
Static Checking of Dynamically Generated Queries in Database Applications
�

Carl Gould, Zhendong Su, and Premkumar Devanbu
Department of Computer Science

University of California, Davis�
gould,su,devanbu � @cs.ucdavis.edu

Abstract

Many data-intensive applications dynamically construct
queries in response to client requests and execute them.
Java servlets, e.g., can create string representations of
SQL queries and then send the queries, using JDBC, to a
database server for execution. The servlet programmer en-
joys static checking via Java’s strong type system. However,
the Java type system does little to check for possible er-
rors in the dynamically generated SQL query strings. Thus,
a type error in a generated selection query (e.g., compar-
ing a string attribute with an integer) can result in an SQL
runtime exception. Currently, such defects must be rooted
out through careful testing, or (worse) might be found by
customers at runtime. In this paper, we present a sound,
static, program analysis technique to verify the correctness
of dynamically generated query strings. We describe our
analysis technique and provide soundness results for our
static analysis algorithm. We also describe the details of a
prototype tool based on the algorithm and present several
illustrative defects found in senior software-engineering
student-team projects, online tutorial examples, and a real-
world purchase order system written by one of the authors.

1. Introduction
Data-intensive applications often dynamically construct

database query strings and execute them. For example,
a typical Java servlet web service constructs SQL query
strings and dispatches them over a JDBC connector to an
SQL-compliant database. In this example scenario, the Java
servlet program generates and manipulates SQL queries as
string data. Here, we refer to Java as the meta-language
used to manipulate object-language programs in SQL.

We use a concrete example (see below) throughout the
paper to explain our analysis technique. Consider a front-
end Java servlet for a grocery store, with an SQL-driven

� The first and second authors were supported by a Startup Fund from
the University of California, Davis to the second author. The last au-
thor was supported by NSF (both CISE & ITR programs).

database back-end. The database has a table INVENTORY,
containing a list of all items in the store. This table has three
columns: RETAIL, WHOLESALE, and TYPE, among others.
The RETAIL and WHOLESALE columns are both of type in-
teger, indicating their respective costs in cents. The TYPE

column is an integer, representing the product type-codes
of the items in the table. In the grocery store database, there
is another table TYPES used to look up type-codes. This ta-
ble contains the columns TYPECODE, TYPEDESC, and NAME,
of the types integer, varchar (a string), and varchar, respec-
tively.

The following example code fragment illustrates some
common errors that programmers might make when pro-
gramming Java servlet applications:

ResultSet getPerishablePrices(String lowerBound) {
String query = "SELECT ’$’ || "

+ "(RETAIL/100) FROM INVENTORY "
+ "WHERE ";

if (lowerBound != null) {
query += "WHOLESALE > " + lowerBound + " AND ";

}
query += "TYPE IN (" + getPerishableTypeCode()

+ ");";
return statement.executeQuery(query);

}

String getPerishableTypeCode() {
return "SELECT TYPECODE, TYPEDESC FROM TYPES "

+ "WHERE NAME = ’fish’ OR NAME = ’meat’";
}

The method getPerishablePrices constructs the string
query to hold an SQL SELECT statement to return the
prices of all the perishable items, and executes the query.
It uses the string returned by the method getPerishable-
TypeCode as a sub-query. In the code, || is the concate-
nation operator, and the clause TYPE IN (...) checks
whether the type-code TYPE matches any of the type-codes
of the perishable items. If lowerBound is “595”, then the
query to be executed is:

SELECT ’$’ || (RETAIL/100) FROM INVENTORY
WHERE WHOLESALE > 595 AND TYPE IN

(SELECT TYPECODE, TYPEDESC FROM TYPES
WHERE NAME = ’fish’ OR NAME = ’meat’);

Several different runtime errors can arise with this example.
We list them below; note that none of these would be caught
by Java’s type system:

Error (1). The expression ’$’ || (RETAIL/100) con-
catenates the character ’$’ with the result of the nu-
meric expression RETAIL/100. While some database sys-
tems will implicitly type-cast the numeric result to a string,
many do not, and will issue a runtime error.

Error (2). Consider the expression WHOLESALE >

lowerBound. The variable lowerBound is declared as
a string, and the WHOLESALE column is of type inte-
ger. As long as lowerBound is indeed a string repre-
senting a number, there are no type errors. However, this
is risky: nothing (certainly not the Java type system it-
self) keeps the string variable lowerBound from contain-
ing non-numeric characters.

Error (3). The string returned by the method get-
PerishableTypeCode() constitutes a sub-query that se-
lects two columns from the table TYPES. Because the IN

clause of SQL supports only sub-queries returning a sin-
gle column (in this context), a runtime error would arise.
This can happen if the method getPerishableType-
Code() did return a single column before, but was inad-
vertently changed to return two columns.

This specific combination of Java as the meta-language
and SQL as the object-language is widely used today. The
databases receiving these constructed SQL queries certainly
perform syntax and semantic checking of the queries. But
because these queries are dynamically generated, errors are
only discovered at runtime. It would be desirable to catch
these errors statically in the source code.

In this paper, we present a static analysis to flag poten-
tial errors or guarantee their absence in dynamically gener-
ated SQL queries. Our approach is based on a combination
of automata-theoretic techniques [9], and a variant of the
context-free language (CFL) reachability problem [14, 15].
As a first step, our analysis builds upon a static string anal-
ysis to build a conservative representation of the generated
query strings as a finite-state automaton. Then, we statically
check the finite- state automaton with a modified version of
the context-free language reachability algorithm. Our anal-
ysis is sound in the sense that if it does not find any er-
rors, then such errors do not occur at runtime. We have im-
plemented the analysis and tested our tool on realistic pro-
grams using JDBC, including senior software-engineering
student-team projects, online tutorial examples, and a real-
world purchase order system written by one of the authors.
Our tool is able to detect some known and unknown errors
in these programs. Although it has not been tuned for per-
formance, the analysis finishes in a few minutes on all test
programs. Furthermore, our analysis empirically appears
quite precise, with a low false-positive error rate.

The rest of the paper is structured as follows. We be-
gin with background on the string analysis and context-free
language reachability and a brief overview of our analysis
(Section 2). Then we present our analysis in more detail
(Section 3) and discuss our experimental setup and results
(Section 4). Finally, we survey related work (Section 5) and
conclude with a discussion of possible future work (Sec-
tion 6).

2. Background and Analysis Overview
We now describe the technical context of our work.

2.1. Static String Analysis of Java Programs
As mentioned earlier, our analysis makes use of the

string analysis of Java programs reported in [6]. Essen-
tially, it is an interprocedural data-flow analysis [10, 12]
to approximate the semantics of string manipulation ex-
pressions of a program. The analysis is similar to a pointer
analysis [3] for imperative languages or a control-flow
analysis(0-CFA) [17] for functional languages. It ap-
proximates the set of possible strings that the program
may generate for a particular string variable at a particu-
lar program location of interest; these locations are called
hotspots. The string analysis produces a finite state au-
tomaton (FSA) that conservatively approximates the set of
possible strings for each hotspot specified; that is, the au-
tomaton accepts a larger set of strings than that is actually
produced by the program, for that hotspot. In our earlier ex-
ample,the statement
return statement.executeQuery(query);

is a hotspot for that program.
The string analysis works on Java bytecode. It starts by

finding the hotspots in the Java program. We simply mark,
in the program, every location with a call to the method
executeQuery (such as return statement.execute-
Query(query) in our example) as a hotspot. Then the
analysis abstracts away the control flow of the program, and
creates a flow graph representing the possible string expres-
sions. The flow graph captures the flow of strings and string
operations in a program; all else is abstracted away. The
nodes in a flow graph correspond to variables or expressions
in the program, and the edges represent directed def-use re-
lationships for the possible data-flow. For example, for the
statement
query = str1 + str2;

the following graph nodes and edges are created:

������� �
�
	���
��� ����� ���

�������
�

In the graph, the node labeled “concat” represents the con-
catenation expression str1 + str2, with the edges la-
beled 1 and 2 the corresponding first and second arguments.

Java
Class
Files

Static String
Analysis
(Section 3.1)

Finite
State

Automaton

Type
Environment
Reconstruction
(Section 3.2)

Automaton with
Syntax + Type

Labels

Type-Checking
(Section 3.3)

TYPE
ERRORS!

ERRORS!

CORRECT
!

SQL
Grammar

Database
Schema

Figure 1. Overview of the analysis.

The edge between nodes labeled “concat” and “query” in-
dicates the assignment. The other expressions and opera-
tors are treated similarly; full details can be found in [6].
Next, this flow graph is reduced to an extended context-free
grammar 1 by treating the nodes of the flow graph as ter-
minals and nonterminals of the grammar. For example, the
flow graph given earlier in this section yields the follow-
ing grammar rules:

� ����� � � � �� ����� �

where
� � , � � , � , and

�
correspond to the respective nodes

for str1, str2, concat, and query. In general, the gram-
mar generated from a flow graph is not regular (not even
context-free as mentioned earlier). To make further analy-
sis computationally tractable, we widen this grammar to a
regular language. The widening step allows syntax check-
ing of the generated strings against a grammar. 2 Since the
(fairly technical) details of this step are not the main fo-
cus of this work, we omit them here, and refer the inter-
ested readers to [6].

2.2. Context-Free Language Reachability

In the next step, the FSA is processed by a context-
free language (CFL) reachability algorithm which forms the
foundation of our analysis. We give a brief description of
the problem and the algorithm here (cf. [14,15] for details).
The CFL-reachability problem takes as inputs a context-
free grammar � with terminals � and nonterminals 	 , and
a directed graph
 with edges labeled with symbols from

1 This extension handles operators or functions, if any.
2 By contrast, the grammar is narrowed to a finite state automaton in [6]

for syntax checking. This is done because, in general, checking the
containment of a regular language by a context-free language is unde-
cidable [9]. However, it is possible to work directly with the grammar
from the flow graph or with one widened to a context-free grammar
because the intersection of a context-free grammar with a regular ex-
pression is still context-free, and furthermore, it is easy to check the
emptiness of a context-free grammar.

���	 . Let
�

be the start symbol of � , and � � ����	 .
A path in the graph is called an

�
-path if its word is de-

rived from the start symbol
�

. The CFL-reachability prob-
lem is to find all pairs of vertices � and � such that there is
an
�

-path between � and � .
The algorithm to solve the CFL-reachability problem

uses dynamic programming, and also relates to dynamic
transitive closure [23], 3 which underlies many standard
program analysis algorithms such as type systems based on
subtyping, alias analysis, and control-flow analysis [2,3,17].
The algorithm first normalizes the grammar � such that
each production’s right-hand side contains at most two sym-
bols. This is easily done by introducing new nonterminal
symbols. Then new derived edges are added to
 based on
the productions of � . For example, suppose � has the pro-
duction � ���������

, and
�

contains the following edges:
� �

The algorithm adds a dotted edge:

�
�

�

The algorithm repeatedly applies the above transformation
to the graph
 until no more new edges can be added. Any
pair of nodes � and � with an edge labeled � in the final
graph has an � -path from � to � in the original graph
 .
The running time of the algorithm is cubic in both the size
of the alphabet and the size of the graph, i.e., ����� ��� !�
�� #" .

We make use of CFL-reachability in two distinct phases
of our analysis, as we explain next.

2.3. Overview of Our Analysis
Figure 1 gives an overview of our analysis. There are

two main steps. In the first step (detailed in Section 3.1),
we generate a finite state automaton to conservatively ap-
proximate the set of object-programs. In the second step,

3 The problem is to maintain transitive closure of a graph while new ba-
sic graph edges can be added during graph closure.

�
a.

� � � � � � � � � � � 	 � �
 � � � � � . . .

� ���������
b.

� � � ��� � 	�����
���� � ���� � ��	���� ��������������	�� ������	�� ���� ��
��������� �
����

��� � � ��������� ���� �������!�� " . . .

$
���!
���� ��

Figure 2. Automaton transformation illustrated.

we process this automaton in two sub-stages. First, we ap-
ply CFL-reachability, using SQL grammar, to find scoping
information and typing contexts (Section 3.2). Second, we
apply CFL-reachability again, using the database schema,
to perform type-checking (Section 3.3). Semantic errors, if
found, are reported during both phases. Note that our anal-
ysis differs from a standard SQL type-checker, which ana-
lyzes a single query at execution time. We statically analyze
a potentially infinite set of queries.

3. Main Steps of Our Analysis
In this section, we present the major components and

steps of our analysis, and illustrate them with our working
example from Section 1.

3.1. Automaton Generation and Transformation
In this first step, we apply the string analysis in [6] to

generate, for each hotspot in the program, an FSA repre-
senting the possible set of query strings that the hotspot can
have. The transitions of the automaton are over single let-
ters from the alphabet of the source language. For conve-
nience, we perform a simple compaction on the automaton,
so that all transitions are over keywords, delimiters, or liter-
als in the object-language.

Consider again the example from Section 1. Figure 2a
shows a fragment of the automaton that the string analysis
in [6] produces. After our transformation of the automaton,
we have the FSA shown in Figure 2b. 4 To achieve this, we
use a depth-first traversal of the original automaton, which
groups letters into tokens (in the same sense as those in the
lexical analysis phase of a compiler [1]). We then use these
tokens to create an equivalent FSA with transitions over the
keywords, literals, and delimiters of our object-language. In
addition, white-spaces are removed from the automaton in
this step.

3.2. Reconstruction of Type Environments
For an SQL query, the declared types of various columns

are given in a database schema. This is similar to the no-
tion of a type environment in standard type systems for
language such as C, Java, and ML to look up types of vari-
ables. To illustrate, consider the sample SQL query

4 In the figure, % denotes an unknown string.

& � ��������� ' ��
���� ()��	��*� + ��
�,����-

��
�,�����.
/ 0 1

Figure 3. An FSA with two table contexts.

SELECT NAME FROM EMPLOYEE WHERE SALARY > 20,000.
The information that NAME is of type varchar, and SALARY
is of type integer is not explicit in the above query ex-
pression, but stored separately in the table EMPLOYEE’s
schema. For the same reason, our generated FSA does
not have this information either. We need to recon-
struct it from the database schemas. We now describe
how we use the CFL-reachability analysis to obtain the
column-name to type mapping from the schema.

In this step, we assume that the generated FSA is syntac-
tically correct, i.e., the query strings produced by the FSA
are all of valid SQL syntax. This assumption is enforced by
the string analysis [6] because it performs syntax-checking
of the generated automaton.

The type environment reconstruction for the FSA is non-
trivial; the type of any given column depends upon its con-
text, i.e., where it occurs. Depending on the structure of the
FSA, a given column may appear in many contexts. For ex-
ample, suppose we have the automaton shown in Figure 3.
The type of the column NAME can be different depending
on which one of the two paths in the automaton is taken. In
one path, its type is determined by the schema’s definition
of TABLE1; in the other, it is determined by that of TABLE2.

Our solution to this problem is based on a variant of the
CFL-reachability algorithm. We apply the algorithm with
the context-free grammar for SQL queries and our trans-
formed automaton as inputs. In essence, we use the CFL-
reachability algorithm to parse the automaton. This is very
similar to general context-free parsing (which is also of cu-
bic time complexity). However, instead of parsing a partic-
ular query, we work with an automaton which produces po-
tentially infinite number of query strings.

In Table 1, we show an excerpt of the grammar we
use for SQL’s SELECT statement [7]. Nonterminals are in
italic, and terminals are using the typewriter font. Our
grammar is not yet complete, but could be easily made so
by adding more rules. The CFL-reachability algorithm de-
scribed in [14] requires a normalized grammar such that the
right-hand side of any production has at most two symbols.

Nonterminal Productions
select stmt ::= select ;
select ::= select part1 select part2
select part1 ::= SELECT column list
select part2 ::= FROM table list

| FROM table list where clause
where clause ::= WHERE condition
condition ::= logical term

| NOT logical term
| condition OR logical term
| exp simple IN subquery

. . . Additional rules
elided

Table 1. SQL SELECT statement grammar.

Our implementation of CFL-reachability has been extended
so that it works with productions with at most three sym-
bols on their right-hand sides. This extension allows us to
use more naturally written grammars.

Our modified CFL-reachability algorithm enables us to
find the type context (i.e., type environment) of each path
through the automaton. We can then use this information to
match every column with all of its possible types. The type
contexts are discovered by annotating the automaton with
the derivation in use while running the CFL-reachability al-
gorithm. In particular, whenever the CFL-reachability pro-
cess adds a nonterminal edge to the automaton, we store
references in that edge to the edges making up this deriva-
tion. This is similar to actions in syntax-directed transla-
tion [1]; we build a collection of parse trees for the au-
tomaton. In fact, the complete type environment reconstruc-
tion step is similar to attribute grammars in syntax directed
translation [1].

To illustrate this process, we will run through a few steps
using an example. First, let us return to the simple exam-
ple in Figure 3. Here are a few steps (shown in Figure 4)
of running our algorithm for discovering the type environ-
ments:

Figure 4a. Because NAME is not a keyword, it must be an
identifier, so an edge labeled id is added between nodes 2
and 3.

Figure 4b. The same goes for the two edges between
nodes 4 and 5. However, the id edge from node 4 to 5 has
two distinct derivations. This is different from the standard
CFL-reachability algorithm. With the standard algorithm, if
an edge to be added is already present, then nothing needs
to be done for that edge. In our example, suppose there is al-
ready an id edge from 4 to 5, which was added through the
edge labeled TABLE1. When the edge labeled TABLE2 is to
be processed, another id edge from 4 to 5 is to be added.
However, the edge is already present in the automaton. In-

a. & � ��������� ' ��
����
���

(��	��*� + ��
�,����
��
�,�����.

/ 0 1

b. & � ��������� ' ��
����
���

(��	��*� + ��
�,����
��
�,�����.

���

/ 0 1

c. & � ��������� ' ��
����
���

(��	��*� + ��
�,����
��
�,�����.

���

�����
	�� ������

/ 0 1

d. & � ��������� ' ��
����
���

(��	��*� + ��
�,����-
��
�,�����.

���

�����
	�� ������

�����
	�� 	 ��� �

/ 0 1

Figure 4. Sample steps in discovering type
environments.

stead of simply stopping (as is done in the standard CFL-
reachability algorithm), our algorithm adds a second deriva-
tion reference to the already-present id edge. This allows
each context to be discovered when searching through the
derivation edges. Notice that we can handle loops in the au-
tomaton by exploiting its simple looping structure. Due to
space limitations, we omit the details here.

Figure 4c. After these id edges are added, an edge labeled
table name is added from node 4 to node 5, which has a sin-
gle derivation—the id edge from node 4 to node 5.

Figure 4d. Then, an edge labeled table list will be added
from node 4 to node 5. Next, an edge labeled select part2
will be added from node 3 to node 5. This process continues,
and eventually an edge labeled select stmt is added from
node 1 to node 6 (final graph not shown due to space limi-
tations).

Now let us go back to our example in Section 1. After
running our type environment reconstruction algorithm on
this example, there is an edge from the start state of the
automaton to its final state, labeled select stmt. The edge
has a single derivation with two parts: a select edge and
an edge labeled with the delimiter ;. The select edge also
has a single derivation: a link to a select part1 edge and a
link to a select part2 edge. These links form different parse
trees for the automaton. By a top-down traversal of parse
trees, we can determine which tables apply to which col-
umn lists, and with the schema for these tables, we can de-
termine the possible types of each column. Then, we add
type edges to the graph, replacing column names with their
corresponding types. Notice, because of the possibility of
multiple contexts, a column may have more than one type.
In our example, we know that RETAIL is a column in the ta-

Nonterminal Productions
integer ::= integer + integer

| integer - integer
| integer * integer
| (integer)
| ABS integer

decimal ::= (decimal)
| integer / integer

varchar ::= (varchar)
| UPPER varchar
| varchar || varchar

boolean ::= integer compare op integer
| integer IN (integer)

Table 2. SQL SELECT statement type-system
grammar

ble INVENTORY, so we add an edge labeled integer to the
graph. When we come across a primitive such as the edge
labeled 100, we determine that it is not a column name, and
must be a literal. At this point, we determine the literal’s
type and add it to the graph as an edge.

In type environment reconstruction, some errors can be
discovered. For instance, we can determine whether there
is an invalid column that does not exist in any of the appli-
cable tables for that column. If this happens, an error can
be reported as either an improperly-quoted literal, or a non-
existent column. Other errors are also detected in this step,
including duplicate table references (the same table appears
more than once in the FROM clause), duplicate uses of the
same table alias (two tables are assigned the same alias),
and non-existent tables (the schema does not have a table
referenced in the FROM clause).

3.3. Type-Checking

In the final step of the analysis, we perform type-
checking on the automaton produced in the previous step,
as described in the previous section. At this stage, the au-
tomaton has been annotated to show the types of col-
umn names and literals. SQL’s simple type system lets us
treat the type system as a context-free grammar. For ex-
ample, the type rule for additions over integers looks
like: ����� � ��� ��� ���	��
 ����� � ��� ��� �����

����� ��� � � ��� ��� �����

The above rule can be viewed as equivalent to the gram-
mar rule:

� ��� �����
 � � ��� ��� ���	��
 � � ��� �����
 , which states that
an integer plus an integer is again an integer. The other
rules for type-checking SQL expressions can be handled
in a similar manner. This is possible due to SQL’s simple
type language—a collection of atomic types. This is in con-
trast to general purpose programming languages that have

�
a.

	�����
 ��� � *��� �

�
b.

	�����
 ���
� ���������

� ����
� ���������

�

�
c.

	�����
 ���
� ���������

� ��� � ��� 	�� � � � ��������� � � ���������

� *���
� ���������

�

�

� ��� � ��� 	�� � � � � ��� � ��� 	 �

d.
	�����
����
� ���������

� ��� � � ��	

� ����
� ���������

�

Figure 5. Sample steps of running CFL-
reachability using the type grammar.

more complicated type structures. Table 2 shows a small
subset of the context-free grammar for the type-checking
rules of SQL’s SELECT statement. All the rules are straight-
forward, except the last one, which merits some explana-
tion. The rule says that the conditional expression IN is
well-typed if the sub-query inside the parentheses (here re-
quired to be of type integer) reduces to a single column
of type integer, when the outer expression is an integer.
Thus, this rule requires the sub-query to be of the correct
type. A similar rule, not shown here, exists for the varchar
type. Notice that we did not specify all the rules, for exam-
ple the rules for the SELECT statement. These rules are ob-
vious, and we omit them in this paper due to space limi-
tations. As in a standard type system, if none of the rules
apply for a language construct, then a type error is discov-
ered.

We apply the CFL-reachability algorithm using the
grammar in Table 2 to propagate type information. If dur-
ing the process, there is an expression that does not match
any one of the right-hand-sides of the rules, then an error is
discovered. In some sense, there are implicit error rules in
the grammar, such as

��
�
 	
 ����� � ������� ��� ���	��
 � � �
 ��! �
 .
We illustrate type-checking with an example. Consider

the small snippet shown in Figure 5a taken from our work-
ing example in Section 1. Before type-checking begins, the
automaton is annotated with type information for the col-
umn names and literals, as shown in Figure 5b. Figures 5c-
d show a few steps of type propagation using our grammar
rules.

If our type-checking step does not produce any edges la-
beled errortype, then all the object-programs specified by
the automaton are type-correct. On the other hand, if type-
checking does produce an errortype edge, the analysis re-
ports potential errors and displays a sample derivation that
causes the type error. Note, however, that a reported error

. . . �
� �

� � � ��� � �

��� ��� � ����� �

��� �

� ��� � ��� 	

	�����
���� � ���� � . . .

Figure 6. Discovering a type error.

may not be an actual error in the original Java program
due to imprecision in the automaton characterization of the
object-programs. In the case of SQL, our analysis is precise
under the assumption that all the object-programs specified
by the automaton are feasible in the original Java source
program.

Figure 6 shows the edge errortype being added to a snip-
pet of our example program, corresponding to the concate-
nation error between the character ’$’ and the numeric re-
sult of the division. Note that many irrelevant edges are
omitted in the figure. The two other errors present in our
example can also be discovered in a similar manner.

3.4. Correctness of the Analysis

We now state and briefly argue the soundness of our anal-
ysis. Due to conservative approximations, our analysis may
report a spurious (infeasible) error. In Section 4, we present
experimental data to support the claim that the analysis is
rather precise and has low false-positive rates.

Theorem 3.1 (Soundness) Our analysis is sound. In other
words, if the analysis does not report any errors, then the
generated object programs are type-safe.

Proof. [Sketch] We give a brief justification of the sound-
ness theorem. We assume that the automaton that we oper-
ate on is a conservative approximation of the set of possible
SQL query strings for a particular hotspot. This is guaran-
teed by the correctness of the string analysis in [6]. We also
make the assumption that the query strings produced by the
automaton are syntactically correct, 5 which is crucial for
the soundness of our analysis. Next, we can show that CFL-
reachability considers all possible derivations of the query
strings because the query strings are all of the correct syn-
tax. Thus, the type-environment reconstruction step is cor-
rect, meaning that a column name is considered in all pos-
sible tables. For example, if we annotate an edge labeled by
a column with the type integer, there must be a path in the
automaton containing that edge such that the particular col-
umn is found to be of type integer. At the end of this step, all
columns are labeled with a superset of its actual types. Fi-
nally, if the resulting automaton contains a path with a type
error, it will be detected because CFL-reachability consid-
ers all possible edge combinations.

	

5 This can be enforced by the string analysis in [6].

4. Experimental Evaluation

We have built a prototype tool, embodying our approach,
and have tested its ability to detect programming errors in
Java/JDBC applications. As any SQL developer will attest,
every database vendor implements a different version of
SQL; thus checkers such as ours require some porting ef-
fort for each different database. We have implemented our
analysis for the SELECT statement specified by the gram-
mar for Oracle version 7 [7]. This grammar is a subset
of what is specified in the SQL-92 standard. Adding sup-
port for other statements or different vendors is not diffi-
cult, because we have separated the type environment re-
construction and type-checking steps. In most cases, we
would simply need to modify our syntax grammar and/or
type-system rules (specified as input files to our analysis)
and the recursive-descent code to traverse the parse trees,
and map column names with their possible types. With the
goal of having a sound analysis, we have built a strict se-
mantics into our tool: if a program is deemed type-safe by
our analysis, it should be type-safe on any database system.
Because the semantics of many database systems is not as
strict as the one enforced by our tool, the tool may report an
error which some database systems consider legitimate.

Our tool is implemented in Java and uses the string anal-
ysis in [6] for computing the FSA, which in turn uses the
Soot framework [20] to parse class files and compute in-
terprocedural control-flow graphs. We have tested our tool
on various test programs, including student team projects
from an undergraduate software engineering class, sample
code from online tutorials found on the web, and code from
other projects made available to us. Table 3 lists the test
programs and summarizes our results. For each test pro-
gram, we list the Java source code size (number of lines of
source code), number of hotspots in the program, number of
columns in the database schema, generated automaton size
(number of edges and nodes), analysis time (split into au-
tomaton generation and semantic analysis), numbers of var-
ious warnings and errors found (cf. Table 4). Note that the
test programs are sorted by automaton size, since it is a good
measure of the complexity of the programs for our analysis.
All experiments were done on a machine with a 2GHz In-
tel Xeon processor and 1 GB RAM, running Linux kernel
2.4.20. The results indicate that our analysis is rather pre-
cise, i.e., with low false-positive rates. Because our analy-
sis is sound, if the tool does not report any error on a pro-
gram, then we have verified that the program is type-correct.
In addition, although we have not tuned the performance of
our implementation, the analysis is still quite efficient; it
was able to analyze each of our test programs within a mat-
ter of minutes. We expect our analysis to scale to large sys-
tems, because analyses based on the same underlying algo-
rithms have been shown to scale to millions of source lines
of C [8, 18]. Further experiments are needed to verify our

Test Programs Size Analysis Time (sec) Errors Found
(S) Student Java Total
(W) Web Download Program Schema Automaton Automaton Semantic Total Confirmed False
(I) Industrial (Lines) Hotspots (Columns) Edges/Nodes Generation Analysis Warnings Errors Errors Errors
Smi (S) 1559 1 19 35 / 27 1.5 7.1 0 0 0 0
CFWorkshop (S) 36 5 13 47 / 52 0.6 1.3 0 0 0 0
TicTacToe (S) 2888 2 26 134 / 121 6.4 144.8 3 1 1 0
WebBureau (W) 50 10 21 152 / 162 0.5 2.5 0 1 1 0
Checkers (S) 6615 4 36 181 / 138 11.8 97.8 0 15 15 0
JuegoParadis (S) 6135 13 29 259 / 206 27.0 45.0 0 9 0 9
Reservations (S) 2385 22 54 368 / 383 1.7 29.1 0 0 0 0
OfficeTalk (S) 5812 29 14 655 / 525 7.0 120.8 0 2 2 0
PurchaseOrders (I) 642 51 82 1324 / 1373 1.3 173.3 41 10 9 1

Table 3. Experimental results.

Error Kind Description test programs

Type Concatenation of fields PurchaseOrders
Mismatch with wrong types.
Type Possibly unquoted string PurchaseOrders
Mismatch compared with a varchar column.
Type Quoting a numerical value and Checkers, Office-,
Mismatch treating it numerical. Talk, TicTacToe
Semantic Ambiguous column selection. WebBureau
Error
Semantic Column not found. Checkers,
Error PurchaseOrders
Spurious Column not found PurchaseOrders,
Error (due to imprecision of JuegoParadis

the string analysis).
Comparing a numerical value PurchaseOrders,

Warning with a possibly non-numerical TicTacToe
value.

Table 4. Breakdown of errors and warnings.

claim.
Table 4 shows a breakdown of the kinds of errors that we

found in the test programs. We next explain these errors in
more detail:
Concatenation of fields with wrong types. This
is the same error as in the concatenation ’$’ ||

(RETAIL/100) (Section 1). After discovering this er-
ror in porting a program to a different (more strict)
database, our tool has been used to find all instances of the
error in the “PurchaseOrders” program.
Possibly unquoted string. Assume we have a compari-
son such as NAME = � , where � represents an unknown
string. If there are no quotes in a string that � possibly rep-
resents, then such an error occurs.
Quoting a numerical value. This happens when a nu-
merical value is quoted but still treated as a numerical lit-
eral. This is a common error found in student projects. They
were using MySQL, which permits numerical literals to be
quoted. Many other database systems consider this an er-
ror because quoted numerical literals are of type varchar.
Ambiguous column selection. Our tool detected such
an error in some sample code from a tutorial web-

site (http://web-bureau.com/modules/sql.php).
This error is quite subtle, and it appears unknown. The par-
ticular statement is:
SELECT customer id FROM customers c, orders o

WHERE c.customer id = o.customer id;

The error is that the database does not know which ta-
ble’s customer id to choose. Certainly, it seems not
matter which customer id to select in this particu-
lar statement, but in general, the semantics of the col-
umn list should not depend on the outcome of the WHERE

clause.

Column not found. This error happens when a column
name does not exist in any of the tables in the FROM clause.
We found two distinct causes of this error—one a real er-
ror and the other a spurious error:
Real error The schema of the database does not include
this column. This can be caused by either selecting a non-
existent column, or missing the quotes around a literal, and
thus being treated as a column.

Spurious error This is due to the imprecision in the
string analysis. Consider the following example, where
makeQuery is a public method taking a string parame-
ter tables to construct a FROM clause:
public String makeQuery(String tables)

�
return "SELECT name FROM " + tables; �

The string analysis adds an � edge to the table list of
the FROM clause (meaning any table is possible), in addi-
tion to the concrete table list it finds through analyzing
other input classes. The reason is that this method is pub-
lic, and the string analysis expects other calls to the
method possible and thus views the input classes incom-
plete. The presence of this � edge causes the analysis to
search for the column in an empty table list, which cer-
tainly fails. This is the only kind of spurious errors we
found in our test programs. These errors can easily be fil-
tered out by modifying the string analysis to consider its
input as a complete set of classes

Warning. We found one type of warning in our test pro-
grams. It is the same as the one illustrated in our running ex-

ample in Section 1: to compare a numerical column with a
possibly non-numerical value at runtime.

We have shown that our tool can detect errors in non-
trivial programs. To further evaluate our tool and to pro-
vide a programming aid to students, we plan to experiment
with using the tool in an undergraduate software engineer-
ing class.

5. Related Work

In this section, we survey closely related work. Perhaps
the most closely related is the string analysis of Chris-
tensen, Møller, and Schwartzbach [6] that forms the basis
of our analysis. Their string analysis ensures that the gen-
erated object-programs are syntactically correct. However,
it does not provide any semantic correctness guarantee of
the object-programs. Many domain specific languages have
been proposed for ensuring correctness of dynamically gen-
erated web documents. Most of these are language exten-
sions enhanced with tree manipulation capabilities, instead
of string manipulations that we deal with in this work. In ad-
dition, they usually provide only guarantee of correct syn-
tax; semantic correctness is not guaranteed. We mention
two research efforts in static validation of dynamically gen-
erated web documents such as HTML. In [16] the authors
propose a typed, higher-order template language that pro-
vides safety of the dynamically generated web documents
within the <bigwig> project [5], an extension to Java for
high-level web service development. Their type system is
based on standard data-flow analysis techniques [10, 12].
Another work along the same lines is the work by Braband,
et al [4] to statically validate dynamically generated HTML
documents against the official DTD for XHTML. The work
again is based on a data-flow analysis that computes a sum-
mary of all possible documents at a particular point of the
program. The summary graph is then validated against the
official DTD for XHTML. This work is again done in the
context of the <bigwig> language. In [11], a test adequacy
criterion for data-intensive applications is presented. Our
approach is complementary; static analysis can save test-
ing time, but testing can discover logical defects not related
to SQL query construction.

To be put in a broader context, our research can be
viewed as an instance of providing static safety guarantee
for meta-programming [19]. Macros were the earliest meta-
programming technique, where the issue of correctness of
generated code first arose. Macro programmers using pow-
erful macro programming languages clearly need to worry
about the correctness of the generated code. How can such
macro meta-programs be statically checked for correctness?
The widely used cpp macro pre-processor does little check-
ing, and allows one to write arbitrary macros, without re-
gard to correctness. The programmable syntax macros of

Weise & Crew [22] work at the level of correct abstract-
syntax tree (AST) fragments, and guarantee that gener-
ated code is syntactically correct with respect (specifically)
to the C language. Static type-checking is used to guar-
antee that AST fragments (e.g., Expressions, Statements,
and etc) are assembled correctly by macro meta-programs.
Another issue is scoping of generated names: macro ex-
pansion should not “capture” variable names in an unex-
pected manner. Hygienic macro expansion algorithms, be-
ginning with Kohlbecker et al [13] provide these guaran-
tees. More recent work seeks to extend syntactic and scop-
ing guarantees, with semantic guarantees for the generated
code. The work of Taha & Sheard [19] and others is con-
cerned with (in a functional programming setting) guaran-
teeing that generated code is type-safe. We do not intro-
duce a new macro language, like [22], nor work in a uni-
form functional setting, like [19], with functional languages
both at meta- and target-levels. Our goal is simply to en-
sure that strings passed into a database from an arbitrary
Java program are type-safe SQL queries from the perspec-
tive of a given database schema. We expect that the general
technique outlined in this paper can be extended to apply in
other settings as well.

6. Conclusions and Future Work

We have presented a sound, static analysis technique for
verifying the correctness of dynamically generated SQL
query strings in database applications. Our technique is
based on applications of a string analysis for Java programs
and a variant of the context-free language reachability algo-
rithm. We have implemented our technique and have per-
formed extensive testing of our tool on realistic programs.
The tool has detected known and unknown errors in these
programs, and it is rather precise with low false-positive
rates on our test programs.

For future work, there are a few interesting directions. To
increase the usability of our tool for debugging, it would be
interesting to map an error path that we find in the automa-
ton to the original Java source. One possible approach is to
carry line numbers of the flow-graph nodes in the source
code to the automaton, so that a path in the automaton can
be associated with a set of source lines in the original Java
program. A related problem is to check the correct uses of
the query results in the source program. Consider the fol-
lowing example:

query = ‘‘SELECT NAME, SALARY FROM EMPLOYEE’’;
rset = statement.executeQuery(query);
...
salary = rset.getInt(1); // should be getInt(2)
name = rset.getString(2); // should be getString(1)

The result set rset is a table of pairs of type String (the
NAME column) and int (the SALARY column). The state-
ment salary = rset.getInt(1) attempts to read the

first field of the pair, a string, and treat it as an integer. The
last statement has a similar error. By mapping our analy-
sis results back to the original program, we can detect this
class of errors. The class of embedded SQL command injec-
tion problems [21] in web and database applications is also
interesting to look at. The problem is, without proper input
validation, an attacker can supply arbitrary code to be exe-
cuted by a web or database server, which is extremely dan-
gerous. We plan to extend our approach to deal with this
class of errors. Finally, we have considered SQL so far in
this paper. We believe our technique is general and plan to
investigate how to extend it to analyze dynamically gener-
ated programs in other languages.

Acknowledgments

We thank Anders Møller and Aske Simon Christensen
for useful discussions about this research and several stu-
dents of ECS 160 at UC Davis for providing us with source
code of their projects in the evaluation of our tool. Finally,
we thank the anonymous reviewers of ICSE 2004 for their
valuable comments.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] R. Amadio and L. Cardelli. Subtyping recursive types. In
Proceedings of the 18th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
104–118, 1991.

[3] L. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994. DIKU report 94/19.

[4] C. Braband, A. Møller, and M. Schwartzbach. Static valida-
tion of dynamically generated HTML. In ACM SIGPLAN–
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 38–45, June 2001.

[5] C. Brabrand, A. Møller, and M. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet Tech-
nology, 2(2):79–114, 2002.

[6] A. Christensen, A. Møller, and M. Schwartzbach. Precise
analysis of string expressions. In Proceedings of the 10th In-
ternational Static Analysis Symposium, pages 1–18, 2003.

[7] J. Guyot. BNF index of SQL for Oracle 7. Available at
http://cui.unige.ch/db-research/Enseig-
nement/analyseinfo/SQL7/.

[8] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis us-
ing CLA: A million lines of C code in a second. In Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 254–263,
2001.

[9] J. Hopcroft and J. Ullman. Introduction to Automata The-
ory, Language, and Computation. Addison–Wesley, Read-
ing, MA, 1979.

[10] J. Kam and J. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM, 23(1):158–171, Jan. 1976.

[11] G. M. Kapfhammer and M. L. Soffa. A family of test ade-
quacy criteria for database-driven applications. In Proceed-
ings of the 9th European Software Engineering Conference
and the 11th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 98–107, 2003.

[12] G. Kildall. A unified approach to global program optimiza-
tion. In Conference Record of the ACM Symposium on Prin-
ciples of Programming Languages, pages 194–206. ACM
SIGACT and SIGPLAN, 1973.

[13] E. Kohlbecker, D. Friedman, M. Felleisen, and B. Duba. Hy-
genic macro expansion. In Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming, pages
151–159, 1986.

[14] D. Melski and T. Reps. Interconvertibility of set con-
straints and context-free language reachability. In Proceed-
ings of the 1997 ACM Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM’97, pages
74–89, 1997.

[15] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In Proceedings
of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 49–61, 1995.

[16] A. Sandholm and M. Schwartzbach. A type system for dy-
namic web documents. In Proceedings of the 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 290–301, 2000.

[17] O. Shivers. Control flow analysis in Scheme. In Proceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 164–174, June
1988.

[18] Z. Su, M. Fähndrich, and A. Aiken. Projection merging: Re-
ducing redundancies in inclusion constraint graphs. In Pro-
ceedings of the 27th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 81–
95, 2000.

[19] W. Taha and T. Sheard. Multi-stage programming with ex-
plicit annotations. In Proceedings of the ACM-SIGPLAN
Symposium on Partial Evaluation and semantic based pro-
gram manipulations, pages 203–217, 1997.

[20] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot–a Java optimization framework.
In Proc. IBM Centre for Advanced Studies Conference, CAS-
CON’99. IBM, Nov. 1999.

[21] J. Viega and G. McGraw. Building Secure Software: How
to Avoid Security Problems the Right Way. Addison Wes-
ley, 2001.

[22] D. Weise and R. Crew. Programmable syntax macros. In
SIGPLAN Conference on Programming Language Design
and Implementation, pages 156–165, 1993.

[23] D. Yellin. Speeding up dynamic transitive closure for
bounded degree graphs. Acta Informatica, 30(4):369–384,
July 1993.

