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Abstract Decision procedures underlie many program analysis problems. Tradi-
tional program analysis algorithms attempt to prove some property about a single,
statically-defined program by generating a single constraint. Accordingly, tradi-
tional decision procedures take single constraints as input. Extending these tradi-
tional program analysis algorithms to reason about potentially infinite languages
of programs (as generated by a given metaprogram) requires anew class of deci-
sion procedures that reason about languages of constraints. This paper introduces
the parameterized class of validity checking problems thattake as input a lan-
guage generatorA. The parameters are: (1) the language formalism forA, (2) the
theory under which each string in the language ofA is interpretted, and (3) the
quantification (existential/universal) of the constraints in the language to which
the validity property applies. We introduce such decision problems by presenting
an algorithm that decides whether a given finite state automatonA generates any
valid linear arithmetic constraints.

1 Introduction

Many program analysis and formal verification problems reduce to validity or satisfi-
ability checking over some logical theories. Consequently, significant effort has been
devoted to designing efficient decision procedures for these theories. Traditional pro-
gram analysis problems address individual programs, so thedecision procedures that
underlie program analysis algorithms take a single constraint ϕ. Extending program
analysis problems to address potentially infinite languages of programs (as generated
by a metaprogram) requires decision procedures that take languages of constraints. We
introduce the study of such decision procedures in this paper. The input to decision
procedures over languages of constraints is a language generatorA, where each string
in the language ofA is a constraint in a given theory. The problem such procedures
address is: Does there exist a valid constraint in the language ofA, or alternatively, are
all constraints in the language ofA valid?

As an example application, consider a web application that takes user input (e.g., a
username and password) and generates a query to a backend database (e.g., a banking
system) to authenticate the user. Errors in the applicationmay allow a malicious user to
send specifically crafted input to cause the application to generate a query with a tautol-
ogy as its conditional clause. This is one example of a widespread security vulnerability
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Figure 1. GrammarG for linear arithmetic constraints, whereV is a set of variables.

known asdatabase command injection[1]. These vulnerabilities can be discovered stat-
ically by constructing a language generatorA to conservatively characterize the set of
database queries that the application may generate [2]. Theverification problem then
reduces to checking whetherA accepts any tautologies.

We denote this class of problems parametrically as VALID Π,Φ,K . The first param-
eter,Π , is the formalism for describing the language generatorA that VALID Π,Φ,K

takes as input. The second parameter,Φ, is the theory under which each string inL(A)
(i.e., the language ofA) is to be interpreted. The third parameter,K ∈ {∃, ∀}, spec-
ifies whether the goal is to find whether any (K = ∃) or all (K = ∀) constraints in
L(A) are tautologies. This paper introduces such decision problems by presenting an
algorithm for VALID FSA,LA,∃, where “FSA” is short for “Finite State Automaton,” and
“LA” is short for “Linear Arithmetic.” In practice, FSAs aresufficient for modeling web
applications as query constructors [2].

The challenge of VALID Π,Φ,K for any non-trivialΠ is thatL(A) may be infinite,
so naively enumeratingL(A) and checking each constraint will not yield a decision
procedure. Instead, the algorithm must exploit the finiteness of the representation ofA.

The rest of the paper is structured as follows. Section 2 presents the VALID FSA,LA,∃

problem more precisely and definesarithmetic loopsandlogical loops, which represent
the main challenges of the problem. Sections 3 and 4 address arithmetic and logical
loops respectively. Section 5 surveys related work, and Sect. 6 concludes.

2 Overview
This section first defines the parameters for VALID FSA,LA,∃ and makes some general
observations, and then sets up the high-level structure of the algorithm.

2.1 TheVALID FSA,LA ,∃ Problem

Finite state automata (FSAs) are defined by a five-tuple,(Q, Σ, δ, q0, qf ), whereQ is a
set of states,Σ is the alphabet of terminals from the input language,δ ⊆ Q×Σ ×Q is
a transition relation,q0 ∈ Q is a start state, andqf ∈ Q is a final state. The semantics
of FSAs is standard. The grammarG in Fig. 1 defines the syntax for linear arithmetic
constraints. Again, the semantics of the language is standard, and the grammar rules
reflect the operator precedence. Because eachs ∈ L(A) must be interpreted as a linear
arithmetic constraint, forA to be a valid input to VALID FSA,LA,∃, L(A) ⊆ L(G). For
the sake of compactness and for certain steps in our algorithm, the transition relation
will sometimes be presented asδ ⊆ Q × Σ∗ × Q.
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Figure 2. Two example FSAs.

let aik = (qi, a, qk) bij = (qi, b, qj) cjk = (qj , c, qk)

a→ b c ∈ PG

bij , cjk ∈ δT ∪ δN
⇒

δN = δN ∪ {aik}
δR(aik) = δR(aik) ∪ {{bij , cjk}}

Figure 3. CFL-reachability algorithm—the cases forrhs’s of lengths other than 2 are analogous.

We selectΦ = “LA” to explore because it is broadly applicable, and the general
problem of validity checking for integer arithmetic constraints is undecidable (due to
the undecidability of Diophantine equations [3]). Although multiplication by a constant
is within the theory of linear arithmetic, we forbid ‘×’ from appearing inΣ. If we
allowed, for example, an FSA to have a loop over “×2,” we would characterize the
multiplication as “×2n,” and exponentiation with variables is difficult to reason about.

A few concrete examples of inputs to VALID FSA,LA,∃ help to illustrate the signif-
icance of the finite representation and the challenges in handling it. Consider, for ex-
ample, the FSA shown in Fig. 2a. Because of cycles in the automaton, it accepts an
infinite language. By considering single passes through each of its cycles, we discover
the tautology shown in Fig. 2b. However, a single pass through a cycle is not sufficient
to discover possible tautologies in general. For example, two passes through the cycle
in the FSA shown in Fig. 2c are needed to discover the tautology in Fig. 2d.

Our algorithm for validity checking of automata uses a combination of automaton
transformations and a theorem that bounds the number of constraints needed for a tau-
tology. It generates validity queries in the theory of first-order arithmetic and sends them
to a first-order arithmetic decision procedure [4]. If the FSA accepts some tautology, at
least one of the finite number of first-order arithmetic queries must be a tautology.

2.2 Definitions and Setup

Our algorithm for the VALID FSA,LA,∃ problem uses a modified version of context free
language (CFL) reachability to create abstractions of the input FSA for use at certain
steps. This CFL-reachability algorithm takes as input a context free grammarG =
(N, Σ, PG, S) and an FSAA = (Q, Σ, δ, q0, qF ), and produces an augmented FSA
A′ = (Q, Σ ∪N, δT ∪ δN , δR, q0, qF ) whereδT andδN are sets ofterminal transitions
andnon-terminal transitions(transitions labeled with terminals and non-terminals from
G) respectively, andδR : δN → P(P(δN ∪ δT )) is the set ofreference transitions. The
transitions inA′ are defined byδT = δ plus the minimal solution to the constraint
shown in Fig. 3. The standard CFL-reachability algorithm does not include reference
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Figure 4. CFL-reachability.

transitions [5]. Figure 4 depicts an FSA produced
by CFL-reachability, showing terminal transitions as
solid, nonterminal transitions as dashed, and reference
transitions as dotted, assuming thatA → B C ∈ PG.
Fort ∈ δN , we writet t′ if t ∈ st ∈ δR(t) for some
st; let ‘ ∗ ’ denote the reflexive, transitive closures of
‘ ,’ and letδ∗R(t) =

⋃

st∈δR(t)(st ∪
⋃

t′∈st
δ∗R(t′)).

The references effectively form parse trees for all of the strings inL(A)—“all” because
of the syntactic correctness requirement, i.e.,L(A) ⊆ L(G).

Let “σij ” abbreviate “(qi, σ, qj).” BecausebE cannot be derived fromaE in RG,
if aEij ∈ δN , then for any strings accepted on aqi–qj path over the transitions in
δ∗R(aEij), s ∈ L(N, Σ, PG, aE). Similarly, if bEij ∈ δN , then for any strings generated
on aqi–qj path,s ∈ L(N, Σ, PG, bE). This leads to the following lemma:

Lemma 1. Each cycle inA, an input toVALID FSA,LA,∃, is either arithmetic (i.e., within
δ∗R(aEij) for someaEij ∈ δN ) or logical (i.e., withinδ∗R(bEij) for somebEij ∈ δN and
not withinδ∗R(aEkl) for anyaEkl ∈ δN ).

The subsequent sections present one technique for handlingarithmetic cycles and
another for logical cycles, but neither technique works forboth kinds of cycles. This
motivates the primary CFL-reachability-based abstraction used in our algorithm.

Definition 1 (Arithmetic FSA). Let A = (Q, Σ, δ, δR, q0, qF ) and predst ∈ δ. The
arithmetic FSALqs, qtM

a or Ast = (Q′, Σ, δ′, δ′R, qs, qt) whereQ′ = {q ∈ Q |
(q, σ, q′) ∈ δ′} ∪ {qt}, δ′ = {t ∈ δ | t ∈ δ′R

∗(predst)}, andδ′R(t) = δR(t) if t ∈ δ′ and
∅ otherwise.

Definition 2 (Logical FSA). Let A = (Q, Σ, δ, δR, q0, qF ). The logical FSAAl =
(Q′, Σ ∪ B, δ′, δ′R, q0, qF ), whereQ′ = {q ∈ Q | (q, σ, q′) ∈ δ′} ∪ {qF}, B =
{Lqi, qjM

a | qi, qj ∈ Q′}, δ′ = {σij ∈ δ | σ 6= pred ∧ σij ∈ δ′R
∗(bE0F )} ∪ {Lqi, qjMij

| predij ∈ δ}, δ′R(t /∈ δ′) = ∅, and δ′R(t ∈ δ′) =
⋃

st∈δR(t)({{Lqi, qjM
a
ij}} if st =

{predij} ; {st} otherwise).

The FSA fragment in Fig. 5a has two arithmetic FSAs. The one defined byLs1, tM
a in-

cludes all states and solid transitions in the figure. The onedefined byLs2, tM
a excludes

the states1 and thex-transition. Figure 5b shows the logical FSA that results from
abstracting out the arithmetic FSAs in Fig. 5a. The labels onthe states show the corre-
spondence between the original FSA and the logical FSA. Arithmetic FSAs include no
logical cycles and logical FSAs include no arithmetic cycles.



We split the problem of validity for FSAs into two subproblems, and in order to
define the sub-problems precisely, we definelinear FSAs:

Definition 3 (Linear FSA). An FSAA is a linear FSAiff A is deterministic,|L(A)| =
1, andA is minimal (i.e., it includes no useless states or transitions).

The first subproblem takes as input a linear logical FSA and produces a linear arith-
metic constraint that is valid if the linear logical FSA accepts a tautology. To this end,
Sect. 3 casts arithmetic FSAs as network flow problems. The second subproblem takes
as input a logical FSA and produces a finite number of linear logical FSAs such that
at least one accepts a tautology iff the input FSA accepts a tautology. Section 4 uses
a finite model theorem to unroll logical loops based on the number of variables in the
arithmetic FSAs.

3 Arithmetic Loops

We address arithmetic loops by casting questions about arithmetic automata as ques-
tions about network flows. The algorithm has four main steps.First, given an arithmetic
FSAA = (Q, Σ, δ = (δT ∪ δN ), δR, qs, qt) we define a labelling function

L :
(

δ ∪
⋃

t∈δ
st∈δR(t)

(t, st)
)

→ F

whereF is a set offlow variables. In the constraint that this construction generates, the
value ofL(t ∈ δT ) equals the number of times the transitiont was taken in some accept-
ing path. The value ofL(t, st) equals the number of times the corresponding derivation
occurs in the parse tree of the generated string. The first part of the constraint existen-
tially quantifies the flow variables because the VALID FSA,LA,∃ problem asks whether
there existany tautologies: “∃f∈codom(L)f .”

The second step constrains the values of flow variables so that the values they can
take correspond to derivations and paths throughA.

(1)
∧

f∈codom(L)

f ≥ 0 ∧ (2)
∧

t∈δN

L(t) =
∑

st∈δR(t)

L(t, st) ∧

(3)
∧

t∈δ

L(t) = k +
∑

t′∈δ
st′∈δR(t′)

t∈st′

L(t′, st′) , k = 1 if t = predst

0 otherwise

FNT
NT

Fj
F1

Fj
Fn

Fn

···

···

j
∑
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n
∑

i=j

Fi

Figure 6. Flow balancing.

Conjunction (1) prohibits solutions that would have a
transition being traversed a negative number of times.
Figure 6 illustrates how (2) and (3) balance the flow of
incoming and outgoing reference transitions.

The third step universally quantifies the variables
in V ∩ Σ because the VALID FSA,LA,∃ problem asks
whether there exists atautology: “∀v∈V ∩Σ v.”

The fourth step usesC(predst) to generate aflow-
comparisonconstraint that relates the number of times



each transition is taken with the value of the generated expression. Because addition
commutes,C uses the number of times each term occurs to calculate the value of arith-
metic expressions.

C(predst) =
∧

{aEsi,cmpij ,aEjt}∈δR(predst)

{cij}∈δR(cmpij)

(L(cij) = 1) ⇒ C(aEsi) c C(aEjt) C(aEij) =
∑

aEij
∗

aTkl

C(aTkl)

C(aTij) =
∑

{vij}∈δR(aTkl)

(L(aTij , {vij}) × v) −
∑

{−ik,vkj}∈δR(aTkl)

(L(aTij , {−ik, vkj}) × v)

Tarski’s theorem [4] establishing the decidability of first-order arithmetic guarantees
that expressions of this form are decidable when the variables range over real numbers.
We state here a completeness result:

Theorem 1. If the flow-comparison expression generated from an arithmetic FSALs, tM
is not valid, thenLs, tM does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linked sequentially by logical
operators (e.g., ‘∧’ or ‘∨’), we can merge in a natural way the constraints that model
the arithmetic FSAs, and the completeness result holds for the sequence of automata.

Theorem 2. If the flow-comparison expression generated from a linear logical FSAA
is not valid, thenA does not accept a tautology.

Unsoundness If the flow variables ranged over integers, this construction would be
sound. Because they range over real numbers, they may take onnon-integral values and
not correspond to any path through the FSA.

4 Logical Loops

Consider an arithmetic FSA with an∨-transition from its last state to its first state. The
arithmetic FSA might not accept any tautology, but two or more passes through the
arithmetic FSA joined by ‘∨’ may be a tautology, as in the case of the FSA in Fig. 2a.

4.1 Setup and Loop Unrolling

Unfortunately, we cannot use equations to address logical loops as we did for arith-
metic loops. If we did, the generated constraint would not bein first-order arithmetic.
Instead, we “unroll” the loop a bounded number of times so that if the loop accepts
some tautology, the unrolling must also accept some tautology.

The algorithm for generating linear logical FSAs from a given logical FSA has
three main steps. (1) Remove the¬-transitions. (2) Collapse all strongly connected
components (SCCs) in the FSA to form a dag, and enumerate the paths through the
dag. (3) Transform each collapsed SCC in an FSAAl into a linear FSA that replaces
the SCC inAl.

The first step uses graph transformations and an adaptation of DeMorgan’s law to
propagate ‘¬’ inward. Due to space constraints, the details are omitted here but can be



found in the companion technical report [6]. The second stepis straightforward, so we
omit the details. Section 4.2 presents the third step in detail. Each step preserves the
property of accepting a tautology.

The third step takes as input a logical FSA without¬-transitions that only produces
syntactically correct strings (as stated in Sect. 2.2). This step relies on the syntactic
correctness property, which implies that parentheses are balanced on all paths, and the
parenthetic nesting depth is bounded. Because parenthesesare always balanced, we
can abstract all paths between a pair of matching parentheses into aparenthetic FSA
Lqi, qjM

p, which is defined as follows:

Definition 4 (Parenthetic FSA). Let logical FSAA = (Q, Σ, δ, δR, q0, qF ) where
bSst ∈ δ andbSst

∗ bEkl. Theparenthetic FSALqs, qtM
p or Ast = (Q′, Σ, δ′, δ′R,

qs, qt) where
Q′ = {q ∈ Q | (q, σ, q′) ∈ δ′} ∪ {qt}
Bp = {Lqi, qjM

p | qi, qj ∈ Q′}

δ′ = {t ∈ δ | ¬∃bSij . bSst
+

bSij
+

t}
∪ {Lqi, qjM

a
ij ∈ δ | bSij ∈ δ′}

∪ {Lqi, qjM
p
ij | bSij ∈ δ′ ∧ bSij

∗ bEkl}
δ′R(t /∈ δ′) = ∅

δ′R(t ∈ δ′) =

{

{{Lqi, qjM
a
ij , Lqi, qjM

p
ij} ∩ δ′} if bSij = t 6= bSst

δR(t) otherwise

This abstraction is analogous to the abstraction that defines arithmetic and logical FSAs,
except that parenthetic FSAs can be nested within parenthetic FSAs.

After abstracting away parenthetic FSAs, the SCC only has∨- and∧-transitions
and transitions over arithmetic and parenthetics FSAs as atomic units. The following
theorem provides the basis for the bounded loop unrolling inSect. 4.2:

Theorem 3 (Loop Unrolling Theorem). Let T = {t1, · · · , tm}, where eachti is
a comparison of linear arithmetic expressions, and letn be the number of distinct
variables inT . Then(

∨

t∈T t) is a tautology iff there exists someT ′ ⊆ T such that
|T ′| ≤ (n + 2) and(

∨

t∈T ′ t) is a tautology.

Proof. Helly’s theorem states that ifK1, · · · , Km are convex sets inn-dimensional
Euclidean spaceℜn in which m ≥ n, and if for every choice ofn + 1 of the setsKi

there exists a point that belongs to all the chosen sets, thenthere exists a point that
belongs to all the setsK1, · · · , Km [7]. This implies that ifK1, · · · , Km are convex
sets as before but have no points in common, then there existssome choice ofn + 1 of
the setsKi that have no points in common.

If t1 ∨ · · · ∨ tm is a tautology, then by DeMorgan’s law,¬t1 ∧ · · · ∧ ¬tm is un-
satisfiable. Each¬ti can be rewritten assi by replacing the comparison operator with
its opposite (e.g.,< ⇄ ≥). Linear inequalities and linear equalities each define convex
spaces (half-spaces and hyperplanes, respectively) inℜn, wheren is the number of vari-
ables occurring in them. If eachsi falls into one of these categories (i.e., its comparison
operator is one of{<, >,≥,≤, =}), then some choice ofn+1 of them is unsatisfiable,
and the disjunction of the correspondingti’s is a tautology.



Paren({s1, . . . , sn}) = Conj(s1) ∨ · · · ∨ Conj(sn)

Conj({b1, . . . , bn}) = (Disj(b1)) ∧ · · · ∧ (Disj(bn))

Disj(Lqi, qjM
p
ij) = Paren(

S

t∈{bTkl∈δN |bEkl∈δ∗
R

(bSij)} Paths(t, ∅))

Disj(Lqi, qjM
a
ij) = Lqi, qjM

a
∨ · · · ∨ Lqi, qjM

a

| {z }

NumVars+2

Paths( t ∈ δN , d ) =
S

st∈δR(t) Zip(st \ (d ∪ {t}), d ∪ {t})

Paths(Lqi, qjM
a
ij , d) = {{Lqi, qjM

a
ij}

Paths(Lqi, qjM
p
ij , d) = {{Lqi, qjM

p
ij}}

Paths( ∧ij , d ) = ∅

Zip({t1, . . . , tn}, d) =
S

s1∈Paths(t1,d).
.
.

sn∈Paths(tn,d)

˘ Sn

i=1 si

¯

Figure 7. Algorithm to construct a linear FSA from an SCC of a logical FSA.

However, a linear disequality (i.e.,a · x 6= b) defines a non-convex region. Specifi-
cally, the points that do not satisfy a disequality lie in a single hyperplane. Suppose that
for all choices ofn+1 convex regions (as defined by thesi’s) there exists some pointp
that satisfies thesi’s. Suppose further that for some choice ofn + 1 convex regions all
points common to the region lie in the hyperplane that does not satisfy some disequality
si. Then a choice ofn + 2 of thesi’s are required for unsatisfiability, and consequently
n + 2 of theti’s are required for validity.

The only non-convex shape definable by linear constraints has a hyperplane as its
region of unsatisfiability. Consequently, given a setS of convex regions whose inter-
section (is necessarily convex and) is not confined to a hyperplane, no addition of a
finite number of non-convex linear constraints toS can causeS to become unsatisfi-
able. Therefore, no more than(n + 2) ti’s will be needed for a tautology. ⊓⊔

4.2 Linearizing Strongly Connected Components

Figure 7 defines five functions:Paren, Conj, Disj, Paths, andZip. These five func-
tions are used to construct a linear logical FSAAl from a strongly connected component
of a logical FSAAs such thatAl accepts a tautology iffAs accepts a tautology.

The algorithm to constructAl begins as follows. LetAs be an SCC without¬-
transitions, with parenthetic FSAs abstracted, and with start and final statesq0 and
qF , respectively. Construct a single parenthetic FSA by adding to δ (qα,(, q0) and
(qF ,), qβ) and lettingqα andqβ be the start and final states, respectively. Begin con-
structing a linear FSA by callingDisj(Lqα, qβMp

αβ). Disj interprets(Lqα, qβMp
αβ) as the

parenthetic FSA that it represents. The set{bTkl · · · } over whichDisj() takes a union
includes all of the nonterminal transitions from which onlyconjunctive expressions
(i.e., “a∧ · · · ∧ b”) can be derived, but all expressions the can be derived can be entered
and exited through∨-transitions. ThePaths function then returns a setS of sets of
transitions, where each sets of transitions includes all of the arithmetic and parenthetic



∧

1 ∧

∨

2

3

∨

∧

4

∧

∨ 5

∧

S = {{
1 , 4

} , {
3
} , {

5 , 2
}}

⇓

( 1 ∨

← (v + 2)→

∨ 1 ) ∧ ( 4 ∨

← (v + 2)→

∨ 4 ) ∨

Figure 8. An example SCC and the result of Fig. 7, where v = NumVars.

FSAs on some shortest (i.e.,¬∃s′ ∈ S.s′ ⊂ s) acyclic path derived from the tran-
sition t. BecauseAs is strongly connected, each path represented by the set returned
from Paths can be entered and exited through ‘∨,’ and disjunction weakens expres-
sions monotonically, if a tautology can be constructed fromthe conjunctive expressions
returned fromPaths, thenAs accepts a tautology. Because conjunction strengthens ex-
pressions monotonically, and the conjunctive expressionsreturned fromPaths are all
Paths returns all shortest conjunctive expressions, ifAs accepts some tautology, then
a tautology can be constructed by the shortest conjunctive expressions.

Paths passes the set representing all shortest conjunctive expressions toParen,
which begins to construct a linear structure by callingConj on each expression, and
connecting the results with ‘∨.’ A DNF expression constructed by disjoining several
instances of one of these conjunctive expressions can be refactored into a CNF expres-
sion.Conj constructs such a CNF expression. Because it constructs a CNF expression,
each element (arithmetic or parenthetic FSA) in the set can be handled individually and
independently byDisj. If the element is a parenthetic FSA,Disj recurses down and
produces a linear construction based on the parenthetic FSA. If the element is an arith-
metic FSA,Disj disjoinsNumVars + 2 copies of it, whereNumVars is the number of
distinct variables that appear in the original FSA (i.e.,|{v ∈ V | vij ∈ δ}|). Theorem 3
implies that if any (necessarily finite) disjunction of constraints from a given set consti-
tutes a tautology, then at mostNumVars + 2 of the constraints are needed to construct
a tautology. Given a complete linear structure, a linear logical FSA can be constructed
by using the sequence of tokens as the labels for the transitions in a linear FSA.

To illustrate the algorithm, Fig. 8 shows an example SCC, where numbers (1–5)
represent arithmetic FSAs. The setS consists of three sets, and below that, the begin-
ning of the constructed linear FSA shows how those sets are used. Note that each set
in S consists of the arithmetic FSAs along a path that can be entered and exited from
∨-transitions but has only∧-transitions between arithmetic FSAs.

4.3 Soundness, Completeness, and Complexity

Taken together, the algorithms for constructing linear logical FSAs from a logical FSA
are sound and complete for finding tautologies in logical FSAs.

Theorem 4 (Soundness and Completeness).Given an FSAA whereL(A) ⊆ L(G),
the algorithm presented in Sect. 4 produces a finite setSA of linear logical FSAs such
that there exists an FSA inSA that accepts a tautology iffA accepts a tautology.



Proof. The abstraction fromA to a logical FSAA′ described in Sect. 2.2 maintains
language equivalence if a path throughA′ includes paths through the arithmetic FSAs
that correspond to their names. The algorithm to remove¬-transitions produces a log-
ical FSAA+ from A′ such that there exists a bijective mappingb : L(A+) → L(A′)
whereb(ϕ+) = ϕ′ impliesϕ+ ≡ ϕ′. Collapsing SCCs and finding paths through the
dag produces a finite setSA+ of FSAs fromA+ such that a path inA+ can be mapped
to a path in someAS ∈ SA+ , and vice versa. The algorithm in Fig. 7 then produces a fi-
nite setSA of linear logical FSAs fromSA+ , such that, by the algorithm in Sect. 4.2 and
Theorem 3, there exists an FSAA− ∈ SA that accepts a tautology iff someAS ∈ SA+

accepts a tautology. ⊓⊔

A logical FSA is no larger than the FSA from which it is abstracted. Removing¬-
transitions produces at most a constant number of instancesof each state, so the result-
ing FSA has sizeO(|Q|) in the size of the input. The states in the FSA can be partitioned
into Qq, those states that can be reached from themselves,Qp, those that cannot. Let
q = |Qq| andp = |Qp|. Collapsing SCCs and enumerating all paths generatesO(2p)
paths. From each of these paths, the algorithm in Fig. 7 produces linear logical FSAs. If
p ≫ q, then each path has lengthO(p). Otherwise, each path is bounded by|S|, which
is O(2q), and the length of the FSA produced from eachS ∈ ∫ , which isO(n(q2q)),
wheren is the number of unique variables in the arithmetic FSAs. So,each path has
lengthO(max(p, nq2q)). From each path a query, which is linear in the size of the path,
is created and sent to a first-order arithmetic decision procedure.

5 Related Work

This section surveys closely related work.

First-Order Theories Tarski established the decidability of the first-order the-
ory of real numbers with addition and multiplication through quantifier elimination [4].
Collins used cylindrical decomposition to check validity in the same theory more effi-
ciently, but his algorithm also has high complexity [8]. Thefirst-order theory over inte-
gers is undecidable because of the undecidability of solving Diophantine equations [3].
However, an important fragment, Presburger Arithmetic, isdecidable [9].

Linear Constraints In program analysis and formal verification, decision proce-
dures for linear constraints are widely used. Some proposedtechniques include Fourier-
Motzkin variable elimination [10], the Sup-Inf method of Bledsoe [11], and Nelson’s
method based on Simplex [12]. More tractable algorithms canbe found by restricting
the class of integer constraints further. Pratt gives a polynomial time algorithm for the
form of linear constraintsx ≤ y + k, wherek is an integer [13]. Shostak considers a
slightly more general problemax+by ≤ k, wherea, b, andk are integer constants [14].
He uses “loop residues” for an algorithm which requires exponential time in the worst
case. Aspvall and Shiloach give a refined algorithm for the same form which runs in
polynomial time [15]. Su and Wagner [16] leverage ideas fromPratt and Shostak to pro-
pose the first polynomial time algorithm for a general class of integer range constraints
underlying the standard example (range constraints [17]) of abstract interpretation [18].



Combined Theories In 1979, Nelson and Oppen proposed a method for com-
bining theories in a decision procedure [19]. Contemporarytheorem provers, such that
as in Necula and Lee’s certifying compiler [20], use Nelson and Oppen’s architecture
for cooperating decision procedures. In 1984, Shostak introduced an algorithm for de-
ciding the satisfiability of quantifier-free formulas in a combined theory [21]. This al-
gorithm improved over previous decision procedures by enabling multiple theories to
be integrated uniformly instead of using separate, communicating processes. This al-
gorithm serves as the basis for decision procedures found inseveral tools including
PVS [22], STeP [23], and SVC [24]. SVC uses a decision procedure for a fragment of
first-order logic which excludes quantifiers, but includes equality, uninterpreted func-
tions and constants, arrays, records, and bit-vectors, as well as propositional connec-
tives. CVC Lite [25] is a descendant of SVC that includes a builtin SAT solver and
support for quantifiers.

Helly-like Theorems Helly-like theorems have been used to improve certain in-
dividual linear programming problems, such as finding a point in the intersection of a
family of convex sets [7,26]. In 1994, Amenta proved a general relation between Helly-
like theorems and generalized linear programming [27]. None of these, however, use
Helly’s theorem as this paper does: to bound the number of constraints needed to find a
tautology in unboundedly large sets of constraints.

6 Conclusions and Future Work

We have introduced the class of decision problems for language generatorsValidΠ,Φ,K

(motivated by the need for advanced checking of meta-programs) and an algorithm for
ValidFSA,LA,∃. Our algorithm is based on casting FSAs as network flow problems and
leveraging a novel application of Helly’s theorem to bound the number of comparison
expressions needed for a tautology. The network flow-based construction is unsound
because the flow variables may take on non-integral values.

This paper opens up several interesting directions for future work. First, language
generators that can match calls and returns, such as tree automata and push-down au-
tomata, are better suited for certain program analysis problems in meta-programming
than finite state automata. Because the algorithm presentedhere relies on the bound-
edness of parenthetic nesting, new insights will be needed to construct algorithms over
these more expressive formalisms. Second, we expect that similar techniques to the
ones presented here will yield an algorithm forValidFSA,LA,∀. Third, this algorithm
does not exploit much of the finer-grained structure of the FSA. We expect that this
can be used to provide an alternative, and frequently lower,bound on the number of
expressions needed for a tautology. Fourth, we are interested in studying the relation of
ValidFSA,LA,∃ to MSO logic, which also has an automata-based formulation.Finally,
we would like to find matching upper and lower bounds for theValidFSA,LA,∃ problem
in order to know its exact complexity.
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