
Entailment with Conditional Equality
Constraints?

Zhendong Su and Alexander Aiken

EECS Department, University of California, Berkeley
{zhendong,aiken}@cs.berkeley.edu

Abstract. Equality constraints (unification constraints) have
widespread use in program analysis, most notably in static poly-
morphic type systems. Conditional equality constraints extend equality
constraints with a weak form of subtyping to allow for more accurate
analyses. We give a complete complexity characterization of the various
entailment problems for conditional equality constraints. Additionally,
for comparison, we study a natural extension of conditional equality
constraints.

1 Introduction

There are two decision problems associated with constraints: satisfiability and
entailment. For the commonly used constraint languages in type inference and
program analysis applications, the satisfiability problem is now well under-
stood [1, 2, 8, 11, 16, 17, 20, 22, 23, 7, 6, 27]. For example, it is well-known that
satisfiability of equality constraints can be decided in almost linear time (linear
time if no infinite terms are allowed [21]). For entailment problems much less is
known, and the few existing results give intractable lower bounds for the con-
straint languages they study, except for equality constraints where polynomial
time algorithms exist [3, 4].

In this paper, we consider the entailment problem for conditional equality con-
straints. Conditional equality constraints extend the usual equality constraints
with an additional kind of constraint α ⇒ τ , which is satisfied if α = ⊥ or α = τ .
Conditional equality constraints have been used in a number of program analy-
ses, such as the tagging analysis of Henglein [14], the pointer analysis proposed
by Steensgaard [25], and a form of equality-based flow systems for higher order
functional languages [19]. We also consider entailment for a natural extension of
conditional equality constraints.

Consider the equality constraints C1 = {α = β, β = γ, α = γ}. Since α =
γ is implied by the other two constraints, we can simplify the constraints to
C2 = {α = β, β = γ}. We say that “C1 entails C2”, written C1 � C2, which
means that every solution of C1 is also a solution of C2. In this case we also have
C2 � C1, since the two systems have exactly the same solutions. In the program
? This research was supported in part by the National Science Foundation grant No.

CCR-0085949 and NASA Contract No. NAG2-1210.

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 170–189, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Entailment with Conditional Equality Constraints 171

analysis community, the primary motivation for studying entailment problems
comes from type systems with polymorphic constrained types. Such type systems
combine polymorphism (as in ML [18]) with subtyping (as in object-oriented
languages such as Java [10]), giving polymorphic types with associated subtyping
constraints. A difficulty with constrained types is that there are many equivalent
representations of the same type, and the “natural” ones to compute tend to
be very large and unwieldy. For the type system to be practical, scalable, and
understandable to the user, it is important to simplify the constraints associated
with a type. As the example above illustrates, entailment of constraint systems
is a decision problem closely related to constraint simplification.

Considerable effort has been directed at constraint simplification. One
body of work considers practical issues with regard to simplification of con-
straints [5,7,6,27,17], suggesting heuristics for simplification and experimentally
measuring the performance gain of simplifications. Another body of work aims at
a better understanding how difficult the simplification problems are for various
constraint logics [7,12,13]. Flanagan and Felleisen [7] consider the simplification
problem for a particular form of set constraints and show that a form of entail-
ment is PSPACE-hard. Henglein and Rehof [12,13] consider another simpler form
of entailment problem for subtyping constraints. They show that structural sub-
typing entailment for constraints over simple types is coNP-complete and that
for recursive types is PSPACE-complete, and that the nonstructual entailment
for both simple types and recursive types is PSPACE-hard. A complete complex-
ity characterization of nonstructual subtyping entailment remains open. In fact,
it is an open problem whether nonstructual subtyping entailment is decidable.
Thus for these different forms of constraints, the problems are intractable or
may even be undecidable. In the constraint logic programming community, the
entailment problems over equality constraints have been considered by Colmer-
auer and shown to be polynomial time decidable [3, 4, 15, 24]. Previous work
leaves open the question of whether there are other constraint languages with
efficiently decidable entailment problems besides equality constraints over trees
(finite or infinite).

1.1 Contributions

We consider two forms of the entailment problem: simple entailment and re-
stricted entailment (sometimes also referred to as existential entailment [24]),
which we introduce in Section 2. Restricted entailment arises naturally in prob-
lems that compare polymorphic constrained types (see Section 2). We show there
are polynomial time algorithms for conditional equality constraints for both ver-
sions of entailment. We believe these algorithms will be of practical interest. In
addition, we consider restricted entailment for a natural extension of conditional
equality constraints. We show that restricted entailment for this extension turns
out to be coNP-complete. The coNP-completeness result is interesting because
it provides a natural boundary between tractable and intractable constraint lan-
guages.

Due to space constraints, we only provide sketches of some proofs or omit
them entirely. Details may be found in the full paper [26].

172 Z. Su and A. Aiken

2 Preliminaries

We work with simple types. Our type language is

τ ::= ⊥ | > | τ1 → τ2 | α.

This simple language has two constants ⊥ and >, a binary constructor →,
and variables α ranging over a denumerable set V of type variables. The al-
gorithms we present apply to type languages with other base types and type
constructors. Variable-free types are ground types. T and TG are the set of types
and the set of ground types respectively. An equality constraint is τ1 = τ2 and
a conditional equality constraint is α ⇒ τ . A constraint system is a finite con-
junction of equality and conditional equality constraints. An equality constraint
system has only equality constraints.

Let C be a constraint system and Var(C) the set of type variables appearing
in C. A valuation of C is a function mapping Var(C) to ground types TG . We
extend a valuation ρ to work on type expressions in the usual way:

ρ(⊥) = ⊥; ρ(>) = >; ρ(τ1 → τ2) = ρ(τ1) → ρ(τ2)

A valuation ρ satisfies constraint τ1 = τ2, written ρ � τ1 = τ2, if ρ(τ1) =
ρ(τ2), and it satisfies a constraint α ⇒ τ , written ρ � α ⇒ τ , if ρ(α) = ⊥
or ρ(α) = ρ(τ). We write ρ � C if ρ satisfies every constraint in C. The set
of valuations satisfying a constraint system C is the solutions of C, denoted
by S(C). We denote by S(C)|E the set of solutions of C restricted to a set of
variables E.

Definition 1 (Terms). Let C be a set of constraints. Term(C) is the set of
terms appearing in C: Term(C) = {τ1, τ2 | (τ1 = τ2) ∈ C ∨ (τ1 ⇒ τ2) ∈ C}.

The satisfiability of equality constraints can be decided in almost linear time
in the size of the original constraints using a union-find data structure [28]. With
a simple modification to this algorithm for equality constraints, we can decide
the satisfiability of a system of conditional equality constraints in almost linear
time (see Proposition 1 below). 1

Example 1. Here are example conditional constraints:
a) α ⇒ ⊥ Solution: α must be ⊥.
b) α ⇒ > Solution: α is either ⊥ or >.
c) α ⇒ β → γ Solution: α is either ⊥ or a function type β → γ,

where β and γ can be any type.

Proposition 1. Let C be any system of constraints with equality constraints
and conditional equality constraints. We can decide whether there is a satisfying
valuation for C in almost linear time.
1 Notice that using a linear unification algorithm such as [21] does not give a more

efficient algorithm, because equality constraints are added dynamically.

Entailment with Conditional Equality Constraints 173

Proof. [Sketch] The basic idea of the algorithm is to solve the equality constraints
and to maintain along with each variable a list of constraints conditionally de-
pending on that variable. Once a variable α is unified with a non-⊥ value, any
constraints α ⇒ τ on the list are no longer conditional and are added as equality
constraints α = τ . Note that a post-processing step is required to perform the
occurs check. The time complexity is still almost linear since each constraint is
processed at most twice. See, for example, [25] for more information. 2

In later discussions, we refer to this algorithm as CondResolve. The result
of running the algorithm on C is a term dag denoted by CondResolve(C) (see
Definition 5). As is standard, for any term τ , we denote the equivalence class to
which τ belongs by ecr(τ).

In this paper, we consider two forms of entailment: simple entailment : C �
c, and restricted entailment : C1 �E C2, where C, C1, and C2 are systems of
constraints, and c is a single constraint, andE is a set of interface variables. In the
literature, C1 �E C2 is sometimes written C1 � ∃E′.C2, where E′ = Var(C2)\E.

For the use of restricted entailment, consider the following situation. In a
polymorphic analysis, a function (or a module) is analyzed to generate a system
of constraints [9,7]. Only a few of the variables, the interface variables, are visible
outside the function. We would like to simplify the constraints with respect to
a set of interface variables. In practice, restricted entailment is more commonly
encountered than simple entailment.

Definition 2 (Simple Entailment). Let C be a system of constraints and c a
constraint. We say that C � c if for every valuation ρ with ρ � C, we have ρ � c
also.

Definition 3 (Restricted Entailment). Let C1 and C2 be two constraint
systems, and let E be the set of variables Var(C1)∩Var(C2). We say that C1 �E

C2 if for every valuation ρ1 with ρ1 � C1 there exists ρ2 with ρ2 � C2 and
ρ1(α) = ρ2(α) for all α ∈ E.

Definition 4 (Interface and Internal Variables). In C1 �E C2, variables
in E are interface variables. Variables in (Var(C1) ∪ Var(C2)) \ E are internal
variables.

Notation

– τ and τi denote type expressions.
– α, β, γ, αi, βi, and γi denote interface variables.
– µ, ν, σ, µi, νi, and σi denote internal variables.
– α denotes a generic variable, in places where we do not distinguish interface

and internal variables.

For simple entailment C � c, it suffices to consider only the case where c is
a constraint between variables, i.e., c is of the form α = β or α ⇒ β. For simple
entailment, C � τ1 = τ2 if and only if C ∪ {α = τ1, β = τ2} � α = β, where α

174 Z. Su and A. Aiken

Let C be a system of constraints. The following algorithm outputs a term
graph representing the solutions of C.

1. Let G be the term graph CondResolve(C).
2. For each variable α in Var(C), check whether it must be ⊥: If neither

G ∪ {α = >} nor G ∪ {α = σ1 → σ2} is satisfiable, add α = ⊥ to G.

Fig. 1. Modified conditional unification algorithm.

and β do not appear in C and τ1 = τ2. The same also holds for when c is of the
form α ⇒ τ .

Simple entailment also enjoys a distributive property, that is C1 � C2 if
and only if C1 � c for each c ∈ C2. Thus it suffices to only study C � c.
This distributive property does not hold for restricted entailment. Consider
∅ �{α,β} {α ⇒ σ, β ⇒ σ}, where σ is a variable different from α and β. This
entailment does not hold (consider ρ1(α) = > and ρ1(β) = ⊥ → ⊥), but both
the entailments ∅ �{α,β} {α ⇒ σ} and ∅ �{α,β} {β ⇒ σ} hold.

Terms can be represented as directed trees with nodes labeled with construc-
tors and variables. Term graphs (or term DAGs) are a more compact represen-
tation to allow sharing of common subterms.

Definition 5 (Term DAG). In a term DAG, a variable is represented as a
node with out-degree 0. A function type is represented as a node → with out-
degree 2, one for the domain and one for the range. No two different nodes in a
term DAG may represent the same term (sharing must be maximal).

We also represent conditional constraints in the term graph. We represent
α ⇒ τ as a directed edge from the node representing α to the node representing
τ . We call such an edge a conditional edge, in contrast to the two outgoing edges
from a → node, which are called structural edges.

The following known result is applied extensively in the rest of the paper [3,4].

Theorem 1 (Entailment over Equality Constraints). Both simple entail-
ment and restricted entailment over equality constraints can be decided in poly-
nomial time.

3 Simple Entailment over Conditional Equality
Constraints

In this section, we consider simple entailment over conditional equality con-
straints. Recall for α ⇒ τ to be satisfied by a valuation ρ, either ρ(α) = ⊥ or
ρ(α) = ρ(τ).

Lemma 1 (Transitivity of ⇒). Any valuation ρ satisfying α ⇒ β and β ⇒ γ,
also satisfies α ⇒ γ.

Entailment with Conditional Equality Constraints 175

If both of the following cases return success, output yes; else output no.

1. a) Run the conditional unification algorithm in Figure 1 on C∪{α = >}.
If not satisfiable, then success; else continue.

b) Compute strongly connected components (SCC) on the conditional
edges and merge the nodes in every SCC. This step yields a modified
term graph.

c) Compute congruence closure on the term graph obtained in Step 1b.
We do not consider the conditional edges for computing congruence
closure.

d) If β = > is in the closure, success; else fail.
2. a) Run the conditional unification algorithm in Figure 1 on C ∪ {α =

σ1 → σ2}, where σ1 and σ2 are two fresh variables not in Var(C) ∪
{α, β}. If not satisfiable, then success; else continue.

b) Compute strongly connected components (SCC) on the conditional
edges and merge the nodes in every SCC. This step yields a modified
term graph.

c) Compute congruence closure on the term graph obtained in Step 2b.
Again, we do not consider the conditional edges for computing con-
gruence closure.

d) If β = σ1 → σ2 is in the closure, success; else fail.

Fig. 2. Simple entailment C � α ⇒ β over conditional equality constraints.

Consider the constraints {α ⇒ >, α ⇒ ⊥ → ⊥}. The only solution is α = ⊥.
The fact that α must be ⊥ is not explicit. For entailment, we want to make the
fact that α must be ⊥ explicit.

Assume that we have run CondResolve on the constraints to get a term
graph G. For each variable α, we check whether it must be ⊥. If both adding
α = > to G and α = σ1 → σ2 to G (for fresh variables σ1 and σ2) fail, α
must be ⊥, in which case, we add α = ⊥ to G. We repeat this process for each
variable. Notice that this step can be done in polynomial time. We present this
modification to the conditional unification algorithm in Figure 1.

We now present an algorithm for deciding C � α = β and C � α ⇒ β where
C is a system of conditional equality constraints. Note C � α = β holds if and
only if both C � α ⇒ β and C � β ⇒ α hold. We give the algorithm in Figure 2.
The basic idea is that to check C � α ⇒ β holds we have two cases: when
α is > and when α is a function type. In both cases, we require β = α. The
problem then basically reduces to simple entailment over equality constraints.
Congruence closure is required to make explicit the implied equalities between
terms involving →. Computing strongly connected components is used to make
explicit, for example, α = β if both α ⇒ β and β ⇒ α. It is easy to see that the
algorithm runs in worst case polynomial time in the size of C.

Theorem 2. The simple entailment algorithm in Figure 2 is correct.

176 Z. Su and A. Aiken

4 Restricted Entailment over Conditional Equality
Constraints

In this section, we give a polynomial time algorithm for restricted entailment
over conditional constraints.

Consider the following example term graph for the constraints

{α1 ⇒ ⊥, α1 ⇒ σ1, α2 ⇒ σ1, α2 ⇒ σ2, α3 ⇒ σ2, α3 ⇒ >}.

Example 2.

α1

����
�

��5
55

5 α2

��		
		

��5
55

5 α3

��		
		 ��3

33

⊥ σ1 σ2 >
Notice that the solutions of the constraints in Example 2 with respect to

{α1, α2, α3} are all tuples 〈v1, v2, v3〉 that satisfy

(v1 = ⊥ ∧ v3 = ⊥) ∨ (v1 = ⊥ ∧ v2 = ⊥ ∧ v3 = >) ∨ (v1 = ⊥ ∧ v2 = > ∧ v3 = >)

Now suppose we do the following: we take pairs of constraints, find their
solutions with respect to {α1, α2, α3}, and take the intersection of the solutions.
Let S∗ denote the set of all valuations. Figure 3 shows the solutions for all the
subsets of two constraints with respect to {α1, α2, α3}. One can show that the
intersection of these solutions is the same as the solution for all the constraints.
Intuitively, the solutions of a system of conditional constraints can be charac-
terized by considering all pairs of constraints independently. We can make this
intuition formal by putting some additional requirements on the constraints.

For simplicity, in later discussions, we consider the language without >. With
some extra checks, the presented algorithm can be adapted to include > in the
language.

Here is the route we take to develop a polynomial time algorithm for re-
stricted entailment over conditional constraints.

Section 4.1
We introduce a notion of a closed system and show that closed systems have
the property that it is sufficient to consider pairs of conditional constraints
in determining the solutions of the complete system with respect to the
interface variables.

Section 4.2
We show that restricted entailment with a pair of conditional constraints
can be decided in polynomial time, i.e., C �E C= ∪ {c1, c2} can be decided
in polynomial time, where C= consists of equality constraints, and c1 and c2
are conditional constraints.

Section 4.3
We show how to reduce restricted entailment to restricted entailment in
terms of closed systems. In particular, we show how to reduce C1 �E C2 to
C ′

1 �E′ C ′
2 where C ′

2 is closed.

Combining the results, we arrive at a polynomial time algorithm for restricted
entailment over conditional constraints.

Entailment with Conditional Equality Constraints 177

S({α1 ⇒ ⊥, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α2 ⇒ σ1, α2 ⇒ σ2}) = S∗

S({α3 ⇒ σ2, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α1 ⇒ ⊥, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α2 ⇒ σ2}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α3 ⇒ σ2}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v1 = ⊥ ∧ v3 = ⊥) ∨ (v1 = ⊥ ∧ v3 = >)}

S({α1 ⇒ σ1, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | (v1 = ⊥) ∨ (v2 = ⊥) ∨ (v2 = v3)}
S({α1 ⇒ σ1, α2 ⇒ σ2}) = S∗

S({α1 ⇒ σ1, α3 ⇒ σ2}) = S∗

S({α1 ⇒ σ1, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α2 ⇒ σ1, α3 ⇒ σ2}) = S∗

S({α2 ⇒ σ1, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α2 ⇒ σ2, α3 ⇒ σ2}) = {〈v1, v2, v3〉 | (v2 = ⊥) ∨ (v3 = ⊥) ∨ (v2 = v3)}
S({α2 ⇒ σ2, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}

Fig. 3. Solutions for all subsets of two constraints.

4.1 Closed Systems

We define the notion of a closed system and show the essential properties of
closed systems for entailment. Before presenting the definitions, we first demon-
strate the idea with the example in Figure 4a. Let C denote the constraints in
this example, with α and β the interface variables, and σ, σ1, and σ2 the internal
variables. The intersection of the solutions of all the pairs of constraints is: α is
either ⊥ or τ → ⊥, and β is either ⊥ or τ ′ → ⊥ for some τ and τ ′. However, the
solutions of C require that if α = τ → ⊥ and β = τ ′ → ⊥, and both τ and τ ′

are non-⊥, then τ = τ ′, i.e., α = β. Thus the intersection of solutions of pairs of
constraints contains more valuations than the solution set of the entire system.
The reason is that when we consider the set {σ1 ⇒ σ, σ2 ⇒ σ}, the solutions
w.r.t. {α, β} are all valuations. We lose the information that α and β need to be
the same in their domain.

We would like to consider σ1 and σ2 as interface variables if σ1 6= ⊥ 6= σ2.
We introduce some constraints and new interface variables into the system to
close it. The modified constraint system is shown in Figure 4b. To make explicit
the relationship between α and β, two variables α1 and β1 (interface variables
corresponding to σ1 and σ2, respectively) are created with the constraints α1 ⇒
σ and β1 ⇒ σ. With this modification, the intersection of solutions of pairs
of constraints w.r.t. {α, β, α1, β1} is the same as the solution of the modified
system. Restricting this intersection w.r.t. {α, β} we get the solution of the
original constraint system. We next show how to systematically close a constraint
system.

178 Z. Su and A. Aiken

α

��

β

��→
��
� 55

5 →
��
� 55

5

σ1

''OOOOOOO ⊥ σ2

��

⊥

σ

α

��wwnnnnnnnn β

�� ''OOOOOOO

→
��

� 66
6 →

��
� 44

4 →
��

� 44
4 →

��
� 66

6

α1

++WWWWWWWWWWWWWWWW σ3 σ1

''NNNNNNN ⊥ σ2

����
�

⊥ β1

kk

σ4

σ
(a) Example system. (b) Example system closed.

Fig. 4. An example constraint system and its closed system.

Definition 6 (TR). Consider a constraint α ⇒ τ with the variable σ a proper
subexpression of τ . We define a transformation tr on α ⇒ τ over the structure
of τ

– tr(σ, α ⇒ σ → τ ′) = {α ⇒ α1 → σ1};
– tr(σ, α ⇒ τ ′ → σ) = {α ⇒ σ2 → α2};
– tr(σ, α ⇒ τ1 → τ2) ={{α ⇒ α1 → σ1} ∪ tr(σ, α1 ⇒ τ1) if σ ∈ Var(τ1)

{α ⇒ σ2 → α2} ∪ tr(σ, α2 ⇒ τ2) otherwise
Note if σ appears in both τ1 and τ2, tr is applied only to the occurrence of
σ in τ1.

– tr(σ, α = τ) = tr(σ, α ⇒ τ).

The variables αi’s and σi’s are fresh. The newly created αi’s are called aux-
iliary variables. The variables αi in the first two cases are called the matching
variable for σ. The variable α is called the root of αi, and is denoted by root(αi).

For each auxiliary variable αi, we denote by Ctr(αi) the tr constraints
accumulated till αi is created.

Putting this definition to use on the constraint system in Figure 4a,
tr(σ1, α ⇒ σ1 → ⊥) yields the constraint α ⇒ α1 → σ3 (shown in Figure 4b).

To understand the definition of Ctr(αi), consider tr(σ, α ⇒ ((σ → ⊥) →
⊥)) = {α ⇒ α1 → σ1, α1 ⇒ α2 → σ2}, where α1 and α2 are the auxiliary
variables. We have Ctr(α1) = {α ⇒ α1 → σ1} and Ctr(α2) = {α ⇒ α1 →
σ1, α1 ⇒ α2 → σ2}.

Definition 7 (Closed Systems). A system of conditional constraints C ′ is
closed w.r.t. a set of variables E in C after the following steps:

1. Let C ′ = CondResolve(C).
2. Set W to E.
3. For each variable α ∈ W , if α ⇒ τ is in C ′, where σ ∈ Var(τ), and σ ⇒ τ ′ ∈
C ′, add tr(σ, α ⇒ τ) to C ′. Let α′ be the matching variable for σ and add
α′ ⇒ τ ′ to C ′.

4. Set W to the set of auxiliary variables created in Step 3 and repeat Step 3
until W is empty.

Entailment with Conditional Equality Constraints 179

Step 3 of this definition warrants explanation. In the example tr(σ1, α ⇒ σ1)
we add the constraint α ⇒ α1 → σ3 with α1 as the matching variable for σ1. We
want to ensure that α1 and σ1 are actually the same, so we add the constraint
α1 ⇒ σ. This process must be repeated to expose all such internal variables
(such as σ1 and σ2).

Next we give the definition of a forced variable. Given a valuation ρ for the
interface variables, if an internal variable σ is determined already by ρ, then σ
is forced by ρ. For example, in Figure 4a, if α is non-⊥, then the value of σ1 is
forced by α.

Definition 8 (Forced Variables). We say that an internal variable σ is forced
by a valuation ρ if any one of the following holds (A is the set of auxiliary
variables)

– ecr(σ) = ⊥;
– ecr(σ) = α, where α ∈ E ∪A;
– ecr(σ) = τ1 → τ2;
– ρ(α) 6= ⊥ and α ⇒ τ is a constraint where σ ∈ Var(τ) and α ∈ E ∪A;
– σ′ is forced by ρ to a non-⊥ value and σ′ ⇒ τ is a constraint where σ ∈

Var(τ).

Theorem 3. Let C be a closed system of constraints w.r.t. a set of interface
variables E, and let A be the set of auxiliary variables of C. Let C= and C⇒
be the systems of equality constraints and conditional constraints respectively.
Then

S(C) |E∪A =
⋂

ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .

In other words, it suffices to consider pairs of conditional constraints in deter-
mining the solutions of a closed constraint system.

Proof. Since C contains all the constraints in C= ∪ {ci, cj} for all i and j, thus
it follows that

S(C) |E∪A ⊆
⋂

ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .

It remains to show

S(C) |E∪A ⊇
⋂

ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .

Let ρ be a valuation in
⋂

ci,cj∈C⇒ S(C= ∪ {ci, cj}) |E∪A. It suffices to show
that ρ can be extended to a satisfying valuation ρ′ for C. To show this, it suffices
to find an extension ρ′ of ρ for C such that ρ′ � C= ∪ {ci, cj} for all i and j.

Consider the valuation ρ′ obtained from ρ by mapping all the internal vari-
ables not forced by ρ (in C) to ⊥. The valuation ρ′ can be uniquely extended to
satisfy C if for any ci and cj , c′i and c′j , if σ is forced by ρ in both C= ∪ {ci, cj}

180 Z. Su and A. Aiken

and C= ∪{c′i, c′j}, then it is forced to the same value in both systems. The value
that σ is forced to by ρ is denoted by ρ!(σ).

We prove by cases (cf. Definition 8) that if σ is forced by ρ, it is forced to
the same value in pairs of constraints. Let Ci,j denote C= ∪ {ci, cj} and Ci′,j′

denote C= ∪ {c′i, c′j}.

– If ecr(σ) = ⊥, then σ is forced to the same value, i.e., ⊥, because σ = ⊥ ∈
C=.

– If ecr(σ) = α, with α ∈ E ∪ A, then σ is forced to ρ(α) in both systems,
because σ = α ∈ C=.

– If ecr(σ) = τ1 → τ2, one can show that ρ forces σ to the same value with
an induction over the structure of ecr(σ) (with the two cases above as base
cases).

– Assume σ is forced in Ci,j because α ⇒ τ1 ∈ Ci,j with ρ(α) 6= ⊥ and forced
in Ci′,j′ because β ⇒ τ2 ∈ Ci′,j′ with ρ(β) 6= ⊥. For each extension ρ1 of ρ
with ρ1 � Ci,j , and for each extension ρ2 of ρ with ρ2 � Ci′,j′ , we have

ρ(α) = ρ1(α) = ρ1(τ1)
ρ(β) = ρ2(β) = ρ2(τ2)

Consider the constraint system C= ∪{α ⇒ τ1, β ⇒ τ2}. The valuation ρ can
be extended to ρ3 with ρ3 � C= ∪ {α ⇒ τ1, β ⇒ τ2}. Thus we have

ρ(α) = ρ3(α) = ρ3(τ1)
ρ(β) = ρ3(β) = ρ3(τ2)

Therefore, ρ1(τ1) = ρ3(τ1) and ρ2(τ2) = ρ3(τ2). Hence, ρ1(σ) = ρ3(σ) and
ρ2(σ) = ρ3(σ), which imply ρ1(σ) = ρ2(σ). Thus σ is forced to the same
value.

– Assume σ is forced in Ci,j because σ1 is forced to a non-⊥ value and σ1 ⇒
τ1 ∈ Ci,j and is forced in Ci′,j′ because σ2 is forced to a non-⊥ value and
σ2 ⇒ τ2 ∈ Ci′,j′ . Because C is a closed system, we must have two interface
variables or auxiliary variables α and β with both α ⇒ τ1 and β ⇒ τ2
appearing in C. Since σ1 and σ2 are forced, then we must have ρ(α) = ρ!(σ1)
and ρ(β) = ρ!(σ2), thus σ must be forced to the same value by the previous
case.

– Assume σ is forced in Ci,j because ρ(α) 6= ⊥ and α ⇒ τ1 ∈ Ci,j and forced
in Ci′,j′ because σ2 is forced to a non-⊥ value and σ2 ⇒ τ2 ∈ Ci′,j′ . This
case is similar to the previous case.

– The remaining case, where σ is forced in Ci,j because σ1 is forced to a non-
⊥ value and σ1 ⇒ τ1 ∈ Ci,j and is forced in Ci′,j′ because ρ(α) 6= ⊥ and
α ⇒ τ2 ∈ Ci′,j′ , is symmetric to the above case.

2

4.2 Entailment of Pair Constraints

In the previous subsection, we saw that a closed system can be decomposed
into pairs of conditional constraints. In this section, we show how to efficiently

Entailment with Conditional Equality Constraints 181

determine entailment if the right-hand side consists of a pair of conditional con-
straints.

We first state a lemma (Lemma 2) which is important in finding a polynomial
algorithm for entailment of pair constraints.

Lemma 2. Let C1 be a system of conditional constraints and C2 be a system of
equality constraints with E = Var(C1)∩Var(C2). The decision problem C1 �E C2
is solvable in polynomial time.

Proof. Consider the following algorithm. We first solve C1 using CondResolve,
and add the terms appearing in C2 to the resulting term graph for C1. Then
for any two terms appearing in the term graph, we decide, using the simple
entailment algorithm in Figure 2, whether the two terms are the same. For
terms which are equivalent we merge their equivalence classes. Next, for each
of the constraints in C2, we merge the left and right sides. For any two non-
congruent classes that are unified, we require at least one of the representatives
be a variable in Var(C2) \E. If this requirement is not met, the entailment does
not hold. Otherwise, the entailment holds.

If the requirement is met, then it is routine to verify that the entailment
holds. Suppose the requirement is not met, i.e., there exist two non-congruent
classes which are unified and none of whose ecrs is a variables in Var(C2) \ E.
Since the two classes are non-congruent, we can choose a satisfying valuation for
C1 which maps the two classes to different values (This is possible because, oth-
erwise, we would have proven that they are the same with the simple entailment
algorithm for conditional constraints.) The valuation ρ |E cannot be extended
to a satisfying valuation for C2 because, otherwise, this contradicts the fact that
C1 ∪ C2 entails the equivalence of the two non-congruent terms.

2

Theorem 4. Let C1 be a system of conditional constraints. Let C= be a system
of equality constraints. The following three decision problems can be solved in
polynomial time:

1. C1 �E C= ∪ {α ⇒ τ1, β ⇒ τ2}, where α, β ∈ E.
2. C1 �E C= ∪ {α ⇒ τ1, µ ⇒ τ2}, where α ∈ E and µ /∈ E.
3. C1 �E C= ∪ {µ1 ⇒ τ1, µ2 ⇒ τ2}, where µ1, µ2 /∈ E.

Proof.

1. For the case C1 �E C= ∪ {α ⇒ τ1, β ⇒ τ2}, notice that C1 �E C= ∪ {α ⇒
τ1, β ⇒ τ2} iff the following entailments hold
– C1 ∪ {α = ⊥, β = ⊥} �E C=
– C1 ∪ {α = ⊥, β = ν1 → ν2} �E C= ∪ {β = τ2}
– C1 ∪ {α = σ1 → σ2, β = ⊥} �E C= ∪ {α = τ1}
– C1 ∪ {α = σ1 → σ2, β = ν1 → ν2} �E C= ∪ {α = τ1, β = τ2}

where σ1, σ2, ν1, and ν2 are fresh variables not in Var(C1) ∪ Var(C2).
Notice that each of the above entailments reduces to entailment of equality
constraints, which can be decided in polynomial time by Lemma 2.

2. For the case C1 �E C= ∪ {α ⇒ τ1, µ ⇒ τ2}, we consider two cases:

182 Z. Su and A. Aiken

– C1 ∪ {α = ⊥} �E C= ∪ {µ ⇒ τ2};
– C1 ∪ {α = σ1 → σ2} �E C= ∪ {α = τ1, µ ⇒ τ2}

where σ1 and σ2 are fresh variables not in Var(C1) ∪ Var(C2).
We have a few cases.
– ecr(µ) = ⊥
– ecr(µ) = τ1 → τ2
– ecr(µ) ∈ E
– ecr(µ) /∈ E

Notice that the only interesting case is the last case (ecr(µ) /∈ E) when
there is a constraint β = τ in C= and µ appears in τ . For this case, we
consider all the O(n) resulted entailments by setting β to some appropriate
value according to the structure of τ , i.e., we consider all the possible values
for β. For example, if τ = (µ → ⊥) → µ, we consider the following cases:
– β = ⊥;
– β = ⊥ → ν1;
– β = (⊥ → ν2) → ν1;
– β = ((ν3 → ν4) → ν2) → ν1

where ν1,ν2,ν3, and ν4 are fresh variables.
Each of the entailments will have only equality constraints on the right-
hand side. Thus, these can all be decided in polynomial time. Together, the
entailment can be decided in polynomial time.

3. For the case C1 �E C= ∪ {µ1 ⇒ τ1, µ2 ⇒ τ2}, the same idea as in the
second case applies as well. The sub-case which is slightly different is when,
for example, µ2 appears in τ1 only. In this case, for some β and τ , β = τ is
in C= where µ1 occurs in τ . Let τ ′ = τ [τ1/µ1], where τ [τ1/µ1] denotes the
type obtained from τ by replacing each occurrence of µ1 by τ1. Again, we
consider O(n) entailments with right-side an equality constraint system by
assigning β appropriate values according to the structure of τ ′. Thus this
form of entailment can also be decided in polynomial time.

2

4.3 Reduction of Entailment to Closed Systems

We now reduce an entailment C1 �E C2 to entailment of closed systems, thus
completing the construction of a polynomial time algorithm for restricted entail-
ment over conditional constraints.

Unfortunately we cannot directly use the closed systems for C1 and C2 as
demonstrated by the example in Figure 5. Figures 5a and 5c show two constraint
systems C1 and C2. Suppose we want to decide C1 �{α,β} C2. One can verify that
the entailment does hold. Figures 5b and 5d show the closed systems for C1 and
C2, which we name C ′

1 and C ′
2. Note that we include the tr constraints of C2

in C ′
1. One can verify that the entailment C ′

1 �{α,β,α1,β1} C ′
2 does not hold (take

α = β = ⊥, α1 = ⊥ → ⊥, and β1 = ⊥ → >, for example). The reason is that
there is some information about α1 and β1 missing from C ′

1. In particular, when
both α1 and β1 are forced, we should have α1 ⇒ σ′ and β1 ⇒ σ′ (actually in this
case they satisfy the stronger relation that α1 = β1). By replacing α ⇒ α1 → σ3

Entailment with Conditional Equality Constraints 183

α

��

β

��→
55

5 →

��
��
��
�� 55

5

⊥ ⊥

σ0

α

��xxrrrrrr β

�� ''OOOOOOO

→
��

� 66
6 →

44
4 →

��
��
��
�� 44

4 →
��
� 66

6

α1 σ3 ⊥ ⊥ β1 σ4

σ0

(a) C1. (b) C1 closed.

α

��

β

��→
��
� 55

5 →
��
� 55

5

σ1

''OOOOOOO ⊥ σ2

��

⊥

σ

α

��wwnnnnnnnn β

�� ''OOOOOOO

→
��

� 66
6 →

��
� 44

4 →
��

� 44
4 →

��
� 66

6

α1

++WWWWWWWWWWWWWWWW σ3 σ1

''NNNNNNN ⊥ σ2

����
�

⊥ β1

kk

σ4

σ
(c) C2. (d) C2 closed.

Fig. 5. Example entailment.

and β ⇒ β1 → σ4 with α = α1 → σ3 and β = β1 → σ4 (because that is
when both are forced), we can decide that α1 = β1. The following definition of
a completion does exactly what we have described.

Definition 9 (Completion). Let C be a closed constraint system of C0 w.r.t.
E. Let A be the set of auxiliary variables. For each pair of variables αi and βj

in A, let C(αi, βj) = Ctr(αi) ∪ Ctr(βj) (see Definition 6) and C=(αi, βj) be
the equality constraints obtained by replacing ⇒ with = in C(αi, βj). Decide
whether C ∪ C=(αi, βj) �{αi,βj} {αi ⇒ σ, βj ⇒ σ} (cf. Theorem 4). If the
entailment holds, add the constraints αi ⇒ σ(αi,βj) and βj ⇒ σ(αi,βj) to C,
where σ(αi,βj) is a fresh variable unique for αi and βj . The resulting constraint
system is called the completion of C.

Theorem 5. Let C1 and C2 be two conditional constraint systems. Let C ′
2 be

the closed system of C2 w.r.t. to E = Var(C1) ∩ Var(C2) with A the set of
auxiliary variables. Construct the closed system for C1 w.r.t. E with A′ the
auxiliary variables, and add the tr constraints of closing C2 to C1 after closing
C1. Let C ′

1 be the completion of modified C1. We have C1 �E C2 iff C ′
1 �E∪A∪A′

C ′
2.

Proof.
(⇐): Assume C ′

1 �E∪A∪A′ C ′
2. Let ρ � C1. We can extend ρ to ρ′ which sat-

isfies C ′
1. Since C ′

1 �E∪A∪A′ C ′
2, then there exists ρ′′ such that ρ′′ � C ′

2 with
ρ′ |E∪A∪A′= ρ′′ |E∪A∪A′ . Since ρ′′ � C ′

2, we have ρ′′ � C2. Also ρ |E= ρ′ |E=
ρ′′ |E . Therefore, C1 �E C2.

184 Z. Su and A. Aiken

(⇒): Assume C1 �E C2. Let ρ � C ′
1. Then ρ � C1. Thus there exists ρ′ � C2

with ρ |E= ρ′ |E . We extend ρ′ |E to ρ′′ with ρ′′(α) = ρ′(α) if α ∈ E and
ρ′′(α) = ρ(α) if α ∈ (A ∪ A′). It suffices to show that ρ′′ can be extended with
mappings for variables in Var(C ′

2) \ (E ∪ A ∪ A′) = Var(C ′
2) \ (E ∪ A), because

ρ′′ |E∪A∪A′= ρ |E∪A∪A′ .
Notice that all the tr constraints in C ′

2 are satisfied by some extension of ρ′′,
because they also appear in C ′

1. Also the constraints C2 are satisfied by some
extension of ρ′′. It remains to show that the internal variables of C ′

2 are forced by
ρ′′ to the same value if they are forced by ρ′′ in either the tr constraints or C2.
Suppose there is an internal variable σ forced to different values by ρ′′. W.L.O.G.,
assume that σ is forced by ρ′′ because ρ′′(αi) 6= ⊥ and αi ⇒ σ and forced
because ρ′′(βj) 6= ⊥ and βj ⇒ σ for some interface or auxiliary variables αi and
βj . Consider the interface variables root(αi) and root(βj) (see Definition 6).
Since the completion of C1 does not include constraints {αi ⇒ σ′, βj ⇒ σ′},
thus we can assign root(αi) and root(βj) appropriate values to force αi and
βj to different non-⊥ values. However, C2 requires αi and βj to have the same
non-⊥ value. Thus, if there is an internal variable σ forced to different values by
ρ′′, we can construct a valuation which satisfies C1, but the valuation restricted
to E cannot be extended to a satisfying valuation for C2. This contradicts the
assumption that C1 �E C2. To finish the construction of a desired extension of
ρ′′ that satisfies C ′

2, we set the variables which are not forced to ⊥.
One can easily verify that this valuation must satisfy C ′

2. Hence C ′
1 �E∪A∪A′

C ′
2.

2

4.4 Putting Everything Together

Theorem 6. Restricted entailment for conditional constraints can be decided
in polynomial time.

Proof. Consider the problem C1 �E C2. By Theorem 5, it is equivalent to testing
C ′

1 �E∪A∪A′ C ′
2 (see Theorem 5 for the appropriate definitions of C ′

1, C
′
2, A, and

A′). Notice that C ′
1 and C ′

2 are constructed in polynomial time in sizes of C1 and
C2. Now by Theorem 3, this is equivalent to checking O(n2) entailment problems
of the form C ′

1 �E∪A∪A′ C2′
=

∪{ci, cj}, where C2′
=

denote the equality constraints
of C ′

2 and ci and cj are two conditional constraints of C ′
2. And by Theorem 4,

we can decide each of these entailments in polynomial time. Putting everything
together, we have a polynomial time algorithm for restricted entailment over
conditional constraints.

2

5 Extended Conditional Constraints

In this section, we show that restricted entailment for a natural extension of
the standard conditional constraint language is coNP-complete. 2 This section
2 Simple entailment for this extension is in P. See [26] for details.

Entailment with Conditional Equality Constraints 185

α

��

yyy
yy EEE

EE

τ1 τ2

αxi

��

αxi

��

wwwww
IIIII

uuuuu
GGGGG

⊥ τxi >
(a) (b)

α
c1i

��

α
c2i

��

α
c3i

��

��
�� ::

::
��
�� ::

::
��
�� 66

66

⊥ µci
1 µci

2 >

αx2

��

αx4

��

αx7

��

��
�� ;;

;;
��
�� ;;

;;
��
�� 77

77

⊥ µci
1 µci

2 >
(c) (d)

Fig. 6. Graph representations of constraints.

is helpful for a comparison between this constraint language with the standard
conditional constraint language, which we consider in Section 3 and Section 4.
The results in this section provide one natural boundary between tractable and
intractable entailment problems.

We extend the constraint language with a new construct α ⇒ (τ1 = τ2),
which holds iff either α = ⊥ or τ1 = τ2. We call this form of constraints extended
conditional equality constraints. To see that this construct indeed extends α ⇒ τ ,
notice that α ⇒ τ can be encoded in the new constraint language as α ⇒ (α =
τ).

This extension is interesting because many equality based program analyses
can be naturally expressed with this form of constraints. An example analysis
that uses this form of constraints is the equality based flow analysis for higher
order functional languages [19].

Note that satisfiability for this extension can still be decided in almost linear
time with basically the same algorithm outlined for conditional equality con-
straints. We consider restricted entailment for this extended language.

5.1 Restricted Entailment

In this subsection, we consider the restricted entailment problem for extended
conditional constraints. We show that the decision problem C1 �E C2 for ex-
tended conditional constraints is coNP-complete.

We define the decision problem NENT as the problem of deciding whether
C1 2E C2, where C1 and C2 are systems of extended conditional equality con-
straints and E = Var(C1) ∩ Var(C2).

Theorem 7. The decision problem NENT for extended conditional constraints
is in NP.

186 Z. Su and A. Aiken

Next we show that the problem NENT is hard for NP, and thus an efficient
algorithm is unlikely to exist for the problem. The reduction actually shows that
with extended conditional constraints, even atomic restricted entailment 3 is
coNP-hard.

Theorem 8. The decision problem NENT is NP-hard.

Proof. [Sketch] We reduce 3-CNFSAT to NENT. As mentioned, the reduction
shows that even atomic restricted entailment over extended conditional con-
straints is coNP-complete.

Let ψ be a boolean formula in 3-CNF form and let {x1, x2, . . . , xn} and
{c1, c2, . . . , cm} be the boolean variables and clauses in ψ respectively. For each
boolean variable xi in ψ, we create two term variables αxi

and αxi
, which we

use to decide the truth value of xi. The value ⊥ is treated as the boolean value
false and any non-⊥ value is treated as the boolean value true.

Note, in a graph, a constraint of the form α ⇒ (τ1 = τ2) is represented as
shown in Figure 6a.

First we need to ensure that a boolean variable takes on at most one truth
value. We associate with each xi constraints Cxi , graphically represented as
shown in Figure 6b, where τxi

is some internal variable. These constraints guar-
antee that at least one of αxi

and αxi
is ⊥. These constraints still allow both

αxi and αxi to be ⊥, which we deal with below.
In the following, let αx = αx. For each clause ci = c1i ∨ c2i ∨ c3i of ψ, we create

constraints Cci
that ensure every clause is satisfied by a truth assignment. A

clause is satisfied if at least one of the literals is true, which is the same as
saying that the negations of the literals cannot all be true simultaneously. The
constraints are in Figure 6c, where µci

1 and µci
2 are internal variables associated

with ci. As an example consider ci = x2 ∨x4 ∨x7. The constraints Cci
are shown

in Figure 6d.
We let C1 be the union of all the constraints Cxi and Ccj for 1 ≤ i ≤ n and

1 ≤ j ≤ m, i.e.,

C1 = (
n⋃

i=1

Cxi
) ∪ (

m⋃
j=1

Ccj
)

There is one additional requirement that we want to enforce: not both αxi

and αxi
are ⊥. This cannot be enforced directly in C1. We construct constraints

for C2 to enforce this requirement. The idea is that if for any xi, the term
variables αxi and αxi are both ⊥, then the entailment holds.

We now proceed to construct C2. The constraints C2 represented graphically
are shown in Figure 7. In the constraints, all the variables except αxi

and αxi

are internal variables. These constraints can be used to enforce the requirement
that for all xi at least one of αxi and αxi is non-⊥. The intuition is that if αxi

and αxi
are both ⊥, the internal variable νi can be ⊥, which breaks the chain

of conditional dependencies along the bottom of Figure 7, allowing µ1, . . . , µi−1
to be set to ⊥ and µi, . . . , µn−1 to be set to >.
3 Only variables, ⊥, and > are in the constraint system.

Entailment with Conditional Equality Constraints 187

αx1

��

αx1

��

αx2

��

αx2

��

· · · αxn

��

αxn

��

}}}
} ==

=
��

� AAA
A

}}}
} ==

=
��

� AAA
A · · ·

yyy
y BBB

B
��

� CCC
C

αx1 ν1

��

αx1 αx2 ν2

��

αx2 · · · αxn νn

��

αxn

ooooooo
OOOOOOO

iiiiiiiiiii
TTTTTTTTTT · · ·

||zz
z ((QQQQQ

|||
|

PPPPPPP

⊥ µ1 · · · µn−1 >

Fig. 7. Constructed constraint system C2.

We let the set of interface variables E = {αxi
, αxi

| 1 ≤ i ≤ n}. One can
show that ψ is satisfiable iff C1 2E C2. To prove the NP-hardness result, observe
that the described reduction is a polynomial-time reduction. Thus, the decision
problem NENT is NP-hard.

2

We thus have shown that the entailment problem over extended conditional
constraints is coNP-complete. The result holds even if all the constraints are
restricted to be atomic.

Theorem 9. The decision problem C1 �E C2 over extended conditional con-
straints is coNP-complete.

6 Conclusions and Future Work

We have given a complete characterization of the complexities of deciding en-
tailment for conditional equality constraints over finite types (finite trees). We
believe the polynomial time algorithms in the paper are of practical use. There
are a few related problems to be considered:

– What happens if we allow recursive types (i.e., regular trees)?
– What is the relationship with strict constructors (i.e., if c(⊥) = ⊥)?
– What is the relationship with a type system equivalent to the equality-based

flow systems [19]? In this type system, the only subtype relation is given by
⊥ ≤ t1 → t2 ≤ >, and there is no non-trivial subtyping between function
types.

We believe the same or similar techniques can be used to address the above
mentioned problems, and many of the results should carry over to these problem
domains.

Acknowledgments. We thank Jeff Foster, Anders Møller, and the anonymous
referees for their comments on an earlier version of this paper.

188 Z. Su and A. Aiken

References

1. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft Typing with Conditional Types.
In Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, pages 163–173, January 1994.

2. L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. DIKU report
94/19.

3. A. Colmerauer. Prolog and Infinite Trees. In K. L. Clark and S.-A. Tärnlund,
editors, Logic Programming, pages 231–251. Academic Press, London, 1982.

4. A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In 2nd
International Conference on Fifth Generation Computer Systems, pages 85–99,
1984.

5. M. Fähndrich and A. Aiken. Making Set-Constraint Based Program Analyses
Scale. In First Workshop on Set Constraints at CP’96, Cambridge, MA, August
1996. Available as Technical Report CSD-TR-96-917, University of California at
Berkeley.

6. M. Fähndrich, J. Foster, Z. Su, and A. Aiken. Partial Online Cycle Elimina-
tion in Inclusion Constraint Graphs. In Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 85–96,
Montreal, CA, June 1998.

7. C. Flanagan and M. Felleisen. Componential Set-Based Analysis. In Proceedings
of the 1997 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 235–248, June 1997.

8. C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching
Bugs in the Web of Program Invariants. In Proceedings of the 1996 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 23–32,
May 1996.

9. J. Foster, M. Fähndrich, and A. Aiken. Monomorphic versus Polymorphic Flow-
insensitive Points-to Analysis for C. In Proceedings of the 7th International Static
Analysis Symposium, pages 175–198, 2000.

10. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison
Wesley, 1996.

11. N. Heintze. Set Based Analysis of ML Programs. In Proceedings of the 1994 ACM
Conference on LISP and Functional Programming, pages 306–317, June 1994.

12. F. Henglein and J. Rehof. The Complexity of Subtype Entailment for Simple
Types. In Symposium on Logic in Computer Science, pages 352–361, 1997.

13. F. Henglein and J. Rehof. Constraint Automata and the Complexity of Recursive
Subtype Entailment. In ICALP98, pages 616–627, 1998.

14. Fritz Henglein. Global Tagging Optimization by Type Inference. In 1992 ACM
Conference on Lisp and Functional Programming, pages 205–215, June 1992.

15. Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A Survey.
The Journal of Logic Programming, 19 & 20:503–582, May 1994.

16. N. D. Jones and S. S. Muchnick. Flow Analysis and Optimization of LISP-like
Structures. In Sixth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 244–256, January 1979.

17. S. Marlow and P. Wadler. A Practical Subtyping System For Erlang. In Proceedings
of the International Conference on Functional Programming (ICFP ’97), pages
136–149, June 1997.

Entailment with Conditional Equality Constraints 189

18. R Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17(3):348–375, December 1978.

19. J. Palsberg. Equality-based Flow Analysis versus Recursive Types. ACM Trans-
actions on Programming Languages and Systems, 20(6):1251–1264, 1998.

20. J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In Pro-
ceedings of the ACM Conference on Object-Oriented programming: Systems, Lan-
guages, and Applications, pages 146–161, October 1991.

21. M.S. Paterson and M.N. Wegman. Linear Unification. Journal of Computer and
Systems Sciences, 16(2):158–167, 1978.

22. J. C. Reynolds. Automatic Computation of Data Set Definitions, pages 456–461.
Information Processing 68. North-Holland, 1969.

23. O. Shivers. Control Flow Analysis in Scheme. In Proceedings of the ACM SIGPLAN
’88 Conference on Programming Language Design and Implementation, pages 164–
174, June 1988.

24. G. Smolka and R. Treinen. Records for Logic Programming. Journal of Logic
Programming, 18(3):229–258, 1994.

25. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the
23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32–41, January 1996.

26. Z. Su and A. Aiken. Entailment with Conditional Equality Constraints. Technical
Report UCB//CSD-00-1113, University of California, Berkeley, October 2000.

27. Z. Su, M. Fähndrich, and A. Aiken. Projection Merging: Reducing Redundancies in
Inclusion Constraint Graphs. In Proceedings of the 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 81–95, 2000.

28. R.E. Tarjan. Efficiency of a Good but Not Linear Set Union Algorithm. JACM,
pages 215–225, 1975.

	Introduction
	Contributions

	Preliminaries
	Simple Entailment over Conditional Equality Constraints
	Restricted Entailment over Conditional Equality Constraints
	Closed Systems
	Entailment of Pair Constraints
	Reduction of Entailment to Closed Systems
	Putting Everything Together

	Extended Conditional Constraints
	Restricted Entailment

	Conclusions and Future Work

