may be in-
strumented to count how many times an execution takes the
true branch and the false branch respectively.

returns: Given a function call site with return valueR, three pred-
icatesR < 0, R == 0, andR > 0 may be instrumented to
track the sign of the return value.

scalar-pairs: Given two program variablesA andB (B can also
be0 instead) of the same scalar or pointer type, three predi-
catesA < B, A == B, andA > B may be instrumented to
track the arithmetic relationship betweenA andB.

Different predicates may indicate various types of bugs: wrong
branch conditions may indicate that a program enters abnormal

paths; wrong return values may indicate failures of function invoca-
tions; and scalar-pair relations may help reveal null-pointer deref-
erences and out-of-boundary issues.

2.2 Machine Learning
We now introduce several machine learning concepts [43] rele-

vant to our approach.

2.2.1 Definitions
In machine learning, a data setU is usually given: each data

point u ∈ U (1) is a value vector〈v1, . . . , vn〉 for a set of pre-
selected featuresP = {p1, . . . , pn}, and (2) has an associated label
Lu that indicates the class to whichu belongs. Vectors collected by
CBI correspond naturally to such a data setU : each instrumented
predicate corresponds to a featurepi, each execution profile cor-
responds to a data pointu, and the execution result (successor
failure) corresponds to the class labelLu.

Classification, feature selection, andclusteringare three com-
mon learning tasks performed onU :

Classification: GivenU andP , establish a classification function
M(u) to map eachu ∈ U to a class, maximizingclas-
sification accuracy, i.e., maximizing the number of correct
mappings (compared withu’s own label), even ifU contains
noise data (that are irrelevant for the final function or that
have wrong labels) or data with missing values.

Feature Selection: Given U and P , select a subset of features
Pk = {ps1

, . . . , psk
} ⊆ P , such that the classification func-

tion based onUk andPk is still accurate enough compared
with the classification function based onU and P , where
Uk is U projected ontoPk, i.e., Uk = {〈vs1

, . . . , vsk
〉 |

〈v1, v2, . . . , vn〉 ∈ U}. Usuallyk is restricted to a constant,
and it is referred to ask-feature selection. The selected fea-
tures have more impact on the classification function than all
other features, and thus they can be the best choice as bug
predictors for the purpose of bug localization.

Clustering: Given U and P without labels, divideU into sub-
sets (clusters) such that data points in each subset are similar
w.r.t. certain distance measures [4]. In this paper, we apply
clustering techniques to discover correlated predicates that
are similar w.r.t. evaluation histories (Section 3.2).

2.2.2 Machine Learning Algorithms
To identify bug predictors (i.e., to perform feature selection), we

utilize two machine learning algorithms in this paper:

Support Vector Machines (SVMs): SVMs [9] are a family of ma-
chine learning algorithms. Briefly speaking, a SVM is a clas-
sification function (e.g., a linear functionu ·ω, whereω is an
adjustable parameter), and it iteratively adjusts the param-
eters to maximize classification accuracy while minimizing
certain inevitable errors in machine learning.

Random Forests (RFs):An RF [7] is basically a collection ofde-
cision trees(DTs) [43]. Each decision tree is built on a dif-
ferent subset ofU ; it computes ranks for every feature and
decides the class label of a data pointu based on the ranks.
The final label ofu is then decided by the majority votes of
all the trees in the forest.

In this paper, we use both SVMs and RFs. For large data sets,
RFs are usually more efficient than others, while SVMs are usually
more accurate, especially for small data sets.

3. BUG LOCALIZATION FRAMEWORK
In this section, we describe more details about the main compo-

nents of our bug localization approach (as shown in Figure 3).

3.1 Feature Selection
Feature selection (i.e., select critical program predicates that can

be accurate bug predictors) is a fundamental step in our approach.
In this paper, we apply classification algorithms to performk-feature
selection: we assign animportance scoreto each feature based on
its impact on the classification function (i.e., each predicate is asso-
ciated with a score indicating how likely it may reveal bugs); then
we choose the top-k features with the highest scores as the bug
predictors. The following describes how we compute such scores
based on SVMs and RFs.

In SVMs with a linear classification functionM(u) = u · ω,
whereω = 〈ω1, . . . , ωn〉, largerωi intuitively has bigger impact
on the computed class. Thus, it is natural to define thei-th feature’s
importance scoreSM (pi) as|ωi| or ω2

i [25]. In our setting for bug
localization, importance scores are slightly different because we
need predicates that have not only the biggest impact but also the
biggestpositiveimpact (i.e., causing an execution to fail). There-
fore, we useωi directly as the importance score for the predicatepi

if we assign a positive value (typically1) to the label for failure and
a negative value (typically−1) to the label for success during the
learning ofM(u). Generally, in SVMs with non-linear functions,
the importance score for a predicateSM (pi) can be defined as the
partial derivative ofM(u) w.r.t. thei-th predicate:

SM (pi) ,
∂M(u)

∂ui

RFs use another interesting heuristic to compute importance scores:
if a predicate has a big impact on the classification function, then
when the data values for this predicate change, the class label for
this data point is very likely to change too; otherwise, the class label
is likely to remain the same. After the classification functionM(u)
is established, RFs randomly permute the data values for each pred-
icatepi and useM(u) to classify the permuted data points. Then,
the difference between the classification accuracies before and af-
ter the permutation can be used as the importance score forpi. The
larger the difference, the bigger impact ofpi onM(u).

In addition, each individual machine learning algorithm isnot
a panacea for any learning problem. It would be better to “com-
bine” results from different algorithms. So, we propose twosimple
strategies to “combine” differentk-feature selection results.

Halving: Given two lists of ranked features of size≥ ⌊ k

2
⌋, choose

at least the top-⌊k

2
⌋ features from each list.

Rank Mediation: Select the final top-k features according to the
average ranks of all feature ranks from different algorithms.

For example, suppose a set of predicates〈p1, . . . , p10〉 is ranked
by an SVM as〈1, 2, 2, 4, 4, 4, 7, 8, 9, 9〉 and ranked by an RF as
〈5, 5, 4, 1, 2, 2, 7, 7, 7, 7〉. If we want top-5 predicates, a halving
strategy would return〈p1, p2, p3, p4, p5〉 as the selected predicates,
while a rank mediation strategy would assign new ranks to thepred-
icates as〈3, 3.5, 3, 2.5, 3, 3, 7, 7.5, 8, 8〉 and return〈p4, p1, p3, p5, p6〉
as the final five predicates.2

3.2 Clustering
Previous work has focused on discovering how different execu-

tions relate and how predicates and executions relate. Essentially,
such work is based on avertical view of evaluation profiles,i.e.,
the profile for one execution is viewed as one unit for comparison.
Little has been done to discover how predicates relate across differ-
ent executions. This can be achieved with a newhorizontalview of
the profiles: the profiles for each predicate across all executions are

2It would be interesting to investigate how to “combine” different machine learning
algorithms in general and what effects different “combinations” may have. The two
simple strategies showed little impact on our evaluation results and we only show
results based on the halving strategy in this paper.

viewed as one unit, and predicate correlations can be discovered by
looking for “similar” horizontal units. For example, suppose we
have three executions of a program with three instrumented pred-
icatesp1, p2, andp3, and the three profiles are represented under
the traditional vertical view as:e1 = 〈5, 10, 5〉, e2 = 〈2, 8, 2〉, and
e3 = 〈4, 6, 4〉. Under the horizontal view, the profiles are repre-
sented as:p1 = 〈5, 2, 4〉, p2 = 〈10, 8, 6〉, andp3 = 〈5, 2, 4〉, and
it becomes clear thatp1 has the same evaluation history asp3 and
this may indicate thatp1 has correlationship withp3.

Predicate correlations that can be discovered based on the hori-
zontal view are interesting because program failures may becaused
by or influence many predicates in an execution and correlations
among those predicates can provide additional contextual infor-
mation for debugging. For example, let the branch conditions for
if(2), if(3), andif(5) in Figure 2(d)-(f) beA, B, andC respec-
tively, then the clustering result in Figure 2(c) can tell usthat the
predicatesA == true, B == false, andC == true had similar
evaluation histories in failed executions. Such a correlation helped
(1) reveal more information about the state of a program whenit
fails, (2) disclose a more accurate execution path the failure may
take, and (3) provide additional contextual information for us to
understand the failure.

We apply a variant ofk-means clustering[4] to discover pred-
icate correlations: all predicates are partitioned into clusters such
that (1) thedistancebetween any two predicates in the same clus-
ter is less than a specified parameterǫ, and (2) the distance be-
tweenmass centers(the arithmetic average of all data points in
a cluster) of any two clusters is larger thanǫ. The distance can
be defined in many ways. We use a metric based on normalized
Manhattan distance. Suppose under the horizontal view, twopred-
icatesp1 and p2 are characterized byp1 = 〈v11, . . . , vn1〉 and
p2 = 〈v12, . . . , vn2〉, the distance betweenp1 andp2 is defined as:

D(p1, p2) ,

n
X

i=1

|ri1 − ri2|

n

whereri1 andri2 arevi1 andvi2 linearly scaled to[0, 1] respec-
tively, i.e.,

ri =

8

<

:

0 if maxj(vj) = minj(vj) = 0
1 if maxj(vj) = minj(vj) 6= 0

vi−minj(vj)

maxj(vj)−minj(vj)
otherwise

3.3 Branch Prediction
In this and the following subsections, we present an algorithm

to construct faulty control flow paths based on the predicates iden-
tified as bug predictors and their correlated predicates, aiming to
provide more contextual information to help developers understand
betterhow the predicates relate to bugs.

The basic idea is to use the predicates to guide the traversalof
control flow graphs since the locations of the predicates tell us
where the constructed paths should traverse. Also, we observed
that much information about branch directions taken in failed runs
can be inferred from the bug predictors and the execution profiles.
Such knowledge thus helps to prune unlikely faulty paths during the
traversal and make our algorithm efficient. This subsectionpresents
the heuristics that we use to predict branch directions, andthe fol-
lowing subsection will describe how to utilize these predictions to
efficiently construct faulty control flow paths.

For each branch conditionC, we have two profiled predicates
CT andCF (cf. Section 2.1). We can decide the truth values of
these predicates infailed runs as follows:

• The predicates identified by feature selection are the ones
that are most likely related with failures, and so are the pred-

icates identified by clustering. We let the truth values of these
predicates to be true.
• The truth values of other predicates may also be heuristically

decided by analyzing the horizontal views of the execution
profiles. Suppose the horizontal view of a predicateP is
projected tofailed runs (i.e., values from successful runs in
the view are filtered out), and recall that each scalar value
in the view is the number of timesP is observed to be true.
Then we may infer that the truth value ofP wasnevertrue
in failed runs if all values in the projected view are zeroes.
Also, if most values (> 50%) in the projected view are non-
zeroes, then we decide the truth value ofP is true; otherwise,
we decide it to be unknown.3

Now we can predict which branch ofC to take based on the truth
values ofCT andCF :

(CT == false ∧ CF == false) ⇒ C == neither (1)

(CT == false ∧ CF 6= false) ⇒ C == false (2)

(CT 6= false ∧ CF == false) ⇒ C == true (3)

(CT 6= false ∧ CF 6= false) ⇒ C == both (4)

Case (1): If both CT andCF are false, the conditionC is likely
not executed at all in failed runs, and all paths afterC should
be pruned during the CFG traversal.

Case (2): If CT is false andCF is true or unknown, the true branch
of C is likely not taken in failed runs and should be pruned.

Case (3): If CT is true or unknown andCF is false,C ’s false
branch is likely not taken in failed runs and should be pruned.

Case (4): If bothCT andCF are true or unknown, then both branches
may be taken and should be traversed.

3.4 Faulty Control Flow Path Construction
Based on the branch predictions, we can now easily traverse con-

trol flow graphs to greedily find paths that connect as many bug
predictors as possible. Algorithm 1 describes how we traverse a
CFG and find the paths we want. It is essentially a depth-first
search except that we use heuristics to reduce backtrackingused in
the standard depth-first search algorithms and prune unlikely faulty
paths. The algorithm chooses a bug predictor closest (in terms of
the length of its shortest path) to the main entry of a program(line
2) and starts the traversal from the function containing this predi-
cate (lines 4 and 5), then it repeatedly selects a next node toextend
the path (lines 6–35) until there is no more next node for the path
(lines 11, 26, 30, and 35). Such a process is repeated until all cor-
related predicates are covered (lines 1–36).

The main heuristic used in PATHGEN is to decide which branch
to take during the CFG traversal (line 16). For each branch con-
dition C, (1) if we predict neither branch should be visited, then
we backtrack to the last visited branching node or start a newiter-
ation to search for a new path; (2) if we predict that the false(true)
branch should be pruned, then we take the true (false) branchto
continue the traversal; (3) otherwise, we pick a random branch to
follow; and (4) to avoid traversing a branch twice, we choosethe
other branch if this one has already been visited.

Our second heuristic is to make the constructed paths alwaysbe-
gin at function entries and end at function exits to provide relatively
complete paths. The two calls toshortestPath (lines 4 and 8) are
added for this purpose (and may be disabled).

Algorithm 2 post-processes all the constructed faulty control flow
paths, to remove unnecessary portions of the paths and orderthem
for inspection. The step at line 3 in PATHPOST is used to prune

3One may exploit more information provided by the profiles, such as the total number
of times a predicate is executed in one run, to further refine the cases.

Algorithm 1 Construct Faulty Control Flow Paths: PATHGEN

Input: P = {p1, . . . , pn} (a predicate cluster),G (a CFG)
Output: PATHS (a set of generated paths)
Notation: p ∈ c (predicatep is contained in pathc);

FC (a stack storing function calling contexts);
Flag = {f1, . . . , fn}, and
fi = true iff pi is contained in some path inPATHS

Initialization: PATHS← ∅; ∀fi ∈ Flag : fi ← false

1: repeat
2: Pickpi ∈ P with fi = false and closest tomain
3: FC← ∅; fi ← true
4: c← shortestPath(entry of pi’s function,pi)
5: TraverseG, starting from the node forpi:
6: repeat given the current noden, do:
7: if all successors ofn have been visitedthen
8: c0 ← shortestPath(n, exit of n’s function)
9: ∀pj ∈ c0 : fj ← true

10: PATHS← {concatPath(c, c0)} ∪ PATHS
11: break
12: else /* visit n and find the next node */
13: c← concatPath(c, {n})
14: ∀pj ∈ n : fj ← true
15: if kindOf(n) = branch then
16: Select a branch (Sec. 3.3)
17: else if kindOf(n) = function-call then
18: Push the current noden ontoFC
19: Let the next node be theentry of the callee
20: else if kindOf(n) = function-exit then
21: if ¬isEmpty(FC) then
22: Pop a nodefn from FC
23: Let the next node befn’s successor
24: else /* finish all paths starting frompi */
25: PATHS← {c} ∪ PATHS
26: break
27: end if
28: else if kindOf(n) = program-exit then
29: PATHS← {c} ∪ PATHS
30: break
31: else
32: Let the next node ben’s successor
33: end if
34: end if
35: until no more next node
36: until ∀i : fi = true

likely irrelevant portions of the faulty control flow paths.Some-
times a path may pass through a function that contains no instru-
mented predicates, and the subpaths within such a function can be
pruned to reduce inspection burden because the developers are un-
likely interested in a function they do not instrument. However, it is
also possible that a function does not have any instrumentedpredi-
cate simply because it has been overlooked. Thus, when we cannot
locate a bug in the pruned paths, this pruning step can be optionally
disabled to present longer paths for inspection. Such an interactive
feature helps to better balance the length of constructed paths and
their information content for localizing bugs.

Our algorithm for constructing faulty control flow paths is effi-
cient. For a fixed number of execution profiles, the branch predic-
tion takes linear time w.r.t. the number of branch predicates. The
CFG traversal takes worst case linear time w.r.t. the size ofthe CFG.
In practice, the traversal is more efficient than linear because many
branches can be pruned by the branch prediction.

Algorithm 2 Post-process Paths: PATHPOST

Input: C = {P1, . . . , Pm} (predicate clusters),G (a CFG)
Output: PATHS in ascending order of path lengths
Initialization: PATHS← ∅

1: ∀Pi ∈ C : PATHS← PATHS ∪ PATHGEN(Pi, G)
2: Prune duplicated portions of the paths inPATHS
3: Prune intra-procedural subpaths with no predicates
4: Sort all pathsp ∈ PATHS in ascending order ofp’s length

4. EMPIRICAL EVALUATION
In this section, we present evaluation results of our approach on

different programs. The main question we hope to answer is how
effective the generated faulty control flow paths by our approach
can help localize bugs. Our own experience clearly indicates that
these faulty control paths are more informative than isolated pred-
icates because they provide useful contexts in understanding the
bugs. We also performed a quantitative evaluation using concrete
test cases and based on the following metrics: (1) how many bugs
our approach can localize, and (2) how much manual code inspec-
tion is required to localize the bugs.

4.1 Experimental Setup
Subject Programs.We use the HR variants [24] of the Siemens
test suite [26]. The suite contains132 faulty versions of seven pro-
grams; each has hundreds of lines of code. Each program also has
thousands of test cases and from zero to hundreds of failed runs.
Some statistics on the source code can be found in Graveset al.’s
study [19]. We instrumented the suite and collected its execution
profiles using CBI [36].

CBI has also accumulated large data sets for many applications,
including rhythmbox. These data sets have previously been used
to discover interesting bugs [39]. Ben Liblit generously provided
his collection of execution profiles for rhythmbox 0.6.4 to help us
evaluate our approach.

Machine Learning Tools and Platforms.For experiments with
SVMs, we used LIBSVM [11] on a Linux with a 2.4GHz Intel
Xeon processor and 1GB of RAM. For experiments with RFs, we
used an evaluation version of RandomForests [52] on a Windows
XP with a 2GHz Intel P4-M processor and 512MB of RAM. Also,
we implemented the variant ofk-means clustering for predicate
correlations (Section 3.2).

Data Preprocessing.The original data set for rhythmbox contains
about32000 executions with a total of432335 instrumented pred-
icates. Previous work [39] showed that hundreds to thousands of
runs containing tens to hundreds of failed ones are often sufficient
to find useful predicates as bug predictors. Thus, we randomly
choose small subsets of the whole data set for our experiments.
In addition, we separate each subset into three smaller subsets cor-
responding to the three kinds of instrumented predicates (branches,
returns, and scalar-pairs,cf. Section 2.1) in order to assess the ef-
fectiveness of different kinds of predicates on bug localization.

Parameters for Machine Learning.Many factors may affect the
accuracy of machine learning and are subject to change for different
applications. Trial-and-comparisonon small sample data sets is
usually effective in choosing optimal parameters. We now present
some parameters we used.

First, to account forunbalanceddata (i.e., the number of suc-
cessful runs is much larger than the number of failed runs), we ad-
justed the weights for both successful and failed runs—the ratio of
the two weights is the reverse ratio of the numbers of the two kinds
of runs—so that profiles from successful runs will not overwhelm
profiles from failed runs.

Second, we use3-feature selection (k = 3) for Siemens pro-
grams (small programs) and10-feature selection for rhythmbox (a
large program). Previous work [41] suggested that the effectiveness
of differentk’s may only differ slightly, especially when program-
mers are only willing to inspect less than10% of the code and when
our clustering strategy can provide additional correlatedpredicates.

Third, our clustering algorithm requiresǫ (cf.Section 3.2), which
may lead to different correlation clusters. Smallerǫ means more
clusters and more “isolated” predicates; largerǫ means more corre-
lated predicates and possibly longer paths for inspection.Because
we scale all profile data to the range of[0, 1], it is intuitive to use
ǫ = 0.01 (1% of the range). In fact, trial-and-error showed that
ǫ ∈ [0.005, 0.02] has only negligible effects on the resulting clus-
ters in our experiments.

4.2 Evaluations On Siemens Test Suite
We first present a summarized bug localization results for the

Siemens test suite based on branch predicates only. Interested read-
ers can refer to our technical report [28] for more detailed results
on the programs.

All constructed faulty control flow paths for the suite amount
to about4000 lines of code out of a total of about43400 lines in
the 132 versions of the seven programs. In total,79 bugs were
localized in the paths, meaning that programmers can discover 79
bugs by accumulatively examining about9.2% of the code in all
programs. Table 1 shows more quantitative measures on the effec-
tiveness of our approach in terms of the number of bugs localized
and the code inspection burden.4 Our results show that a developer
can discover38 bugs by inspecting no more than1% of the code in
each version of the programs.

In terms of such quantitative measures, previous work localized
less bugs for the suite within1% code limit (e.g., 17 for Taran-
tula [30] and11 for SOBER [41]), while they localized more bugs
within 20% code limit (e.g., 75 for Tarantula and96 for SOBER).
However, several factors should be considered in such direct quan-
titative comparisons: (1) these existing techniques focuson find-
ing only stand-alone bug predictors; (2) they use differentinstru-
mentation mechanisms (Tarantula instruments almost everystate-
ment in a program; SOBER uses a different implementation of CBI
and instruments certain different program predicates); and (3) they
computed the quantitative measures by a breadth-first search of the
program dependency graph of a program, instead of followingthe
faulty control flow paths as we did. We believe the fault control
flow paths can provide more meaningful contextual information to
help developers understand localized bugs than previous work. It
would be interesting future work, however, to perform more sys-
tematic user studies.

4.3 Evaluations on Rhythmbox
As a brief summary, we are able to localize five bugs in rhythm-

box 0.6.4, inspecting tens to hundreds of lines of code for each of
the bugs, out of a total of56484 lines of code [39]. Three of the
bugs are due to similar causes as that for the bugs discoveredby
Liblit [34,35]; two of the bugs were previously unknown.

Our experiments also show that branch predicates are more ef-
fective for bug localization than the other two kinds of predicates.
This seems to agree with the hypothesis that many defects canbe
revealed by certain abnormal paths which are usually determined
by branch conditions.

Our experiments were mainly performed with1711 runs includ-
ing 247 failed ones. Although the data set is small compared with

4In order to compute such quantitative measures, we have to omit certain subjective
factors. So, we assume that a developer can determine whether a line of code has a
bug whenever he sees it, as is assumed in other work [13, 41].

% code examined
(for each version)

≤ 1 line ≤ 2 lines ≤ 5 lines ≤ 10 lines ≤ 1% ≤ 2% ≤ 4% ≤ 10% ≤ 20% Total % code examined inall
versions:3967 / 43433

of Bugs Found 11 31 52 64 38 45 54 67 73 79 out of132 bugs

Table 1: Summary of our results for the Siemens test suite. Each column shows how many bugs can be discovered by inspectingup
to so much code in each version of the programs in the suite.Each line of code is counted as inspected if (1) it is contained in the faulty control flow paths,

and (2) it is located before the actual bug in the paths or there is no bug localized in the paths.

branches returns scalar-pairs

1 global_gconf_client==NULL g_ptr_array_free>0 i==2

2 i<impl_array->len g_type_check_instance_cast>0 ... (several predicates of formi=constant
3 monkey_media_is_alive()==FALSE monkey_media_is_alive>0 alive==0

4 selected_entry!=view->priv->selected_entry g_strdup>0 ...

5 !player->priv->url rb_entry_view_get_entry_contained>0 global_gconf_client==0

6 rb_entry_view_get_entry_contained() rhythmdb_query_model_entry_to_iter>0 ...

7 g_threads_got_initialized rb_entry_view_get_playing_entry>0 data->shell->priv->play_queued<1287

8 gdk_threads_mutex rb_source_get_entry_view>0 cc>cc

9 view->priv->change_sig_queued g_utf8_validate>0 ...

10 monkey_media_player_get_uri monkey_media_player_get_uri>0 changed==callback_runs

Table 2: Top 10 failure-related predicates identified by LIBSVM for rhythm box.

global_gconf_client==NULL false
i<impl_array->len both
monkey_media_is_alive()==FALSE false
selected_entry!=view->priv->selected_entry both
!player->priv->url true

(a)

………………
player->priv->source!=NULL false

source!=NULL (@line 1551) false

source==NULL (@line 1566) true

monkey_media_player_playing(...) false

rb_entry_view_get_entry_contained() true

(b)
Figure 4: Sample predicate clusters for rhythmbox.

the whole data set, it is already helpful for identifying many bug-
related predicates. Table 2 shows the the three kinds of top10 pred-
icates identified by LIBSVM as bug predictors. The subsequent
predicate clustering and faulty control flow path construction show
that these predicates provide insightful information for debugging.

4.3.1 Sample Faulty Control Flow Paths
Sample predicate clusters and faulty control flow paths are shown

in Figures 4 and 5. In the following, we explain more about how
they helped discover bugs:

• Figure 4(a) shows a cluster containing branch predicates 1,2,
3, 4, and 5 from Table 2. Also, the heuristic branch predic-
tion for each condition is shown, which can be used to direct
our CFG traversal. Several faulty control flow paths are con-
structed for the cluster using Algorithm 1. Figure 5 shows
one of the paths. A simple inspection of the path tells us that
there is a race on the global variablealive: different threads
could callmonkey_media_shutdown at the same time and
cause rhythmbox to crash on exit.
• Figure 4(b) shows (partially) a larger cluster containing36

predicates, including the6-th branch predicate in Table 2.
It involves 20 functions from eight files. Because the code
heavily uses function pointers which we do not yet model
in Algorithm 1, the constructed faulty control flow paths for
the cluster were mainly restricted within procedures. Even
so, they still provided hints at bugs: the path segment be-
tween line1551 and1566 in rb-shell-player.c implies
that a nullsource could be operated on by a callback func-
tion connected to themonkey media player in rhythmbox

static gboolean alive = FALSE;

void monkey_media_shutdown (void) {

if ()

 return;
alive = FALSE;

 ...release resources...;

 for (...; ; ...)

 ...free memory...;

}

gboolean monkey_media_is_alive (void) {
return alive;

}

call

branching

return

Figure 5: Sample faulty control flow path for the predicate clus-
ter in Figure 4(a).

0.6.4 throughg_signal_connect provided by GLib signal
system, due to races similar to the ones discovered by Lib-
lit et al. [34, 35]. Newer versions of rhythmbox no longer
use themonkey media player to play music; its threading
mechanism has also been rewritten for better reliability. All
of these five bugs we localized have thus been eliminated.

4.3.2 Confirming the Bugs
As an additional part of our evaluation, we constructed concrete

test cases to confirm that the cases we localized are actual bugs.
It is difficult to construct tests directly for the original rhythmbox
code. Instead, we use the constructed faulty control flow paths with
identified bug predictors to simplify the code first. We treatfunc-
tions containing a bug predictor as top-level functions fortesting,
and automatically prune unrelated branches and functions along the
paths. Then, we generate simple definitions for library and external
(undefined) functions. Finally, we use a specialized test driver gen-
erator for multi-threaded programs to perform random testing on
the top-level functions for exhibiting their (mis)behavior. The lo-
calized bugs are all manifested as segmentation faults in this way.

4.3.3 Bug Localization Cost
We also measured the time cost of our experiments on rhythm-

box with LIBSVM. Table 3 shows the results. The time in the ta-
ble includes all “machine” time, excluding the time spent oncode
inspection. We were new to rhythmbox, GTK+, and GNOME re-
lated programming, and it took us minutes to hours to follow each
constructed faulty control flow path and look for potential bugs.
During path inspection, we also manually performed simple data-
flow analyses to help us understand the code behavior; in particu-
lar, we performed alias analysis for function pointers to help link
“segmented” paths together. As interesting future work, these anal-

Instrumen- Number Time (minutes) of Classifi-
tation of Feature Cluster- Path- cation

Predicates Predicates Selection ing Gen Accuracy
branches 6,863 41 30 < 1 99%
returns 25,287 45 770 < 1 99%

scalar-pairs 400,185 654 n/a n/a 96%

Table 3: Performance of LIBSVM-based experiments on
rhythmbox 0.6.4.

Branches

1 g_threads_got_initialized

2 children

3 gdk_threads_mutex

4 requisition->height>child_requisition.height

5 size != -1

6 monkey_media_is_alive()==FALSE

7 global_gconf_client==NULL

8 (child->widget->flags&256U)!=0

9 i<impl_array->len

10 rb_entry_view_get_entry_contained()

Table 4: Top 10 predicates identified by RandomForests as bug
predictors on rhythmbox 0.6.4.

yses can be automated and help improve the effectiveness of our
context-aware approach. We believe that the cost on constructing
and inspecting faulty control flow paths is worthwhile, compared
with many hours spent on traditional testing, especially for a real-
world large-scale application that we are not familiar withand that
contains unknown bugs. In addition, together with Table 2, Table 3
again implies that branches are more effective for bug localization
than other kinds of predicates.

4.3.4 Experiments with RFs
We have also experimented with RandomForests on rhythmbox.

The experiments were done with a smaller data set including219
successful and87 failed runs since the evaluation version of Ran-
domForests we used only handles small data sets. Table 4 shows
the top10 branch predicates identified by RandomForests as bug
predictors. Despite of the smaller data set used, many useful bug
predictors were still identified, more than half of which overlap
with the predicates identified by LIBSVM. This fact further sup-
ports previous experiences [39] that hundreds to thousandsof runs
including tens to hundreds of failed ones are often sufficient to find
useful bug predictors.

4.4 Discussions
Herein, we further discuss some aspects of our approach.

4.4.1 Benefits of Predicate Clustering
An alternative for constructing faulty control flow paths isto use

only those predicates identified by feature selection, excluding the
clustered predicates. Compared with this alternative, ourcluster-
ing strategy can provide additional information for debugging: (1)
predicates are separated into different clusters—different clusters
may indicate different bugs in programs, while predicates in a same
cluster are more likely related to the same bug; (2) additional low-
rank predicates can be included for path construction and help pro-
duce more informative faulty control flow paths.

The code in Figure 2 illustrated that clustering helps link the code
shown in Figures 2(a) and 2(b) with the code in Figure 2(c), and
thus helps identify the bugs related to the same data field. There
are also14 cases in the Siemens test suite that can only be localized
with the additional clustered predicates in our approach [28].

Lal et al. [32] also present an algorithm for constructing ashort-
estcontrol flow path that contains the maximum number of some
given bug predictors. However, they only used stand-alone predi-
cates. We believe our clustering strategy can also help improve the
effectiveness of their algorithm on bug localization.

4.4.2 Threats to Validity
From the evaluation, we also notice that our approach cannotef-

fectively localize all bugs. There are several factors impacting the
effectiveness of our approach, besides the machine learning param-
eters and the parameter specifying how long a path (i.e., the amount
of code) that the developer is willing to manually inspect.

The most crucial one is what kind of and how many predicates
should be instrumented. As we have mentioned, different kinds
of predicates have different effects on bug localization. For exam-
ple, branch predicates are not good at localizing bugs related to
data definition errors (e.g., a variable is assigned a wrong constant
in Version 7 oftcas in the Siemens suite). Also, previous work
using different instrumentation achieved different bug localization
results. Choosing the most appropriate and adequate predicates
for bug localization remains a fundamental, interesting research
problem. Certain coverage criteria used to generate adequate test
cases [12] may be applicable to predicate instrumentation as well.
Also, program analysis and filtering techniques, such as [33, 44]
may help to reduce irrelevant predicates and decrease instrumenta-
tion overhead but retain effectiveness on bug localization.

The second factor concerns the nature of different types of bugs.
Certain program locations are not directly instrumentable(e.g., the
erroneous macro definition in Version 36 oftcas in the Siemens
suite); certain bugs involve many locations through implicit data
flows (e.g., callback functions heavily used in rhythmbox). Such
bugs cannot be understood if only explicit control flows are pre-
sented. It would require incorporating certain data-flow analysis
and alias analysis into path construction to improve the effective-
ness of our approach. In practice, there may also be many types of
bugs requiring special localization techniques. This paper did not
investigate into these special techniques; it will also be an interest-
ing and challenging research topic for our future work.

The third factor concerns the adequacy of the data set, and par-
ticularly the number of failed runs which may affect the results of
feature selection. When there are not enough failed runs (e.g., Ver-
sion 8 oftcas in the Siemens suite), our approach cannot identify
bug predictors or construct faulty control flow paths. However, we
believe that it is not a major concern for an infrastructure such as
CBI, since in its real deployment, data can be easily gathered from
large number of users.

5. RELATED WORK
In this section, we survey additional research related to auto-

mated debugging. We roughly classify the related work into the
following categories:
Program-behavior clustering.It is useful to cluster similar pro-
gram runs together for tasks such as failure identification and test-
case filtering. Haranet al. [23] applied random forests to predict
whether a run succeeds or fails. Dickinsonet al. [14] utilized sev-
eral cluster filtering strategies to group similar runs. Podgurski
et al. [48] classified and prioritized program failure reports fordi-
agnosis using pattern classification and multivariate visualization.
Bowring et al. [5, 6] classified execution profiles with iterative, ag-
glomerative hierarchical clustering, and the profiles are unconven-
tionally represented as Markov models of event and value transi-
tions. Liuet al.[40] regarded profiles of two failed runs as similar if
they suggest roughly the same bug locations. Similar to us, they all
expect that differences between failed and successful runsare good
indications of bugs. However, these techniques are mainly for se-
lecting appropriate failed test cases or profiles for further analysis,
while ours is to select bug predictors and construct faulty control
flow paths from the profiles.
Bug-predictor identification.Identifying bug predictors helps dis-
cover actual bugs, just like symptoms help diagnose diseases. In

general, bug predictors can be anything, including programstates,
execution counts of statements, branches, functions, event transi-
tions, etc. Brun and Ernst [8] identified bug-revealing program
properties by applying decision trees and support vector machines
on execution profiles of different versions of a program. They used
Daikon, a dynamic invariant detection tool [16], to detect proper-
ties, instead of direct instrumentation; they also assumedone of the
versions is free of bugs and used it to determine whether the runs
of other versions failed or not. Joneset al. [30, 31] ranked state-
ments in a program based on coverage information of each state-
ment in failed and successful runs. Both they and Orsoet al. [45]
utilized coloring schemes to visualize all statements and highlight
“dangerous” ones to assist code inspection. They instrumented al-
most all statements in a program and provided hierarchical,inter-
active views of source code, while we use a different instrumenta-
tion and provide additional contextual information besides identi-
fied bug predictors. Renieriset al. [49] looked for a succeeded run
that is most similar to a given failed run from a large set of profiles,
and flagged the difference between the two profiles as bug predic-
tors. Their definition of similarity among profiles is similar to ours
for clustering, but for different purposes: they look for the nearest
neighbor of a failed run (based on the vertical view), and we look
for neighbors of predicates to discover how they relate (based on
the horizontal view). More recently, Arumuga Nainaret al.[2] used
combinations of simple, atomic predicates as bug predictors and
showed informative bug localization results. Also, Joneset al. [29]
proposed a parallel debugging technique and methodology that en-
ables multiple developers to simultaneously debug multiple bugs
in the same program. Our approach, the machine learning module
and the fault control flow path construction in particular, may also
be extended for such compound predicates and multiple existence
for better effectiveness on bug localization.

Feature-correlation discovery.Branch prediction in computer ar-
chitecture has explored predicate correlations for instruction-level
optimization [47, 55]. Within the context of dynamic detection of
program invariants, Dodooet al. [15] introduced several strategies,
including clustering, to select representative predicates for detect-
ing implications, and applied the predicate implications to improve
the performance of a theorem prover and separate faulty fromcor-
rect executions of erroneous programs. Liblitet al. [39] also con-
sidered predicate correlations based on execution profiles, instead
of actual executions, but treated such correlated predicates as logi-
cally redundant and eliminated them for just feature selection pur-
pose, while we utilize such correlated predicates to efficiently con-
struct context-aware faulty control flow paths.

If we view a slice as a set of program elements related to a
certain behavior, many studies on slicing-based debuggingcan be
classified as correlation discovery. Agrawalet al. [1] assumed the
differences (calleddices) between the slices of a failed and a suc-
cessful run may contain bugs and visualized the dices to aid de-
bugging. Panet al. [46] suggested a family of heuristics based on
program slices to reduce the burden of code inspection. Gyimóthy
et al. [22] augmented dynamic slices with potentially bug-relevant
statements. Wonget al. [54] defined execution slices as features
and defined distances among the slices based on statement counts
and then looked for useful features. Guptaet al.[21] used the inter-
section of forward and backward dynamic slices started fromfail-
ure points for debugging. Zhanget al. [58] empirically evaluated
the effectiveness of different dynamic slicing techniqueson bug lo-
calization. To the best of our knowledge, no slicing algorithm has
utilized the information provided by identified bug predictors, and
it will be interesting to investigate how to use the bug predictors to
“guide” slicing and improve the accuracy of slices.

Bug-revealing path generation.Such work aims to find under-
standable paths in programs, either static flows or dynamic traces,
that may reveal bugs. If we view program slices as paths, the
aforementioned slicing techniques can also be classified into this
category. Also, Repset al. [50] highlighted paths in a program
that may lead to abnormal behaviors by identifying divergences
between failed and successful runs. Gotliebet al. [18] generated
test cases which pass through particular program points by solving
constraint systems that correspond to the program. Liblitet al.[37]
proposed a family of analyses to build time lines of possiblepro-
gram actions that lead to failures based on certain information such
as failure points, stack traces and event logs. Delta debugging [13,
56, 57] also provided automated ways to simplify failure-inducing
inputs; it locates not only failure-related states, but also cause tran-
sitions—moments when failure causes are transited from one rele-
vant variable to another. It needs detailed program states and exe-
cutes the program itself. Ballet al. [3] found possible bug causes
by exploiting the differences between correct and faulty traces gen-
erated by model checkers. Manevichet al. [42] used postmortem
symbolic evaluation to produce a set of execution traces along which
the program may be driven to onegiven failure point. More re-
cently, Jhalaet al. [27] used path slicing to reduce counterexam-
ples from model checkers. Groceet al.[20] reduced a program to a
smaller one which can produce executions consistent with a given
(partial) trace of events. Lalet al. [32] constructed a shortest con-
trol flow path that contains the maximum number of given pred-
icates. Their algorithm is based on weighted push-down systems
and utilizes data dependencies to prune infeasible paths; it runs in
linear time w.r.t. program sizes but exponential w.r.t. thenumber
of given predicates. Also, symbolic and concrete executions are
being combined in in-house testing phase, including DART [17],
CUTE [53], and EXE [10], to generate test cases that can effec-
tively drive programs along particular erroneous paths.

6. CONCLUSIONS
In this paper, we have presented a novel context-aware approach

for bug localization, which not only identifies accurate bugpre-
dictors but also constructs faulty control flow paths. We imposed
two different views on execution profiles and combined several ma-
chine learning algorithms to accurately identify bug predictors and
discover predicate correlations. Also, we developed an efficient al-
gorithm based on branch prediction and control flow graph traver-
sal to construct faulty control flow paths that connect bug predic-
tors and provide more contextual information for revealingactual
bugs. We have evaluated our approach on the Siemens test suite and
rhythmbox within the CBI instrumentation infrastructure.Eval-
uation results showed that our approach is able to localize more
bugs than previous techniques with less code inspection burden;
and more importantly, it can provide informative control flow paths
to help understand and debug the code. We believe this is a promis-
ing direction for bug localization and an important step towards
realizing automated debugging.

Acknowledgments
We are grateful to Ben Liblit for the CBI infrastructure and the data.
We also thank Alex Aiken, Earl Barr, Christian Bird, Mark Gabel,
Matthew Roper, Gary Wassermann, and all anonymous reviewers
for valuable feedback on earlier drafts of this paper.

7. REFERENCES
[1] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using

execution slices and dataflow tests. InInternational Symposium on Software
Reliability Engineering (ISSRE), pages 143–151, 1995.

[2] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical debugging using
compound boolean predicates. InInternational Symposium on Software Testing
and Analysis (ISSTA), pages 5–15, 2007.

[3] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. InSymposium on Principles of Programming
Languages (POPL), pages 97–105, 2003.

[4] P. Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, San Jose, CA, 2002.

[5] J. F. Bowring, M. J. Harrold, and J. M. Rehg. Improving theclassification of
software behaviors using ensembles. Technical report, Georgia Institute of
Technology, 2005.

[6] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for automatic
classification of software behavior. InInternational Symposium on Software
Testing and Analysis (ISSTA), pages 195–205, 2004.

[7] L. Breiman. Random forests.Machine Learning, 45(1):5–32, Oct. 2001.
[8] Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over

program executions. InICSE, pages 480–490, 2004.
[9] C. J. C. Burges. A tutorial on support vector machines forpattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.Engler. EXE:

Automatically generating inputs of death. InConference on Computer and
Communications Security (CCS), 2006.

[11] C.-C. Chang and C.-J. Lin.LIBSVM: a library for support vector machines.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[12] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A formal
evaluation of data flow path selection criteria.Trans. on Software Engineering
(TSE), 15(11):1318–1332, 1989.

[13] H. Cleve and A. Zeller. Locating causes of program failures. InICSE, pages
342–351, 2005.

[14] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis
of execution profiles. InICSE, pages 339–348, 2001.

[15] N. Dodoo, L. Lin, and M. D. Ernst. Selecting, refining, and evaluating
predicates for program analysis. Technical Report MIT-LCS-TR-914, MIT
Laboratory for Computer Science, Cambridge, MA, July 21, 2003.

[16] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. InICSE, pages 449–458, 2000.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. InConference on Programming Language Design and Implementation
(PLDI), pages 213–223, 2005.

[18] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using
constraint solving techniques. InInternational Symposium on Software Testing
and Analysis (ISSTA), pages 53–62, 1998.

[19] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques.Trans. on Software
Engineering and Methodology (TOSEM), 10(2):184–208, 2001.

[20] A. Groce and R. Joshi. Exploiting traces in program analysis. InTools and
Algorithms for Construction and Analysis of Systems (TACAS), volume 3920 of
Lecture Notes in Computer Science (LNCS), pages 379–393. Springer, 2006.

[21] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. InASE, pages 263–272, 2005.

[22] T. Gyimóthy,Á. Beszédes, and I. Forgács. An efficient relevant slicingmethod
for debugging. Injoint meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 303–321, 1999.

[23] M. Haran, A. F. Karr, A. Orso, A. A. Porter, and A. P. Sanil. Applying
classification techniques to remotely-collected program execution data. Injoint
meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
146–155, 2005.

[24] M. J. Harrold and G. Rothermel.Aristotle Analysis System – Siemens
Programs, HR Variants. http://www.cc.gatech.edu/aristotle/Tools/subjects/.

[25] M. Heiler, D. Cremers, and C. Schnörr. Efficient feature subset selection for
support vector machines. Technical Report 21/2001, Computer Science Series,
University of Mannheim.

[26] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. InICSE,
pages 191–200, 1994.

[27] R. Jhala and R. Majumdar. Path slicing. InConference on Programming
Language Design and Implementation (PLDI), pages 38–47, 2005.

[28] L. Jiang and Z. Su. Automatic isolation of cause-effectchains with machine
learning. Technical Report CSE-2005-32, UC Davis, 2005.

[29] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in parallel. In
International Symposium on Software Testing and Analysis (ISSTA), pages
16–26, 2007.

[30] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. InASE, pages 273–282, 2005.

[31] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of test information to
assist fault localization. InICSE, pages 467–477, 2002.

[32] A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and
its application to debugging. InEuropean Symposium on Programming (ESOP),
volume 3924 ofLecture Notes in Computer Science (LNCS), pages 246–263.
SpringerESE, 2006.

[33] D. Leon, W. Masri, and A. Podgurski. An empirical evaluation of test case
filtering techniques based on exercising complex information flows. InICSE,
pages 412–421, 2005.

[34] B. Liblit. Bug 137460: dangling timeout event source ID causes crashes.
http://bugzilla.gnome.org/show bug.cgi?id=137460.

[35] B. Liblit. Bug 137834: dangling RBShellPlayer callbacks cause crashes.
http://bugzilla.gnome.org/show bug.cgi?id=137834.

[36] B. Liblit. The Cooperative Bug Isolation Project.
http://www.cs.wisc.edu/cbi/.

[37] B. Liblit and A. Aiken. Building a better backtrace: Techniques for postmortem
program analysis. Technical Report CSD-02-1203, UC Berkeley, 2002.

[38] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. InConference on Programming Language Design and
Implementation (PLDI), pages 141–154, 2003.

[39] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical
bug isolation. InConference on Programming Language Design and
Implementation (PLDI), pages 15–26, 2005.

[40] C. Liu and J. Han. Failure proximity: A fault localization-based approach. In
Symposium on Foundations of Software Engineering (FSE), pages 46–56, 2006.

[41] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. Injoint meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 286–295, 2005.

[42] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.PSE: Explaining
program failures via postmortem static analysis. InSymposium on Foundations
of Software Engineering (FSE), pages 46–56, 2004.

[43] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[44] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured:

type-safe retrofitting of legacy software.Trans. on Programming Languages
and Systems (TOPLAS), 27(3):477–526, 2005.

[45] A. Orso, J. A. Jones, and M. J. Harrold. Visualization ofprogram-execution
data for deployed software. InSymposium on Software Visualization
(SOFTVIS), pages 67–76, 2003.

[46] H. Pan and E. H. Spafford. Heuristics for automatic localization of software
faults. Technical Report SERC-TR-116-P, Purdue University, 1992.

[47] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch
prediction using branch correlation. InInternational Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 76–84, 1992.

[48] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J.Sun, and B. Wang.
Automated support for classifying software failure reports. In ICSE, pages
465–477, 2003.

[49] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
ASE, 2003.

[50] T. W. Reps, T. Ball, M. Das, and J. R. Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. Injoint
meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
432–449, 1997.

[51] Rhythmbox. Music management application for GNOME.
http://www.rhythmbox.org.

[52] Salford Systems Inc.RandomForestsTM .
http://www.salford-systems.com/.

[53] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In joint meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 263–272. ACM, 2005.

[54] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Measuring distance between
program features. InInternational Conference on Computer Software and
Applications (COMPSAC), pages 307–312, 2002.

[55] C. Young and M. D. Smith. Static correlated branch prediction.Trans. on
Programming Languages and Systems (TOPLAS), 21(5):1028–1075, 1999.

[56] A. Zeller. Isolating cause-effect chains from computer programs. InSymposium
on Foundations of Software Engineering (FSE), pages 1–10, 2002.

[57] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
Trans. on Software Engineering (TSE), 28(2):183–200, 2002.

[58] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation of using
dynamic slices for fault location. InAutomated and Algorithmic Debugging
(AADEBUG), pages 33–42, 2005.

[59] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken. Statistical debugging of
sampled programs. InNeural Information Processing Systems (NIPS). 2003.

