
Osprey: A Practical Type System for Validating
Dimensional Unit Correctness of C Programs

Lingxiao Jiang Zhendong Su
Department of Computer Science

University of California, Davis, CA 95616, U.S.A.
{jiangl, su}@cs.ucdavis.edu

ABSTRACT
Misuse of measurement units is a common source of errors in sci-
entific applications, but standard type systems do not prevent such
errors. Dimensional analysis in physics can be used to manually
detect such errors in physical equations. It is, however, not feasible
to perform such manual analysis for programs computing physical
equations because of code complexity. In this paper, we present a
type system to automatically detect potential errors involving mea-
surement units. It is constraint-based: we model units as types and
flow of units as constraints. However, standard type checking al-
gorithms are not powerful enough to handle units because of their
abelian group nature (e.g., being commutative, multiplicative, and
associative). Our system combines techniques such as type infer-
ence and Gaussian Elimination to overcome this problem. We have
implemented Osprey, a prototype of the system for C programs,
and evaluated it on various test programs, including computational
physics and mechanical engineering applications. Osprey discov-
ered unknown errors in mature code; it is precise with few false
positives; it is also efficient and scales to large programs—we have
successfully used it to analyze programs with hundreds of thou-
sands of lines of code.
Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability, validation; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—program analysis
General Terms: Languages, Reliability, Verification
Keywords: Gaussian Elimination, constraint-based analysis, di-
mensional analysis, measurement units, type systems

1. INTRODUCTION
Scientific applications use measurement units such as meters,

seconds, or kilograms. Misuse of measurement units in these ap-
plications can be disastrous: it is believed that the Mars Climate
Orbiter is lost because data denominated in the English system was
fed into the navigation system which expected metric units [18]. In
order to have correct computational results, it is important to vali-
date dimensional unit correctness of a program. However, standard
type systems do not enforce the correct use of units.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

Physicists routinely use dimensional analysis to check the di-
mensional unit correctness of quantities in equations. Dimensional
analysis assumes that each physical quantity has a meaningful, fixed
unit of measure and the units of both sides of an equation are the
same. Although useful, such analysis can be difficult to carry out,
especially for non-physicists. Many physical equations involve
complicated computation, and it is difficult to track the flow of units
in those equations. Manually applying dimensional analysis to pro-
grams that calculate such equations is even more complicated.

We use the concrete example in Figure 1 to illustrate unit errors
and explain our analysis. For now, please ignore those shaded to-
kens starting with a $, such as $unity : they are unit annotations
for our type system. The code computes an electron’s final energy
using the formula (adapted from Brown’s work on SIUNITS [4]):

1

X0

= 4αr2

e

NA

A
{Z2[Lrad − f(Z)] + ZL

′

rad}

We briefly explain the physical meaning of the variables: α is
the fine structure constant; re is the radius of an electron; NA is
the Avogadro’s number; Lrad and L

′

rad are Tsai’s constants; X0 is
radiation length; and f(Z) is treated as zero in the code.

The code has two unit errors, neither of which can be detected
by the standard C type checker: (1) Although the name of the func-
tion radiationLength implies that the unit of its return value is
that of length, it is actually a unit of area density, for example,
kilogram*meter−2. The return statement in radiationLength

should return the reciprocal of the original expression; (2) The ar-
gument of exp in the return statement of finalEnergy should be
unitless according to the Π theorem in physics.1 Considering
this together with the first error, the argument should be “thick
* density / X0.” Unit errors occur for many reasons, such as
misunderstanding physical meaning of equations or simply pro-
gramming errors. It is difficult for programmers to apply manual
dimensional analysis to discover these errors because of function
calls, structures, pointers, and other language constructs. It is thus
desirable to mechanize dimensional analysis. Although many ap-
proaches exist to support automatic dimensional analysis, there is
not yet a practical method for verifying unit correctness of large C
programs. We defer a detailed survey of related work to Section 7.

In this paper, we design a type system for automatic dimensional
analysis. In our system, we model units as types in programming
languages and reduce dimensional analysis to type checking. How-
ever, the semantics of units is more complicated than that of stan-
dard types. Units can be operated on with arithmetic operations,
such as multiplication, division, and square root, and they form an

1According to the Buckingham’s Π theorem [9] in physics, parameters and
return values of a transcendental function (e.g., exponential, logarithmic, or
trigonometric functions) should be unitless [26].

1 double pow(double, $unity double);

2 $unity double log($unity double);

3 $unity double exp($unity double);

4 extern $unity double alpha, NA;

5 extern $meter double re;

6 typedef struct {

7 $kilogram double atomicWeight;

8 $unity double atomicNumber;

9 } Element;

10 double radiationLength(Element * material) {

11 double A = material->atomicWeight;

12 double Z = material->atomicNumber;

13 double L = log(184.15 / pow(Z, 1.0/3));

14 double Lp = log(1194.0 / pow(Z, 2.0/3));

15 return (4.0*alpha*re*re) * (NA/A)

16 * (Z*Z*L + Z*Lp);

17 }

18 double finalEnergy(Element * material,

19 $kilogram*meter−3 double density,

20 $meter double thick,

21 $kilogram*meter2*second−2 double initEnergy)

22 { double X0 = radiationLength(material);

23 return initEnergy / exp(thick / X0);

24 }

Figure 1: Sample code with unit errors.

abelian group.2 We thus need more powerful algorithms to perform
type checking for unit correctness. Our type checking algorithm
combines both standard type checking and Gaussian Elimination
methods to validate units. As a novel contribution, our system can
also validate the factors used for converting one unit to another of
the same dimension. Our goal is to have a system that is sound
(does not miss any errors), scalable (can analyze large programs),
precise (does not report many spurious errors), and usable (is easy
for programmers to use).

We have implemented Osprey, a prototype of the system for C
programs meeting this goal. Ignoring certain unsafe features of C,
Osprey is sound: if it does not find unit errors in a program, then the
program is guaranteed to be free of unit errors. To validate the other
claims (i.e., being precise, scalable, and usable), we have exten-
sively evaluated Osprey on various test programs, including com-
putational physics and mechanical engineering applications. Os-
prey discovered unknown errors in mature code. It is also precise
with few false positives in our experiments. It is efficient and scales
to large programs with hundreds of thousands of lines of code. It
is also easy to use because it requires only lightweight annotations
(in the form of simple type qualifiers) and is fully automatic.

The rest of the paper is structured as follows. We first give an
overview of our system (Section 2). We then present details of the
components in the system (Section 3), followed by a discussion
of its implementation (Section 4). Next, we show experimental
results and evaluation of Osprey (Section 5) and discuss its current

2An abelian group is a finite or infinite set of elements together with a bi-
nary operation (with multiplication as the operation on units) satisfying a
few properties: closure, associativity, commutativity, and existence of iden-
tity and inverses.

ERROR: The constraint:

u_20_thick = u_23_thick_DIV_X0 * u_22_X0

is reduced to:

meter1 = meter2kilogram−1.

Figure 2: Sample error report for code in Figure 1.

limitations and possible ways to enhance it (Section 6). Finally, we
discuss related work (Section 7) and conclude (Section 8).

2. OVERVIEW OF OUR APPROACH
Our analysis is cast as a constraint-based type inference system,

consisting of a definition of types, a set of type checking rules, a
constraint generation phase, and a constraint solving phase. Given a
program, constraints are generated based on the definition of types
and type checking rules. The constraints are then solved, and errors
will be reported if the constraints are unsolvable. In the following,
we present the type system along with its prototype implementation
Osprey, to make it more concrete.

2.1 Users’ View
To users, our system works like a standard type system. Users

assign types (units) to program variables and other objects, and the
system checks type correctness of the program and may issue error
reports for users to fix these errors.

In practice, Osprey should be familiar to users because the unit
annotations are analogous to types. Consider again the sample code
in Figure 1. The tokens starting with a $ are unit annotations. The
units represented by these annotations should be self-explanatory;
kilogram1*meter2*second−2 is actually a unit of energy. Os-
prey provides aliases and abbreviations for commonly used units.
For example, the aliases and abbreviations unity, m, kg, s, and E
are used to represent unitless, meter, kilogram, second, and the
aforementioned unit of energy, respectively. Our later discussions
will use some of these abbreviations.

Osprey issues the error report shown in Figure 2 for the sample
code. In the error report, u 20 thick represents the unit of thick
declared on line 20; u 23 thick DIV X0 represents the unit of the
expression “thick / X0” on line 23; u 22 X0 represents the unit
of “X0” declared on line 22. The division in the original program
is rephrased as multiplication in the error report.

Such a report means that the code corresponding to these unit
variables contains a unit error. By examining the code in Figure 1,
we see that on line 23, the unit of the argument for exp must be
unitless (according to the Π theorem, cf. Footnote 1), and thus
u 23 thick DIV X0 is unity and X0 should have the same unit as
thick, i.e., meter, but in fact it is meter2*kilogram−1 accord-
ing to the error report. After checking the origin of the value of X0,
we know that either the return value of radiationLength or the
way we use the function is problematic. Thus, such error reports
may help users to fix the errors mentioned in Section 1.

2.2 Internal View
Figure 3 depicts the internals of Osprey. We use a specialized

type definition for units (Section 3.2) and a set of unit constraint
generation rules (Section 3.3) for the constraint generation phase.
Because of the abelian group nature of units, the generated con-
straints may involve equalities, multiplications, or inverses. The
constraints that involve only equalities are resolved by the con-
straint resolution engine—Banshee [17]. We then use the (partial)
solution from this phase and simplify all constraints using a tai-
lored union/find (U/F) engine to reduce the number of unit vari-
ables and constraints. The result is subsequently fed to a Gaussian

Constraint Solver
(Section 3.4)

C Parser and
Semantic
Checker

AST with
Type and
Unit Info

Banshee

Unit
Types

(Section 3.2)

Constraint
Generation

Rules
(Section 3.3)

Constraint
Generator

Error
Reports

Program
with Unit

Annotations

GE

U/F

Figure 3: Internal structure of Osprey.

Elimination (GE) engine (Section 3.4). During this solving phase,
whenever a unit error is discovered, an error report will be issued
to inform users of the error.

3. TYPE SYSTEM FOR UNIT CHECKING
3.1 Dimensions and Units

We first introduce properties of dimensions and units. Every di-
mension can be derived from the seven base dimensions in the In-
ternational System of Units (SI) [12]. Each base dimension has a
corresponding base unit, but may have more than one unit. For ex-
ample, meter is the base unit of length, while centimeter and
foot are also units of length. Each unit of a dimension can usu-
ally be converted to other units of the same dimension by multiply-
ing a unit factor. For example, 0.01 is the unit factor converting
centimeter to meter because 1meter = 100centimeter. Unit
prefixes in SI, such as kilo and milli, are used to derive units and
can be viewed as unit factors.

3.2 Unit Types
We model units as types and define a unit type language:

ut ::= meter | kilogram | second | ampere | kelvin

| mole | candela | unity | ut1 ∗ ut2 | ut
−1 | f | δ

cut ::= ut | ref (cut) | struct(cut1, . . . , cutn)

| lam(cut0, cut1, . . . , cutn)

The abelian group for units is defined by the grammar for ut: The
first seven elements are the seven base units; unity denotes the
identity; multiplication is denoted by the symbol ∗; ut−1 denotes
the inverse element of ut; and the symbol f denotes a unit factor.
We also introduce unit variables, δ, to represent unknown units.
Unit types without variables, such as meter and “kilogram ∗
meter−2 ∗ 2.2,” are called unit constants.

To express programming language constructs, we also introduce
composite unit types (cut). The last three production rules for cut

define unit types for pointers, structures, and functions respectively.
In lam, cut0 denotes the unit type of a return value; cut1, . . . , cutn
denote the unit types of fields (of a structure) or parameters (of a
function). These three kinds of unit types have no real physical
meaning, but they are helpful for tracking flow of units over these
language constructs. For example, in the code in Figure 1, the argu-
ment material to the function radiationLength is of the type
ref (struct(kilogram,unity)).

3.3 Unit Constraints
We now introduce unit constraints to model the flow of units in

a program. Unit constraints are mainly of two forms: ua = ub or
ua = ub ∗ uc, where ua, ub, and uc are either unit variables or
constants. Due to space constraints, instead of giving the formal
constraint generation rules in our system, we illustrate constraint
generation in Osprey with the sample code in Figure 1. Interested
readers can find a formal description in the full paper [13].

We follow the standard technique of constraint generation in
constraint-based program analysis. The idea is natural: we essen-
tially perform a recursive traversal of the abstract syntax tree (AST)
of a program and generate constraints for each node based on the
node’s corresponding generation rule. Constraint generation rules
can be roughly classified into two categories: declarations and ex-
pressions. The former changes the unit environment (which maps
program variables to unit types) and may indirectly generate new
constraints, while the latter generates new constraints directly and
may affect the unit environment.

Figure 4 shows constraints generated for some representative
fragments of the code in Figure 1. As for notation, mappings en-
closed in [] are to be added into the current environment, and con-
straints enclosed in {} are to be generated when the corresponding
code is being analyzed. We explain some of the rows in the figure:
Row 1 The unit variables u 2 log@return (for the return value)

and u 2 log@ 1 (for the parameter) are both unitless.
Rows 3 and 4 These two rows illustrate how structures are mod-

eled in our system. When a field is defined within a structure,
a new mapping for the corresponding unit variable is added,
for example, the unit variable u 6 unamed@atomicWeight

for the field atomicWeight in the anonymous structure is
mapped to kilogram; when a field is accessed, the corre-
sponding unit variable is used to generate constraints, such as
the constraint in row 4. A field of a structure corresponds to
a fixed unit variable, and thus different instances of the struc-
ture always have the same unit. This kind of modeling of
fields within a structure is called field-level field-sensitivity.

Row 5 This row shows how constants are modeled. A fresh vari-
able u 13 const#1 DIV const#2 (for the division) is cre-
ated and a new constraint among the variables is generated.
The variables u 13 const#1 and u 13 const#2 are for the
second and third constants on line 13 and both unity.

Rows 6 and 7 These rows show the effects of the calls to pow. Ac-
cording to the function declaration on line 1 in Figure 1, there
is no unit annotations for the first parameter and the return
value, and Osprey considers them to be polymorphic (i.e.,
different calls to the same function are treated independently
and thus the units of the polymorphic elements can be differ-
ent at the different call sites), while the second parameter is
unitless. Constraints relating parameters and actual argu-
ments are generated at the call sites. To distinguish the two
call sites, different instances of the polymorphic variables are
needed. We can see in Figure 4 that the unit variable for
the first parameter u 1 pow@ 1 and that for the return value
u 1 pow@return are instantiated using the position informa-
tion of the call sites, while the unit variable for the second
parameter u 1 pow@ 2 is kept the same. Such a technique
is called syntactical instantiation and is commonly used to
implement context-sensitive analysis. More details on poly-
morphism and context-sensitivity are given in Section 4.3.

Row 11 This code involves a function call and an assignment. The
function call is treated the same as the ones to pow, except
that we also need to instantiate the set of constraints for the
function body, usually referred to as a function summary and

Row Line # and Source Code Modification to Unit Environment Generated Constraints
1 2 $unity...log($unity...); [u 2 log@return : unity, ∅

u 2 log@ 1 : unity]

2 4 $unity double alpha; [u 4 alpha : unity] ∅
3 7 $kilogram...atomicWeight; [u 6 unamed@atomicWeight : kilogram] ∅
4 11 A =...->atomicWeight ∅ {u 11 A = u 5 unamed@atomicWeight}
5 13 1.0/3 [u 13 const#1 DIV const#2 : δ] {u 13 const#1 DIV const#2 * u 13 const#2

= u 13 const#1}
6 13 pow(Z,...) [u 1 pow@return 13 : δ] {u 1 pow@ 1 13 = u 12 Z,

u 1 pow@ 2 = u 13 const#1 DIV const#2}
7 14 pow(Z,...) [u 1 pow@return 14 : δ] {u 1 pow@ 1 14 = u 12 Z,

u 1 pow@ 2 = u 14 const#4 DIV const#5}
8 16 Z*Lp [u 16 Z MUL Lp : δ] {u 16 Z MUL Lp = u 12 Z * u 14 Lp}
9 16 (Z...+...) ∅ {u 16 Z MUL Z MUL L = u 16 Z MUL Lp}
10 22 double X0 = ...; [u 22 X0 : δ] ∅
11 22 X0=radiationLength... ∅ {u 22 X0 = u 10 radiationLength@return 22}

Figure 4: Sample generated constraints.

generated according to the body. The combination of func-
tion summaries and syntactical instantiation enables perform-
ing inter-procedural analysis efficiently. Due to space limita-
tions, we do not show the complete set of constraints.

Another common situation involves user-defined unit conversions.
For example, consider the following code:

$millimeter double mm;

$inch double inch;

mm = inch*($f)25.4;

Such a program may produce physically meaningful results if 25.4
is used as a unit factor for converting inch to millimeter. In or-
der to validate units, Osprey needs to know whether 25.4 is such
a unit factor or just an arbitrary constant. Therefore, a user needs
to tell Osprey that 25.4 is a unit factor using $f. Based on such
annotations, Osprey generates a constraint u mm = u inch*25.4

and verifies the correctness of this unit conversion during the sub-
sequent constraint solving phase.

3.4 Constraint Resolution
We now discuss how to solve unit constraints. The general form

of a unit constraint is:
u1 ∗ . . . ∗ un = v1 ∗ . . . ∗ vm

where ui’s and vi’s are either unit variables or constants. In our
analysis, n + m is usually 2 or 3 due to the structure of C abstract
syntax trees and the constraint generation rules.

Constraints of the form u = v, where u and v are both variables,
are standard equality constraints. Given a set of such constraints,
Banshee [17] can efficiently compute an equivalence class repre-
sentative (ECR) for each unit variable u, and the unit of u is the
same as that of its ECR. If all constraints are in such a form, we
can completely rely on Banshee to solve them in linear time.

Constraints that involve multiplications and unit constants, such
as u1 = u2 ∗ u3 and u = a (a represents a unit constant), require
different techniques. Wand and O’Keefe [26] use Gaussian Elimi-
nation (GE) and a specialized unification algorithm to solve equa-
tions. The algorithm in their paper handles fewer units, and their
system is presented for the simply-typed lambda calculus. Anto-
niu et al. [3] also suggest solving unit constraints via GE, but they
have not fully deployed the algorithm for two reasons: GE is cubic
time and incapable of reporting why a linear system is unsolvable.

In order to have a more usable system, especially validating unit
conversion factors, we believe GE for solving linear equations is
necessary. We adapt Antoniu and Steckler’s technique, exploit a
union/find algorithm to reduce numbers of unit variables and con-
straints, re-program the linear system solver in the linear algebra

package CLAPACK [2], and utilize the line numbers in the naming
convention illustrated in Figure 4 to locate sources of unit errors.

Our algorithms are shown as Algorithms 1 and 2. The function
REPLACE in Algorithm 1 replaces all variables in a constraint with
their ECRs. The constraint is then simplified with REDUCE such
that it contains at most one unit constant and no repetitive variables.
The simplified constraint is subsequently processed according to
its form. For example, if the current ECRs of u1 and u3 are m
and m2*kg−1, respectively, then u1 = u2 ∗ u3 can be reduced to
kg*m−1 = u2; u4 ∗ u4 = u4 can be reduced to u4 = unity. The
ECRs are updated accordingly. Errors may be issued if the units of
the two sides of a constraint are not the same.

Algorithm 2 reduces a set of unit constraints to linear systems.
Each unit constraint can be transformed to eight linear equations
corresponding to the seven base dimensions and one unit factor
by taking logarithm. For example, the aforementioned u mm =

u inch*25.4 can be transformed to the following linear equations:

u mmmeter − u inchmeter = 0
u mmkilogram − u inchkilogram = 0

u mmsecond − u inchsecond = 0
u mmampere − u inchampere = 0
u mmkelvin − u inchkelvin = 0

u mmmole − u inchmole = 0
u mmcandela − u inchcandela = 0

log
10
u mmfactor − log

10
u inchfactor = log

10
25.4

Such a transformation is performed by TOLINEAREQUATION in
Algorithm 2. The resulting linear systems have solutions if and
only if there are no unit errors in the original program. We solve
the linear equations via LU Factorization [20]. The function LU-
FACTORIZATION decomposes a linear system into a unit lower-
triangular matrix L and non-unit upper-triangular matrix U . For-
ward substitution and backward substitution [20] then transform L
and U to diagonal matrices in turn, via row operations in linear al-
gebra, to obtain a solution. The original solver in CLAPACK has
applied these techniques, but we have modified it to handle non-
square matrices and singular U whose diagonal elements contain
zeros. Also, during backward substitutions, whenever an unsolv-
able equation (i.e., the left-side coefficients of the equation are all
zeros, while its right-side is non-zero) is encountered, the names of
the unit variables involved in the equation are reported to help users
to locate the source of errors.

3.5 Complexity and Soundness
The constraint generator in our system takes linear time in the

size of the input abstract syntax tree. Banshee solves equality con-

Algorithm 1 Union/Find Algorithm for Simplifying Constraints
function UF(C : ConstrSet, R : ECRMap)

repeat
for all c ∈ C do

c← REPLACE(c, R)
c← REDUCE(c)
if c matches ‘a = a’ or ‘u = u’ then

C ← C \ {c}
else if c matches ‘u = a’ then

R← R[ECR(u) 7→ a];
C ← C \ {c}

else if c is of the form ‘u1 = u2’ then
R← R[ECR(u1) 7→ ECR(u2)]
C ← C \ {c}

end if
end for

until R does not change
return (C, R)

end function

straints in linear time. Each iteration of the repeat/until loop in
Algorithm 1 takes linear time. Because the number of variables in
a unit constraint is usually no more than three, the complete U/F
algorithm takes linear time and is capable of reducing many vari-
ables and constraints (cf. Table 1). The time and space complexity
of GE are cubic and quadratic respectively, in the size of the linear
system, which is bounded by the size of the program.

Putting everything together, our system requires worst-case cu-
bic time and quadratic space. Notice that the GE step is the bottle-
neck and thus the U/F step is important to reduce the order of the
generated linear systems to improve scalability.

Ignoring certain unsafe features in C, such as type casts, unions,
and pointer arithmetic, our type system underlying Osprey is sound:
it does not miss any unit errors. Although unit constraints are of the
abelian group nature and they are solved using Gaussian Elimina-
tion, the proof of soundness for our system still follows that for
CQual [8] and is omitted here.

4. IMPLEMENTATION
4.1 Unit Representation

A common way to represent units is based on exponent vectors
over base units and unit factors. For example, m2*kg*s−2, a unit
of energy, can be represented as [2, 1,−2, 0, 0, 0, 0] ∗ 1. Thus,
arithmetic operations on units can be reduced to vector additions,
subtractions, or comparisons. Compared with this representation,
Cunis’s [6] prime number-based representation may be more time
and space efficient: distinct small prime numbers are used to de-
note different base units, and each rational is used to represent a
unique unit. For example, the above unit can be represented as the
rational 12/25 = 22 ∗31 ∗5−2 . However, the prime number-based
representation can not represent units with non-integer exponents,
e.g., the unit of the square root of energy. We use the exponent
vector-based representation in Osprey.

4.2 Unit Environment
Osprey takes as an additional input a configuration file that al-

lows new definitions for unit prefixes, unit aliases, and unit fac-
tors that can be used in unit annotations. For example, “#define
millimeter milli-meter” defines millimeter; “#define inch

meter 39.370079” defines inch because 1 meter = 39.370079
inches. The definitions are sufficient for unit validation on the
code in Section 3.3 (cf. Section 3.4 for the resulting linear system).

Algorithm 2 Gaussian Elimination for Solving Unit Constraints
function GE(C : ConstrSet, R : ECRMap)

D ≡ base dimensions ∪ {factor}
for all d ∈ D do

LSd ← ∅
for all c ∈ C do

LSd ← LSd ∪ TOLINEAREQUATION(c, d)
LSd ← LUFACTORIZATION(LSd)
LSd ← FORWARDSUBSTITUTION(LSd)
LSd ← BACKWARDSUBSTITUTION(LSd)
R← UPDATEECRMAP(LSd, R)

end for
return R

end for
end function

Users provide unit annotations for physical quantities in the form
of type qualifiers [8]; the number of annotations required is usually
small compared to the number of tokens in a program (cf. Table 1,
column “Annotation Burden”).

We adapt the parser of CQual [8] to generate abstract syntax trees
and perform standard semantic checking for programs. The unit
environment is constructed during constraint generation. We also
use the following recursive function to construct the unit type for a
variable x based on its C type τ when no appropriate annotations
for x are provided:

enrich(τ, x) ,

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ref (enrich(τ1, x))
if τ = ref (τ1)

struct(enrich(τ1, f1), . . . , enrich(τn, fn))
if τ = struct(f1 : τ1, . . . , fn : τn)

lam(enrich(τ0, x0), . . . , enrich(τn, xn))
if τ = lam(τ0, . . . , τn)

δx otherwise

where pointers, structs, and functions are transformed to reference,
structural, and functional units respectively; other un-annotated vari-
ables are mapped to fresh unit variables δx; un-annotated numerical
constants are mapped to unity by default.

Special care is needed to avoid infinite recursions when dealing
with recursive types using enrich. For example, consider the fol-
lowing structure declaration:

struct list { struct list *next; ... }

We can detect that the unit type for struct list is a recursive
one (struct(ref (struct(ref (. . .))))) via tracking records of en-
countered types, and use a dummy unit variable as a ground unit
(struct(ref (δdummy))) to terminate the recursion. This decreases
the precision of our analysis and may cause false alarms, but it is
efficient and inessential to unit checking.

Many library functions should also be annotated with units. For-
tunately, we believe most of them can be treated in the same way as
transcendental functions or polymorphic functions. There are situa-
tions where users can use side annotations to improve Osprey’s pre-
cision. For example, the library function “double sqrt(double

x)” may need an annotation of the form “u sqrt * u sqrt =

u x” to relate the return value and the parameter; for the library
function “double pow(double base, double power),” users
may need to provide similar annotations at call sites to relate the
return value and the first argument.

4.3 Context Sensitivity
Consider the following example of a polymorphic function:

δ2 double square (δ1 double a) { return a*a; }

$m double m1; $kg double k1;

m = square(m1); /* (1) */

k = square(k1); /* (2) */

The function square can take data in any unit as arguments. In a
homomorphic setting, δ1 is a fixed unit, although its exact unit is
not explicitly known. In this case, both the units of m1 and k1 flow
into δ1, which causes a unit clash and a false error alarm would be
issued at the call site marked (2). With polymorphism, δ1 and δ2

are viewed as generic-variables and would be instantiated as dif-
ferent unit variables at the two call sites. Now, the units of m1 and
k1 flow into different instantiated variables and no error would be
issued. In practice, users do not need to use δ explicitly; any return
value and parameter without annotations are treated by Osprey to
be polymorphic, just like those of pow in Figure 1.

In static analysis, a standard technique to implement context-
sensitive analysis is through function summaries and syntactical
instantiation. There are also techniques based on the so-called
context-free language reachability problem [23]. However, these
techniques usually handle simpler problems, namely atomic label
flow problems [14, 22], and are not directly applicable for unit
types. We thus adopt the approach of function summaries and in-
stantiation. For example, the summary of square is {δ1∗δ1 = δ2}.
It may be instantiated as {δ1 1 ∗ δ1 1 = δ2 1} at call site (1), and
{δ1 2 ∗ δ1 2 = δ2 2} at call site (2). These two sets of instanti-
ated constraints are merged and become part of the summary of the
function containing the calls to square.

Although it can be done, instantiated variables would not be in-
stantiated again in Osprey to preserve scalability. For example,
consider the following simple functions:

double bar (u double a) { return square(a); }

double foo ($m double b) { return bar(b); }

double hoo ($s double c) { return bar(c); }

where a is annotated with a unit variable u, and b and c are respec-
tively annotated with meter ($m) and second ($s). The summaries
for the functions are given below:

bar = {δ1 bar ∗ δ1 bar = δ2 bar, δ1 bar = u}

foo = {δ1 bar ∗ δ1 bar = δ2 bar, δ1 bar = ufoo = $m}

hoo = {δ1 bar ∗ δ1 bar = δ2 bar, δ1 bar = uhoo = $s}

One can see that a false alarm will occur due to the unit flow from b

(meter) to c (second) via δ1 bar . Ideally, the δ1 bar and δ2 bar in
the latter two summaries should be instantiated again to avoid such
false positives, but such multi-level instantiation requires analysis
based on call graphs and is computationally expensive. Thus, we
restrict our implementation to one-level syntactical instantiation to
support leaf polymorphism only. Such a restriction is a simple and
sound approximation of full polymorphism. It also offers good pre-
cision in practice as we perform the experiments in the paper.

4.4 Constraint Resolution
Our system may not discover any unit errors when there are no

sufficient unit annotations in programs. For example, if there were
no annotations in Figure 1, Osprey can obviously find a solution for
the unit constraints of the program, e.g., by assigning unity to all
unit variables, and it would have missed the errors. We deem this a
usability problem and do the following to mitigate the problem: al-
though not always true, when there are no enough annotations, the
generated linear system will have infinite number of solutions; in
such cases, Osprey issues a warning to tell users that how many ad-
ditional annotations are needed to make the solution unique, while

the number is the difference between the numbers of unit variables
and unit constraints during the GE phase.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate Osprey in terms of scalability (Sec-

tion 5.2), precision (Section 5.3), and usability (Section 5.4).

5.1 Test Programs and Results
We have run Osprey on various test programs, including com-

putational physics and mechanical engineering applications, open
source projects, and some large artificial programs to stress test
its performance. The test programs are shown in Table 1. For each
program, we show lines of code (for both source and preprocessed),
annotation burden (ratio of number of annotations (i.e., number of
‘$’) over number of tokens in the original program (counted using
the wc program)), time and space cost by Osprey, and the number of
unit variables and constraints generated. Columns labeled “U/F” or
“GE” show the costs for the union/find step or the Gaussian Elim-
ination step during constraint solving. Currently we perform the
experiments on a file-by-file basis. When there are multiple files
in a program, the memory consumption and the number of unit
variables and constraints are taken as the maximum across all files
in the program. For other data, we take the sum over all files of
the program being analyzed. All our experiments were done on
a machine with a 2GHz Intel Xeon and 1GB RAM (2GB virtual
memory), running Linux kernel 2.6.12.

We give some details on the programs: (1) ex18.c and big*.c

are test cases from C-UNITS [24]; 3 (2) fe.c comes from SIU-
NITS [4]; (3) coil02, ghostscript, and gnuplot are open source
projects (coil.c is the main part of coil02, an electrical induc-
tance calculator); and (4) The rest of the programs are part of the
Ch mechanism toolkit [25], a set of linking libraries used for de-
veloping kinematic analysis or synthesis algorithms, written in Ch,
a superset of C with classes in C++. We manually transform the
Ch code to C because Osprey currently does not support C++. The
big*.c programs are large artificial single-file programs involving
many arithmetic operations on units. Although they do not pro-
duce physically meaningful results, they are useful in evaluating
Osprey’s scalability. We use ghostscript and gnuplot for the
same purpose; they have only a few computations involving units,
and we analyze them with no annotations and treat all functions as
polymorphic.

5.2 Scalability
Table 1 shows that Osprey is efficient and scales to large pro-

grams with hundreds of thousands of lines of code. Because our
current experiments are file-by-file, the single big*.c files are ar-
tificial worst-case scenarios in terms of numbers of unit variables
and constraints. The GE phase is currently the bottleneck of Osprey
because of its quadratic space complexity. If a program generates
many constraints of the form u1 = u2 ∗ u3 and they cannot be
reduced by U/F, Osprey may not be able to solve them. For ex-
ample, big4.c contains hundreds of thousands of expressions of
the form x=a*b, and Osprey fails during the GE phase. However,
we believe such situations rarely happen in practice; also the data
for ghostscript and gnuplot justify Osprey’s scalability on real
code. As future work, we plan to incorporate sparse linear solvers
to further improve Osprey’s scalability.

U/F is a key technique to make Osprey scale. It gives orders of
magnitude reduction in numbers of unit variables and constraints.
3The big*.c programs are slightly modified from test programs in a dis-
tribution of C-UNITS. C-UNITS also has other examples besides ex18.c.
Osprey validates their units, and we do not include them here.

Lines Of Code Anno- Time Cost (s) Peak Memory Peak Number of
Prepro- tation Gene- Solving Usage (MB) Unit Vars Constraints

Name Source cessed Burden ration U/F GE Gen Solving U/F GE U/F GE
ex18.c 18 17 6/62 0.001 0.001 0.00 36.7 77.8 29 0 50 0
fe.c 29 23 12/107 0.005 0.003 0.00 36.8 77.8 67 0 156 0
coil.c 482 398 12/1492 0.025 0.019 0.002 38.7 78.0 512 24 859 15
gearedfivebar 667 1120 62/2234 0.100 0.044 0.003 43.7 78.7 1594 23 2720 26
crankslider 829 1071 105/3299 0.093 0.041 0.001 42.9 78.5 1419 4 2424 2
fourbar 3107 3166 264/10021 0.300 0.225 0.011 53.0 82.0 5637 39 10741 63
sixbars 4240 6564 331/13762 0.627 0.527 0.055 69.0 86.1 11150 139 21772 168
big0.c 2995 2705 0 0.190 0.254 0.00 49.8 81.8 4207 0 10510 0
big1.c 13017 11705 2/63716 0.936 1.60 0.00 88.3 93.3 18207 0 39009 0
big2.c 106985 96611 0 15.4 32.3 0.00 460.4 206.3 150283 0 322027 0
big3.c 499999 449384 1/2446636 235.2 733.0 0.00 1990.3 653.0 699041 0 1497939 0
big4.c 122886 122890 0 23.5 207.3 failed 752.3 failed 294921 135172 614411 135169
gnuplot 73366 348978 0 13.677 5.199 1.884 82.5 83.8 10149 494 15993 471
ghostscript 404669 2368515 0 165.8 24.3 8.1 154.8 116.0 53357 1291 107991 874

Table 1: Experimental Results.

We also observe that the number of annotations has significant im-
pact on analysis performance: the more annotations, the more unit
variables and constraints that may be reduced by U/F. This suggests
that adding more unit annotations is better not only for debugging
a program but also for improving scalability of the tool.

5.3 Precision and Errors Found
Osprey discovered two unknown errors in real applications and

three in test code from other tools (one is an unknown error missed
by other tools). We explain the three unknown errors:

Error 1 Here is the code fragment in gearedfivebar to calcu-
late the coupler curve of a geared five bar, a term used in
mechanical engineering:

theta = linkLength / (1+lamda);

...

couplerPointPos(couplerLink, theta, ...);

where theta is of radian,4 linkLength is of meter, and
lamda is unitless. It is interesting that the code passed devel-
opers’ tests because the computed value of theta is close to
the actual value and gives almost meaningful results. Devel-
opers of the Ch mechanism toolkit have confirmed that it is a
real error, in particular, a misuse of a mechanical formula.

Error 2 This error is caused by misusing programming interface.
The following code computes forces and torques of a crank
slider, another mechanical engineering term:

double angularAccel(double theta2,

double omega2, double theta3,

double omega3, double alpha2);

...

int forceTorques(...) {

...

angularAccel(theta2, theta3,

omega2, omega3, alpha2);

...

}

where theta2 and theta3 (both parameters and arguments)
are annotated as radian, omega2 and omega3 as radian*
second−1, and alpha2 as radian*second−2. At the func-
tion call site, omega2 and theta3 are passed in the wrong
order. This error has also been confirmed by the developers.

4In fact, radian is equivalent to unity, and 1 degree = π
180

radian.

It is due to their misunderstanding of the programming inter-
face. The developers fed random values to these parameters
during testing and missed the bug.

Error 3 This error is caused by using the wrong unit factor. Here
is a fragment of the (annotated) code in ex18.c:

$meter double mile2meter($mile double x) {

return (x*($f)1682);

}

Osprey issues an error that the unit of the return value (meter)
does not match the unit of x*1682 (meter*1.045). Indeed,
the unit factor for converting mile to meter is around 1609.344,
but the code above uses 1682 instead. The ability to discover
incorrect unit conversion factors is a distinctive feature of
Osprey. To the best of our knowledge, no other tool has this
capability.

Table 2 summarizes the numbers of errors reported by Osprey.
The redundant reports are chain reactions to other kinds of reports
and can be eliminated if others are eliminated. We see that Osprey
is precise with low false positives. Section 5.4.2 discusses more
details about the errors.

5.4 Usability
We now discuss how easy it is to use Osprey in terms of annota-

tion burden and effectiveness of error reporting.

5.4.1 Annotation Burden
Osprey requires simple unit annotations in the form of type qual-

ifiers, and does not require annotations for all variables in a pro-
gram because of the flexibility offered by our unit type inference
algorithm. Of course, users can use Osprey with no annotations at
all, just as what we have done for big{0,2}.c, ghostscript, and
gnuplot. The annotation burdens for the test programs range from
2% to 11% with larger programs having lower ratios.

To further reduce annotation burden, Osprey can suggest “criti-
cal” variables for users to annotate. This is based on the U/F step
that can group variables with the same unit together, thus only se-
lected representatives from each group need to be annotated.

Although Osprey requires few annotations, more annotations are
always desirable. The more annotations, the more potential unit
errors Osprey can discover. More annotations are also helpful to
discover errors in the annotations themselves because of added re-
dundancy. Thus, although not necessary, we advocate annotating

Number of
Program Error Real Redundant False Imprecise
Name Reports Errors Errors Errors Model
ex18.c 1 1 0 0 0
fe.c 2 2 0 0 0
coil.c 11 0 8 3 1
crankslider 5 1 0 4 1
fourbar 10 0 7 3 1
gearedfivebar 6 2 4 0 1
sixbars 16 0 12 4 1

Table 2: Error reports for test programs.

Kind Sample Code (Number of Errors)
Unit Mismatch fe.c (2), crankslider (1), gearedfivebar (2)
Factor Mismatch ex18.c (1)
Programming Style coil.c (3), crankslider (4), fourbar (3),

sixbars (4)
Inherent Error pow (1)
Erroneous Annotation N/A
Imprecise Model coil.c (1), crankslider (1), fourbar (1),

gearedfivebar (1), sixbars (1)
Warning N/A

Table 3: Classification of Error Reports.

as many program objects as possible when using Osprey. In addi-
tion, unit annotations, similar to data types of program variables,
are relatively stable to program re-organization: structural changes
will not require annotation changes as long as data in the program
have the same semantics. Thus, annotations for legacy code can be
reused because retrofitting legacy code usually changes program
organization, not the algorithmic/data aspects of the program.

5.4.2 Error Reporting
Whenever a unit error is found during the constraint solving

phase, unit variables and constraints involved in the error are re-
ported. Following the naming convention of variables in our imple-
mentation, users can easily locate the positions of the variables in
the original program. Osprey can discover the positions where er-
rors emerge, but generally cannot pinpoint the origins of the errors
because it currently does not trace the flows of units or row opera-
tions in GE. Thus, we heuristically pick several possible variables
for the error reports: (1) During the U/F phase, variables whose
units are inconsistent with the units of their representatives; (2)
During the backward substitution stage in GE, variables in a row
directly causing the linear system to be unsolvable. These are hints
for users to find the real origins of a particular unit error.

Table 3 classifies different kinds of error reports:

Unit Mismatch This category covers all unit errors that can be dis-
covered by manually checking whether the units on the two
sides of an equation are the same or not. This kind of unit
errors may be caused by erroneous formulae in programs,
passing erroneous data into programs, among others. These
are real errors.

Factor Mismatch Erroneous unit factors cause this kind of errors.
Such errors may be caused by careless computation or pro-
gramming. It is an advantage of Osprey that it detects this
kind of errors.

Programming Style This kind of errors is caused by violations of
the basic assumptions of standard type systems. Some in-
termediary variables may be used several times, taking on
different units at each different use. Such errors do not affect
computational results, but are considered bad programming

style and error-prone. This is analogous to using an integer
as a character, pointer, and etc. at the same time in C pro-
grams. Test programs coil.c and sixbars contain such
errors, and we classify such error reports as false positives.
Another bad programming style is to store values of differ-
ent units in the same array. Our system reports errors for
such cases because all elements in an array are considered
having the same unit, similar to standard type systems. Two
programs, crankslider and fourbar, contain such code,
and we also classify these error reports as false positives.

Inherent Error Due to the abelian group nature of dimensions
and the undecidability of general properties, whenever a unit
multiplication occurs in a potentially unbound loop, our sys-
tem cannot determine the exact unit and may issue a false
alarm. For example, the unit of x in the following code is
difficult to determine statically and will lead to a false alarm:

$m double x = input;

for (i=0; i<unknownBound; i++)

x *= x;

When the loop bound can be statically determined, such false
positives can be prevented with unrolling the loop and using
different instances for x.

Erroneous Annotation Similar to any other forms of program an-
notations, user-provided unit annotations can be inconsistent.
Our system is able to discover such inconsistencies. For ex-
ample,

$radian double x;

...

x = ($degree)180;

Osprey reports that x is assigned a unit (degree) different
from its previously assigned unit (radian).5

Imprecise Model To reduce confusion and improve Osprey’s com-
patibility with different C dialects, we adopt a more strict
semantic model of C in our implementation. For example,
Osprey does not allow a structure, a variable, or a function to
share the same name. Such a strategy may cause additional
false positives, but did not in our experiments.
Some code may require more precise analysis techniques,
such as path-sensitive analysis (the ability to distinguish dif-
ferent program paths) or instant-level field-sensitive analy-
sis (the ability to distinguish different instances of the same
structure). For example, coil02 and the Ch toolkit use par-
ticular flags to determine the units of variables:

if (flag)

x = a*F; /* foot to meter */

else x = a;

where F is the unit conversion factor from foot to meter.
Our system does not support this style and would issue false
errors. A path-sensitive analysis, such as the one by Das
et al. [7], may be incorporated to improve our system. But
it remains to be seen whether such enhancements are worth-
while with respect to the added complexity. In addition, such
false alarms can also be classified as a bad programming style
because unit types of program variables should not change.

5Because Osprey uses unity for all un-annotated numerical constants by
default, it may miss the error if x or 180 is not annotated. We believe this
is a usability problem, and the users benefit more from such a system by
providing more annotations.

Warning Osprey needs to handle floating point numbers, e.g., to
compute unit factors. Thus, computational imprecision is a
potential problem. Nuances among unit exponent vectors
and unit factors may be discarded and cause two different
units to be considered equal, or vice versa. We are careful
about the number of significant digits during computations
and always apply traditional safe comparisons between float-
ing point numbers, trying to have accurate results within the
limitation imposed on the internal representations of floating
point numbers. We did not observe any issues due to this
kind of computational imprecision in our experiments. Such
an implementation issue may make Osprey miss certain er-
rors, but this has no effect on the soundness of the underlying
type system.

6. POSSIBLE SYSTEM ENHANCEMENTS
6.1 Other Dimensions and Units

Most units can be represented using exponents and one factor,
but some units cannot, e.g., Fahrenheit and Celsius for degrees.
To convert Fahrenheit to Kelvin, we need more than one factor:

Kelvin = (Fahrenheit− 32) ×
5

9
+ 273.16,

A possible approach to address such units is to use pre-defined unit
conversion functions. For example, we may define the following
function to convert Fahrenheit to Kelvin:

$kelvin double f2k($fahrenheit double f) { ... }

The type system checks that these functions are called correctly
with arguments of expected units. In addition, the correctness of
such functions needs to be verified manually. This may not be an
issue because these functions are generally quite simple and can be
verified once and provided as library functions.

There are other models of dimensions and units, such as the rel-
ativistic model, the high-energy model, the quantum model, or the
natural model [4]. There are also other base dimensions and units
outside of physics, such as bit in electronics and dollar in eco-
nomics that our system does not model currently. We believe it
is straightforward to integrate these dimensions and units into the
current system and make it more widely applicable.

6.2 Dimension- vs. Unit-Level Analysis
Dimensional analysis may be carried out at two levels: the unit

level and the dimension level. At the unit level, two quantities are
considered to be unit consistent if and only if their units are ex-
actly the same (including factors). At the dimension level, two
quantities are unit consistent if and only if their dimensions are the
same. Unit-level analysis is useful for detecting unit errors, includ-
ing errors caused by wrong unit factors. However, dimension-level
analysis may be more convenient to use. Programmers may prefer
mixing data in different units and having the system automatically
convert data to appropriate units when necessary. Then they do not
need to manually supply unit conversion factors.

To support dimension level analysis, extra mechanism is required
to enforce the unit correctness of programs. For example,

$meter float X; $foot float Y; X = Y;

The code is incorrect at the unit level, while the dimension level
may consider it correct and must guarantee the correctness of the
computation. One natural approach is to support automatic unit
conversion through program transformation. For example, X=Y should
be automatically transformed to X=0.3048*Y because 1 foot =
0.3048 meter. Two issues arise.

One is about usability of such a system. When we see an assign-
ment such as X=0.3048*Y, should the assignment be transformed
or not? It depends on the meaning of 0.3048. Perhaps the user
intends to convert Y from foot to meter via the assignment, or
0.3048 is just an arbitrary constant. This confusion can be avoided
by enforcing necessary programming conventions to decide when
automatic transformation is expected. For example, one may re-
quire that no unit factors should be used by users and transforma-
tion is always performed when inconsistent units are encountered.

The other is how to determine the unit factors for program trans-
formation. We cannot specify all the infinite number of unit factors
statically. Here is one flexible, but perhaps not efficient approach:
(1) Attach a unit factor variable to each expression in programs,
such as X=($f)f*Y; (2) Perform the unit-level analysis and com-
pute solutions for f ; (3) Use a solution for f as the unit factor to
transform programs.

Our current implementation is at the unit level only. It would be
interesting to also incorporate dimension level analysis into Osprey.

6.3 Implementation Enhancements
Our current implementation of Osprey works on C code. Since

many scientific applications are written in C++, it will be interest-
ing to extend Osprey to support this language. We are collabo-
rating with scientists at the Lawrence Livermore National Labora-
tory (LLNL) to implement a C++ version of Osprey based on their
ROSE compiler framework [21]. We plan to apply our system to the
large code base of scientific software at LLNL. Because the linear
systems generated in Osprey are usually very sparse, we also plan
to leverage LLNL researchers’ expertise in sparse linear solvers to
address the performance bottleneck in Osprey.

To improve the usability of the system, it will be useful to show
users of Osprey not only where unit inconsistencies happen, but
also how they have happened. One possibility is to record how units
flow during constraint solving and display this information visually
to the user together with the source code, similar to CQual’s PAM
mode [10]–a generic interface for marking up programs in emacs.

Finally, adding whole program analysis support may be use-
ful, especially for programs with many cooperating modules. A
straightforward approach is to merge unit constraints for each indi-
vidual module and solve the complete constraint system altogether.
This naı̈ve approach is unlikely to scale. However, because many
of the constraints are unrelated, one possible solution is to separate
them into independent groups and solve each group individually.

7. RELATED WORK
In this section, we survey related work. Many approaches have

been developed to perform automatic dimensional analysis. One
common approach is via type system enhancements. Wand and
O’Keefe [26] add dimensions and dimension variables to the simply-
typed lambda calculus, and employ a unification-based algorithm
to find the most general dimensions for every typable dimension-
preserving term. Kennedy’s dimension types [16] are designed for
ML-style languages. He extends the standard ML type system with
polymorphic dimension types and presents a unification-based al-
gorithm to infer dimension types.

Our system follows the same approach and leverages ideas de-
veloped in these studies. There are, however, some key differences.
First, our system considers both dimensions and units and deals
with unit factors and interactions among different units, while they
only consider dimensions. Second, we have a prototype implemen-
tation for C, a popular language for programming scientific appli-
cations, and theirs are for functional languages. Also, we use novel
techniques to make our system scalable to large programs.

Our system is also related to CQual [8], a general framework for
adding type qualifiers to C. The framework models the flow of qual-
ifiers through a program using subtyping and type inference. How-
ever, standard type qualifiers are not expressive enough to model
the abelian group nature of dimensions and units.

There are also unit inference and checking systems for other lan-
guages, such as Xelda [3] for Excel. Xelda uses unit transformers
and constraint generators for Excel functions to infer units of for-
mulae in a bottom-up fashion, propagating units from value cells
(cells containing a number) to formula cells using cell references.
The transformers and generators are analogous to our unit con-
straint generation rules, but they have not addressed user-defined
data structures and functions in general purpose languages, and
substantive effort may be required to design transformers and gen-
erators for all functions in Excel. Also, Xelda does not validate
the correctness of unit conversion factors, although it supports unit
coercions if users provide the factors; while our system does.

Besides of type system enhancements, other forms of language
extensions have also been considered. The idea of meta-classes is
one of these. Specific types are defined in the original programming
languages to denote dimensions, and specific operations are defined
to represent the arithmetic nature of dimensions. Unit inference or
checking is done by the original type systems of the underlying
programming languages. Such extensions are usually provided as
additional libraries for the original languages, such as SIUNITS [4]
for C++ based on STL, MetaGen for Java based on MixGen [1]—a
Java extension, Keller’s Library [15] for Eiffel, Hilfinger’s pack-
age [11] for Ada, and Novak’s system [19] for GLisp—an extension
of Lisp. This idea is feasible as long as the original programming
language supports user-defined types. Although it may provide a
tighter integration of dimensions and units into the original lan-
guage, but it is not as flexible and requires significant changes to
programming style and re-design of legacy code.

Another common approach is to validate unit correctness at run-
time. Cunis [6] incorporates unit information into data objects at
runtime for unit checking. C-UNITS [24] is based on a framework
for program specification and verification—Maude [5]. The alge-
braic semantics of C is partially implemented in the framework, and
unit information is provided as annotations by users. Unit correct-
ness is checked when programs are simulated in the framework.
The assume/assert-based specification approach requires heavier
annotations and is difficult to scale to large programs. We believe a
type system-based approach is more appropriate for unit checking
because type systems are easier to use and more scalable.

8. CONCLUSIONS
We have presented a type system and implemented a prototype

tool Osprey for validating unit correctness of C programs. The
system is constraint-based and incorporates novel techniques to be
scalable, precise and usable. We have extensively evaluated Os-
prey. It has discovered unknown errors in mature code. It is precise
with few false positives, and all of which can be easily classified. It
is efficient and scales to large programs with hundreds of thousands
of lines of code. It is also easy to use, requiring only lightweight
unit annotations, and is fully automatic. We believe that Osprey is
a practical tool for improving quality of scientific software, and we
are actively pursuing opportunities to improve the tool and apply it
on additional production code.

Acknowledgments
We would like to thank Harry Cheng and Yu-Cheng Chou for pro-
viding the source code of the Ch mechanism toolkit and helping

us evaluate Osprey. We are also grateful to Alex Aiken, Earl Barr,
Prem Devanbu, Tom Epperly, Jeff Foster, Shriram Krishnamurthi,
Ben Liblit, Ghassan Misherghi, Dan Quinlan, Matt Roper, Paul
Steckler, and Bronis Supinski for interesting discussions and use-
ful feedback on drafts of this paper. Finally, we thank the ICSE
anonymous reviewers for their thoughtful comments on this paper.

9. REFERENCES
[1] E. E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and

G. L. Steele Jr. Object-oriented units of measurement. In OOPSLA,
pages 384–403, 2004.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, third edition, 1999.

[3] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen. Validating the unit correctness of spreadsheet
programs. In ICSE, pages 439–448, 2004.

[4] W. E. Brown. Applied template meta-programming in SIUNITS: the
library of unit-based computation, 2001.

[5] UIUC. Maude. http://maude.cs.uiuc.edu/.
[6] R. Cunis. A package for handling units of measure in lisp. Lisp

Symb. Comput., V(2):27–34, 1992.
[7] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program

verification in polynomial time. In PLDI, pages 57–68, 2002.
[8] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers.

In PLDI, pages 192–203, 1999.
[9] H. Hanche-Olsen. Buckingham’s Π Theorem. http://www.math.

ntnu.no/∼hanche/notes/buckingham/buckingham-a5.pdf,
2004.

[10] C. Harrelson. Program Analysis Mode (PAM) for Emacs.
http://www.cs.berkeley.edu/∼chrishtr/pam/.

[11] P. N. Hilfinger. An Ada package for dimensional analysis. ACM
Trans. Program. Lang. Syst., 10(2):189–203, 1988.

[12] International Systems of Units (SI).
http://physics.nist.gov/cuu/Units/.

[13] L. Jiang and Z. Su. Osprey: A practical type system for validating
unit correctness of C programs.
http://www.cs.ucdavis.edu/∼su/unitfull.pdf, 2005.

[14] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with
type inference. In USENIX Security Symposium, pages 119–134,
2004.

[15] M. Keller. Eiffel Library for Units of Measurement. http://se.
inf.ethz.ch/projects/markus keller/EiffelUnits.html.

[16] A. Kennedy. Dimension types. In ESOP, pages 348–362, 1994.
[17] J. Kodumal. Banshee–A toolkit for building constraint-based

analysis. http://banshee.sourceforge.net/.
[18] Mars Climate Orbiter Mishap Investigation. ftp://ftp.hq.nasa.

gov/pub/pao/reports/1999/MCO report.pdf.
[19] G. S. Novak. Conversion of units of measurement. IEEE Trans.

Softw. Eng., 21(8):651–661, 1995.
[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes. Cambridge University Press,
http://www.nr.com/, 2002.

[21] D. Quinlan, M. Schordan, R. Vuduc, and Q. Yi. ROSE: A Compiler
Framework. http://www.llnl.gov/CASC/rose/, release soon.

[22] J. Rehof and M. Fähndrich. Type-based flow analysis: From
polymorphic subtyping to CFL-reachability. In POPL, pages 54–66,
2001.

[23] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49–61, 1995.

[24] G. Rosu and F. Chen. Certifying measurement unit safety policy.
ASE, 2003.

[25] SoftIntegration c©. Ch User’s Guide and Ch Mechanism Toolkit
User’s Guide. http://www.softintegration.com/.

[26] M. Wand and P. O’Keefe. Automatic dimensional inference. In
Computational Logic–Essays in Honor of Alan Robinson, pages
479–483, 1991.

