
Combining Symbolic Execution and Model
Checking for Data Flow Testing

Ting Su∗ Zhoulai Fu† Geguang Pu∗‡ Jifeng He∗ Zhendong Su†
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

†Department of Computer Science, University of California, Davis, USA
Email: tsuletgo@gmail.com, zlfu@ucdavis.edu,

ggpu@sei.ecnu.edu.cn (‡corresponding author), jifeng@sei.ecnu.edu.cn, su@cs.ucdavis.edu

Abstract—Data flow testing (DFT) focuses on the flow of data
through a program. Despite its higher fault-detection ability over
other structural testing techniques, practical DFT remains a
significant challenge. This paper tackles this challenge by intro-
ducing a hybrid DFT framework: (1) The core of our framework
is based on dynamic symbolic execution (DSE), enhanced with
a novel guided path search to improve testing performance;
and (2) we systematically cast the DFT problem as reachability
checking in software model checking to complement our DSE-
based approach, yielding a practical hybrid DFT technique that
combines the two approaches’ respective strengths. Evaluated
on both open source and industrial programs, our DSE-based
approach improves DFT performance by 60∼80% in terms of
testing time compared with state-of-the-art search strategies,
while our combined technique further reduces 40% testing time
and improves data-flow coverage by 20% by eliminating infeasible
test objectives. This combined approach also enables the cross-
checking of each component for reliable and robust testing results.

I. INTRODUCTION

Testing is the most widely adopted software validation
technique. Structural coverage criteria, such as statement,
branch and logical [1]–[3], have been widely used to assess
test adequacy. In contrast to these structural criteria, data flow
criteria [4]–[7] focus on the flow of data through a program,
i.e. the interactions between variable definitions and their
corresponding uses. The motivation is to verify the correctness
of defined variable values by observing that all corresponding
uses of these values produce the desired results.

According to several empirical studies [1], [8], [9], data-
flow criteria are more effective than control flow-based testing
criteria (e.g. statement or branch). However, several reasons
hinder the adoption of data flow testing in practice. First, few
data flow coverage tools exist. To our knowledge, ATAC [10],
[11] is the only available tool to compute data flow coverage for
C programs developed two decades ago. Second, the complexity
of identifying data flow-based test data [12], [13] overwhelms
software testers: test objectives w.r.t. data-flow criteria are much
more than those of structural criteria; more efforts are required
to derive a test case to cover a variable definition and its
corresponding use than just covering a statement or branch.
Third, infeasible test objectives (i.e. paths from definitions to
their uses are infeasible) and variable aliases make data flow
testing more difficult.

The aforementioned challenges underline the importance of
effective automated data flow testing. To this end, this paper
presents a combined approach to automatically generate data
flow-based test data. Our approach synergistically combines two

techniques: dynamic symbolic execution and counterexample-
guided abstraction refinement-based model checking. At the
high level, given a program as input, our approach (1) outputs
test data for feasible test objectives and (2) eliminates infeasible
test objectives — without any false positives.

Dynamic Symbolic Execution [14], [15] (DSE) is a widely
accepted and effective approach for automatic test data gener-
ation. It intertwines traditional symbolic execution [16] with
concrete execution, and explores as many program paths as
possible to generate test cases by solving path constraints.
As for Counterexample-Guided Abstraction Refinement-based
(CEGAR) model checking [17]–[19], given the program source
and a temporal safety specification, it either statically proves
that the program satisfies the specification or produces a
counterexample path that demonstrates the violation. It has been
applied to automatically verify safety properties of OS device
drivers [17], [20], [21] and generate test data w.r.t. statement
or branch coverage [22] from counterexample paths.

Although DSE has been widely adopted to achieve different
coverage criteria (e.g. branch, logical, boundary value and
mutation testing [23]–[27]), little effort exists to adapt DSE
to data flow testing. To mitigate path explosion in symbolic
execution, we design a guided path search strategy to cover
data-flow test objectives as quickly as possible. With the help
of concrete executions in DSE, we can also more easily and
precisely detect definitions due to variable aliasing. Moreover,
we introduce a simple, powerful encoding of data flow testing
using CEGAR-based model checking to complement our DSE-
based approach: (1) We show how to encode any data-flow
test objective in the program under test and systematically
evaluate the technique’s practicality; and (2) we describe a
combined approach that combines the relative strengths of the
DSE and CEGAR-based approaches. An interesting by-product
of this combination is to let the two independent approaches
cross-check each other’s results for correctness and consistency.

We have implemented our data flow testing framework and
the guided path search strategy on top of a DSE engine named
CAUT, which has been continuously developed and refined in
previous work [25], [28]–[30]. We perform data flow testing
on four open source and two industrial programs in C. By
comparing the performance of our proposed search strategy
against other popular search strategies [31], [32], our DSE-based
approach can improve data flow testing by 60∼80% in terms of
testing time. In addition, we have adapted the CEGAR-based
approach to complement the DSE-based approach. Evaluation
results show that it can reduce testing time by 40% than using
the CEGAR-based approach alone and improve coverage by
20% than using the DSE-based approach alone. Thus, indeed



our combined approach provides a more practical means for
data flow testing.

In summary, we make the following main contributions:

• We design a DSE-based data flow testing framework
and enhance it with an efficient guided path search
strategy to quickly achieve data-flow coverage criteria.
To our knowledge, our work is the first to adapt DSE
for data flow testing.

• We describe a simple, effective reduction of data flow
testing to reachability checking in software model
checking [20], [22] to complement our DSE-based
approach. Again to our knowledge, we are the first to
systematically adapt CEGAR-based approach to aid
data flow testing.

• We realize the DSE-based data flow testing approach
and conduct empirical evaluations on both open source
and industrial C programs. Our results show that the
DSE-based approach is both efficient and effective.

• We also demonstrate that the CEGAR-based approach
effectively complements the DSE-based approach by
further reducing data flow testing time and detecting
infeasible test objectives. In addition, these two ap-
proaches can cross-check each other to validate the
correctness and effectiveness of both techniques.

The rest of the paper is organized as follows. Section II
introduces necessary background and gives an overview of
our data flow testing approach. Section III details our DSE-
based approach and our reduction of data flow testing to
reachability checking in model checking. Next, we present
details of our implementation (Section IV) and empirical
evaluation (Section V). Section VI surveys related work, and
Section VII concludes.

II. OVERVIEW

A. Problem Setting
A program path is a sequence of control points (denoted by

line numbers), written in the form l1, l2, . . . , ln. We distinguish
two kinds of paths. A control flow path is a sequence of control
points along the control flow graph of a program; an execution
path is a sequence of executed control points driven by a
program input.

Following the classic definition from Herman [4], a def-use
pair du(ld, lu, x) occurs when there exists at least one control
flow path from the assignment (i.e. definition, or def in short)
of variable x at control point ld to the statement at control
point lu where the same variable x is used (i.e. use) on which
no redefinitions of x appear (i.e. the path is def-clear).

Definition 1 (Data Flow Testing): Given a def-use pair
du(ld, lu, x) in program P , the goal of data flow testing is to
find an input t that induces an execution path that covers (i.e.,
passes through) ld and then lu with no intermediate redefinitions
of x between ld and lu. The requirement to cover all def-use
pairs at least once is called all def-use coverage criterion.

In this paper, we use dynamic symbolic execution (DSE) [14],
[15] to generate test inputs to satisfy def-use pairs. The DSE-
based approach starts with an execution path triggered by
an initial test input and then iterates the following: from
an execution path p = l1, . . . , li−1, li, . . . , ln, DSE picks an

1 double power(int x,int y){
2 int exp;
3 double res;
4 if (y>0)
5 exp = y;
6 else
7 exp = -y;
8 res=1;
9 while (exp!=0){

10 res *= x;
11 exp -= 1;
12 }
13 if (y<=0)
14 if(x==0)
15 abort;
16 else
17 return 1.0/res;
18 return res;
19 }

1: input x,y

5: exp = y 7: exp = -y

8: res = 1

10: res *= x

17: return 1.0/res

18: return res

15: abort

11: exp -= 1

4: y > 0

13: y <= 0

9: exp != 0

14: x == 0

T F

F

F

F

T

T

T

Fig. 1. An example: power.

executed branch (i.e. a branching node1) of a conditional
statement at li (the choice depends on an underlying search
strategy). It then solves the path constraint collected along
l1, . . . , li−1 conjuncted with the negation of the executed branch
condition at li to find a new test input. This input will be used
as a new test case in the next iteration to generate a new path
p′ = l1, . . . , li−1, l̄i, . . ., which deviates from the original path
p at l̄i (the opposite branch direction of the original executed
branch at li), but shares the same path prefix l1, . . . , li−1 with
p. If the target def-use pair is covered by this new path p′

(cf. Definition 1), we obtain the test case which satisfies this
pair. Otherwise, the process will continue until a termination
condition (e.g. a time bound is reached or the whole path space
has been explored) is met.

Although the DSE-based technique is an effective way to
generate test inputs to cover specified program points, it faces
two challenges when applied in data flow testing:

1) The DSE-based technique by nature faces the noto-
rious path-explosion problem. It is challenging, in
reasonable time, to find an execution path from the
whole path space to cover a target pair .

2) The test objectives from data flow testing include
feasible and infeasible pairs. A pair is feasible if there
exists an execution path which can pass through it.
Otherwise it is infeasible. Without prior knowledge
about whether a target pair is feasible or not, DSE-
based approach may spend a large amount of time, in
vain, to cover an infeasible def-use pair.

B. An Illustrative Example
We give an overview of our approach via a simple program

power (Figure 1), which takes as input two integers x and y and
outputs xy . Its control flow graph is shown in the right column
in Figure 1. For illustration, we will explain how our approach
deals with the aforementioned challenges demonstrated by the

1A branching node is an execution instance of an original branch in the
code. When a conditional statement is inside a loop, it can correspond to
multiple branching nodes along an execution path.



following two pairs w.r.t. the variable res:

du1 = (l8, l17, res) (1)
du2 = (l8, l18, res) (2)

We combine DSE to quickly cover du1 and CEGAR to prove
du2 is infeasible. The details of these two approaches are
explained in Section III.

DSE-based Data Flow Testing DSE starts by taking an
arbitrary test input t, e.g. t = (x 7→ 0, y 7→ 42). This test
input triggers an execution path p

p = l4, l5, l8, l9, l10, l11, l9, l10, l11, . . .︸ ︷︷ ︸
repeated 42 times

, l9, l13, l18 (3)

which covers the def of du1 at l8. To cover its use, the classical
DSE approach (e.g. with depth-first or random path search [32])
will systematically flip branching nodes on p to explore new
paths until the use is covered. However, the problem of path
explosion — hundreds of branching nodes on path p (including
nodes from new paths generated from p) can be flipped to fork
new paths — could greatly slow down the exploration. We use
two techniques to tackle this problem.

First, we use the redefinition pruning technique to remove
invalid branching nodes: res is detected as redefined on p at
l10 in dynamic execution, so it is useless to flip the branching
nodes after the redefinition point (the paths passing through
the redefinition point cannot satisfy the pair). To illustrate, we
cross out these invalid branching nodes on p and highlight the
rest in (4). As we can see, a large number of invalid branching
nodes can be pruned.

p = l4 , l5, l8, l9 , l10, l11, ��l9, l10, l11, . . .︸ ︷︷ ︸
repeated 42 times

,��l9,��l13, l18 (4)

Second, we use the Cut Point-Guided Search (CPGS) strategy
to decide which branching node to select first. The cut points
w.r.t. a pair is a sequence of control points that must be passed
through when searching for a path to cover the pair. They
serve as intermediate goals during the dynamic search and
narrow down the search space. For example, the cut points
of du1(l8, l17, res) are {l4, l8, l9, l13, l14, l17}. Since the
path p in (4) covers the cut points l4, l8 and l9, the uncovered
cut point l13 is set as the next search goal. From p, there are
two unflipped branching nodes, 4F and 9F (denoted by their
respective line numbers followed with T or F to represent the
true or false branch direction). Because 9F is closer to cut
point l13 in control flow graph than 4F , so 9F is flipped. As a
result, a new test input t = (x 7→ 0, y 7→ 0) can be generated
and leads to a new path p′ = l4, l6, l7, l8, l9, l13, l14, l15. Now
the path p′ has covered the cut points l4, l8, l9, l13 and l14
and the uncovered cut point l17 becomes the goal. From all
remaining unflipped branching nodes, i.e. 4F , 13F and 14F ,
the branching node 14F is chosen because it is closer than
the others toward the goal. Consequently, a new test input
t = (x 7→ 1, y 7→ 0) is generated which covers all cut points,
and du1(l8, l17, res) itself. Here, the cut point-guided path
search takes only three iterations to cover this pair.

CEGAR-based Data Flow Testing The def-use pair du2(l8,
l18, res) is infeasible: if there were a test input that could
reach the use, it must satisfy y>0 at l13. Since y has not
been modified in the code, y>0 also holds at l4. As a result,

1 double power(int x, int y){

2 bool cover_flag = false;

3 int exp;
4 double res;
5 ...
6 res=1;

7 cover_flag = true;

8 while (exp!=0){
9 res *= x;

10 cover_flag = false;

11 exp -= 1;
12 }
13 ...

14 if(cover_flag) check_point();

15 return res;
16 }

Fig. 2. The transformed function power and the encoded test requirement in
highlighted statements.

res will be redefined at l10 since the loop guard at l9 is true.
Clearly, no such a path exists for this pair which can both
avoid redefinitions in the loop and reach the use. In this case,
if the DSE-based approach is used, it may enter into an infinite
loop-unfolding and cannot conclude the infeasiblity of this pair.

To mitigate this problem, we leverage the CEGAR-based
approach [18] to check feasibility. This approach starts with
a coarse program abstraction and iteratively refines it. If a
property violation is found, it analyzes the feasibility (i.e., is
the violation genuine or the result of an incomplete abstraction?).
If the violation is feasible, a counterexample path is returned.
Otherwise, the proof of infeasibility is used to refine the
abstraction and the checking continues. In our context, the basic
idea is to encode the test requirement of a pair into the program
under test and reduce the testing problem into this reachability
checking problem. Figure 2 shows the transformed function
power which is encoded with the test requirement of du2 in
highlighted statements. We introduce a variable cover flag at
l2. It is initialized to false and set as true immediately after the
def at l7, and set to false immediately after the other definitions
on variable res at l10. Before the use, we set a checkpoint
to see whether cover flag is true at l14. If the checkpoint is
unreachable, this pair can be proved infeasible. Otherwise, a
counter-example, i.e. a test case that covers this pair through
a def-clear path, can be generated. Here, the CEGAR-based
approach can quickly conclude du2 is an infeasible pair.

Combined DSE-CEGAR-based Data Flow Testing From the
above two examples, we can see that the DSE-based approach,
as a dynamic path-based testing approach, can efficiently cover
feasible pairs, while the CEGAR-based approach, as a static
model checking-based approach, can eliminate infeasible ones.
It is beneficial to combine the two approaches’ respective
strengths to tackle the challenges in data flow testing.

Feasible Infeasible

DSE
CEGAR

The figure above shows the relation between the two
approaches: The DSE-based approach is able to cover feasible
pairs more efficiently (but in general, it cannot identify
infeasible pairs because of path explosion) while the CEGAR-



Data Flow 
Analysis

Dominator 
Analysis

Program

Coverage 
Test

DSE 
Engine

Syntax 
Transformer

CEGAR 
EngineInfeasible 

Def-Use 
Pair

Test Input 
Covering 
the Def-
Use Pair

Def-Use 
Pair

Program

Static Analysis

DSE-based 
Approach

Random 
Test Input

Execution 
Path 

Cut Points 
c1,c2...cN

[Time Out]

A New Test Input

CEGAR-based 
Approach

Infeasibility 
Proof

Counter-
Example

[All Paths 
Explored]

[Time Out]

[Yes]

[No] Uncovered Cut Point ci 

Fig. 3. The workflow of the combined DSE-CEGAR-based approach

based approach is capable of identifying infeasible pairs more
effectively (it can also cover feasible pairs as well).

Figure 3 illustrates the basic workflow of the combined DSE-
CEGAR approach in our data flow testing framework. The
static analysis is used to find def-use pairs and their cut points
from the program under test. The DSE-based approach is first
used to cover as many feasible pairs as possible (within a
time bound on each pair). After the DSE-based testing, for the
remaining uncovered pairs, we use the CEGAR-based approach
to identify infeasible pairs and cover new feasible pairs (which
have not yet been covered in DSE) within a time bound. After
one run of the DSE-CEGAR-based testing, we can increase
the time bound for both approaches, and repeat the above
process. If testing budgets permit, it can cover more feasible
pairs and identify more infeasible pairs. The details of these
two approaches are explained in Section III.

III. APPROACH

In this section, we explain the combined DSE-CEGAR-based
data flow testing framework in detail. It consists of a static
analysis phase and a dynamic analysis phase.

A. Static Analysis Phase
We use standard iterative data-flow analysis algorithms [33],

[34] to identify def-use pairs from the program under test (see
Section IV for details).

Definition 2 (Cut Point): Given a def-use pair, its cut points
are a sequence of control points that have to be passed through
in succession by any control flow path covering the pair. Each
control point in this sequence is called a cut point.

HQWU\

OBX

O�

OBGO�O�
O�

O�

O�

For illustration, consider the figure above: Let du(ld, lu, x) be
the target def-use pair, the sequence of cut points of du is
l1, l3, ld, l6 and lu. Here, l2 is not a cut point because a
path l1, l3, ld, l5, l6 can be constructed to cover the def-use pair
without passing through l2. The cut points of each def-use pair
are computed via a context-sensitive dominator analysis [35]
on the inter-procedural control flow graph.

Algorithm 1: DSE-based Data Flow Testing
Input: du(ld, lu, x): a def-use pair
Input: c1, c2, . . . , cn: cut points of du
Output: input t that satisfies du or nil if none is found

1 let W be a worklist of branching nodes (initialized as
empty)

2 let t be an initial test input
3 repeat
4 let p be the execution path triggered by t
5 if p covers du then return t
6 W ← W ∪ {branching nodes on p}

// the redefinition pruning heuristic
7 if variable x (in du) is redefined after ld on p then
8 let X denote the set of branching nodes after the

redefinition location
9 W ← W \ X

10 let t = guided search(W )
11 until t == nil
12 return nil
13
14 Procedure guided search(reference worklist W )
15 let b′ denote the branch to be flipped
16 if W is empty then
17 return nil

// j is the index of a cut point, d is the distance variable
18 j ← 0, d ← 0
19 forall the branching node b ∈ W do

// lb is the program location of b
20 let pp be the path prefix of b, i.e. l1, l2, . . . , lb

// c1, . . . , ci−1 are sequentially covered, while ci not yet
21 i ← index of the uncovered cut point ci on pp

// b̄ is the opposite branch of b
22 if i > j ∨ (i == j ∧ distance(b̄, ci) < d) then
23 b′ ← b, j ← i, d ← distance(b̄, ci)

24 W ← W \ {b′},
// l̄b′ is the opposite branch direction of the original b′ at lb′

25 if ∃ input t driving the program through l1, l2, . . . , l̄b′
then

26 return t

27 else
28 return guided search(W )

B. DSE-based Approach for Data Flow Testing
This section explains the DSE-based data flow testing

approach enhanced with our cut point-guided path search
strategy. This search strategy embodies several intuitions to
perform efficient path search to cover a target def-use pair.
Algorithm 1 details this approach.

Algorithm 1 takes as input a target def-use pair du(ld, lu, x)
and the sequence of its cut points. If an execution path p covers
the target pair, the algorithm returns the input t (at Line 5).
Otherwise, it stores the branching nodes on p into the worklist
W , which contains all branching nodes from the explored
execution paths. We first use the redefinition pruning technique
(explained later) to remove invalid branching nodes (at Lines
7-9). Then we start the path search to generate a new test input
in the procedure guided search. In this procedure, we first aim



to find a branching node b whose path prefix has covered the
deepest cut point of the pair (at Lines 21-23). The path prefix
of a branching node b is the path prefix of the corresponding
execution path which reaches up to the location of b, i.e., l1,
l2, . . . , lb. If the path prefix of b has sequentially covered the
cut points c1, c2, . . . , ci−1, but ci is uncovered, then ci−1 is
the deepest covered cut point. The intuition is that the deeper
the cut point a path can reach, the closer a path toward the
pair is. The cut points of a pair act as a set of search goals to
follow during the dynamic search. Note the def and use of a
pair also servers as cut points.

If two branching nodes have reached the same deepest cut
point (indicated by i==j at Line 22), the algorithm picks the
branching node whose opposite branch has the shortest distance
toward the uncovered cut point ci (at Lines 22-23). Here we use
distance(b̄, ci) to represent the distance between the opposite
branch of b (i.e., b̄) and the uncovered cut point ci. The intuition
is that a shorter path is easier to reach the goal. Here, the
distance is approximated as the number of instructions between
one statement and another. The shortest distance is the number
of instructions along the shortest control flow path from the start
statement to the target statement in the control flow graph [36],
[37]. If the picked branching node can be exercised (i.e., the
corresponding path constraint is satisfiable), a new test input
will be returned (at Lines 25-26). Otherwise, it will continue
to pick another branching node from W (at Line 28).

In addition, Definition 1 requires that no redefinitions appear
on the subpath between the def and the use. Thus it is useless to
pick the branching nodes that follow the redefinition locations.
We can prune these invalid branching nodes to reduce testing
time (in Aglorithm 1 Lines 7-9). Further, by taking advantage
of concrete program executions in DSE, we can track variable
redefinitions caused by variable aliases more easily than the
static symbolic execution techniques [37], [38]. Variable aliases
appear at a program statement during execution when two or
more names refer to the same variable. We use a lightweight
algorithm to detect variable redefinitions w.r.t. a target def-use
pair. In our framework, we operate upon a simplified three-
address form of the original source code2. So we mainly focus
on the following statement forms where variable aliases and
variable redefinitions may appear:
• Alias inducing statements: (1) p:=q (∗p is an alias to
∗q), (2) p:=&v (∗p is an alias to v)

• Variable definition statements: (3) ∗p:=x (∗p is defined
by x), (4) v:=x (v is defined by x)

Here, p and q are pointer variables, v, x are non-pointer
variables, := is an assignment operation. The variable definitions
are detected by static analysis beforehand. The algorithm
works as follows to dynamically identify variable redefinitions:
we maintain a set A to record variable aliases w.r.t. a pair
du(ld, lu, v). Initially, A only contains the variable v itself. If
statement (1) or (2) is executed and ∗q or v ∈ A, a new variable
alias ∗p will be added into A because ∗p becomes an alias
to ∗q or v. If statement (1) is executed and ∗q /∈ A but ∗p ∈
A, then ∗p will be removed from A because ∗p becomes an
alias to another variable instead of v. If statement (3) or (4) is
executed and ∗p or v ∈ A, then the variable v is redefined by
another variable x.

2We use CIL as the C parser to transform the source code into an equivalent
simplified form using the –dosimplify option, where one statement contains at
most one operator.

C. CEGAR-based Approach for Data Flow Testing
The counterexample-guided abstract refinement (CEGAR)-

based approach [18] has been extensively used to check safety
properties of software as well as test case generation [22]
(e.g. statement or branch testing). The CEGAR-based approach
operates in two phases, i.e., model checking and tests from
counter-examples. It first checks whether the program location
l of interest is reachable such that a target predicate p (i.e.
a safety property) is true at l. If so, from the program path
that witnesses p at l, a test case can be generated from the
counterexamples to establish the validity of p at l. Otherwise,
if l is unreachable, the model checker can conclude that no
test input can reach this point.

In data flow testing, due to the conservativeness of data-flow
analysis, test objectives contain infeasible pairs [13]. In order
to identify infeasible pairs, we introduce a simple but powerful
encoding of data flow testing using the CEGAR-based approach.
We instrument the original program P to P ′ and reduce the
problem of test data generation to reachability checking on
P ′. A variable cover flag is introduced and initialized to false
before the def. This flag is set to true immediately after the def
and set to false immediately after the other definitions on the
same variable. Before the use, we set the target predicate p as
cover flag==true. As a result, if the use location is reachable
when p holds, we obtain a counterexample and conclude that
the pair is feasible. Otherwise, the pair is infeasible (or, since
the general problem is undecidable, it does not terminate, and
the result can only be concluded as unknown).

IV. IMPLEMENTATION

The data flow testing framework is built on top of a DSE
engine named CAUT3 [25], [28]–[30], which includes two
analysis phases: a static analysis and a dynamic analysis.

The static analysis phase collects def-use pairs, cut points, and
other static program information from programs by using CIL4

(an infrastructure for C program analysis and transformation).
We perform standard iterative data-flow analysis [33], [34] to
find intra-procedural and inter-procedural def-use pairs for C
programs. We first build the control flow graph (CFG) for
each function and then construct the inter-procedural control
flow graph (ICFG). For each variable use, we compute which
definitions on the same variable may reach this use. A def-
use pair is created as a test objective for each use with its
corresponding definition. We consider local and global variables
in our data-flow analysis, and treat each formal parameter
variable as defined at the beginning of its function, each actual
parameter variable as used at its function call site (e.g. library
function calls), global variables as defined at the beginning of
the entry function (e.g. main). Following recent work on data
flow testing [39], we currently do not consider def-use pairs
caused by pointer aliasing. Thus, we may miss some def-use
pairs, but this is an independent issue and does not affect the
effectiveness of our approach. More sophisticated data-flow
analysis techniques [40] could be used to mitigate this problem.

The dynamic analysis phase performs dynamic symbolic
execution on programs. We extend the original DSE engine
to whole program testing, which uses Z35 as the constraint
solver. Function stubs are used to simulate C library functions

3CAUT: https://github.com/tingsu/caut-lib
4CIL: http://kerneis.github.io/cil/
5Z3: http://z3.codeplex.com/



such as string, memory and file operations to improve symbolic
reasoning ability. We use CIL to encode the test requirement
of a def-use pair into the program under test, which is used as
the input to model checkers. The DSE engine and the model
checkers works on the same CIL-simplified code.

V. EVALUATION AND RESULTS

This section presents our evaluation to demonstrate the
practical effectiveness of our approach for automated data
flow testing. Our results on six benchmark programs show that
(1) Our DSE-based approach can greatly speed up data flow
testing: It reduces testing time by 60∼80% than standard search
strategies from state-of-the-art symbolic executors CREST [32]
and KLEE [31]; and (2) Our combined approach is effective: It
applies the DSE-based tool CAUT to cover as many feasible def-
use pairs as possible, and then applies the CEGAR-based model
checkers BLAST [20]/CPAchecker [21] to identify infeasible
pairs. Overall, it reduces testing time by 40% than the CEGAR-
based approach alone and improves data-flow coverage by 20%
than the DSE-based approach alone.

A. Evaluation Setup
All evaluations were run on a laptop with 4 processors

(2.67GHz Intel(R) i7) and 4GB of memory, running 32bit
Ubuntu GNU/Linux 12.04.

Search Strategies To assess the performance of our proposed
guided path search strategy for data flow testing, we choose
the following search strategies to compare against:
• Random Input (RI): It generates random test inputs to

drive program executions, which is a classic method
to generate data-flow based test data [41].

• Random Path Search (RPS): It randomly chooses a
path to exercise, which is commonly adopted in many
symbolic executors [25], [31], [32].

• CFG-Directed Search (in CREST [32]): It prefers to
drive the program execution down the branch with the
minimal distance toward uncovered branches on the
ICFG and also uses a heuristic to backtrack or restart
the search under certain failing circumstances.

• RP-MD2U Search (in KLEE [31]): It uses a round-
robin of a breadth-first search strategy with a Min-
Distance-to-Uncovered heuristic. The breadth-first strat-
egy favors shorter paths but treats all paths of the
same length equally. The Min-Distance-to-Uncovered
heuristic prefers the paths with minimal distance to
uncovered statements on ICFG.

• Shortest Distance Guided Search (SDGS): It prefers to
choose the path that has the shortest distance toward
a target statement in order to reach the statement as
quickly as possible. This strategy has been applied in
single target testing [36], [37], [42]. In the context of
data flow testing, the search first sets the def as the
first goal and then the use as the second goal after the
def is covered.

Bechmarks We use six benchmark programs. Four are from
the Software-artifact Infrastructure Repository (SIR6) including
tcas, replace, printtokens2 and space. They are also used
in other work on data flow testing [9], [43]. We also take

6SIR: http://sir.unl.edu/php/previewfiles.php

TABLE I. TEST SUBJECTS FROM SIR AND INDUSTRIAL RESEARCH
PARTNERS

Benchmark #LOC #DU Description
tcas 192 124 collision avoidance system

replace 584 385 pattern matching and substitution
printtokens2 494 304 lexical analyzer

space 5643 3071 array definition language interpreter
osek os 5732 527 engine management system

space control 8763 1491 satellite gesture control

two industrial programs from research partners. One is an
engine management system [44], [45] running on an automobile
operating system (osek os) conforming to the OSEK/VDX
standard. The other is a satellite gesture control program [25]
(space control). These two industrial programs feature compli-
cated execution logic. The detailed descriptions and statistics
are listed in Table I, where LOC denotes the number of lines
of source code and DU the number of collected def-use pairs.

Research Questions In our evaluation, we intend to answer
the following key research questions:

• RQ1: In data flow testing w.r.t. all def-use coverage,
what is the performance difference among different
search strategies, i.e., RI, RPS, CREST (i.e., CFG-
Directed Search), KLEE (i.e., RP-MD2U Search),
SDGS and CPGS (cut point-guided search) in terms
of search time, program iterations and coverage level?

• RQ2: How effective is the combined approach (the
DSE-based approach complemented with the adapted
CEGAR-based approach) for data flow testing?

Metrics and Setup In the evaluation, we use the following
metrics and experimental setup: (1) In RQ1: The search time,
number of program iterations and coverage are recorded to
measure the performance of different search strategies in the
DSE-based approach. We target one def-use pair at a time. The
coverage percentage is calculated by C=nFeasible/(nTestObj-
nInfeasible)×100%, (nFeasible/nInfeasible is the number of
identified feasible/infeasible pairs, nTestObj is the total number
of pairs. In the DSE-based approach, nFeasible is the number
of covered pairs. Since this approach in general cannot identify
infeasible pairs, nInfeasible is set as 0 in coverage computation.)
The search time is calculated by T=

∑nCovered
k=1 nSearchT imei

(nSearchT imei is the time spent on the ith covered def-
use pair). The number of program iterations is calculated by
I=

∑nCovered
k=1 nIterationsi (nIterationsi is the iterations of

the ith covered def-use pair). Since the testing budget (e.g.,
search time and program iterations) spent on an uncovered
def-use pair (maybe an infeasible pair) cannot indicate which
search strategy is better, only the testing budget spent on
covered pairs is tabulated. The maximum search time on
each pair is set to 20 seconds in case of its infeasiblilty. We
repeat the testing process 30 times for each program/strategy
and use their the average values as the final results for all
measurements. The total testing time requires about two days.
(2) In RQ2: Both the latest versions of the two state-of-the-art
CEGAR-based model checkers, BLAST7 and CPAchecker8 are
respectively used as black-box testing engines. In the evaluation,
we use the following command options and configurations

7BLAST 2.7.2: http://forge.ispras.ru/projects/blast
8CPAchecker 1.3.4: http://cpachecker.sosy-lab.org/



according to the suggestions from the tool maintainers and
usage documentations:

BLAST: ocamltune blast -enable-recursion
-cref -lattice -noprofile -nosserr
-timeout 120 -quiet

CPAchecker: cpachecker -config
config/predicateAnalysis.properties
-skipRecursion -timelimit 120

Here, the maximum testing time on each def-use pair is set
to 120 seconds. We use ocamltune, an internal script to
improve memory utilization for large programs, to invoke
BLAST. For CPAchecker, we use its default analysis con-
figuration. The options -enable-recursion in BLAST
and -skipRecursion in CPAchecker are both used to set
recursion functions as skip. For each def-use pair, we run 30
times and use the average execution time as its final value. We
run the single CEGAR-based approach and the combined DSE-
CEGAR-based approach, which operates as follows: the DSE-
based approach (use the cut point-guided path search strategy
with the same time setting in RQ1) is first used to cover as many
feasible pairs as possible; for the remaining uncovered pairs,
the CEGAR-based approach is used to identify infeasible paris
and may cover some feasible pairs which have not been found
by the DSE-based approach. In the evaluation, we conduct one
run of the combined DSE-CEGAR-based approach.

The distribution on testing time for one pair is also given:
Median, the semi-interquartile range SIQR (i.e., (Q3-Q1)/2, Q1:
the lower quartile, Q2: the upper quartile) and the number of
outliers which fall 3*SIQR below Q1 or above Q3.

Comparison Criterion A better search strategy or approach in
data flow testing requires less testing time, costs fewer program
iterations and/or achieves higher data-flow coverage.

B. Results and Analysis

RQ1: The cut point-guided search performs the best In
Table II, the performance statistics of different search strategies
are listed. In Column Evaluation, RI, RPS, CREST, KLEE,
SDSG, CPGS respectively represents the corresponding search
strategies introduced before. In Column Performance Result, it
shows the search time (T), program iterations (I) and data-flow
coverage percentage (C). In Column Distribution, it shows the
distribution on testing time for a single pair: Median (M) and
SIQR. From Table II, we can see that the cut point-guided path
search strategy (CPGS) achieves the overall best performance
against the other search strategies. As expected, in general, the
CPGS strategy requires less testing time and costs much fewer
iterations than other search strategies to achieve higher data-flow
coverage. It narrows the search space by following the cut points
and further improves the performance by pruning redefinition
paths. From Column Distribution, the median search time of
one def-use pair in the CPGS strategy is lower than that of
RP, CREST, KLEE, SDGS respectively. Thus, CPGS is more
efficient in data flow testing.

In Figure 4, we give the column diagrams on each strate-
gy/program in the terms of search time, program iterations
and data-flow coverage, respectively. On average, compared
with CREST, KLEE and SDSG, the CPGS strategy reduced
69.7%, 78.6% and 39.0% in search time and 73.0%, 76.1%,
48.3% in program iterations, respectively. Compared with RPS,
it roughly improves data-flow coverage by 14.7%. Compared
with these novel and widely-used search strategies from many

TABLE II. PERFORMANCE STATISTICS OF DIFFERENT SEARCH
STRATEGIES IN DATA FLOW TESTING. RI: RANDOM INPUT, RPS: RANDOM

PATH SEARCH, CREST: CFG-DIRECTED SEARCH IN CREST, KLEE:
RP-MD2U SEARCH IN KLEE, SDGS: SHORTEST DISTANCE GUIDED SEARCH;

CPGS: THE CUT POINT-GUIDED SEARCH, ”∞” MEANS IT EXCEEDS 30
MINUTES, ”-” MEANS WE DO NOT COUNT, TIME UNIT IS IN SECONDS.

Evaluation Performance Result Distribution
Benchmark Strategy T I C M SIQR

tcas RI
RPS

CREST
KLEE
SDGS
CPGS

∞
1.7
3.4
7.6
2.8
2.6

-
778

1459
1477
997
554

59.2%
73.4%
73.4%
73.4%
73.4%
73.4%

-
0.02
0.02
0.02
0.01
0.01

-
0.02
0.02
0.04
0.02
0.01

replace RI
RPS

CREST
KLEE
SDGS
CPGS

∞
1,078.3
1,345.3
1,289.3
514.3
328.0

-
25947
17824
16202
6929
1854

22.4%
48.7%
52.8%
51.5%
52.2%
60.9%

-
4.26
4.72
4.52
2.13
1.32

-
0.86
1.64
1.70
0.66
0.52

printtokens2 RI
RPS

CREST
KLEE
SDGS
CPGS

∞
225.5
376.9
342.7
123.6
55.8

-
21950
13040
12857
5791
2794

65.5%
56.9%
56.9%
56.9%
56.9%
56.9%

-
1.18
1.21
1.05
0.65
0.12

-
0.56
0.61
0.79
0.52
0.13

space RI
RPS

CREST
KLEE
SDGS
CPGS

∞
1853.4
1954.6
1880.7
1,057.4
656.7

-
68715
47115
48248
18773
9782

9.2%
22.3%
27.7%
28.6%
22.7%
30.2%

-
1.85
2.01
1.84
1.27
0.62

-
0.91
0.78
0.96
0.65
0.49

osek os RI
RPS

CREST
KLEE
SDGS
CPGS

∞
476.3
654.1
774.6
204.8
91.6

-
21431
11475
17329
7497
4783

19.4%
47.6%
64.7%
66.5%
61.3%
71.6%

-
1.14
1.34
1.29
0.55
0.21

-
0.44
0.74
0.84
0.29
0.22

space control RI
RPS

CREST
KLEE
SDGS
CPGS

∞
657.8

1323.5
1472.6
490.3
287.3

-
43160
29596
35937
13870
8879

27.3%
49.5%
60.7%
59.5%
56.7%
64.3%

-
0.75
1.29
1.33
0.45
0.21

-
0.44
0.44
0.76
0.38
0.35

symbolic execution executors, the data clearly shows that the
CPGS strategy is a more effective strategy for data flow testing.

However, there are some interesting phenomenons worth
elaborating. RI gains higher data-flow coverage for the program
printtokens because it is easier for RI to quickly generate
random combinations of characters inputs than other path-
oriented search strategies, but in general it can only cover
limited number of def-use pairs. RPS is faster than all the
other search strategies for the program tcas because it is a
small program with finite paths and other advanced strategies
incur higher path scheduling overhead. Two novel search
strategies, CREST and KLEE can usually cover more pairs
in most programs than RPS but they require more testing
time. We note that RPS incurs much lower computation
cost on path scheduling than CREST and KLEE. These two
advanced strategies try to satisfy a pair by improving as much
branches/statements coverage as possible, which demands more
testing time. The SDGS strategy is more effective than the other
three general strategies (i.e., RPS, CREST, KLEE) since it is
guided by the distance metric toward the target pair. However,
it is less effective than the CPGS strategy because the latter



0	  

300	  

600	  

900	  

1200	  

1500	  

1800	  

tca
s	  

rep
lac
e	  

pri
n4
ok
en
s2
	  

sp
ac
e	  

os
ek
_o
s	  

sp
ac
e_
co
ntr
ol	  

Time 

RI	  

RPS	  

CREST	  

KLEE	  

SDGS	  

CPGS	  

(a) the search time (in seconds)

0	  

10000	  

20000	  

30000	  

40000	  

50000	  

60000	  

70000	  

tca
s	  

rep
lac
e	  

pri
n4
ok
en
s2
	  

sp
ac
e	  

os
ek
_o
s	  

sp
ac
e_
co
ntr
ol	  

Itera9on 

RI	  

RPS	  

CREST	  

KLEE	  

SDGS	  

CPGS	  

(b) the program iterations

0.0%	  

20.0%	  

40.0%	  

60.0%	  

80.0%	  

100.0%	  

tca
s	  	  

rep
lac
e	  

pri
n4
ok
en
s2
	  

sp
ac
e	  

os
ek
_o
s	  

sp
ac
e_
co
ntr
ol	  

Coverage	  

RI	  

RPS	  

CREST	  

KLEE	  

SDGS	  

CPGS	  

(c) the data-flow coverage percentage

Fig. 4. The column diagrams: the search time, the program iterations and the data-flow coverage of each benchmark/search strategy.

TABLE III. PERFORMANCE STATISTICS OF THE DSE-BASED, CEGAR-BASED, AND THE COMBINATION APPROACH ON DATA FLOW TESTING. ”DSE”,
”CEGAR1” AND ”CEGAR2” CORRESPONDING TO THE APPROACH OF CAUT, BLAST AND CPACHECKER, RESPECTIVELY. ”-” MEANS IT DOES NOT APPLY.

Evaluation Coverage Result Time Result Distribution
Benchmark Approach C CD FT IT TT Mf (S/O) Mi(S/O)

tcas DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

73.4%
72.5%
100%
92.9%
100%

91/-/33
71/26/27
91/33/0
91/26/7
91/33/0

2.6s
12m21s
07m57s

2.6s
2.6s

-
04m30s
02m38s
04m49s
02m58s

23.3s
01h10m
10m25s
18m53s
03m01s

1.91(0.90/16)
5.11(0.35/0)

3.64(3.54/2)
4.40(0.43/0)

replace DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

60.9%
65.9%
61.0%
78.5%
77.5%

234/-/151
242/18/125
217/29/139
288/18/79
276/29/80

05m28s
01h23m
01h09m
31m02s
29m58s

-
15m06s
13m50s
21m06s
23m30s

55m28s
05h45m
05h16m
03h56m
03h58m

4.18(14.83/23)
15.73(6.01/12)

42.29(10.92/1)
19.22(8.13/1)

printtokens2 DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

56.9%
38.7%
55.4%
70.9%
77.1%

173/-/131
101/43/159
138/55/111
185/43/76
192/55/57

55.8s
01h45m
02h55m
19m12s
31m51s

-
23m21s
10m30s
37m41s
28m50s

44m36s
07h22m
06h18m
03h54m
03h12m

72.68(39.89/0)
77.00(15.33/0)

28.15(9.16/3)
9.73(2.32/4)

space DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

30.1%
32.7%
35.7%
37.5%
38.1%

925/-/2146
842/498/1731
908/524/1639
964/498/1609
971/524/1576

10m57s
24h37m
26h50m
01h32m
01h47m

-
06h14m
05h33m
08h00m
08h28m

11h44m
88h34m
87h02m
72h06m
71h32m

105.21(7.57/8)
107.65(6.39/14)

43.54(11.42/23)
35.98(7.35/27)

osek os DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

71.6%
87.9%
95.2%
93.9%
97.1%

377/-/150
372/104/51
399/108/20
397/104/26
407/108/12

91.6s
49m19s
50m35s
10m02s
14m52s

-
09m22s
08m06s
44m02s
44m06s

51m22s
02h40m
01h39m
01h54m
01h27m

5.78(1.87/21)
6.05(1.78/6)

5.32(1.39/13)
4.47(2.15/8)

space control DSE
CEGAR1
CEGAR2

DSE+CEGAR1
DSE+CEGAR2

64.3%
94.8%
94.3%
94.8%
94.3%

959/-/532
1157/270/64
1048/380/63
1157/270/64
1048/380/63

04m47s
05h23m
07h31m
01h26m
44m59s

-
56m40s
01h10m
02h27m
02h06m

03h02m
07h57m
10h47m
06h22m
05h18m

4.53(1.12/97)
6.90(1.78/149)

12.72(1.95/14)
8.51(2.36/6)

0.00%	  

20.00%	  

40.00%	  

60.00%	  

80.00%	  

100.00%	  

tca
s	  

rep
lac
e	  

pri
n4
ok
en
s2
	  

sp
ac
e	  

os
ek
_o
s	  

sp
ac
e_
co
ntr
ol	  

Total	  Time	  

DSE	  

CEGAR1	  

CEGAR2	  

DSE+CEGAR1	  

DSE+CEGAR2	  

(a) the total time

0.0%	  

20.0%	  

40.0%	  

60.0%	  

80.0%	  

100.0%	  

tca
s	  

rep
lac
e	  

pri
n4
ok
en
s2
	  

sp
ac
e	  

os
ek
_o
s	  

sp
ac
e_
co
ntr
ol	  

Coverage	  

DSE	  

CEGAR1	  

CEGAR2	  

DSE+CEGAR1	  

DSE+CEGAR2	  

(b) the data-flow coverage

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

DS
E	  

CE
G
AR

1	  
CE

G
AR

2	  
DS

E+
CE

G
AR

1	  
DS

E+
CE

G
AR

2	  

tcas	   replace	   prin;okens2	   space	   osek_os	   space_control	  

Coverage	  Details 

unknown	  

infeasible	  

feasible	  

(c) the coverage details (feasible/infeasible/unknown pairs)

Fig. 5. The column diagrams: the total testing time, the data-flow coverage and the coverage details of the DSE, CEGAR, and DSE+CEGAR approach.

contains more optimization techniques.

RQ2: The combined approach is effective Table III lists
the performance statistics of different approaches in data flow

testing. In Column Evaluation, DSE, CEGAR1 and CEGAR2
represents the single testing approach from CAUT, BLAST and
CPAchecker, respectively. DSE+CEGAR1/CEGAR2 represents



the combined approach of DSE and CEGAR. Column Coverage
Result lists the data-flow coverage (C) and the coverage details
(CD) (the number of feasible/infeasible/unknown pairs. If
a testing approach cannot give a definite conclusion on the
feasibility of a pair within the given time bound, we call this
pair unknown). Column Time Result lists the testing time spent
on feasible pairs (FT ), infeasible pairs (IT ) and total pairs
(TT ). Note the total testing time TT is the sum of FT , IT
and the time spent on unknown pairs, so TT should be longer
than TT + FT . In Column Distribution, Mf and Mi represent
the median testing time (in seconds) on identifying a feasible
and an infeasible pair, respectively, S stands for SIQR and
O is the number of outliers in the CEGAR-based approach.
Note, in general, the DSE-based approach can only identify the
feasible and unknown (i.e., uncovered) pairs (so we treat the
uncovered pairs as unknown pairs) while the CEGAR-based
approach can identify both feasible and infeasible pairs.

From Table III, we can observe that the DSE-based approach
can cover a large portion of feasible pairs detected by the
CEGAR-based approach (see Column CD). Moreover, by
comparing the testing time spent on feasible pairs between
the DSE-based and the CEGAR-based approach (see Column
FT ), we can see that the DSE-based approach is very effective
in covering feasible pairs. A reasonable explanation is that the
DSE-based approach is a dynamic explicit path-based testing
method while the CEGAR-based approach is a static model
checking-based testing method. The static approach requires
much higher testing overhead. On the other hand, it is easier
for the CEGAR-based approach to identify infeasible pairs (see
Column IT ) while the DSE-based approach has to check all
possible paths before confirming which pairs are infeasible. So
it is beneficial to combine the DSE-based approach with the
CEGAR-based approach to gain their respective advantages
i.e., reduce testing time on feasible pairs and improve coverage
by eliminating infeasible pairs.

In Figure 5, we present the column diagrams of the total
testing time (normalized in percentage), the data-flow coverage
and the coverage details of the DSE-based, CEGAR-based, and
the combined approach. In detail, the combination strategy can
on average reduce total testing time by 40% than the CEGAR-
based approach alone. It can also eliminate infeasible pairs
more easily and on average improve data-flow coverage by
20% than the DSE-based approach alone. Thus, the combined
approach can provide a more practical way of data flow testing.

In Table III, we also find that the testing performances of
the two model checkers and their conclusions on the number
of feasible/infeasible pairs have some differences within the
constrained testing time (see Column CD). A reasonable expla-
nation is that their underlying constraint solvers, implementation
languages, search heuristics have different impact on testing per-
formance. They also have different performances on programs
exhibiting different features. For example, in tcas, all program
inputs are integral, while space control involves much floating-
point computation and many struct/union manipulations. In
addition, the number of infeasible pairs detected by BLAST
is generally fewer than that of CPAchecker (see Column CD).
BLAST is slightly faster in identifying feasible pairs while
CPAchecker can usually identify infeasible pairs more quickly
(see Column Mf and Mi).

Discussion We have developed a simple, yet powerful method
to reduce data flow testing into model checking and used two

CEGAR-based state-of-the-art model checkers to evaluate its
practicality. From the evaluations on two combination instances
(CAUT+BLAST and CAUT+CPAchecker), we observe a con-
sistent trend: the combined DSE-CEGAR-based approach can
greatly reduce testing time and improve data-flow coverage
than the two approaches alone. In addition, we have also used
the DSE and CEGAR-based approach to cross-check each other
by comparing their results on the same def-use pairs. This helps
to validate the correctness and consistency of both techniques
and also make our testing results more reliable.

C. Threats to Validity
First, we implemented all search strategies on our CIL-based

tool CAUT. The original RP-MD2U strategy in KLEE uses the
number of LLVM instructions to measure the minimal distance
between one instruction to another while CAUT uses CIL
instructions as its distance metric. KLEE is a static symbolic
executor, while CAUT is a dynamic symbolic executor. These
differences may affect the performance of the RP-MD2U
strategy on the benchmarks. In addition, the implementation of
the two search strategies from CREST and KLEE may differ
from their original versions. For these threats, we carefully
inspected the relevant source code and technical reports [46] to
ensure our implementation conformance and correctness. The
decision to engineer the data flow testing framework on our
DSE-based tool is based on the following considerations: (1)
CREST does not support real numbers, composite structures or
pointer reasoning, but these features are required in testing real-
world programs; and (2) KLEE is a static symbolic executor,
thus it is more difficult to reason about possible variable
redefinitions caused by variable aliasing than dynamic symbolic
executors. Implementing all search strategies on top of the same
tool provides the convenience to record and compare the testing
performances of different search strategies.

Second, in our current implementation, we do not identify def-
use pairs caused by pointer aliasing in the risk of missing some
def-use pairs. More sophisticated static or dynamic analysis
techniques [40] could be adopted to identify more def-use pairs.
However, we believe that this is an independent issue and not
the focus of the work. The effectiveness of our DSE-based and
CEGAR-based approach should remain.

As for possible external threats, we have evaluated our
approach on a small set of benchmarks, which include programs
used in previous data flow testing research as well as industrial
programs. From these programs, the effectiveness of our
approach is evident. Although it is interesting to consider
additional test subjects, due to our novel, general methodologies,
we believe that the results should be consistent.

VI. RELATED WORK

This section discusses three strands of related work: (1) data
flow testing, (2) DSE-based advanced coverage testing, and (3)
directed symbolic execution.

Data Flow Testing Data flow testing has been empirically
demonstrated to be more effective [8], [9] than other structural
testing techniques, but with much higher testing cost [12], [13].
Much research has considered how to aid data flow testing.
Some efforts use random testing combined with program
slicing [41], while a few others use the collateral coverage
relationship [47], [48] between branch/statement and data-flow
criteria to generate data-flow test data. There is also work that
applies search-based techniques [39], [49]–[51] to perform data



flow testing. For example, Ghiduk et al. [49] use a genetic
algorithm, which takes as input an initial population of random
inputs, and adopts a designated fitness function [52] to measure
the closeness of execution paths against a target def-use pair.
It then uses genetic operations (e.g. selection, crossover and
mutation) to search the next promising input to cover this pair.
Other efforts include Nayak et al. [50], who use a particle
swarm optimization algorithm, and Ghiduk [51], who uses the
ant colony algorithm to derive test data for the target def-use
pair. Recently, Vivanti et al. [39] also use a genetic algorithm
to conduct data flow testing on classes [7]. They use a fitness
function to guide the search to reach the def and then the use.
In contrast, we adopt an enhanced dynamic symbolic execution
technique to perform data flow testing, and demonstrate how to
combine our DSE-approach with our CEGAR-based approach
to effectively deal with infeasible test objectives, which has
not been investigated in prior work.

Classic symbolic execution [38] is also used to statically
select control flow paths to do data flow testing. Buy et al. [53]
combine data-flow analysis, symbolic execution and automated
deduction to perform data flow testing on classes. Symbolic
execution first identifies the relation between the input and
output values of each method in a class, and then collects the
method preconditions from a feasible and def-clear path that
can cover the target pair. An automated backward deduction
technique is later used to find a sequence of method invocations
(i.e., a test case) to satisfy these preconditions. However, little
evidence is provided on the practicality of this approach. Hong
et al. [54] use a model checking approach to generate data-flow
oriented test data. It models the program as a Kriple structure
and characterizes data-flow criteria via a set of CTL property
formulas. A counterexample for a property formula represents
a test case for a specific def-use pair. However, this method
requires manual annotation with unclear scalability since it
is evaluated on only a single function. Baluda et al. [55] use
a combined method of concolic execution [32] and abstract
refinement [56] to compute accurate branch coverage. It
refines the abstract program from a sequence of failed test
generation operations to detect infeasible branches. In contrast,
we directly encode test objectives into the program under test
and use interpolation-based model checkers (different from
their refinement method) as black-box engines, which is fully
automatic and flexible.

Advanced Coverage Testing via DSE Extensive work exists
to apply the DSE-based technique [14], [15], [28], [31] for
test case generation w.r.t. certain advanced coverage criteria.
Bardin et al. [57] propose a label coverage criterion to imply
a number of advanced criteria (MC/DC and weak mutation
criteria). This label coverage criterion is both expressive and
amenable to efficient automation. However, it cannot handle
those criteria that impose constraints on paths (e.g., data-flow
criteria) rather than program locations. Pandita et al. [24]
propose a trade-off approach to achieve a specified coverage
criterion through source code transformations. The block
coverage in the transformed program implies the MC/DC
coverage in the original program. Augmented DSE [26] enforces
advanced criteria such as boundary, logical and mutation criteria
by augmenting path conditions with additional conditions.
However, in this paper, we aim to automate data flow testing,
which has not been considered before in the context of DSE.
We have designed an efficient search strategy to find paths that

cover def-use pairs.

Directed Symbolic Execution Much research [36], [37], [42],
[58], [59] has been done to guide path search toward a specified
program location in symbolic execution. Do et al. [59] make
use of data dependency analysis [60] to guide the search process
to a program location of interest, while we use a dominator
analysis. Ma et al. [37] propose a call chain backward search
heuristic to find a feasible path, backward from the target
program location to the entry. However, it is difficult to adapt
this approach on data flow testing, because it requires that
a function can be decomposed into logical parts when the
target locations (e.g. the def and the use) are located in the
same function [61]. But decomposing a function itself is a
nontrivial task. Zamfir et al. [36] narrow the path search space
by following a limited set of critical edges and a statically-
necessary combination of intermediate goals. On the other hand,
our approach finds a set of cut points from the program entry
to the target locations, which makes path exploration more
efficient. Xie et al. [58] integrate fitness-guided path search
strategy with other heuristics to reach a program point. The
proposed strategy is only efficient for those problems amenable
to its fitness functions. Marinescu et al. [42] use a shortest
distance-based guided search method (like the adapted SDGS
heuristic in our evaluation) with other heuristics to quickly
reach the line of interest in patch testing. In comparison, we
combine several search heuristics to guide the path exploration
to traverse two specified program locations (i.e. the def and
use) sequentially for data flow testing.

VII. CONCLUSION

We have proposed a combined symbolic execution and model
checking approach to automate data flow testing. First, we have
adapted dynamic symbolic execution (DSE) for data flow testing
and introduced a novel path search strategy to make the basic
approach practical. Second, we have devised a simple encoding
of data flow testing via counterexample-guided abstraction
refinement (CEGAR). The two approaches offer complementary
strengths: DSE is more effective at covering feasible def-use
pairs, while CEGAR is more effective at rejecting infeasible
pairs. Indeed, evaluation results have demonstrated that their
combination reduces testing time by 40% than the CEGAR-
based approach alone and improves coverage by 20% than
the DSE-based approach alone. This work not only provides
novel techniques for data flow testing, but also suggests a
new perspective on this problem to benefit from advances in
symbolic execution and model checking. In further work, we
would like to apply this data flow testing technique on larger
programs and make deeper combinations between DSE and
CEGAR, e.g., learning some predicates from DSE to help
CEGAR avoid unnecessary explorations and save testing time.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback. Ting Su is partly supported by ECNU
Project of Funding Overseas Short-term Studies, Domestic
Academic Visit and International Conference and NSFC Project
No. 91118007. Jifeng He is partially supported by NSFC Project
No. 61321064. Geguang Pu is supported by NSFC Project No.
61361136002 and Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (ZF1213). Zhoulai
Fu and Zhendong Su are partially supported by United States
NSF Grants 1117603, 1319187, and 1349528.



REFERENCES
[1] A. Khannur, Software Testing - Techniques and Applications. Pearson

Publications, 2011.
[2] P. Ammann, A. J. Offutt, and H. Huang, “Coverage criteria for logical

expressions,” in 14th International Symposium on Software Reliability
Engineering (ISSRE 2003), 17-20 November 2003, Denver, CO, USA,
2003, pp. 99–107.

[3] R. Inc, “Do-178b: Software considerations in airborne systems and
equipment certification,” Requirements and Technical Concepts for
Aviation, December 1992.

[4] P. M. Herman, “A data flow analysis approach to program testing.”
Australian Computer Journal, vol. 8, no. 3, pp. 92–96, 1976.

[5] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow
information,” IEEE Trans. Software Eng., vol. 11, no. 4, pp. 367–375,
1985.

[6] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A formal
evaluation of data flow path selection criteria,” IEEE Trans. Software
Eng., vol. 15, no. 11, pp. 1318–1332, 1989.

[7] M. J. Harrold and G. Rothermel, “Performing data flow testing on classes,”
in SIGSOFT ’94, Proceedings of the Second ACM SIGSOFT Symposium
on Foundations of Software Engineering, New Orleans, Louisiana, USA,
December 6-9, 1994, 1994, pp. 154–163.

[8] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Trans. Softw.
Eng., vol. 19, no. 8, pp. 774–787, Aug. 1993.

[9] M. Hutchins, H. Foster, T. Goradia, and T. J. Ostrand, “Experiments
of the effectiveness of dataflow- and controlflow-based test adequacy
criteria,” in Proceedings of the 16th International Conference on Software
Engineering, Sorrento, Italy, May 16-21, 1994., 1994, pp. 191–200.

[10] J. R. Horgan and S. London, “Data flow coverage and the c language,”
in Proceedings of the symposium on Testing, analysis, and verification,
ser. TAV4. New York, NY, USA: ACM, 1991, pp. 87–97.

[11] ——, “Atac: A data flow coverage testing tool for c,” in Proceedings
of Symposium on Assessment of Quality Software Development Tools,
1992, pp. 2–10.

[12] E. J. Weyuker, “The cost of data flow testing: An empirical study,” IEEE
Trans. Software Eng., vol. 16, no. 2, pp. 121–128, 1990.

[13] G. Denaro, M. Pezzè, and M. Vivanti, “Quantifying the complexity
of dataflow testing,” in Proceedings of the International Workshop on
Automation of Software Test, ser. AST ’13. IEEE, 2013, pp. 132–138.

[14] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering. New York, NY,
USA: ACM, 2005, pp. 263–272.

[15] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation. New York, NY,
USA: ACM, 2005, pp. 213–223.

[16] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[17] T. Ball and S. K. Rajamani, “The SLAM project: debugging system
software via static analysis,” in Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, OR, USA, January 16-18, 2002, 2002, pp. 1–3.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,”
in Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, OR,
USA, January 16-18, 2002, 2002, pp. 58–70.

[19] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in C,” in Proceedings of the 25th
International Conference on Software Engineering, May 3-10, 2003,
Portland, Oregon, USA, 2003, pp. 385–395.

[20] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST: Applications to software engineering,” Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 5, pp. 505–525, Oct. 2007.

[21] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Computer Aided Verification - 23rd Interna-
tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, 2011, pp. 184–190.

[22] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar,
“Generating tests from counterexamples,” in Proceedings of the 26th
International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 326–335.

[23] K. Lakhotia, P. McMinn, and M. Harman, “Automated test data
generation for coverage: Haven’t we solved this problem yet?” in
Proceedings of the 2009 Testing: Academic and Industrial Conference
- Practice and Research Techniques. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 95–104.

[24] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test
generation for coverage criteria,” in Proceedings of the 2010 IEEE
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–10.

[25] T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and J. Zhao, “Automated
coverage-driven test data generation using dynamic symbolic execution,”
in Eighth International Conference on Software Security and Reliability,
SERE 2014, San Francisco, California, USA, June 30 - July 2, 2014,
2014, pp. 98–107.

[26] K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux, “Augmented
dynamic symbolic execution,” in IEEE/ACM International Conference
on Automated Software Engineering, 2012, pp. 254–257.

[27] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing,”
in 26th IEEE International Conference on Software Maintenance (ICSM
2010), September 12-18, 2010, Timisoara, Romania, 2010, pp. 1–10.

[28] Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding, and J. Hu, “Test data generation
for derived types in C program,” in TASE 2009, Third IEEE International
Symposium on Theoretical Aspects of Software Engineering, 29-31 July
2009, Tianjin, China, 2009, pp. 155–162.

[29] T. Sun, Z. Wang, G. Pu, X. Yu, Z. Qiu, and B. Gu, “Towards scalable
compositional test generation,” in Proceedings of the Ninth International
Conference on Quality Software, QSIC 2009, Jeju, Korea, August 24-25,
2009, 2009, pp. 353–358.

[30] X. Yu, S. Sun, G. Pu, S. Jiang, and Z. Wang, “A parallel approach to
concolic testing with low-cost synchronization,” Electr. Notes Theor.
Comput. Sci., vol. 274, pp. 83–96, 2011.

[31] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementation,
2008, pp. 209–224.

[32] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, 2008,
pp. 443–446.

[33] M. J. Harrold and M. L. Soffa, “Efficient computation of interprocedural
definition-use chains,” ACM Trans. Program. Lang. Syst., vol. 16, no. 2,
pp. 175–204, Mar. 1994.

[34] H. D. Pande, W. A. Landi, and B. G. Ryder, “Interprocedural def-use
associations for C systems with single level pointers,” IEEE Trans. Softw.
Eng., vol. 20, no. 5, pp. 385–403, May 1994.

[35] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, techniques,
and tools. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1986.

[36] C. Zamfir and G. Candea, “Execution synthesis: a technique for
automated software debugging,” in European Conference on Computer
Systems, Proceedings of the 5th European conference on Computer
systems, EuroSys 2010, Paris, France, April 13-16, 2010, 2010, pp.
321–334.

[37] K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings, 2011, pp. 95–111.

[38] M. R. Girgis, “Using symbolic execution and data flow criteria to aid
test data selection,” Softw. Test., Verif. Reliab., vol. 3, no. 2, pp. 101–112,
1993.

[39] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow
test generation,” in IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November
4-7, 2013, 2013, pp. 370–379.

[40] G. Denaro, M. Pezzè, and M. Vivanti, “On the right objectives of data
flow testing,” in IEEE Seventh International Conference on Software



Testing, Verification and Validation, ICST 2014, March 31 2014-April 4,
2014, Cleveland, Ohio, USA, 2014, pp. 71–80.

[41] M. Kamkar, P. Fritzson, and N. Shahmehri, “Interprocedural dynamic
slicing applied to interprocedural data how testing,” in Proceedings
of the Conference on Software Maintenance, ICSM 1993, Montréal,
Quebec, Canada, September 1993, 1993, pp. 386–395.

[42] P. D. Marinescu and C. Cadar, “KATCH: high-coverage testing of soft-
ware patches,” in Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013, 2013, pp. 235–245.

[43] M. Marré and A. Bertolino, “Using spanning sets for coverage testing,”
IEEE Trans. Software Eng., vol. 29, no. 11, pp. 974–984, 2003.

[44] J. Shi, J. He, H. Zhu, H. Fang, Y. Huang, and X. Zhang, “ORIENTAIS:
formal verified OSEK/VDX real-time operating system,” in 17th IEEE
International Conference on Engineering of Complex Computer Systems,
ICECCS 2012, Paris, France, July 18-20, 2012, 2012, pp. 293–301.

[45] Y. Peng, Y. Huang, T. Su, and J. Guo, “Modeling and verification
of AUTOSAR OS and EMS application,” in Seventh International
Symposium on Theoretical Aspects of Software Engineering, TASE 2013,
1-3 July 2013, Birmingham, UK, 2013, pp. 37–44.

[46] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2008-123, Sep 2008.

[47] N. Malevris and D. Yates, “The collateral coverage of data flow criteria
when branch testing,” Information and Software Technology, vol. 48,
no. 8, pp. 676 – 686, 2006.

[48] R. Santelices and M. J. Harrold, “Efficiently monitoring data-flow test
coverage,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ser. ASE ’07. New
York, NY, USA: ACM, 2007, pp. 343–352.

[49] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using genetic algorithms
to aid test-data generation for data-flow coverage,” in Proceedings of
the 14th Asia-Pacific Software Engineering Conference, ser. APSEC ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 41–48.

[50] N. Nayak and D. P. Mohapatra, “Automatic test data generation for
data flow testing using particle swarm optimization,” in Contemporary
Computing - Third International Conference, IC3 2010, Noida, India,
August 9-11, 2010, Proceedings, Part II, 2010, pp. 1–12.

[51] A. S. Ghiduk, “A new software data-flow testing approach via ant colony
algorithms,” Universal Journal of Computer Science and Engineering
Technology, vol. 1, no. 1, pp. 64–72, October 2010.

[52] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,” Information & Software Technology,
vol. 43, no. 14, pp. 841–854, 2001.

[53] U. A. Buy, A. Orso, and M. Pezzè, “Automated testing of classes,” in
ISSTA, 2000, pp. 39–48.

[54] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow
testing as model checking,” in Proceedings of the 25th International
Conference on Software Engineering, May 3-10, 2003, Portland, Oregon,
USA, 2003, pp. 232–243.

[55] M. Baluda, P. Braione, G. Denaro, and M. Pezzè, “Structural coverage
of feasible code,” in Proceedings of the 5th Workshop on Automation of
Software Test, ser. AST ’10. New York, NY, USA: ACM, 2010, pp.
59–66.

[56] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. Tetali,
and A. V. Thakur, “Proofs from tests,” IEEE Trans. Software Eng.,
vol. 36, no. 4, pp. 495–508, 2010.

[57] S. Bardin, N. Kosmatov, and F. Cheynier, “Efficient leveraging of
symbolic execution to advanced coverage criteria,” in IEEE Seventh
International Conference on Software Testing, Verification and Validation,
ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, 2014,
pp. 173–182.

[58] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided
path exploration in dynamic symbolic execution,” in Proceedings of the
2009 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009,
2009, pp. 359–368.

[59] T. Do, A. C. M. Fong, and R. Pears, “Precise guidance to dynamic
test generation,” in ENASE 2012 - Proceedings of the 7th International
Conference on Evaluation of Novel Approaches to Software Engineering,
Wroclaw, Poland, 29-30 June, 2012., 2012, pp. 5–12.

[60] R. Ferguson and B. Korel, “The chaining approach for software test
data generation,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp.
63–86, 1996.

[61] K. K. Ma, “Improving program testing and understanding via symbolic
execution,” Ph.D. dissertation, University of Maryland, 2011.


	Introduction
	Overview
	Problem Setting
	An Illustrative Example

	Approach
	Static Analysis Phase
	DSE-based Approach for Data Flow Testing
	CEGAR-based Approach for Data Flow Testing

	Implementation
	Evaluation and Results
	Evaluation Setup
	Results and Analysis
	Threats to Validity

	Related Work
	conclusion
	References

