
Server Interface Descriptions for
Automated Testing of JavaScript Web Applications

Casper S. Jensen
Aarhus University

Denmark
semadk@cs.au.dk

Anders Møller
Aarhus University

Denmark
amoeller@cs.au.dk

Zhendong Su
University of California, Davis

USA
su@cs.ucdavis.edu

ABSTRACT

Automated testing of JavaScript web applications is complicated by
the communication with servers. Specifically, it is difficult to test
the JavaScript code in isolation from the server code and database
contents. We present a practical solution to this problem. First, we
demonstrate that formal server interface descriptions are useful in
automated testing of JavaScript web applications for separating the
concerns of the client and the server. Second, to support the con-
struction of server interface descriptions for existing applications,
we introduce an effective inference technique that learns communi-
cation patterns from sample data.

By incorporating interface descriptions into the testing tool
Artemis, our experimental results show that we increase the level of
automation for high-coverage testing on a collection of JavaScript
web applications that exchange JSON data between the clients and
servers. Moreover, we demonstrate that the inference technique can
quickly and accurately learn useful server interface descriptions.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Algorithms, Languages

Keywords

Web applications, automated testing, interface descriptions

1. INTRODUCTION
Many modern web applications run in browsers as HTML-

embedded JavaScript programs that communicate with a server. The
JavaScript code reacts to user events and asynchronously sends
HTTP requests to the server for updating or retrieving data. The
response from the server is used for example to dynamically mod-
ify the HTML page. With this so-called Ajax style of structuring
web applications, the server mostly acts as a central database seen
from the client’s point of view. The server interface comprises a
collection of operations, identified by URLs, that accept input and
produce output typically in XML or JSON data formats.

Some web service providers have public APIs, such as Google,
Twitter, and Facebook, that are well documented and used by many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the authors must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-2237-9/13/08...$15.00.

1 function goto_page(id, q) {
2 jQuery.ajax(GET_PAGE_URL + ’?page=’ + id +

3 ’&query=’ + q,

4 {’dataType’: ’json’,

5 ’success’: function(result) {

6 populate_table(result);

7 }});

8 }
9

10 function populate_table(attendees) {
11 var table = $(’#attendees’)

12 table.html(’’);

13 for (i = 0; i < attendees.length; i++) {

14 var a = attendees[i];

15 var style = ’’;

16 if (a.checkedin) {

17 style = ’ style="background-color: #B6EDB8;"’;

18 }

19 ahtml = ’<tr id="row’ + a.id + ’"’ + style + ’>’ +

20 ’<td>’ + a.name + ’ - ’ +

21 a.email + ’
’ +

22 a.department + ’</td>’ +

23 ’<td>’ +

24 ’[info] ’ +

25 ’’ +

26 ’[checkin] ’ +

27 ’’ +

28 ’[delete]’ +

29 ’</tr>’;

30 table.append(ahtml);

31 }

32 }

Figure 1: A typical example of Ajax in JavaScript.

client applications, for example in mashups that each use small
parts of different APIs. In contrast, in many other web applica-
tions, the server-side and the client-side are developed in conjunc-
tion within the same organization. In such web applications, the
programming interface of the server is often not described in a
formal way, if documented at all. This can make it difficult to
modify or extend the code, even for small web applications. More
concretely, we have observed that it limits the possibility of apply-
ing automated testing on the JavaScript code in isolation from the
server code and database contents.

It is well known that precisely specified interfaces can act as con-
tracts between the server code and the client code, thus supporting
a clean separation of concerns and providing useful documentation
for the developers. In this work, we show that having formal de-
scriptions of the programming interfaces of the server code in Ajax
web applications is instrumental when conducting automated test-
ing of the JavaScript code in such applications. In addition, we
present a technique for automatically learning server interface de-
scriptions from sample data for pre-existing web applications.

As an example, consider the JavaScript code in Figure 1, which
is part of a web application that manages attendance lists for meet-
ings. When the function goto_page is called, an Ajax request is

[{"id": 6451, "name": "Fred", "email": "fred@cs.au.dk",

"department": "CS", "checkedin": true},

{"id": 4358, "name": "Joe", "email": "joe@imf.au.dk",

"department": "IMF", "checkedin": false}]

Figure 2: Example JSON response for the Ajax interaction

from Figure 1.

sent to the server via the jQuery library.1 This request takes the
form of an HTTP GET request with a specific URL and the param-
eters page and query. The dataType value ’json’ on line 4 indi-
cates that the response data is expected to be formatted using JSON,
a widely used format because it integrates well with JavaScript.2

When the response data arrives, the function populate_table is
called via line 6. By inspecting that function (lines 10–32) we
see that the JSON data is expected to consist of an array of ob-
jects with specific properties: id, name, email, department, and
checkedin. Moreover, their values cannot be arbitrary. For exam-
ple, the checkedin property is used in a branch condition, so it
probably holds a boolean value, and the other properties appear to
hold strings that should not contain special HTML characters, such
as < or &, since that could lead to malformed HTML when inserted
into the page on line 30. Figure 2 shows an example of an actual
JSON response that may appear.

In this example—as in many JavaScript web applications in
general—the interface between the server and the client is not made
explicit. As a consequence, the server code and the client code be-
come tightly coupled, so it becomes difficult to change either part
without carefully checking the consequences to the other part. For
instance, the server code could safely omit the checkedin prop-
erty when the value is false without breaking the client code,
since a.checkedin on line 16 would then evaluate to undefined,
which is coerced to false, however, the necessity for such subtle
reasoning makes the application fragile to modifications. Also, the
client code implicitly assumes that escaping of special HTML char-
acters has been performed on the server, but this may not have been
communicated to the server programmer.

One aim of our work is to advocate the use of formal interface de-
scriptions as contracts between the client code and the server code.
In the example above, an interface description could specify what
are valid request parameters and the details of the response data for-
mat, such that the server code and the client code to a larger extent
can be developed separately. Interface descriptions are the key to
solve a substantial practical problem that we have observed in our
work related to the tool Artemis that performs automated testing of
JavaScript web applications [2]: It can be difficult to set up servers
and populate databases to be able to test the client-side JavaScript
code. Moreover, an automated tester, that focuses on testing the
JavaScript code and has a black-box view on the server, is often
not able to produce high coverage tests within a given time budget.
With interface descriptions, we can automatically construct mock
servers that can be integrated into such an automated tester in place
of the real servers.

To illustrate this idea, consider again the example from Figure 1.
If we wish to apply automated testing to the JavaScript code, two
approaches could be considered at first: (1) We could ignore the
server and simply assume that any response is possible to any Ajax
request. Automated testing could then reveal that the JavaScript
code will throw a runtime exception if the response data is not an
array or if the array contains a null value (on line 13 and line 16, re-
spectively), and malformed HTML would be generated if the object
properties contain special HTML characters. However, this does
not imply that there are errors in the JavaScript code—implicitly it

1
http://jquery.com/

2
http://json.org/

may be the server’s responsibility to ensure that the Ajax response
does not contain such values. (2) Alternatively, we could use a live
server with realistic database content. This would eliminate the
problem with false positives in the first approach. However, two
drawbacks arise: first, it requires deep insight into the application
to be able to provide realistic database content [6]; second, the test-
ing capabilities become fixed to that particular database content,
which may limit the coverage of the client code. Interface descrip-
tions give us another alternative: (3) With a description of what
requests the server accepts and the responses it may produce, an
automated testing tool such as Artemis becomes able to focus on
testing the JavaScript code on meaningful inputs.

To alleviate the burden of writing interface descriptions for pre-
existing applications, we additionally propose an automated learn-
ing technique. Our hypothesis is that practically useful interface
descriptions can be created using only sample request and response
data. The sample data can be obtained by users exercising the func-
tionality of the application without requiring detailed knowledge
of the server code. This makes the learning technique independent
of the specific programming languages and frameworks (PHP, JSF,
ASP.NET, Ruby, etc.) that may be used on the server and thereby
be more generally applicable.

The idea of using interface description languages (IDLs) to spec-
ify the interfaces of software components has proven successful in
many other contexts. Prominent examples in related domains in-
clude Web IDL for the interface between browsers and JavaScript
application code [10], WSDL for web service communication [8],
and OMG IDL for interprocess communication with CORBA [24].
Nevertheless, IDLs are still not widely used in the context of client-
server interactions in Ajax web applications, despite the existence
of languages, such as WADL [13]. We suspect that one reason is
that writing the interface descriptions is a laborious task. To this
end, our work is the first to propose an automatic technique to learn
interface descriptions for Ajax web applications.

In summary, our contributions are as follows:

• We first introduce a simple Ajax server interface description lan-
guage, named AIL, inspired by WADL (Section 2). This lan-
guage can describe HTTP operations involving JSON and XML
data as commonly seen in Ajax web applications.

• We demonstrate how the interface descriptions can be incorpo-
rated into automated testing of JavaScript web applications to be
able to test client code without involving live servers. Specifi-
cally, we extend the automated testing tool Artemis with support
for AIL (Section 3) by introducing a generic mock server com-
ponent that is configured using AIL descriptions.

• We provide an algorithm for learning AIL descriptions of Ajax
web applications through dynamic analysis of network traffic be-
tween clients and servers (Section 4).

• We experimentally evaluate our approach by investigating how
AIL descriptions affect the code coverage obtained by Artemis
with our extensions and by comparing the inferred AIL descrip-
tions with manually crafted ones (Section 5). Our results show
that (1) by using the descriptions, Artemis can obtain as good
coverage with the mock server as with real servers and manually
populated databases and (2) the learning algorithm is capable of
producing useful AIL descriptions.

Testing Ajax applications is recognized as a difficult problem [20,
22] and interface descriptions have proven useful for testing classi-
cal web applications [1, 15–18, 21], but no previous work has com-
bined interface descriptions and testing of Ajax applications. Re-
lated work on interface description languages, learning algorithms,
and automated testing is discussed in Section 6.

URL http://www.example.org

GET news/read():@items.json

GET author(name:*):@author.json

GET users/login(user:*, pwd:*):@token.json

POST news/send(token:@token.json, items:+@item.json):void

POST users/create(token:@token.json, user:*, pwd:*):void

Figure 3: An example AIL description.

In this paper, we use the term Ajax [12] in a broad sense, cover-
ing different technologies for client-server communication in
JavaScript-based web applications. In current web applications this
typically involves the XMLHttpRequest3 API, but our general ap-
proach in principle also encompasses the more recent WebSocket4

API. The data being transmitted may involve different formats in-
cluding XML and JSON that are supported by AIL, although our
current learning algorithm and experiments focus on JSON.

2. AN INTERFACE DESCRIPTION

LANGUAGE FOR AJAX
Our first step is to design a formal language, AIL (Ajax server

Interface description Language), for describing the interfaces of
servers in Ajax-style web applications. The communication in such
web applications consists of HTTP client-server interactions where
the JavaScript code running on an HTML page in a browser sends
requests and receives responses. An HTTP request contains a
method (typically GET or POST), a URL path, and a number of
name-value parameter pairs. For simplicity, we abstract away the
other information in the HTTP requests, such as the protocol and
headers. We design AIL as a simple language that concisely cap-
tures the essence of WADL [13] and integrates with JSON.

An AIL description consists of a base URL and a collection of
operation descriptors, each of the form

request : response

where request is a pattern that describes a set of possible HTTP
requests, and response describes the possible responses that may
be generated by the server for those requests. Within an AIL de-
scription, the request patterns must be disjoint in the sense that ev-
ery possible HTTP request can match at most one of the patterns,
which ensures a deterministic behavior.

An AIL description establishes a contract between the clients
and the server: The clients are responsible for ensuring that each
request matches one of the request patterns, and it is the server’s re-
sponsibility that the response matches the corresponding response
schema. Below we describe the syntax and matching semantics of
request patterns and response schemas.

Figure 3 shows an AIL description (without JSON Schema files)
for a simple JSON news server that makes five operations available
for JavaScript applications. The first three operations provide ac-
cess to news items, author information, and authentication. The
last two operations can be used for submitting news items to the
server and for registering new users. All operations use HTTP and
JSON. The description refers to external JSON Schema files that
specify the data formats involved in the operations. Such an AIL
description evidently characterizes the structure of the operations
that are supported by the server while abstracting away from the
actual data being transmitted at runtime.

The initial version of AIL supports two kinds of data formats:
JSON and XML. AIL simply relies on JSON Schema5 and RELAX
NG6 for describing the structure of data.

3
http://www.w3.org/TR/XMLHttpRequest/

4
http://www.w3.org/TR/websockets/

5
http://json-schema.org/

6
http://relaxng.org/

POST comment/delete/comment_id:*() : @delete.json

POST project_id:*/issues/issue_id:*/set/title/

value/value:*() : @set_title.json

POST project_id:*/scrum/add/task/for/story/story_id:*/

mode/issue(task_name:*) : @add_task.json

Figure 4: Parts of the AIL description of The Bug Genie.

A request pattern consists of an HTTP method (GET, POST, etc.),
a path, and a comma-separated list of parameters:

method path(parameters)

A path consists of path fragments separated by ’/’, each being a
string or a parameter. Each parameter has the form name:cardinality

datatype, where cardinality is either absent (meaning precisely one
occurrence), ‘?’ (optional) or ‘+’ (zero or more).

A datatype is written as a constant string (e.g. "start"), the
wildcard ‘*’, the keyword void, a reference to an external JSON
Schema file (e.g. @token.json), a reference to a RELAX NG
schema file (e.g. @person.rng) or a type defined in such a file
(e.g. @types.rng#person), or a list of datatypes separated by ‘|’.
The datatypes of parameters that occur in paths are restricted to
simple string types, such as numerals or string enumerations, and
the special datatype void is never used in request patterns.

A datatype matches strings in the obvious way: a constant string
matches that string and no others, * matches any value, void is
used for describing the empty response, a reference to a schema
type matches according to the semantics of JSON Schema and RE-
LAX NG, respectively, and ‘|’ represents union. An HTTP request
matches a request pattern if each constituent matches. A response
pattern is simply a datatype with matching defined accordingly. We
omit the precise semantics of pattern matching due to the limited
space, but the intuition should be clear from this brief description.

The example shown in Figure 4 is a part of an AIL description of
the application The Bug Genie.7 This application uses REST-style
naming where some parameters appear in the path, not in the HTTP
request body or the query string. The responses use JSON in both
application; we omit the details of the associated JSON schemas.

The AIL language as presented above is capable of expressing
the basic properties of server interfaces. One straightforward ex-
tension is to support other data formats, such as, HTML, plain
text, or JSONP (JSON with padding), credentials for HTTP Ba-
sic authentication, and request content types (i.e. MIME types). In
some situations it can also be useful both for documentation and
testing purposes to describe error responses, that is, non-“200 OK”
HTTP response codes, and HTTP content negotiation. For now,
AIL cannot describe temporal properties, for example that opera-
tion A must be invoked before operation B, simply because such
properties have not been significant in any of the web applications
we have studied. Another possible extension is support for Web-
Sockets, which unlike HTTP involves connection-oriented commu-
nication and thereby does not fit directly into the simple request-
response model.

3. USING SERVER INTERFACE DESCRIP-

TIONS IN AUTOMATED TESTING
Server interface descriptions are not only useful for documenting

the server interface for the client programmer; they also make it
possible to test the client code in isolation from the server code,
which provides new opportunities for practical automated testing.
In Section 3.1 we give a brief overview of the Artemis tool from
earlier work by Artzi et al. [2], with a focus on the complications
caused by Ajax communication. In Section 3.2 we show how a new

7
http://www.thebuggenie.com/

mock server component can exploit AIL descriptions to improve
the level of automation.

3.1 Automated Testing with Artemis
A JavaScript web application is driven by events, such as the ini-

tial page load event, mouse clicks, keyboard presses, and timeouts.
Event handlers are executed single threaded and non-preemptively.
A test input to an application is thus given by a sequence of param-
eterized events. Of particular relevance here are the events that are
triggered by Ajax response where the event parameter contains the
HTTP response data from the server.

Figure 5 shows a use of the XMLHttpRequest API8, which pro-
vides low-level Ajax functionality (in contrast to the example in
Figure 1 that uses the jQuery library). The call to x.send on line 45
initiates the request to the server, in this case an HTTP GET request
to the relative URL news/read, which matches the AIL descrip-
tion in Figure 3. An event handler for receiving the response is
set up on line 36. When the response content has finished load-
ing, x.readyState will have the value 4, and the event handler
function is called. If the response status code is 200 the response
content is then available as a text string in x.responseText. For
this example, the challenge for an automated tester is how to pro-
duce meaningful server response data that will thoroughly exercise
the response event handler including the showItems function be-
ing called on line 39.

The Artemis tool uses feedback-directed random testing of
JavaScript web applications to produce high-coverage test inputs.
That is, it executes the application on a test input and monitors the
execution to collect interesting information that can be used to gen-
erate new test inputs to improve coverage. The heuristics used for
collecting information, producing new test inputs, and prioritizing
the work list of test inputs are described by Artzi et al. [2], and we
here focus on the interactions with the server.

Although our goal is to test the JavaScript code, not the server,
we face the problem that the JavaScript code in Ajax-style appli-
cations closely depends on the server. As discussed in Section 1
it is often difficult to populate the server database with useful data
that is required to ensure high coverage of the JavaScript code. A
simple example is line 16 in Figure 1, where both branches can
only be covered if the server database contains a nonempty list of
attendees, whereof at least one is marked as checkedin and an-
other is not—no matter how other events, such as mouse clicks, are
being triggered in the browser. On top of this, even a well popu-
lated database may not suffice. Reaching one part of the JavaScript
code may require certain values in the database where another part
may require different values, so multiple database snapshots may
be necessary to enable high coverage of the JavaScript code, which
makes the burden even higher.

Yet another problem for automated testing appears when impor-
tant server responses can only be triggered by request values that
are practically impossible to guess by the testing tool. Consider
for example the operation users/login for the server described
in Figure 3. A successful response requires the client to provide a
valid user name and password, which is (hopefully) impossible to
guess, so a considerable part of the client code will remain unex-
plored. A common workaround is to ask the user for help in such
situations [3]. The consequence of these problems is that “auto-
mated” testing may require a considerable manual effort.

We observe that when testing client code, many execution paths
require data from the server that is structurally well-formed but
not necessarily semantically valid. As an example, for testing the
populate_table response handler function in Figure 1, we do not

8
http://www.w3.org/TR/XMLHttpRequest/

33 function getNewsItems() {
34 var x = new XMLHttpRequest();

35 x.open("GET", "news/read");

36 x.onreadystatechange = function() {

37 if (x.readyState == 4)

38 if (x.status == 200) {

39 showItems(x.responseText);

40 } else {

41 alert("An error occurred :-(");

42 }

43 }

44 };

45 x.send(null);

46 }

Figure 5: A simple use of XMLHttpRequest to perform an Ajax

call to get news items from the server from Figure 3.

need server response data that contains actual attendee names and
email addresses, but we do need JSON data with a certain structure.
This observation allows us to use AIL descriptions instead of actual
servers and live data for testing client code.

3.2 Extending Artemis with an
AIL Mock Server

To alleviate the problems described above, we have extended the
Artemis tool with a mock server component that is configured by an
AIL description. Whenever the JavaScript program under test ini-
tiates Ajax communication, the mock server intercepts the request
such that the actual server is never contacted during the testing.

Given an HTTP request, the mock server performs the follow-
ing steps: (1) It searches through the AIL description to find an
operation descriptor with a request pattern that matches the HTTP
request. If one is found, a random response that matches the corre-
sponding response datatype is prepared; otherwise, the response to
the client is a generic “404 Not Found”. (2) The response data is
then sent to the test input generator component in Artemis, which
will subsequently produce new test inputs that include an Ajax re-
sponse event containing the response data.

As result, we obtain a nondeterministic model of how the server
may behave according to the AIL description, and the JavaScript
code can be explored without the need of a real server and database.

Now, several observations can be made. First, using the mock
server solves the problem of populating databases since it automat-
ically returns a wide range of possible responses, as specified by
the AIL description. This means that the client code is effectively
tested on a variety of structurally meaningful inputs. The response
data generated by the mock server may of course not be semanti-
cally valid, but as argued above, structurally correct response data
will suffice for testing many properties of client code. This ap-
proach also elegantly handles the issue with the users/login op-
eration mentioned above: the mock server component will skip the
actual password check and automatically produce a meaningful re-
sponse representing successful login.

Second, our approach makes it easy to model the asynchronous
nature of Ajax, which is a source of intricate race errors [25, 28]:
Even though the AIL mock server component only produces a sin-
gle response for each request in step 1, the Artemis test input gen-
erator component may create multiple new inputs in step 2 to test
different event orders.

Third, the construction of responses in step 1 may not be en-
tirely random. We can exploit the existing feedback mechanism in
Artemis such that information that has been collected by Artemis in
previous executions of the JavaScript code with different test inputs
can guide the selection of the new Ajax response data. Specifically,
Artemis dynamically collects constants that are used in each event
handler [2], and these constants are often good candidates for val-
ues in new event parameters, such as the Ajax response data.

4. AUTOMATIC LEARNING OF

AIL DESCRIPTIONS
We have shown that AIL offers a simple, formal mechanism for

documenting client-server communications in Ajax-style web ap-
plications and that AIL descriptions are useful in automated testing
of the client code. However, despite the many advantages of having
server interface descriptions, constructing such descriptions for pre-
existing applications can be a nontrivial task. To support the con-
struction of AIL descriptions, we show how to automatically learn
descriptions from samples of client-server communication traffic
through a black-box, dynamic approach. This approach has been
chosen for generality and independence of particular server tech-
nologies used. We imagine that such a learning algorithm can be
used when a development team realizes that their web applications
have grown from being small and manageable to become larger
and more difficult to maintain without proper separation of con-
cerns and without the ability to apply automated testing techniques.
Automated learning makes it easier to retrofit server interface de-
scriptions to existing applications, thereby supporting automated
testing for the further development of the applications.

We assume that the AIL descriptions being used in automated
testing as described in Section 3 have been written manually or with
support from the learning algorithm. The automatically generated
descriptions may naturally require some manual adjustments since
they are generated on the basis of sample data.

We first introduce our learning problem. The input I denotes a
finite set of concrete HTTP request and response pairs 〈r, s〉. The
output d denotes an AIL description that expresses a possibly infi-
nite relation JdK of request and response pairs. Since we perform
black-box learning, we assume that sufficient samples are available
for learning.

Given a set of input samples, there are many valid AIL descrip-
tions that “generalize” it. Thus, it is important to define which AIL
descriptions are the most desired. At the high level, we want a
learned AIL description to closely match the server programmer’s
view of the interface—a set of independent operations each with
its own meaning and purpose. The central challenge is to identify
these operations from the given observations without any white-box
knowledge of the server and client.

To guide our learning algorithm, we specify the following desir-
able properties that a learned description should have:

completeness: The input I is covered by the learned AIL descrip-
tion d, i.e. I ⊆ JdK.

disjointness: The request patterns of d must be disjoint.
precision: d should be as close to I as possible, i.e. JdK \ I should

be small. We say that d1 is more precise than d2 iff Jd1K \ I ⊆
Jd2K \ I .

conciseness: d should be small. We say that d1 is more concise

than d2 iff |d1| ≤ |d2|, where |d| denotes some appropriate
notion of the size of an AIL description d.

With these properties in mind, we devise an algorithm to learn
AIL descriptions from input samples. Our algorithm has two phases:
data clustering and pattern generation. The data clustering phase is
the key step, organizing the input samples into distinct clusters such
that each cluster corresponds to a “likely” operation descriptor, and
these together form an AIL description with the aforementioned
properties. Once the appropriate clustering has been determined,
the pattern generation phase transforms the clusters into actual AIL
descriptions and JSON schemas. This last step is straightforward
and will not be described in this paper due to space constraints.

For the clustering phase we make two observations. First, identi-
fying responses that are structurally similar can be a good starting
point. For example, two JSON values that have the same object

structure but contain different strings or numbers can be consid-
ered “similar” and hence likely belong to the same operation. Sec-
ond, we can infer important information for clustering from the
path fragments and parameters that occur in the request data. As an
example, consider requests to the first operation from Figure 4:

POST comment/delete/comment_id:*() : @delete.json

A request consists of path fragments and GET/POST parameters,
which we will denote features. The features for this operation are
three path fragments, i.e. the constant strings comment and delete
and a comment ID value. These can be divided into key features,
which are characterized by having relatively few possible values
that together identify the operation for the request, and non-key fea-

tures, with a higher number of possible values, which do not iden-
tify operations. For this particular operation, the key features are
the first two, i.e. comment and delete, and we can expect that our
sample data will contain a higher number of comment ID values
than the number of distinct operations.

These observations motivate us to further divide the clustering
phase into two steps: (1) construct an initial clustering by consid-
ering only the response data and grouping the responses into dis-
tinct clusters with respect to their response types (Section 4.1); and
(2) restructure the clustering using request data by identifying the
likely key features (Section 4.2). After the clustering phase, we
construct AIL descriptions that satisfy the completeness property
by ensuring that each sample is associated with a cluster and giv-
ing the cluster a request pattern and a response pattern that match
all samples in the cluster.

4.1 Response Data Clustering
We first cluster the input set I using HTTP response data. Al-

though AIL can describe both XML and JSON data, we describe
our algorithm for JSON, which is the most widely used data inter-
change format for Ajax web applications. A JSON response is a
JavaScript data structure containing primitive values (strings, num-
bers, booleans, and null), objects, and arrays.

For each request and response pair 〈r, s〉 ∈ I , the response s
contains JSON data. We map s to its type abstraction:

• a primitive value is mapped to its respective primitive type (e.g.
String, Number, Boolean, or Null);

• an object value {p1:v1, . . . ,pk:vk} is mapped to a record type
{p1 : t1, . . . , pk : tk} by replacing each object property value
with its type, where ti denotes the type of the value vi; and

• an array [v1, . . . ,vk] is mapped to a union type ∪k

i=1ti, where
ti denotes the type of vi.

We now cluster all sample pairs from I according to structural
equivalence of the response type abstractions. For example, the five
sample responses shown in Figure 6 will be clustered together into
three clusters. The first two samples have the same type abstraction
{id : Number, name : String, stories : Number} and are
thus grouped together, while the next two contains an additional
property, resulting in the type abstraction {id : Number, name :
String, email : String, stories : Number} and their own
cluster. Similarly, the type abstraction of the last response {id :
Number, title : String} does not match the first or the second
cluster, so it will be placed in a third cluster.

4.2 Request Data Clustering
Using the distinction between key and non-key features, we want

our learning algorithm to construct request patterns in which key
features are represented using constant strings, and non-key fea-
tures are represented using wildcards. However, deciding on the
division between key and non-key features may require restructure
of the clustering to ensure that the disjointness property is satisfied.

〈GET author?name=alice,
{"id": 1, "name": "Alice", "stories": 10}〉

〈GET author?name=bob,
{"id": 2, "name": "Bob", "stories": 12}〉

〈GET author?name=charlie,
{"id": 3, "name": "Charlie",

"email": "charlie@example.org", "stories": 1}〉

〈GET author?name=eve,
{"id": 3, "name": "Eve",

"email": "eve@example.org", "stories": 1}〉

〈POST news/read,
[{"id": 1, "title": "News 1"},

{"id": 2, "title": "News 2"}]〉

Figure 6: Example request and JSON response pairs, 〈r, s〉, for

two different operations.

In the example shown in Figure 6, the first four responses are ini-
tially put into two clusters. If the name parameter is classified as
a key feature, then we need to split the two clusters into four, one
for each sample. On the other hand, if it is classified as a non-key
feature, then we need to merge the two clusters into one to ensure
disjointness. To generate the desired request patterns using con-
stant strings and wildcards, this example shows that we may need
to merge clusters together, using a wildcard, or split them into sep-
arate clusters, using constant strings.

To describe in more detail how we merge and split clusters, we
first introduce some additional terminology. As stated, each path
fragment and parameter of a request is a feature. The set of fea-
tures in a request forms its signature, denoted by S. As an exam-
ple, a request with URL foo/bar and a parameter baz=1 has the
signature {#0, #1, #baz} where path fragments are identified by
their positions in the URL and parameters are identified by their
names. Since we wish to construct one request pattern for each
cluster, we first split clusters that contain requests with different
signatures. Request patterns that are constructed from clusters with
different signatures are trivially disjoint. Next, we need to decide
on a suitable partition of S into key and non-key features, corre-
sponding to constant strings and wildcards, respectively.

There are two obvious extremes when selecting the partition: (1)
assign wildcards to all features, thereby merging all clusters with
the same signature into a single one, which is likely to be highly im-
precise, and (2) assign constant strings to all features, thereby split-
ting all clusters into singletons (i.e. simply the input set I), which
is neither concise nor very useful. These two extremes relate to op-
eration descriptions being concise and precise respectively, which
are conflicting requirements that we must reconcile.

Our algorithm is given in Figure 7. Let D be initial response
data clustering D from Section 4.1. For each signature S in D,
the algorithm iterates over all clusters D′ that match S. It then
iterates over all possible partitions ρ that divide S into key and
non-key features, selecting the partition with the minimal cost with
respect to a cost function C. This partition is used to restructure
the clusters D. The end result, after iterating over all signatures, is
D restructured in accordance with its request data. What remains
is to define the cost function C(ρ,D′), where ρ is a partition of S
into key and non-key features and D′ is a set of clusters with the
same signature.

Recall our observation that clustering based on response types
typically yields a good baseline clustering. Thus, we favor parti-
tions that result in the smallest number of splits and merges com-
pared to the baseline clustering. This strategy is further supported
by the other observation that key features have few unique values,
so our goal is to find a partition that leads to the smallest number of
splits and merges.

function REQUESTDATACLUSTERING(D)
for all S in SIGNATURES(D) do

D′ ← FINDCLUSTERSWITHSIGNATURE(D, S)
cmin ←∞
ρmin ← null

for all ρ in PARTITIONS(S) do

c← C(ρ,D′)
if c < cmin then

cmin ← c
ρmin ← ρ

end if
end for
RESTRUCTURE(D, ρmin)

end for
end function

Figure 7: The request data clustering algorithm.

We define the cost C(ρ,D′) as the total number of splits and
merges necessary to get from D′ to the restructured clustering. In-
tuitively, a least cost partition helps avoid merging too much, for
precision, and avoid splitting too much, for conciseness. In case of
a tie, we choose a partition that minimizes the number of wildcards.

To illustrate the cost calculation, consider the two initial clusters
that were created from the first four sample responses in Figure 6.
Those two clusters are a result of different response structures, how-
ever, we cannot ensure disjointness of the request patterns without a
reorganization. Both clusters have the signatures S = {#0, #name}
corresponding to the author URL path fragment and the name pa-
rameter. The cost function is applied to all possible partitions ρ of
S, in this example the following four partitions:

1. Neither #0 nor #name is considered a key feature, causing the
two clusters to be merged at a cost of 1 into a cluster with
request pattern *?name=*.

2. Only #0 is a key feature, which also causes a single merge
operation, hence the cost is 1, but the resulting cluster now
has request pattern author?name=*.

3. Only #name is a key feature, which means that the two clus-
ters are split into four singleton clusters at a total cost of 2,
resulting in the four request patterns *?name=alice,
*?name=bob, *?name=charlie, and *?name=eve.

4. Both #0 and #name are key features, which also results in
four singleton clusters at a total cost of 2, but the request
patterns are now author?name=alice, author?name=bob,
author?name=charlie, and author?name=eve.

We choose the second partition since it has minimal cost and mini-
mal number of wildcards.

Finally, we have constructed clusters with the desired properties.
Each cluster can be turned into an AIL operation descriptor, as
hinted earlier. Its request pattern is generated from the employed
partition ρ, and JSON schemas for the response patterns are gen-
erated from the type abstractions of the response samples in the
cluster. The close connection between JSON schemas and the type
abstraction we uses for response data leads to a straightforward con-
struction.

5. EVALUATION
We have argued that server interface descriptions can provide

separation of concerns, which enables testing of JavaScript code in
isolation from the server code. When conducting automated testing
of the JavaScript code, the use of AIL and a mock server removes
the burden of setting up actual servers with appropriate database
contents. To find out how this may influence other aspects of auto-
mated testing, we first consider the following research questions:

Client Server
Benchmark LOC Framework Language

simpleajax 79 jQuery Python (Django)
resume 244 Flapjax Python
globetrotter 347 jQuery Java (JWIG)
impresspages 558 jQuery PHP
buggenie 3,716 Prototype PHP
elfinder 6,724 jQuery PHP
tomatocart 8,817 Prototype PHP
eyeos 17,629 jQuery PHP

Figure 8: Benchmark applications.

Q1. How is the running time of automated testing affected when
replacing the real server by the mock server for a fixed num-
ber of test inputs?

Q2. Does the use of AIL in place of live servers affect the code
coverage obtained by automated testing?

To evaluate how our learning algorithm from Section 4 can be use-
ful when creating AIL descriptions for existing applications, we
consider two additional research questions:

Q3. To what extent is the learning algorithm capable of producing
AIL descriptions that correctly describe the servers in actual
JavaScript web applications?

Q4. How much effort is required for producing request and re-
sponse data for the learning algorithm, and how fast is the
learning algorithm?

To answer these questions we have implemented three tools:9

(1) a web proxy for recording the HTTP communication between
clients and servers, (2) the learning algorithm from Section 4, which
reads the data recorded by the web proxy and outputs AIL descrip-
tions and JSON schemas, and (3) the AIL mock server for Artemis.

We have collected 8 benchmark applications that use JavaScript
for their client-side logic and Ajax for communicating between the
client and the server, and where the source code for the entire appli-
cation has been available, including the server code: simpleajax is
a small home-built test application for event registrations; resume10

is an application management system; globetrotter11 is a travel ap-
plication system; impresspages12 is a CMS system; elfinder13 is
an online file explorer; buggenie8 is a project management tool
that we also used as example in Section 2; tomatocart14 is an e-
commerce platform; and eyeos15 is an online desktop environment.

Figure 8 contains a list of the applications together with the num-
ber of lines of JavaScript code (excluding frameworks), the frame-
work they use for JavaScript if any, and the language or framework
used on the server side.

Our experiments are performed on a 3.1GHz i5 machine with
4GB of memory.

5.1 Using AIL in Automated Testing
To be able to answer Q1 and Q2 we run Artemis on our bench-

mark applications using various configurations: EmptyDB with real
servers but with empty databases, FullDB with real servers where
the databases are populated with realistic data, Random with a fully
generic mock server that accepts all requests and produces random
JSON responses, and AIL with the mock server using the AIL de-
scription.

9Our tools are available at http://www.brics.dk/artemis/
10old version of https://resume.cs.brown.edu/cs/
11
https://services.brics.dk/java/globetrotter/

12
http://www.impresspages.org/

13
http://elrte.org/elfinder

14
http://www.tomatocart.com/

15
http://eyeos.org/

Benchmark AIL FullDB Init EmptyDB FullDB Random AIL
simpleajax 25s 26s 22 30 62 60 62
resume 67s 77s 12 105 108 14 113
globetrotter 102s 94s 10 - 180 17 205
buggenie 104s 180s 662 - 1,322 1,138 1,308
elfinder 162s 152s 571 1,236 1,337 665 1,366

Figure 9: Execution time for Artemis with a budget of 100 test

input executions, and code coverage obtained by Artemis with

a budget of 300 test inputs.

The database contents used in the FullDB configuration are se-
lected as snapshots obtained when we exercised the applications
to collect sample request and response pairs. For the AIL config-
uration, we use manually constructed AIL descriptions, or equiva-
lently, descriptions that were produced by the automated learning
and subsequently manually adjusted to properly model the servers.
Three of the larger benchmark applications are unfortunately be-
yond the capabilities of the latest version of Artemis for reasons
that are unrelated to AIL and Ajax communication, so our experi-
ments are conducted on the remaining five applications.

The execution time of Artemis depends on a number of factors,
one of course being the time budget, which is expressed as a max-
imum number of test input executions. Other factors are the spe-
cific data that the JavaScript application receives from the server
in Ajax interactions and the response time of the server. Replac-
ing the live server with a mock server affects the two latter factors.
Responses that are randomly generated from the AIL response pat-
terns may trigger long running loops in the JavaScript code, how-
ever, the work performed by the mock server is presumably simpler
than that of the real server in most cases.

The first columns in Figure 9 show the total running time of
Artemis with the two configurations AIL and FullDB using a bud-
get of 100 test input executions for each application. This gives
an answer to Q1: for these applications, the running time is not
affected notably by the AIL mock server.

The remaining columns show the code coverage (measured as
number of lines of JavaScript code) for 300 test input executions
of each application using all four configurations. The extra col-
umn, Init, shows the coverage obtained by loading the application
without triggering any events, which can be viewed as a baseline
for the coverage comparisons. The globetrotter and buggenie ap-
plications have not been tested with empty databases since this did
not make sense for those cases. (Please note that the LOC column
in Figure 8 should not be compared with the coverage numbers in
Figure 9, since the latter only include lines with executable code.)

We observe that the use of the AIL mock server yields similar
coverage results as when using the real servers populated with real-
istic data, which partially answers Q2.

For globetrotter, elfinder, and resume, coverage is slightly im-
proved when using AIL. In each case, the increased coverage is
caused by conditions in the JavaScript code that are only triggered
with specific Ajax response data, for example an empty array or a
certain boolean value somewhere in a JSON structure. These are ex-
amples of application behavior that depend on the precise contents
of the server database, as discussed in Section 3. In globetrotter,
for example, the program state describes a travel application that
can be at different workflow stages. The mock server quickly gen-
erates JSON responses that cover all the workflow stages, while the
FullDB configuration only manages to cover a single one.

The lower code coverage for buggenie is caused by an animation
not being triggered in the AIL configuration due to the heuristics
used internally by Artemis. For elfinder, a few lines are reached
with FullDB but not with the AIL configuration. The data in this
application contains a tree-like structure of files and directories that
are linked through hash and parent hash values that refer to each

other. This invariant cannot be expressed with the current design of
AIL, so the mock server is not able to produce the right response.

Several additional observations can be made from the coverage
numbers. The EmptyDB, FullDB and AIL measurements show
higher coverage than Init, demonstrating that we actually test addi-
tional functionality besides simply loading the page. Interestingly,
the Random measurements for resume, globetrotter, and elfinder
show considerably less coverage, which demonstrates that mean-
ingful response data is important. In all cases, this is caused by the
initialization of the web applications depending on correctly struc-
tured Ajax responses. As expected, populating the database (i.e.
FullDB) results in higher or equal coverage than using the empty
database (i.e. EmptyDB).

Although we did not expect to find bugs in the benchmark ap-
plications, the use of the AIL mock server revealed one in resume
that was not found with any of the other configurations. The bug
is triggered by a sequence of events that involve sending an empty
array to the server and back to the client ending up in obj.values
at the following snippet of code where it leads to a runtime error:

var ln =

A({href:’javascript:undefined ’},

’’+obj.values[0][’number’]+’ - ’

+obj.values[obj.values.length-1][’number’]);

This example illustrates how unclear assumptions between client
and server developers can end up creating errors in the applications.

In other situations, similar unclear assumptions do not cause er-
rors but lead to fragile code that may break in future revisions made
by programmers who are not aware of subtle invariants that must
be satisfied. The use of AIL in Artemis also revealed such a sit-
uation. The elfinder application contains the following snippet of
code where dir and files originate from an Ajax response:

while (dir && dir.phash) {

dir = files[dir.phash]

}

The purpose of this code is to traverse a directory structure where
files are represented in an array indexed by file hash values. Run-
ning Artemis with the AIL configuration discovered that if this data
structure contains loops then the while loop never terminates. The
required invariant—that the data structure sent in the Ajax response
never contains such loops—is not documented in the application
source code. AIL is not expressive enough to capture such invari-
ants, but one could argue anyway that the application would be
more robust if its correctness did not depend on such intricate in-
variants involving the server state.

Concluding these experiments, our answer to Q2 is that the use
of AIL leads to good coverage compared to using a server with
an empty database, a server with a populated database, or a mock
server that generates random responses. The experiments also
pointed us to examples where correctness of the applications de-
pends on subtle, undocumented invariants.

5.2 Automated Learning of AIL Descriptions
To obtain the training data for the learning algorithm, we install

and exercise each application by manually clicking on visual ele-
ments and entering data into forms for a few minutes, while the
web proxy monitors all Ajax communication. This is done without
detailed knowledge of each application and entirely without look-
ing at the server code. This gives us between 70 and 611 sample
request and response pairs, depending on the amount of informa-
tion exchanged.

We now run the learning algorithm on the data obtained for each
application, which in each case takes less than a second. The re-
quest data clustering process described in Section 4.2 performs al-

Benchmark Samples Sampling Learning Match 1→N N→1
simpleajax 70 3m 74ms 5 0 0
resume 128 9m 111ms 12 3 0
globetrotter 97 8m 84ms 4 1 0
impresspages 179 6m 224ms 5 1 0
buggenie 210 6m 118ms 4 3 0
elfinder 181 6m 124ms 11 3 0
tomatocart 370 8m 153ms 22 6 1
eyeos 611 6m 213ms 22 0 0
Total 85 17 1

Figure 10: Number of sample request and response pairs used

for AIL learning, time used for collecting sample data and

learning AIL descriptions, and results from comparing the

learned AIL descriptions with the manually written ones.

together 18 splits and 43 merges when searching for the partitions
with the minimal cost. This results in a total of 130 AIL operation
descriptors and 9,550 lines of JSON schema—all generated auto-
matically.

Figure 10 shows the amount of sample data, the time used for
collecting the sample data, and the time used by the AIL learn-
ing algorithm for each application. From these numbers we can
give a rough answer to Q4: the effort required for using automated
AIL learning is clearly manageable, compared to the time otherwise
spent developing the web applications.

Producing AIL descriptions is of course not enough; they also
need to capture the actual patterns of the Ajax communication. Re-
call from Section 4 that the constructed AIL description is complete
by construction, relative to the training data. However, the training
data may not cover the entire application, which might result in
incomplete AIL descriptions where some operations supported by
the server are missing in its AIL description. Another potential
source of mismatches between automatically constructed AIL de-
scriptions and manually written ones is that the learning algorithm
may not be sufficiently precise or concise (using the terminology
from Section 4). Furthermore, as there is no canonical “best” AIL
description for a given Ajax server, we must settle for a subjec-
tive baseline for comparison, which we decide to construct as fol-
lows: For each benchmark application, we manually write an AIL
description based on an inspection of the source code for the server
part of the application. This process can take hours, but this work
is of course only required to be able to measure the quality of the
learning algorithm in our experiments.

Next, we need a measure of the difference between the automat-
ically constructed AIL descriptions and the manually constructed
ones. The first aspect of this measure is how the individual opera-
tion descriptions match between the two. Figure 10 also shows the
results of this comparison. The Match column counts the number
of learned operations that map directly to the actual server opera-
tions, while 1→N and N→1 count the number of server operations
that map to multiple learned operations and vice versa, which indi-
cate mismatches between the two descriptions. A second aspects is
to what extent the individual datatypes of parameters and response
patterns differ between the two descriptions.

We get a total of 85 matches, 17 occurrences of 1→N , and a
single N→1. The high number of matches is already encouraging,
but a closer inspection of the other cases reveal that they are rel-
atively benign. In all the 1→N cases, a simple manual merging
of the relevant operation descriptors suffices to resolve the discrep-
ancy. This is acceptable since the learned AIL description is only
intended as a starting point for the programmer, as an alternative to
writing the AIL description from scratch. An example is delete
operation in resume, which can be called both with and without an
id parameter resulting in different responses, causing the learning
algorithm to produce two separate AIL operation descriptors. An-

other example of a 1→N case appears in buggenie. In this case,
a specific server operation runIssueRevertField performs mul-
tiple tasks and dispatches internally, based on a parameter field,
in a way where one may argue that the AIL description produced
by the learning algorithm, where these sub-operations are divided
into separate descriptors, is in fact just as good as the manually
constructed one.

The single N→1 case appears in tomatocart and is caused by our
merging heuristic being slightly too aggressive. Two operations for
deleting images and setting default images, respectively, both take
an id parameter and return a trivial response, and the operations
are only distinguished by the value of an action parameter. The
similarity of the data causes the two operations to be merged by our
current heuristic.

Regarding the quality of the inferred datatypes in request and re-
sponse patterns, we notice that many of our benchmarks use JSON
in responses but not in requests. For request patterns, the main ques-
tion then is whether wildcards are introduced appropriately. The
learning algorithm needs at least two distinct values of a path frag-
ment or parameter to conclude that it is not constant. For example,
resume represents session IDs in parameters, so the training data
must involve multiple sessions. Incompleteness of our sample data
in some cases results in missing wildcards, however, this is easy to
adjust manually after the learning phase.

Most JSON response data in the benchmark applications is built
using arrays and simple objects with fixed collections of proper-
ties. For these common cases the learning algorithm is able to
generate JSON schemas correctly. Differences between the JSON
schemas constructed by the learning algorithm and the manually
constructed ones are mostly due to incomplete sample data. How-
ever, we observed two interesting cases—in impresspages and glo-
betrotter, respectively—that could be improved. Some responses in
impresspages have a recursive structure of objects and arrays. More
specifically, the data represents a list of page and directory objects
where each directory object itself contains a list of page and direc-
tory objects. Our current learning algorithm is not able to produce
the desired concise JSON schema. In globetrotter, a specific JSON
structure contains information about a list of countries. Each coun-
try is represented by an object where the country name appears as
a property name, not as a property value, which causes the learning
algorithm to view each country object as being distinct.

Based on these experiments, our answer to Q3 is that the learning
algorithm is able to produce AIL descriptions that are reasonably
close to manually constructed ones. This suggests that automated
learning can be a good starting point for creating AIL descriptions
for pre-existing applications, and that sufficient sample data can be
obtained by someone who is familiar with the functionality of the
applications but does not have knowledge of the server code.

5.3 Threats to Validity
A possible threat to validity of our experimental results is that

the manually constructed AIL descriptions that we use as baseline
for the comparisons have been made by ourselves without expert
knowledge of most of the benchmark applications. More solid re-
sults could perhaps be obtained by performing user studies with the
developers of the applications. Also, our benchmark applications
do not reflect all possible uses of Ajax and JSON, and they may not
be representative of typical usage patterns although we have striven
toward including a wide variety of applications.

6. RELATED WORK
Our work touches on several areas of work on interface descrip-

tions, automated testing of web applications, and learning algo-
rithms.

6.1 Interface Descriptions for
Separation of Concerns

The idea of design-by-contract is a fundamental principle in mod-
ern software engineering for separating the concerns of individual
software components. Even in web programming, which often
involves dynamic scripting languages both on the client and the
server, interface description languages play an important role: Sim-
ilar to AIL, WSDL [8] allows description of operations and their
argument and return types, however, WSDL is tailored to XML-
based web services and has no support for JSON, and we are not
aware of uses of WSDL for describing server interfaces in Ajax-
style JavaScript web applications. As mentioned in Section 2, AIL
is by design conceptually closer to the language WADL [13], al-
though AIL has a compact non-XML syntax and supports JSON.
The Web IDL language is used for describing the API that web
browsers provide to JavaScript programs [10] for accessing the
HTML DOM and other parts of the browser state, however, unlike
AIL, each Web IDL description is common to all JavaScript web
applications and cannot describe the interfaces of individual Ajax
servers. Web IDL has its roots in the OMG IDL interface definition
language for CORBA [24].

Interface descriptions have also been proposed for HTML form-
based web applications without JavaScript. The WebAppSleuth
methodology by Fisher et al. [18] works by submitting requests to
a server and analyzing the responses to infer parts of its interface.
The resulting interface descriptions are related to AIL descriptions
but tailored to HTML forms, not JSON or XML. Each form is de-
scribed by its set of mandatory and optional fields together with
simple value constraints and dependencies between the fields.

The extensive survey by Alalfi et al. [1] covers many model-
ing methods used in web site verification and testing, but without
JavaScript and Ajax. To our knowledge, the only existing work in-
volving interface descriptions for Ajax communication is that by
Hallé et al. [16]. They propose a contract language based on in-
terface grammars, linear temporal logic, and XPath expressions for
specifying the order of HTTP interactions that exchange XML data
in long-running sessions. We believe the data formats of requests
and responses are more important in typical Ajax applications than
restrictions on the order of operations, so we have chosen to ignore
the temporal aspect in our first version of AIL. Their paper dis-
cusses how the contracts can be used for runtime monitoring. They
also ask the important question “who should write the contracts?”

To this end, we take the approach of using machine learning on
sample execution traces, as explained in Section 4.

A range of well-documented web services that fit into the design
of AIL can be found at Google’s APIs Explorer website.16 The in-
terface descriptions for those web services are only made available
as online documentation for programmers, not using any interface
description language, which makes them less accessible to, for ex-
ample, automated testing tools.

6.2 Automated Testing of Web Applications
Besides the Artemis tool [2] that we discussed in Section 3.1, we

are aware of a few other tools for automatically testing JavaScript
web applications. The Kudzu tool by Saxena et al. [26] performs
automated testing by a combination of symbolic execution with a
string constraint solver for value space exploration and random ex-
ploration of the event space, whereas Artemis uses a more light-
weight feedback-directed approach. The state-based testing tech-
nique by Marchetto et al. [20, 21] builds finite-state machines that
model Ajax web pages from concrete execution traces. As in our
approach, a subsequent manual validation or refinement step is

16
http://code.google.com/apis/explorer/

required to ensure that the extracted model is correct before the
model can be used for automated testing. The key difference to
our approach is that the models in state-based testing describe the
DOM states of the JavaScript execution, not the interactions with
the server. A closely related tool is Crawljax by Mesbah et al. [22,
23] that also aims to derive models of the user interface states of
Ajax applications and use these models as a foundation for test-
ing. AJAX Crawl by Duda et al. [9] similarly performs dynamic
exploration of Ajax applications, but for the purpose of crawling
the applications by search engines, not aiming at testing.

A common limitation of Kudzu, Crawljax, and AJAX Crawl
is that the exploration of the JavaScript applications is done with
little focus on the client-server communication, simply using live
servers, which leads to the problems discussed in Section 3.1 about
how to properly populate the server databases. On top of this,
most tools, with Artemis as an exception, do not restore the server
database state after each test input execution, which affects testing
reproducibility.

The JSConTest tool by Heidegger and Thiemann performs ran-
dom testing for JavaScript programs that are annotated with type
contracts [17]. These function annotations play a similar role as
AIL descriptions, but at the level of function calls rather than Ajax
client-server interactions. Due to the JavaScript-oriented design
of JSON Schema that we use in AIL, it is natural that the basic
contract language in JSConTest has similar expressiveness. How-
ever, JSConTest also supports function types, which are not rele-
vant for client-server exchange of JSON or XML data. Another
difference is that JSConTest permits user-defined contracts written
in JavaScript, which might be useful to consider for a future version
of AIL to address the limitations identified in Section 5.

Several tools have been developed for automatically testing server-
based web applications. The Apollo tool by Artzi et al. [3] and the
tool by Wasserman et al. [27] perform directed automated random
testing for PHP code, but JavaScript is not considered. With our
proposal of using a server interface description language for sepa-
rating the concerns of server code and client code, we have so far
focused on testing the client code, but an interesting direction of fu-
ture work is to develop testing or analysis techniques that can also
check whether the servers fulfill their part of the contracts.

Elbaum et al. [11] have proposed the use of user session data for
black-box testing of web applications. They record concrete user
sessions and replay the sessions in various ways to test the server
code, not aiming for testing client code and not involving explicit
server interface descriptions.

The WAM tool by Halfond and Orso [14, 15] automatically dis-
covers interfaces of web applications using static analysis or sym-
bolic execution of the server code. The interfaces are subsequently
used in automated testing, similar to our approach, although WAM
considers classical web applications without Ajax and JSON. The
notion of interfaces used by WAM is similar to that in WebApp-
Sleuth. WAM is restricted to Java Servlets, unlike our approach,
which is in principle independent of the languages and frameworks
used on the server.

6.3 Learning Algorithms
The learning algorithm presented in Section 4 has been devel-

oped specifically for AIL, but related algorithms exist for other do-
mains.

WebAppSleuth [18], which we also mentioned in Section 6.1,
uses learning techniques to identify interfaces of server-based web
applications that receive HTML forms. That approach does not in-
volve learning the structure of server response data, and a single
server operation is considered at a time, while our learning algo-
rithm needs to work for multiple operations.

The latest version of WAM [14] likewise uses a learning algo-
rithm to produce interface descriptions. The WAM algorithm op-
erates on path constraints constructed through symbolic execution
of the server code, which differs from our learning algorithm that
is based on sample request and response data and has a black-box
view on the server. Furthermore, WAM does not consider response
types, unlike our learning algorithm.

The clustering problem that we face in Section 4 is related to
the work by Broder et al. on clustering web pages that are syntac-
tically similar [5]. Their approach is to define a distance measure
between two web pages, using a distance threshold to cluster sim-
ilar pages. This approach could be transferred to JSON responses
and our learning algorithm, but we found the results from initially
clustering only entirely equal structures to be sufficient for our pur-
poses.

We are not aware of existing work on JSON Schema inference.
The closest related work has been centered around DTD and XML
Schema inference. This problem is described by Chidlovskii as
being reducible to grammar inference [7]. Others improve on this
line of work [4], however, the differences between XML and JSON
make their algorithms unsuitable for JSON Schema.

7. CONCLUSION
Server interface descriptions for Ajax-style web applications en-

able separation of concerns of the server code and the client code.
The AIL language has been designed to capture the essence of the
existing proposals WADL and allow concise description of the ba-
sic properties of server operations, in particular involving JSON
data. Our experimental validation suggests that the expressiveness
of AIL suffices for typical Ajax communication patterns, but also
that it might be useful in future work to add support for user-defined
contracts to specify more fine-grained invariants.

One key contribution is that we demonstrate that server interface
descriptions are useful in automated testing. No previous work has
combined server interface descriptions with testing of Ajax appli-
cations. Our experimental results show that this approach can im-
prove the level of automation by eliminating the need for carefully
populated databases on the servers, while maintaining the quality
of the testing of the client code. Another key contribution of our
work is the automated learning algorithm that can produce server
interface descriptions from sample request and response data. The
experiments show that AIL learning can be performed with a mod-
est effort, and that the resulting descriptions are a good starting
point when programmers wish to construct AIL descriptions for
pre-existing web applications.

In addition to the suggestions about possible extensions of AIL,
several directions of future work appear. As an alternative or sup-
plement to our AIL learning approach that has a black-box view
on the server, it would be interesting to infer or validate AIL de-
scriptions by static or dynamic analysis of the server code for the
most widely used server web frameworks. Additionally, AIL may
also be useful for static analysis of JavaScript applications to enable
more precise reasoning of Ajax interactions than currently possible.
Specifically, we wish to incorporate AIL into the JavaScript analy-
sis tool TAJS [19].

Acknowledgements

This work was supported by Google, IBM, and The Danish Re-
search Council for Technology and Production. The last author
acknowledges partial support from U.S. NSF grants 0917392 and
1117603. We thank Simon Holm Jensen and Kristoffer Just Ander-
sen for their contributions to the Artemis tool used in the experi-
mental evaluation.

8. REFERENCES

[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Modelling
methods for web application verification and testing: state of
the art. Software Testing, Verification & Reliability, 19(4):
265–296, 2009.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A
framework for automated testing of JavaScript web
applications. In Proc. 33rd International Conference on

Software Engineering, May 2011.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar,
and M. D. Ernst. Finding bugs in web applications using
dynamic test generation and explicit-state model checking.
IEEE Transactions on Software Engineering, 36(4):474–494,
2010.

[4] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the inference
of schemas from XML data. In Proc. 17th International

Conference on World Wide Web, 2008.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. Computer Networks, 29
(8-13):1157–1166, 1997.

[6] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weber.
A framework for testing database applications. In Proc. ACM

SIGSOFT International Symposium on Software Testing and

Analysis, August 2000.

[7] B. Chidlovskii. Schema extraction from XML: A
grammatical inference approach. In Proc. 8th International

Workshop on Knowledge Representation meets Databases,
2001.

[8] R. Chinnici, J.-J. Moreau, A. Ryman, and S. W. (editors).
Web services description language (WSDL) version 2.0, June
2007. W3C Recommendation.
http://www.w3.org/TR/wsdl20/.

[9] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou.
AJAX Crawl: Making AJAX applications searchable. In
Proc. 25th International Conference on Data Engineering.
IEEE, April 2009.

[10] C. M. (editor). Web IDL, February 2012. W3C Working
Draft. http://www.w3.org/TR/WebIDL/.

[11] S. G. Elbaum, G. Rothermel, S. Karre, and M. F. II.
Leveraging user-session data to support web application
testing. IEEE Transactions on Software Engineering, 31(3):
187–202, 2005.

[12] J. J. Garrett. Ajax: A new approach to web applications,
2005. http://www.adaptivepath.com/ideas/ajax-new-
approach-web-applications.

[13] M. Hadley. Web application description language, August
2009. W3C Member Submission.
http://www.w3.org/Submission/wadl/.

[14] W. G. J. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web
applications. In Proc. International Symposium on Software

Testing and Analysis. ACM, July 2009.

[15] W. G. J. Halfond and A. Orso. Improving test case
generation for web applications using automated interface
discovery. In Proc. 6th joint meeting of the European

Software Engineering Conference and the ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, September 2007.

[16] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and
R. Villemaire. Runtime verification of web service interface
contracts. IEEE Computer, 43(3):59–66, 2010.

[17] P. Heidegger and P. Thiemann. Contract-driven testing of
JavaScript code. In Proc. 48th International Conference on

Objects, Models, Components, Patterns, June 2010.

[18] M. F. II, S. G. Elbaum, and G. Rothermel. Dynamic
characterization of web application interfaces. In 10th

International Conference on Fundamental Approaches to

Software Engineering, March 2007.

[19] S. H. Jensen, M. Madsen, and A. Møller. Modeling the
HTML DOM and browser API in static analysis of
JavaScript web applications. In Proc. 8th joint meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering, September 2011.

[20] A. Marchetto, F. Ricca, and P. Tonella. A case study-based
comparison of web testing techniques applied to AJAX web
applications. International Journal on Software Tools for

Technology Transfer, 10(6):477–492, 2008.

[21] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of
Ajax web applications. In Proc. 1st International Conference

on Software Testing, Verification, and Validation, April 2008.

[22] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling
Ajax-based web applications through dynamic analysis of
user interface state changes. ACM Transactions on the Web,
6(1):3:1–3:30, 2012.

[23] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based
automatic testing of modern web applications. IEEE

Transactions on Software Engineering, 38(1):35–53, 2012.

[24] Object Management Group, Inc. Common object request
broker architecture (CORBA) specification, version 3.2,
November 2011.
http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF.

[25] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race
detection for web applications. In Proc. ACM SIGPLAN

Conference on Programming Language Design and

Implementation, 2012.

[26] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, D. Song,
and F. Mao. A symbolic execution framework for JavaScript.
In Proc. 31st IEEE Symposium on Security and Privacy, May
2010.

[27] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura,
and Z. Su. Dynamic test input generation for web
applications. In Proc. ACM/SIGSOFT International

Symposium on Software Testing and Analysis, July 2008.

[28] Y. Zheng, T. Bao, and X. Zhang. Statically locating web
application bugs caused by asynchronous calls. In Proc. 20th

International Conference on World Wide Web, 2011.

