
Perturbing Numerical Calculations for Statistical Analysis
of Floating-Point Program (In)Stability

Enyi Tang† Earl Barr‡ Xuandong Li† Zhendong Su‡
†State Key Laboratory for Novel Software Technology ‡Department of Computer Science

Nanjing University, Nanjing, China University of California, Davis, USA
{eytang, lxd}@seg.nju.edu.cn {etbarr,su}@ucdavis.edu

ABSTRACT
Writing reliable software is difficult. It becomes even more diffi-
cult when writing scientific software involving floating-point num-
bers. Computers provide numbers with limited precision; when
confronted with a real whose precision exceeds that limit, they
introduce approximation and error. Numerical analysts have devel-
oped sophisticated mathematical techniques for performing error
and stability analysis of numerical algorithms. However, these are
generally not accessible to application programmers or scientists
who often do not have in-depth training in numerical analysis and
who thus need more automated techniques to analyze their code.

In this paper, we develop a novel, practical technique to help
application programmers (or even numerical experts) obtain high-
level information regarding the numerical stability and accuracy of
their code. Our main insight is that by systematically altering (or
perturbing) the underlying numerical calculation, we can uncover
potential pitfalls in the numerical code. We propose two comple-
mentary perturbations to statistically measure numerical stability:
value perturbation and expression perturbation. Value perturbation
dynamically replaces the least significant bits of each floating-point
value, including intermediate values, with random bits to statisti-
cally induce numerical error in the code. Expression perturbation
statically changes the numerical expressions in the user program to
mathematically equivalent (in the reals, likely not in floating-point
numbers), but syntactically different forms. We then compare the
executions of these “equivalent” forms to help discover and remedy
potential instabilities. Value perturbation can overstate error, while
expression perturbation is relatively conservative, so we use value
perturbation to generate candidates for expression perturbation. We
have implemented our technique, and evaluation results on various
programs from the literature and the GNU Scientific Library (GSL)
show that our technique is effective and offers a practical alternative
for understanding numerical stability in scientific software.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Statistical methods; D.2.5 [Software Engineering]: Testing and
Debugging; G.1.0 [Numerical Analysis]: General—stability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10 July 12–16, 2010, Trento, Italy
Copyright 2010 ACM 978-1-60558-719-823-0/10/07 ...$10.00.

General Terms
Languages, Reliability

Keywords
Floating-point, Numerical Code, Stability, Perturbation, Testing

1. INTRODUCTION
Because of Moore’s law, the modern desktop PC has more com-

puting power than a ten-year old supercomputer. Numerical models
that were previously out of reach are now being used in the physics
engines of games and in business analysis. As a result, a new class
of programmers is writing numerical programs for a new class of
users. These programmers will want to write custom numeric code
not covered by existing numeric libraries. Programmers new to
numerical computing tend to suffer from misconceptions that arise
from thinking in terms of R, not its floating-point approximation
on computers. Even when these programmers have the requisite
training, they will rarely have the time to evaluate the stability of
their numerical code. At the same time, their users will be less able
to diagnose and report errors when they occur. Our goal is to help
these programmers (and their users).

Scientific programs are difficult to get right [9, 12]. Although
numerical analysts have extensively studied numerical stability of
algorithms, few practical tools exist that can automatically analyze
an implementation to measure its stability. In this paper, we propose
a novel, practical framework to help application programmers gain
high-level knowledge about their numerical implementations. The
goal is to warn programmers of unsuspected pitfalls in the numerical
aspect of their code, such as unstable and inaccurate calculations.
Scientists increasingly rely on numeric code to conduct their experi-
ments; tools, such as ours, could improve their productivity.

1.1 Perturbation
Our framework rests on the following observation: it is possible

to gain valuable information regarding a numerical calculation by
systematically perturbing how the calculation is performed. We
combine two complementary perturbations in our framework: value
perturbation and expression perturbation. Value perturbation offers
a dynamic view as it alters the computed values during program
execution, while expression perturbation offers a static perspec-
tive as it alters the numerical expressions in a program. The ba-
sic concept of program transformation has been explored in prior
research [5, 18, 19, 25] for evaluating accuracy of floating-point
computations. However, the proposed approaches are less general,
and few has been empirically demonstrated to be effective. We show
for the first time how the unified value-level, dynamic perturbation,
and expression-level, static perturbation, can aid programmers in
understanding their numerical calculations.

Value perturbation operates on the floating-point representation
of a value. The goal is to uncover, make manifest, the intrinsic
errors imposed by floating-point approximations: representational
and computational error. An example of computational error occurs
when floating-point precisely represents a and b, but not ab. To
uncover intrinsic error, we randomly perturb the low order bits of
values, such as a and b. We do so by statically rewriting all reads
and operations on floating-point values to replace a suffix of their
significand with a random bit string. After perturbation, each run
of the program generates different results. After multiple runs, we
statistically analyze the results to determine the stability of the pro-
gram. Our value perturbation is similar to Monte Carlo Arithmetic
(MCA) [25]. We extend that framework with expression pertur-
bation. We also provide a practical realization and an empirical
evaluation to show its practical benefits.

Expression perturbation operates on the syntax of an expression.
Applications of the associative, distributive, and commutative laws
can generate a large number of syntactically different expressions.
Each expression in this space of variants is equivalent over the reals.
It is well-known that over floating-point arithmetic, however, not
all of these variants are equivalent. Each variant induces a direct
implementation in floating-point arithmetic. For a well-conditioned
problem, some of the direct implementations are stable, viz. small
changes in their input cause small changes in their output; the rest
are unstable. We explore the variant space of well-conditioned
expressions to check numerical implementations for potential in-
stability. Martel also explored this variant space and proposed an
abstract interpretation-based technique [18, 19] to extract the most
stable, equivalent variant. However, this technique, due to its very
nature, suffers from scalability and precision issues, and has not
been shown practical. Our approach is statistical, and is therefore
simpler and more practical for analyzing stability (but it does not dis-
cover stable variants). We systematically generate an expression’s
equivalent forms over the reals and evaluate these variants to gain
statistical information about a calculation. To perturb a program, we
statically perturb its constituent expressions in sequence.

1.2 Usage
In our framework, a user selects expression or value perturbation

and compiles their program. The resulting binary incorporates the
selected perturbation(s). When executed, the perturbed program
runs the original program to completion multiple times; the user
specifies that number of runs. We report two summary statistics
across the results of those runs: the maximal difference (MD) and the
coefficient of variation (CV). When identifying unstable algorithms,
it is prone to false positives, as Kahan has observed [14]. Our
results show that expression perturbation is much less prone to false
positives. Value perturbation is faster to evaluate because, unlike
expression perturbation, it creates a single variant. Thus, we apply
our perturbations in two stages: first we employ value perturbation
to generate candidates whose expressions we then perturb.

In the physical sciences, publications rarely report experimental
results that were directly observed in the laboratory. Instead, scien-
tists directly measure one quantity and use the outcome to calculate
what the value of another, more interesting, physical quantity must
be. The measurement apparatus and the number of experimental
trials engender errors in the directly observed quantity. A direct
lab result has the form x0 ± ∆x. If the quantity to be published
is z = f(x), the experimenter will determine df

dx
and calculate the

error on the reported quantity ∆z, as ∆x df
dx
|x=x0 . When a numeric

program is used, that program is a source of systematic error due
to finite precision and statistical error, if it uses randomness. Thus,
error propagation dictates that a scientist must account for this error.

1 double naive(double [] samples , int n) {
2 double sum , squaresum;
3 for (int i; i < n; i++) {
4 sum += samples[i];
5 squaresum += samples[i] * samples[i];
6 }
7 return (squaresum - sum * sum / n) / n;
8 }

Figure 1: Naïve variance algorithm.

A recent paper in the Physical Review D reported −37± 88stat ±
14syst MeV/c [1], where 88stat denotes statistical error, 14syst denotes
systematic error, and MeV/c is megaelectron volts per c, the speed
of light in a vacuum. Assume the authors used numeric code in their
experimental procedure. Let α be the statistical error the authors
assigned to that numeric code and β be the systematic error; then α
contributes to the derivation of 88stat MeV/c and β to 14syst MeV/c,
the final, reported errors. The authors could have used our tool
to find coefficient of variation (CV) and z, the central value of
sample set produced by multiple runs of their numeric code under
perturbation, and checked their error calculation with

|CV | ≤
˛̨̨̨
˛
p
α2 + β2

z

˛̨̨̨
˛ .

Adding errors in quadrature as shown here is standard practice in
error analysis [7, Equation 3.73].

1.3 Contributions
We have implemented our perturbation framework and evaluated

it on various programs from the literature and the GNU Scientific
Library (GSL). Results show that our technique is effective and
able to identify instabilities in the test programs and validate the
stability of others. We believe it offers a practical alternative for
understanding numerical stability of scientific software.

This paper makes the following main contributions:

• We propose a novel framework to statistically analyze the
numerical stability of scientific code. The framework is based
on the general notion of perturbation and consists of two com-
plementary techniques: expression and value perturbations.

• We present detailed algorithms and optimizations on how to
realize expression and value perturbations.

• We have implemented our technique and empirically evalu-
ated it on various test subjects to show its effectiveness.

The rest of the paper is structured as follows. We show how our
technique works on a simple, but real, example in Section 2. In
Section 3, we formalize our technique and present our perturbation
algorithms. After describing the implementation in Section 4, we
show evaluation results in Section 5 and discuss related work in
Section 6. Finally, we conclude and discuss future work (Section 7).

2. EXAMPLE
This section shows how value and expression perturbations can

help programmers uncover and diagnose numerical instabilities.
A fundamental problem in numerical computation is the efficient

and accurate calculation of statistical variance. Figure 1 shows
a naïve, one-pass variance implementation. For each sample, it
updates the running sums of both the samples and their squares.
When we evaluate this code with 1000 inputs of 3.1415926 ×
1010, the output should be 0. However, compiled using gcc 4.2.4

and run under Ubuntu 8.04, the program outputs −1.27446× 107.

1 squaresum * (1/n) + (-sum) * sum
* (1/n) * (1/n)

2 squaresum * (1/n) + sum * (1/n)
* (1/n) * (-sum)

3 (1/n) * (sum * (1/n) * (-sum) + squaresum)

...
143 (1/n) * sum * (1/n) * (-sum)

+ squaresum * (1/n)
144 (1/n) * sum * (1/n) * (-sum)

+ (1/n) * squaresum

Figure 2: Selected perturbed expressions.

1 void knuth(double [] samples , int n) {
2 double delta , mean , M2;
3 mean = M2 = 0;
4 for (int i = 0; i < n; ++i) {
5 delta = samples[i] - mean;
6 mean += delta / i;
7 M2 += delta * (samples[i] - mean);
8 }
9 return M2 / n;

10 }

Figure 3: Knuth’s stable variance algorithm.

This result is obviously wrong and the code is unstable, indeed
notoriously so — this one-pass algorithm is a staple example of
an unstable algorithm in numerical analysis texts. The problem
is that squaresum and sum * sum / n are very close. How does a
programmer use our technique to automatically discover unstable
programs like this one?

Value perturbation runs quickly, because it creates a single variant
of the tested program, and tends to exaggerate error: if a floating-
point function appears stable under value perturbation, it is likely to
be stable. Thus, the programmer first evaluates Figure 1 under value
perturbation, which reports 2.228E+8 MD and 2.060 CV when only
one bit is perturbed.

As expected, this result suggests that Figure 1 is unstable. To
confirm this suspicion, the programmer turns to expression pertur-
bation, which is a more expensive and more conservative test, one
less prone to false positives. Expression perturbation transforms
an expression to one of many possible forms equivalent over R. In
particular, the expression at line 7 of Figure 1 has 144 equivalent
expressions, some of which are depicted in Figure 2. Each of the
144 variants induces a variant of the original function. We select
a random subset of these function variants and evaluate them on
the original input of 1000 samples of 3.1415926× 1010. The CV
of line 7 is 7.96E-39. Since this CV is quite small, syntactically
rewriting this expression to alter its order of evaluation is unlikely
to be fruitful.

Taken together, these perturbation results suggest that either a
higher precision floating-point format is needed or the programmer
may even need to entirely rewrite the code using a more stable
algorithm. Here, we know that the naïve implementation is the
culprit, and a new algorithm is needed. Fortunately, Knuth presented
just such a stable algorithm for variance calculation [15], shown in
Figure 3. Given the same inputs and run on the same platform, this
algorithm returns exactly 0. Under value perturbation, its MD is
3.715E+3 and its CV is 0.542 and its accuracy is robust in the face
of expression perturbation. Both of these results are clearly better
than those reported for Figure 1.

3. PERTURBATION ALGORITHMS
Our value and expression perturbations rewrite a program that

uses floating point to elicit any latent propensity to stability or propa-

e ::= −e | e+ e | e− e | e× e | e / e | E | v
Figure 4: Grammar G for floating-point expressions.

Single Precision
SIGN EXPONENT SIGNIFICAND

0 1 8 9 31
Double Precision

SIGN EXPONENT SIGNIFICAND

0 1 11 12 63

Figure 5: Two IEEE 754 floating-point representations.

gation errors the program may possess. At the high-level, we rewrite
the program to make stability or propagation errors more likely
to occur if the program is susceptible to them. The goal of our
perturbations is to uncover oversights or misconceptions in the use
of floating-point arithmetic and to measure how robust an imple-
mentation is in the face of numerical errors. When the result of a
floating-point computation is stable in the face of our perturbations,
the computation is likely to be free of stability errors. For value per-
turbation, we describe how to introduce controlled, random errors
inside numerical calculations. For expression perturbation, we show
how to systematically generate mathematically equivalent expres-
sions of a given numerical expression e. Value perturbation offers
a dynamic perspective as it focuses on the underlying computed
values, while expression perturbation offers an alternative and com-
plementary, static perspective that focuses on the expression level.
In this section, we define our perturbations and present algorithms
that realize them.

We assume that the numerical programs we perturb have the
form P : I → R, where I denotes the input domain. To handle
programs of the form P : I → Rn, we decompose them into a
set of n functions whose form is Pi : I → R. Restricting our
attention only to its floating-point computations, the program P
computes r = e0 � e1 � · · · � em−1, where� denotes an arbitrary
floating-point operation.

Since we are only interested in floating-point expressions, we do
not rewrite any component of the program we are perturbing other
than a floating-point value or expression. Floating-point expressions
may contain other programming language elements (E), such as a
function call. The fact that an E appears in a floating-point expres-
sion implies that it evaluates to a floating-point expression. Figure 4
depictsG, the grammar of floating-point expressions that we rewrite.
The v in G denotes a primitive floating-point value.

3.1 Value Perturbation
Floating-point computations often have roundoff errors. Our

value perturbation induces and exaggerates roundoff error: if the
computation survives this perturbation, it is likely to survive any
transient error it faces in practice.

When s is the sign; b is the base with the value 2; p is the number
of digits in the significand; x is the exponent; and f is the integer
value of the numerator of the significand, we have

(−1)s × f

bp−1
× bx (1)

Figure 5 depicts two formats prescribed by the IEEE 754 Standard
for Floating-Point Arithmetic [2].

Each r ∈ R has a corresponding floating-point representation f ,
which is subject to representational error. To approximate the error
in f , we replace a k-width suffix of f ’s significand with a random
k-bit string; in effect, we represent r in floating-point as the prefix
of f ’s significand concatenated with any of its 2k possible suffixes

1 double p_v (double value , int bits){
2 byte *byte_array = (byte*)(&value);
3 for(i = 0; i < bits /8; ++i){
4 byte_array[i] ^= (byte)rand();
5 }
6 byte_array[i] ^= (0xFF >> (8-bits %8)) &

((byte)rand());
7 return value;
8 }

Figure 6: Implementation of pv .

and force the representational error to be uniformly distributed.
Since we perturb a k-width suffix, our technique is more efficient
than calculating r(1 ± κ) because our approach requires fewer
operations and focuses on the significand. When F denotes all
possible floating-point values in a particular floating-point format,
let pv : N1 × F → F , in Figure 6, denote this perturbation.

The expression transformation function

p(e) =

8>>>>>>>>>>><>>>>>>>>>>>:

pv(v), e = v

pv(eval(E)), e = E
− p(e1), e = −e1
pv(p(e1) + p(e2)), e = e1 + e2

pv(p(e1)− p(e2)), e = e1 − e2
pv(p(e1)× p(e2)), e = e1 × e2
pv(p(e1) / p(e2)), e = e1 / e2

(2)

recursively applies pv to each primitive floating-point value and
the result of each operation. Function eval evaluates an E and
returns the floating-point expression that E denotes. For clarity, we
have implicitly curried both p and pv to elide n, the length of the
permuted suffix.

Randomly perturbing a suffix of floating-point values allows us
to statistically model errors introduced by floating-point approxima-
tions. We not only model representational errors, but also computa-
tional errors since we also perturb intermediate results.

When we apply the transformation function p to the expression
on Line 7 in Figure 1, it returns an expression that contains the factor
pv(pv(sum)× pv(sum)/pv(n))). Capturing each perturbation as εi
and letting ε5 = ε0ε3 + ε1ε3 + ε0ε1ε3, algebraically this factor is

sum2(1 + ε5)

n(1 + ε2)
(1 + ε4). (3)

3.2 Expression Perturbation
We perturb expressions to forms that are equivalent over R, but

syntactically different, to see how they affect the stability of floating-
point computations. In this section, we first present our algorithms
to generate the equivalent expressions for a given expression e. The
number of expressions these algorithms generate may be very large,
so we also present a Monte Carlo method for an unbiased sampling
of these expressions.

3.2.1 Exhaustive Expression Generation
We first define a canonical form for expressions that our algo-

rithms assume. This form is completely unfolded, i.e. it cannot
be rewritten by the distributive law. Then we present algorithms
for parenthesizing and applying the associative and commutative
laws to an expression. Our factoring algorithm folds, or factors, a
distributed expression. Finally, we enumerate all expressions by
feeding the result of the association and commutation algorithm to
our factoring algorithm.

(R1) Θ(v)→ v

(R2) Θ(E)→ E
(R3) Θ(–(−e1))→ Θ(e1)

(R4) Θ(−(e1 + e2))→ Θ(−e1 − e2)

(R5) Θ(−(e1 × e2))→ Θ(−e1 × e2)

(R6) Θ(−e1)→ −Θ(e1)

(R7) Θ(e1 + e2)→ Θ(e1) + Θ(e2)

(R8) Θ(e1 − e2)→ Θ(e1) + (Θ(−e2))

(R9) Θ(e1 × (e2 ± e3))→ Θ(e1 × e2) + Θ(±e1 × e3)

(R10) Θ((e1 ± e2)× e3)→ Θ(e1 × e3) + Θ(±e2 × e3)

(R11) Θ(e1 × e2)→ Θ(e1)×Θ(e2)

(R12) Θ(e1 / e2)→ Θ(e1)× (1 / Θ(e2))

Figure 7: Canonicalizing term rewriting system Θ.

DEFINITION 3.1 (CANONICAL FORM). An expression e over
the grammar G (Figure 4), viz. e ∈ L(G), is canonical when:

(P1) It is minimal: with no additive zeros or multiplicative ones;
(P2) It contains no binary subtraction operators;
(P3) It uses division only to form inverses; and
(P4) It cannot be rewritten by the distributive law.

Given an expression e that is minimal with respect to additive
zeros and multiplicative ones, we rewrite e to its canonical form.
Figure 7 defines a term rewriting system Θ that rewrites a minimal
expression to its canonical form. Θ uses the equivalences X − Y =
X + (−Y) and X/Y = X × (1/Y) to realize properties P2 and
P3. To realize P4, we apply Θ recursively, thereby successively
applying the distributive law to expand all the polynomials, so that
we need only consider factoring below.

Our canonical form eliminates binary subtraction and restricts di-
vision to inverse, thus we consider only addition and multiplication,
i.e. the set of operators {+,×}, in the ensuing discussion.

To illustrate the operation of Θ, we apply it to

e = (x+ y)× (a− b). (4)

Θ applies each rule is succession, until it reaches R9, which unifies
with e, producing Θ((x+ y)× a) + Θ(−(x+ y)× b). R10 then
separately unifies with each of these Θ applications. The recursion
terminates with

Θ(e) = x× a+ y × a+ (−x× b+ (−y × b)). (5)

An expression forms a tree whose interior nodes are operators
and whose leaves are either floating-point values or uninterpreted
grammar elements, E .

DEFINITION 3.2 (EXPRESSION UNIT). An expression unit is
a subtree whose root operator label does not match the operator
label of the root of the entire expression tree.

The function units : E → 2E returns the set of expression units
formed from an expression. The function root : E → {+,×}
returns the operator at the root of its input’s expression tree.

Algorithm 1 defines the function z : S ×{+,×} → 2E . Given a
permutation of expression units, z recursively bifurcates that permu-
tation to enumerate all ways to parenthesize the permutation relative
to the given operator.

Algorithm 2 defines tac : E → 2E . This function uses the
associative and commutative laws to generate all the mathematically
equivalent forms of its input over the reals. The base case of tac

Algorithm 1 z : S × {+,×} → 2E (All Parenthesizations)

input s ∈ S,� ∈ {+,×}
1: T ← ∅
2: if s 6= ε then
3: ∀s1, s2.s1s2 = s do
4: T ← {(t1 � t2) | t1 ∈ z(s1,�), t2 ∈ z(s2,�)} ∪ T
5: end for
6: end if
7: return T

Algorithm 2 tac : E → 2E

(Associative and Commutative Transformation)

input e ∈ E
1: if e = v ∨ e = E then
2: return {e}
3: end if
4: U ← units(e) // The set of all expression units of e.
5: T ← ∅
6: ∀s ∈ all permutations of U do
7: T ← T ∪ z(s, root(e))
8: end for
9: ∀ui ∈ U do

10: S ← tac(ui)
11: T ← S

u′i∈S
T [ui → u′i]

12: end for
13: return T

returns primitives as a set. Otherwise, it extracts the expression’s
units at line 4. In Equation 5, U = {x×a, y×a,−x×b, (−y×b)}.
At line 7, tac computes all parenthesizations of U . If any element
of U is not primitive, we pick an arbitrary permutation of its units,
then, line 10, generate all possible rewritings of those units that
recursive calls to tac on each unit generate. Line 11, we return the
set formed by replacing each unit with all its possible rewritings.

For ui ∈ units(e), n = |units(e)| and using Catalan function

C(x) =
(2x)!

x!(x+ 1)!
(6)

which counts the parenthesizations that Algorithm 1 returns, the
number of expressions tac generates is

Ntac(e) =

8><>:
1, e ∈ {v, E}

n!× C(n− 1)×
nY
i=1

Ntac(ui), otherwise.
(7)

This number grows very quickly; Algorithm 2 returns 1920 different
expressions when applied to Equation 5.

Algorithm 3 defines f : E → 2E which applies the distributive
law to generate equivalent expressions over the reals. Applying f
to each element of tac(e) generates all expressions equivalent to e
over the reals. The function tac preserves canonical form, so f only
needs to factor the expressions tac outputs.

DEFINITION 3.3 (FACTOR POINT). For a, b, c, d ∈ L(G), the
language of all valid expressions, a factor point is the + operator in
the expression a× b+ c× d, where a = c or b = d.

In Algorithm 3, fp : E → 2P at line 6 returns a set of all factor
points in e′. Take the expression in Equation 5 as an example. The
first and the third + are both factor points but the second one is
not. Each factor point can be factored. At line 8 we consider all

Algorithm 3 f : E → 2E (Factoring)

input e ∈ E
precondition e 6= v ∧ e 6= E
1: El ← {e}, R← ∅
2: Po ← ∅ // Old, already visited factor points.
3: repeat
4: En ← ∅
5: ∀e′ ∈ El do
6: Pn ← fp(e′) \ Po // New factor points.
7: ∀Pa ∈ 2Pn do
8: En ← En ∪ {factor(e′, Pa)}
9: end for

10: Po ← Po ∪ Pn
11: end for
12: R← R ∪ El, El ← En
13: until El = ∅
14: return R

Algorithm 4 Exhaustive Expression Generation

input e ∈ E
1: if e = v ∨ e = E then
2: return {e}
3: end if
4: R← ∅, T ← tac(e)
5: ∀e′ ∈ T do
6: R← R ∪ f(e′)
7: end for
8: return R

possible factorings. New factor points arise during factoring. For
example, if we apply factoring on both the first and the third +
operators of the expression in Equation 5, we get the expression
(x+ y)× a+ (−(x+ y)× b). Then a new factor point, the second
+, occurs. f iteratively finds new factor points in these expression
until it cannot generate any new expressions.

Algorithm 4 applies Algorithm 3 and Algorithm 2 to generate all
mathematically equivalent expressions for the expression e.

3.2.2 Monte Carlo Expression Generation
For an arbitrary expression, the space of syntactically different

but minimal equivalent expressions over R is large. For e = (x+
y)×(y+z)×(z+x),Ntac(e) is 7, 437, 513, 790, 586, 880 unique
expressions. A practical, scalable technique cannot directly work
with such large sets. Instead, we use the Monte Carlo method [6]:
we work with subsets of these sets of expressions, chosen uniformly
at random.

DEFINITION 3.4 (EXPRESSION NUMBER AND LIMIT). The
expression number of e is Ntac(e), the number of expressions equiv-
alent to e over the reals using the commutative and associative laws;
and the number of those expressions we wish to randomly sample is
L, expression limit of e.

DEFINITION 3.5 (EXPRESSION LENGTH). The number of the
leaves in an expression tree is the length of that expression. These
leaves are either values or language grammar elements (E).

Three numbers decideNtac in Algorithm 2: Np = k!, the number
of permutations of U at line 6;

Nz = C(k − 1) =
(2k − 2)!

(k − 1)!k!
, (8)

the number of parenthesizations at line 7; and Nr , the number of
expressions recursively generated at line 10 and we have

Ntac =Np ×Nz ×Nr. (9)

We want to limit Ntac to L without introducing bias. That means
we want the probability for each expression to be chosen is L

Ntac
. We

set L equal to three independent probability functions that determine
whether or not to take a decision point. These functions,

Lp = L
lnNp

lnNtac , Lz = L
lnNz

lnNtac , Lr = L
lnNr

lnNtac , (10)

distribute the probability uniformly across the locally available
choices. The probability is Lp

Np
for each permutation, Lz

Nz
for each

parenthesization, and Lr
Nr

for each recursion. So the probability to
select an arbitrary expression is

Lp
Np
× Lz
Nz
× Lr
Nr

=
L

Ntac
(11)

We cannot directly compute Nr since the cost of the recursion
is prohibitive for an arbitrary expression. The number of units
across all recursive applications of tac determines Nr . The length
of expression approximates the number of units. When n is the
length of the input expression, k is the number of units of the input
expression and µ = lnNtac (See Equation 15), we conclude

Nr
Np ×Nz

≈ (
n

k
)µ (12)

Lr
Lp × Lz

= L
lnNr−lnNp−lnNz

lnN = L
ln Nr
NpNz
µ

≈ Lln (n
k

)µ/µ = Lln (n
k

)

(13)

We have L = Lp × Lz × Lr from Equation 10. Since Lp and
Lr × Lz are positive, with Equation 13 we have

Lr =

s
Lr

Lp × Lz
× L ≈

p
Lln (n

k
) × L = Lln

√
ne
k

Lp × Lz = L/Lr ≈ Lln
q
ke
n

(14)

where e is Euler’s number, not an expression.
Simultaneously solving Equation 10 and Equation 14, we derive

µ = lnN ≈ lnNpNz

ln
q

ke
n

(15)

Lp ≈ L
ln
√
ke
n

lnNp
lnNpNz (16)

Lz ≈ L
ln
√
ke
n

lnNz
lnNpNz (17)

Although Equation 14 limits the total numbers of recursive calls
at line 7 of Algorithm 2, we also need, for each recursion on the unit
ui, the limit

Lr =

kY
i=1

Lr,i. (18)

Again we use the length ni of each unit ui to estimate its limit,
Lr,i. Thus,

n =

kX
i=1

ni. (19)

Algorithm 5 t′ac : E × N→ 2E

(Optimized Associative and Commutative Transformation)

input e ∈ E,L ∈ N
1: if e 6= v ∧ e 6= E then
2: return {e}
3: end if
4: U ← units(e) // The set of all expression units of e.
5: T ← ∅
6: With L, n = |e|, k = |units(e)|,

solve Equation 16 to derive Lp and Lz .
7: Up ← all permutations of U
8: for i := 0; i < Lp; i := i+ 1 do
9: randomly take s ∈ Up

10: Up ← Up − s
11: T ← T ∪ z′(s, root(e), Lz)
12: end for
13: if ∀u ∈ U, u = v ∨ u = E then
14: return T
15: else
16: ∀ui ∈ U do
17: With L, ni = |ui|, solve Equation 20 to derive Lr,i.
18: S ← t′ac(ui, Lr,i)
19: T ← S

u′i∈S
T [ui → u′i]

20: end for
21: return T
22: end if

Algorithm 6 Value Perturbation Test Algorithm

input f [e1, · · · , en] // The function-to-test
input I // A set of inputs to f
1: ∀i ∈ I do
2: print f [p(e1)/e1, · · · , p(en)/en](pv(i))
3: end for

Then, we derive

Lr,i ≈ L
ni
n
r ≈ L

ni
n

ln
√
ne
k . (20)

Algorithm 5, a sampling-optimized version of Algorithm 2, in-
corporates the limits defined in Equation 16 and Equation 20 to
restrict its sampling of the space of possible expressions. At each
limited decision point, its choice is nondeterministic. Thus, it ef-
fectively chooses a path in the recursion tree uniformly at random,
and its results are therefore representative of the entire population.
Algorithm 5, implements the function t′ac : E × N→ 2E . Its new
parameter is the sampling limit. At line 6 we compute Lp, Lz ac-
cording to Equation 16. And we use them to restrict the expressions
generated at line 8 and line 11. The function z′ in line 11 is the
optimized version of Algorithm 1. We discuss it in Section 4. We
compute Equation 20 to derive Lr,i at line 17 and use the resulting
values at line 18 to limit recursion.

4. IMPLEMENTATION
To implement our value perturbation, we needed only to inject

calls to pv , our value perturbation function, at the appropriate places
in a program. The C transformer CIL [23] is particularly well-suited
for this task. Algorithm 6 is the value perturbation we implemented
and used in our evaluation. It applies p defined in Equation 2 in
Section 3.1 to inject calls to pv in every floating point expression
in a program, then links pv , and runs the program to generate the
output. Figure 6 depicts the implementation of pv in C.

Algorithm 7 Expression Perturbation Test Algorithm

input f [e1, · · · , en] // The function-to-test
input I // A set of inputs to f
input L ∈ N // The limit defined in Definition 3.4
1: ∀i ∈ I do
2: for j ← 1; j ≤ n; j ← j + 1 do
3: for k ← 1; k ≤ L; k ← k + 1 do
4: print f [ej/perturb(ej)](i)
5: end for
6: end for
7: end for

We implemented our expression perturbation on ROSE, a static
analysis framework for C and C++ [26], because of its rich API for
abstract syntax trees (AST). The bulk of the implementation uses
the visitor design pattern to traverse an AST.

Let the shape of a parenthesization be the set of pairs of the
indices of a matched set of parentheses. Our parenthesization algo-
rithm z was used at line 7 in Algorithm 1 and its sampling-optimized
variant z′ was used at line 11 of Algorithm 5. Both feature an opti-
mization: rather than directly parenthesizing their input sequence of
units, they produce the set of all shapes for the length of their input
sequence. Generating a set of shapes is much faster than rewriting
the input sequence. Then they pick one shape from the set of shapes,
uniformly at random subject to the limit Lz , and apply it to the input
to produce a concrete parenthesization of the input.

Algorithm 7 is the expression perturbation algorithm we im-
plemented and use in our evaluation. It operates on the lexico-
graphic sequence of floating-point expressions that comprise the
algorithm f . The “perturb” function is the composition of the al-
gorithms Algorithm 2 and Algorithm 3; it takes a floating-point
expression e and produces an expression e′ that would be equiv-
alent (i.e. e = e′) if e and e′ were over the reals, not floating-
point approximations of the reals. Conceptually, Algorithm 7 de-
composes f into a set of n functions, fi : I → R, for fi =
e1 � ei−1 � perturb(ei) � ei+1 � · · · � en where 1 ≤ i ≤ n.
Algorithm 7 perturbs only one expression at a time in sequence; it
does not perturb arbitrary subsets of the set of expressions that f
computes. Each fi defines a set of functions, whose cardinality is L,
the limit defined in Definition 3.4, where each function in the set has
a different syntactic expansion of ei. Regardless of the semantics
of f , we know, for each input i ∈ I , that each function in fi, over
the reals, produces the same output, and therefore ideally should
produce results that are closely clustered in floating-point. Thus,
for each fi and for each input i ∈ I , Algorithm 7 produces a set of
results whose MD and CV we can then compute.

5. EMPIRICAL EVALUATION
Here we show that our value and expression perturbations find

unstable expressions. Empirically, the maximal differences (MD)
reported by our value perturbation are almost linear to the perturba-
tion suffix length in logarithmic scale. Thus, we calculate and report
the MD of only few suffix lengths. We also report the coefficient
of variation (CV) for two reasons: 1) it is a normalized measure
of variance that can be compared across distributions and, 2) in
contrast to MD, it is an aggregate statistic that summarizes an entire
sample set. CV shines in our value perturbation results, where it
correctly identifies and partitions our test suite into stable and un-
stable programs. As Kahan noted, however, value perturbation can
overstate error [14]; this problem manifests itself most spectacularly
in Figure 13 where some functions exhibit maximal CV on the order

of 120. As our data makes clear, expression perturbation is more
conservative and can therefore check and confirm the classifications
made by value perturbation.

We ran our evaluations on a workstation with 2 Intel Xeon CPU
3.00 GHz, and 2GB Physical Memory. The operating system is
Ubuntu 7.10 and we used gcc 4.1.3.

5.1 Test Subjects from the Literature
We collected our first set of test subjects from related academic

work. Figure 8 depicts the key segment of each of our tests. Inv.c,
which computes the inverse of its input from Goubault [11], the
Newton.c test, which computes

√
2 by Newton’s method [5], and

sample_run.c, a computation drawn from mechanical engineering
simulator [13], are stable. Interestingly, sample_run.c is stable,
under our testing, in spite of the large number of expressions, equiv-
alent over R, that it generates. In contrast, tests exp.c, which Martel
used to test his analysis [18], Poly.c, a simple polynomial test,
like Inv.c drawn from Goubault [11], and root.c, which solves a
quadratic equation of one variable [25], are unstable. Test exp.c is
unstable since it adds two operands of vastly different magnitude.
A better way to write the problematic expression is a*b+a*(c+d).
Poly.c is unstable when x is close to 1 or 0 because of expression
z = (x− 1)4. Test root.c is similar to Figure 1, the naive compu-
tation of variance in Section 2: it is unstable since sqrt(b*b-4*a*c)

is near b, so subtracting them is error-prone. When the program
itself does not have any floating-point output, we use the result of
its last evaluated floating-point expression as the output.

5.1.1 Value Perturbation Results
Figures 9–11 depict the results of applying value perturbation to

our test suite. In these figures, we vary the length of the perturbed
suffix from one to sixteen bits. At zero, the induced perturbation is
zero by definition, so we omit zero on the x-axis. At each length,
we run the perturbed programs 1000 times. Figure 9 graphs the MD
of value perturbation; Figure 11 and Figure 10 graph the CV.

For our test suite, Figure 9 demonstrates that the MD is almost
linear in the length of the perturbed suffix when plotted in loga-
rithmic scale. The CV clearly and correctly splits our test suite in
two. In Figure 10, Inv.c, Newton.c and sample_run.c are stable;
in Figure 11, exp.c, Poly.c and root.c are quite unstable. The MD
with one bit perturbation of all programs in the unstable group is
more than 3.00E-4, while for stable group it is less than 9.00E−12.
The CV for the unstable group is more than 8.00E-8. Indeed, when
we perturb five bits, root.c produces 1.98E+1. In contrast, the CV
of all programs in stable group is less than 9.00E-9. These results
all match the properties of each program, depicted in Figure 8 and
described above.

5.1.2 Expression Perturbation Results
Figure 12 presents the results of perturbing the expressions of our

test suite. Algorithm 7 is our test harness: it picks the longest ex-
pression as the suspect unstable expression, perturbs that expression
by replacing it with 5, 50, 100, 300, 500, and finally all expressions1,
and, for each set of variants, outputs the MD and CV of the results of
executing each perturbed test. Because Poly.c and Inv.c each have
a variable with randomly generated values, we ran both functions
1000 times each.

Each program in Figure 12 has two rows, one that reports the MD
while the other reports the CV. After each program name, we give
the total number of variants we generated. The longest expressions

1If the number of expressions chosen is less than the set of all equiv-
alent expressions in R that subset is chosen uniformly at random.

fig:sdValueExtreme

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=-8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 x = 0.5 * (x + 2.0/x);(a) Inv.c

Algorithm 7 Value Perturbation Test Algorithm

input I
input PERTURBATIONS
input e0, e1, · · · , en−1

1: File out = open("output")
2: for i← 0; i < PERTURBATIONS; i← i + 1 do
3: f ′ ← p(e0)⊕ p(e1) · · · ⊕ p(en−1)
4: fprintf(out, f ′(I))
5: end for
6: out.close

To implement our value perturbation, we needed only to inject
calls to pv , our value perturbation function, at the appropriate places
in a program. The C transformer CIL [21] is particularly well-
suited for this task. Algorithm 7 is the value perturbation we im-
plemented and used in our evaluation. It applies p defined in Equa-
tion 18 in Section 3.2 to inject calls to pv in every floating point
expression in a program, then links pv , and runs the program to
generate the output. Figure 7 depicts the implementation of pv in
C.

5. EMPIRICAL EVALUATION
Here we show that expression perturbation finds ill-conditioned

expressions. Empirically, the maximal differences reported by our
value perturbation are almost linear to the perturbation suffix length
in logarithmic scale. Thus, we calculate and report the maximal
differences of only few suffix lengths. We also report the coeffi-
cient of variation (CV) for two reasons: 1) it is a normalized mea-
sure of variance that can be compared across distributions and, 2)
in contrast to maximal difference, it is an aggregate statistic that
summarizes an entire sample set. CV shines in our value pertur-
bation results, where it correctly identifies and partitions our test
suite into stable and unstable programs. As Kahan noted, however,
value perturbation can overstate error [12]; this problem manifests
itself most spectacularly in Figure 15 where some functions exhibit
maximal CV on the order of 120. As our data makes clear, expres-
sion perturbation is more conservative and can therefore check and
confirm the classifications made by value perturbation.

We ran our evaluations on a workstation with 2 Intel Xeon CPU
3.00 GHz, and 2GB Physical Memory. The operating system is
Ubuntu 7.10 and we used gcc 4.1.3.

5.1 Test Subjects
Todo 5-1: That none of these programs have input and only two

interact with the environment, modeled as a random number gener-
ator.

We collected our test cases from other academic work in nu-
merical analysis. Our test suite includes exp.c, a test case Mar-
tel used to test his analysis [16], sample_run.c, a computation
drawn from mechanical engineering simulator [11], Inv.c, which
computes the inverse of its input, and Poly.c, a simple polyno-
mial test, both drawn from Goubault [9], Newton.c, which com-
putes

√
2 by Newton’s method [4], and root.c, which solves a

quadratic equation of one variable [23]. We use the result of the last
evaluated floating-point expression as the output of these programs,
when the program itself does not have any floating-point output. In
Figure 15, we use value perturbation to evaluate the stability of the
GNU Scientific Library (GSL) [6].

Figure 8 depicts the key segment of each of our tests. In Fig-
ure 8a, exp.c is ill-conditioned since it adds two operands of vastly
different magnitude. A*b+A*(c+d) is a better way to write the
problematic expression.

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 for (i=1; i<=6; i++) {
3 x = 0.5 * (x + 2.0/x);
4 }

Test sample_run.c in Figure 8b and Poly.c in Figure 8c both
contain long expressions. Poly.c takes a random input x and con-
tains the expression z=(x-1)4. When x is close to 1 or 0, this ex-
pression is ill-conditioned and renders the program unstable. Test
sample_run.c may generate many expressions that are equivalent
over R; nonetheless, it takes no inputs that ill-condition its expres-
sions.

Test root.c in Figure 8d is similar to the example in Section 2:
it is unstable since sqrt(b*b-4*a*c) is near b, subtracting them
is error-prone. Unfortunately, this expression cannot be rewritten
to a stable form. An entirely different algorithm that avoids such
dangerous computations is required.

Both Inv.c in Figure 8e and Newton.c in Figure 8f are stable.
In particular, Inv.c is well-conditioned, in spite of the fact that it
accepts a large range of random inputs.

5.2 Expression Perturbation Results
Figure 9, Figure 10 and Figure 11 present the results of perturb-

ing the expressions of our test suite. Algorithm 6 is our test harness:
it picks the longest expression as the suspect unstable expression,
perturbs that expression by replacing it with 5, 50, 100, 300, 500,
and finally all expressions1, and, for each sample set size, outputs
the maximal difference and CV of the results of executing each per-
turbed test. We run Poly.c and exp.c 1000 times for their random
inputs.

Each program in Figure 9 has two rows, one that reports the max-
imal difference while the other reports the CV. After each program
name, we give the total number of forms we generated. The longest
expressions in Poly.c and sample_run.c have more equivalent
expressions in R than we could compute; (-) denotes this fact.
Figure 10 contains the histogram of the maximal difference; Fig-
ure 11 contains the histogram of the CV. We do not accumulate and

1If the number of expressions chosen is less than the set of all equiv-
alent expressions in R that subset is chosen uniformly at random.

7

(b) Newton.c

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=-8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 x = 0.5 * (x + 2.0/x);

(c) Poly.c

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=-8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 x = 0.5 * (x + 2.0/x);

(d) exp.c

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=-8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 x = 0.5 * (x + 2.0/x);

(e) sample_run.c

Algorithm 7 Value Perturbation Test Algorithm

input I
input PERTURBATIONS
input e0, e1, · · · , en−1

1: File out = open("output")
2: for i← 0; i < PERTURBATIONS; i← i + 1 do
3: f ′ ← p(e0)⊕ p(e1) · · · ⊕ p(en−1)
4: fprintf(out, f ′(I))
5: end for
6: out.close

To implement our value perturbation, we needed only to inject
calls to pv , our value perturbation function, at the appropriate places
in a program. The C transformer CIL [21] is particularly well-
suited for this task. Algorithm 7 is the value perturbation we im-
plemented and used in our evaluation. It applies p defined in Equa-
tion 18 in Section 3.2 to inject calls to pv in every floating point
expression in a program, then links pv , and runs the program to
generate the output. Figure 7 depicts the implementation of pv in
C.

5. EMPIRICAL EVALUATION
Here we show that expression perturbation finds ill-conditioned

expressions. Empirically, the maximal differences reported by our
value perturbation are almost linear to the perturbation suffix length
in logarithmic scale. Thus, we calculate and report the maximal
differences of only few suffix lengths. We also report the coeffi-
cient of variation (CV) for two reasons: 1) it is a normalized mea-
sure of variance that can be compared across distributions and, 2)
in contrast to maximal difference, it is an aggregate statistic that
summarizes an entire sample set. CV shines in our value pertur-
bation results, where it correctly identifies and partitions our test
suite into stable and unstable programs. As Kahan noted, however,
value perturbation can overstate error [12]; this problem manifests
itself most spectacularly in Figure 15 where some functions exhibit
maximal CV on the order of 120. As our data makes clear, expres-
sion perturbation is more conservative and can therefore check and
confirm the classifications made by value perturbation.

We ran our evaluations on a workstation with 2 Intel Xeon CPU
3.00 GHz, and 2GB Physical Memory. The operating system is
Ubuntu 7.10 and we used gcc 4.1.3.

5.1 Test Subjects
Todo 5-1: That none of these programs have input and only two

interact with the environment, modeled as a random number gener-
ator.

We collected our test cases from other academic work in nu-
merical analysis. Our test suite includes exp.c, a test case Mar-
tel used to test his analysis [16], sample_run.c, a computation
drawn from mechanical engineering simulator [11], Inv.c, which
computes the inverse of its input, and Poly.c, a simple polyno-
mial test, both drawn from Goubault [9], Newton.c, which com-
putes

√
2 by Newton’s method [4], and root.c, which solves a

quadratic equation of one variable [23]. We use the result of the last
evaluated floating-point expression as the output of these programs,
when the program itself does not have any floating-point output. In
Figure 15, we use value perturbation to evaluate the stability of the
GNU Scientific Library (GSL) [6].

Figure 8 depicts the key segment of each of our tests. In Fig-
ure 8a, exp.c is ill-conditioned since it adds two operands of vastly
different magnitude. A*b+A*(c+d) is a better way to write the
problematic expression.

1 float a,b,c,d;
2 a=98765.0; b=1.0;
3 c=5.0e-8; d=5.0e-8;
4 float A=a*((b+c)+d);

1 float a, b, c, r1;
2 a=7; b=8686; c=2;
3 r1=(-b+sqrt(b*b-4*a*c))/(2*a);

1 float x,z;
2 x = random(0,1);
3 z=x*x*x*x-4*x*x*x+6*x*x-4*x+1;

1 double alpha, NA, re, Z, L, Lp, A;
2 Z = 4; A = 26; re = 11.3;
3 alpha = 0.7; NA = 12.5;
4 L = log(184.15 / pow(Z,1.0/3));
5 Lp = log(1194.0 / pow(Z,2.0/3));
6 double X0=(4.0*alpha*re*re)
7 *(NA/A)*(Z*Z*L + Z*Lp);

1 double xi, xsi, A;
2 A=random(20.0,30.0);xi = 1;
3 xsi = 2*xi-A*xi*xi;

1 double x = 1.0;
2 for (i=1; i<=6; i++) {
3 x = 0.5 * (x + 2.0/x);
4 }

Test sample_run.c in Figure 8b and Poly.c in Figure 8c both
contain long expressions. Poly.c takes a random input x and con-
tains the expression z=(x-1)4. When x is close to 1 or 0, this ex-
pression is ill-conditioned and renders the program unstable. Test
sample_run.c may generate many expressions that are equivalent
over R; nonetheless, it takes no inputs that ill-condition its expres-
sions.

Test root.c in Figure 8d is similar to the example in Section 2:
it is unstable since sqrt(b*b-4*a*c) is near b, subtracting them
is error-prone. Unfortunately, this expression cannot be rewritten
to a stable form. An entirely different algorithm that avoids such
dangerous computations is required.

Both Inv.c in Figure 8e and Newton.c in Figure 8f are stable.
In particular, Inv.c is well-conditioned, in spite of the fact that it
accepts a large range of random inputs.

5.2 Expression Perturbation Results
Figure 9, Figure 10 and Figure 11 present the results of perturb-

ing the expressions of our test suite. Algorithm 6 is our test harness:
it picks the longest expression as the suspect unstable expression,
perturbs that expression by replacing it with 5, 50, 100, 300, 500,
and finally all expressions1, and, for each sample set size, outputs
the maximal difference and CV of the results of executing each per-
turbed test. We run Poly.c and exp.c 1000 times for their random
inputs.

Each program in Figure 9 has two rows, one that reports the max-
imal difference while the other reports the CV. After each program
name, we give the total number of forms we generated. The longest
expressions in Poly.c and sample_run.c have more equivalent
expressions in R than we could compute; (-) denotes this fact.
Figure 10 contains the histogram of the maximal difference; Fig-
ure 11 contains the histogram of the CV. We do not accumulate and

1If the number of expressions chosen is less than the set of all equiv-
alent expressions in R that subset is chosen uniformly at random.

7

(f) root.c

Figure 8: Salient features of the test suite.

1.00E-16

1.00E-10

1.00E-04

1.00E+02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inv.c

Newton.c

Poly.c

exp.c

sample_run.c

root.c

Figure 9: Dependence of MD under value perturbation on the length of the perturbed suffix.

in Poly.c and sample_run.c have more equivalent expressions in
R than we could compute; (-) denotes this fact.

Under expression perturbation, the expressions in Inv.c and
Newton.c are stable: their results do not vary at all; the expressions
formed from rewriting their initial expression are also equivalent in
floating-point values. Tests root.c and sample_run.c are also quite
stable in the face of expression perturbation. The CV of both of them
is less than 9.00E-9 and both of their MD are less than 8.00E-12.
We cannot improve these programs much by rewriting the form of
their expressions. Poly.c and exp.c are unstable. Enumerating all
equivalent forms of exp.c’s longest expression generates only 168
different variants. Nonetheless, its MD exceeds 5.00E-3. Poly.c is
unstable because on some runs its MD is more than 1.19E-7. Our
results show that value and expression perturbations confirm and
complement each other.

5.2 GSL
Here, we complement our earlier, small scale study of subjects

drawn from the literature with a study of a large and widely-used
numeric library, the GNU Scientific Library (GSL) [8]. We use our
perturbation framework to evaluate the stability of its functions.

5.2.1 Value Perturbation Results
Figure 13 gives the maximum CV when perturbing GSL. We

value-perturb all the functions in GSL except some that include static
functions, because CIL does not support static functions. For our test
suite, we choose the 48 single floating-point input and output func-
tions in order of appearance in the GSL documentation. Many of
these functions are not smooth. Some diverge at π. Since randomly
generated inputs are unlikely to trigger such cases, we combined
random and guided inputs to test these functions. We generated

random inputs as follows: 30 inputs from (−0.1, 0.1), 30 from
(−π, π), 30 from (−100, 100), and 30 uniformly at random. For
ε = 5E−10 and I = {−e,−π,−2,−1,−π/2, 0, π/2, 1, 2, π, e},
we generated our guided inputs as follows: ∀i ∈ I , we selected
ten inputs in the range of (i− ε, i+ ε), including i. Gathering the
random and guided inputs, we generated 230 inputs in total. As
above, we vary the perturbed suffix length from 1 to 16. We ran each
function 1000 times on the generated set of inputs for each suffix
length. Due to page constraints, we present only the maximum CV
of each function with a suffix length of 5-bits in Figure 132.

Holding the function fixed, the CV results at different suffix
lengths are similar. For example, the maximum CV across all
suffix lengths for gsl_sf_bessel_I1_scaled is 2.12E-37. How-
ever, the CV of different functions are quite different: across all
48 functions, when perturbing 6-bits, the variance is 1.12E+266.
The function gsl_sf_erf generates the maximum CV 1.11E-16
at input 1.52E+01 with 1-bit perturbation, while 1.07E-16 at input
7.81E+01 with 16-bits perturbation. Figure 13 shows the maxi-
mum CV of these functions when we perturb a 5-bit suffix. The
horizontal axis is the name of the evaluated function; the verti-
cal axis is the maximum CV in log scale. Some functions like
gsl_sf_bessel_j0 and gsl_sf_bessel_K1 are especially sen-
sitive: Their maximal CV values are 1.62E+131 and 1.64E+126
respectively. However, maximum CV of most of the functions in
our test suite is quite low; 30 functions’ maximum CV is negligible.

5.2.2 Expression Perturbation Results
We applied expression perturbation to those functions in Figure 13

whose CV exceeded 1E+60, using exactly the same inputs we gen-
2The full data set is available for download at http://www.cs.
ucdavis.edu/~su/GSLResult.tar.gz.

http://www.cs.ucdavis.edu/~su/GSLResult.tar.gz
http://www.cs.ucdavis.edu/~su/GSLResult.tar.gz

5.00E-10

5.00E-09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inv.c

Newton.c

sample_run.c

Figure 10: Dependence of CV under value perturbation on the length of the perturbed suffix (Stable programs).

1.00E-16

1.00E-10

1.00E-04

1.00E+02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inv.c

Newton.c

Poly.c

sample_run.c

exp1.c

root.c1.00E-08

1.00E-05

1.00E-02

1.00E+01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Poly.c

exp.c

root.c

Figure 11: Dependence of CV under value perturbation on the length of the perturbed suffix (Unstable programs).

No. of Exp replaced 5 50 100 300 500 all

Inv.c(48)
(MD) 0 0 0 0 0 0

(CV) 0 0 0 0 0 0

Newton.c(56)
(MD) 0 0 0 0 0 0

(CV) 0 0 0 0 0 0

Poly.c(-)
(MD) 5.96E-08 1.19E-07 1.19E-07 1.19E-07 1.19E-07 -

(CV) 5.455E-08 4.056E-08 3.599E-08 4.818E-08 4.815E-08 -

exp.c(168)
(MD) 7.81E-03 1.56E-02 1.56E-02 1.56E-02 1.56E-02 1.56E-02

(CV) 3.64E-08 4.798E-08 5.227E-08 5.048E-08 5.048E-08 5.05E-08

sample_run.c(-)
(MD) 3.64E-12 7.28E-12 7.28E-12 7.28E-12 7.28E-12 -

(CV) 7.184E-09 8.452E-09 8.783E-09 8.055E-09 8.179E-09 -

root.c(1920)
(MD) 2.27E-13 2.27E-13 2.27E-13 2.27E-13 2.27E-13 2.27E-13

(CV) 6.782E-09 6.093E-09 6.086E-09 5.987E-09 5.903E-09 7.08E-09

Figure 12: MD and CV from expression perturbation.

1E‐20

1

1E+20

1E+40

1E+60

1E+80

1E+100

1E+120

Figure 13: GSL maximum CV under value perturbation.

Function name Max-MD Max-CV Input

gsl_pow_2

gsl_pow_3

0 0 any

0 0 any

gsl_sf_bessel_j0

gsl_sf_bessel_k0_scaled

1.26E+117 2.07E+233 -1.48E+26

0 0 any

gsl_sf_bessel_K1

gsl_sf_bessel_K1_scaled

1.42E-14 4.90E-29 8.15E-02

1.42E-14 4.90E-29 9.98E-03

gsl_sf_bessel_y0

gsl_sf_bessel_y1

1.11E-16 2.75E-33 9.98E-03

2.22E-16 8.24E-33 3.67E+01

gsl_sf_hazard

gsl_sf_log_erfc

1.11E-16 2.75E-33 3.67E+01

9.86E-32 8.06E-64 -1.00E+00

gsl_sf_bessel_Y1 4.90E+55 5.83E+110 1.54E-72

Figure 14: Max MD and CV for GSL expression perturbation.

erated during value perturbation. We used Algorithm 7 to generate
a set of perturbed functions for each expression in each tested func-
tion, then generated the MD and CV of the results of running these
sets of functions on our input set. Figure 14 reports the maximum
from the resulting sets of MDs and CVs and also shows the input at
which those maxima occurred. Three of the functions — gsl_pow_2,
gsl_pow_3, and gsl_sf_bessel_K1 — are quite stable. Two are
strikingly unstable — gsl_sf_bessel_Y1 and gsl_sf_bessle_j0.
Judging from the magnitude of the reported statistics, the remaining
functions appear stable, but may bear further investigation.

We tracked the suspected instability of gsl_sf_bessle_Y1 to
the expression result->val = two_over_pi * lnterm * J1.val +

(0.5 + c.val)/x; and that of gsl_sf_bessle_j0 to the expression
result->val = z * (1.0 + z*z * sin_cs_result.val);. Expres-
sion perturbation has identified these two expressions as critical for
further investigation.

5.3 Threats to Validity
Our technique is neither sound nor complete — it may miss criti-

cal inputs and is subject to both false positives and false negatives.
False negatives are fundamental to testing, which has, nonetheless,
proven to be a useful and practical technique for improving software.
We believe that our technique will be similarly useful to the devel-
opers of numeric code. Our test suite is small, but representative
and, in conjunction with our study of the GSL, the reported results
are promising. Our testing harness selects inputs to each tested
function uniformly from that function’s domain and, for expression
perturbation, it selects from among an expression’s variants uni-
formly at random. Along these two dimensions, we obey the Monte
Carlo constraint. However, our expression perturbation perturbs
each floating-point expression in a program in isolation; we do not
select subsets of a program’s expressions and thus we do not test
expression composition. Our expression perturbation technique as-
sumes that an expression it rewrites is not already written in its most
stable form; violations of this assumption will cause our technique
to falsely classify such expressions as unstable. Finally, it can be
difficult for a user, especially a novice, to interpret our results as
there are no simple guidelines for knowing when an MD or CV is
cause for concern. Here, we trust that having more data about the
behavior of a program is better than less, and that the data we report
will help bootstrap and refine developers’ understanding of their
programs and whether the data suggests a significant instability.

6. RELATED WORK
Much work has been done on roundoff error and stability analysis

for numerical algorithms, but not for numerical implementations [12,

20, 21, 22, 28]. We survey the closely related work on the analysis
of numerical software. Two threads underlie related work: 1) static
analysis of numerical programs and 2) stochastic arithmetic based
on perturbations.

Static Analysis of Numerical Programs In recent years, static
analysis techniques have been developed to analyze numerical pro-
grams. We mention a few representative efforts here. Goubault [10]
develops an abstract interpretation-based static analysis [4] to ana-
lyze errors introduced by the approximation of floating-point arith-
metic. The work was later refined by Goubault and Putot [11] with
a more precise abstract domain. Martel [16] presents a general
concrete semantics for floating-point operations to explain the prop-
agation of roundoff errors in a computation. In later work [17],
Martel applies this concrete semantics and designed an static analy-
sis for checking the stability of loops [12]. Martel develops a static
analysis to optimize the numerical accuracy of expressions [18] and
of general programs [19]. He exploits the same fact that we have
in this work: numerical expressions equivalent over R may not be
equivalent under floating-point semantics. Our work complements
these static analyses by offering alternative, statistics-based analysis
for validating numerical software.

Stochastic Arithmetic Another thread of related research con-
cerns stochastic arithmetic. The representative work is CESTAC [3].
It performs transformations similar to our value perturbation, but
for a different purpose. Instead of evaluating the robustness of nu-
merical programs, CESTAC executes a program some number of
times and uses the resulting mean to indicate the significant bits in
the value. This technique has been incorporated into the CANDA
tool [27]. Similar to the basic idea behind stochastic arithmetic,
Parker et al. [24, 25] formalize and introduce the Monte Carlo Arith-
metic (MCA) framework. This framework allows random rounding
and unrounding to simulate computational error. Our value pertur-
bation is similar to MCA. Based on MCA, the authors built their
wonglediff tool [5], which changes the rounding mode of an FPU
while a program is running. Unlike our work, it works on unmod-
ified numeric programs, but is restricted to rounding modes and
therefore does not perturb expressions and does not support general
value perturbation. Our work is based on the general notion of per-
turbation. We extend existing work with expression perturbation and
realize it in a practical tool. We also provide significant empirical
evaluation to show our technique’s practical benefits.

7. CONCLUSION AND FUTURE WORK
Numerical programs are difficult to get right, especially for ap-

plication programmers who tend to think in terms of ideal real
arithmetic instead of floating-point approximations on computers.
We have developed a novel, practical framework to help program-
mers gain high-level knowledge about their scientific programs and
warn of potential numeric errors in their code. We exploit the con-
cept of perturbation in developing our framework, which consists
of the complementary value and expression perturbations. Value
perturbation uncovers intrinsic floating-point errors by randomly
altering the least significant bits of computed values. Expression per-
turbation uncovers unstable expressions by statistically comparing
an expression’s mathematically equivalent forms. Our evaluation on
various test programs and numerical library code shows the practical
benefits of the proposed framework. We believe our technique offers
programmers a useful utility in developing scientific applications.

There are a few interesting directions for future work. First, our
expression perturbation works on individual expressions in a pro-
gram. We plan to extend it to handle expression sequences or an

entire function. This capability will open up additional opportu-
nities for perturbation and uncovering hidden errors. Second, we
would like to explore test input generation techniques for numerical
programs to focus on more relevant boundary values. Perturbing
these values is more likely to reveal subtle errors. Third, perturba-
tion is a general concept, and we plan to investigate other useful
instantiations in addition to expression and value perturbations.

Acknowledgements
We would like to thank Zhaojun Bai, Eric Hyatt, and William Ka-
han for their helpful discussions and feedback. This research was
supported in part by NSF CAREER Grant No. 0546844, NSF Cy-
berTrust Grant No. 0627749, NSF CCF Grant No. 0702622, and
the U.S. Air Force under grant FA9550-07-1-0532. The authors
at Nanjing University are supported by the National Natural Sci-
ence Foundation of China (No.90818022 and No.60721002) and the
National 863 High-Tech Program of China (No.2009AA01Z148).
This material is based in part upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
2006-CS-001-000001, under the auspices of the Institute for In-
formation Infrastructure Protection (I3P) research program. The
I3P is managed by Dartmouth College. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security,
the I3P, or Dartmouth College.

References
[1] A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Ak-

iba, H. Al-Bataineh, J. Alexander, K. Aoki, L. Aphecetche,
R. Armendariz, S. H. Aronson, J. Asai, E. C. Aschenauer, E. T.
Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babint-
sev, M. Bai, G. Baksay, L. Baksay, A. Baldisseri, K. N. Bar-
ish, P. D. Barnes, B. Bassalleck, A. T. Basye, and S. Bathe.
Double-helicity dependence of jet properties from dihadrons
in longitudinally polarized p+ p collisions at

√
s = 200 gev.

Physical Review D, 81(1):012002, Jan 2010.

[2] American NationalStandards Institute. IEEE standard for bi-
nary floating-point arithmetic, 1985.

[3] M.-C. Brunet and F. Chatelin. CESTAC, a tool for a stochastic
round-off error analysis in scientific computing. Numerical
Mathematics and Applications, pages 11–20, 1986.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, pages
234–252, 1977.

[5] P. R. Eggert and D. S. Parker. Perturbing and evaluating
numerical programs without recompilation: the wonglediff
way. Software Practice and Experience, 35(4):313–322, 2005.

[6] G. Fishman. Monte Carlo. Springer, corrected edition, 2003.

[7] A. G. Frodesen, O. Skjeggestad, and H. Tøfte. Probability and
Statistics in Particle Physics. Universitetsforlaget, 1979.

[8] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, and F. Rossi. Gnu Scientific Library Reference
Manual. Network Theory Ltd., 1.2 edition, 2002.

[9] D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5–48, Mar. 1991.

[10] E. Goubault. Static analyses of the precision of floating-point
operations. In Proceedings of the 8th International Static
Analysis Symposium, pages 234–259, 2001.

[11] E. Goubault and S. Putot. Static analysis of numerical algo-
rithms. In Proceedings of the 13th International Static Analysis
Symposium, pages 18–34, 2006.

[12] N. Higham. Accuracy and stability of numerical algorithms.
Society for Industrial and Applied Mathematics, 2002.

[13] L. Jiang and Z. Su. Osprey: a practical type system for validat-
ing dimensional unit correctness of c programs. In ICSE ’06:
Proceedings of the 28th international conference on Software
engineering, pages 262–271, 2006.

[14] W. Kahan. The improbability of probabilistic error analyses for
numerical computations. First presented in 1995 in Hamburg
at the third ICIAM Congress. http://www.cs.berkeley.
edu/~wkahan/improber.pdf, 1996.

[15] D. E. Knuth. The art of computer programming, volume 2 (3rd
ed.): seminumerical algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997.

[16] M. Martel. Propagation of roundoff errors in finite precision
computations: a semantics approach. In 11th European Sym-
posium on Programming, pages 194–208, 2002.

[17] M. Martel. Static analysis of the numerical stability of loops.
In Proceedings of the 9th International Static Analysis Sympo-
sium, pages 133–150, 2002.

[18] M. Martel. Semantics-Based transformation of arithmetic
expressions. In Proceedings of the 14th International Static
Analysis Symposium, pages 298–314, 2007.

[19] M. Martel. Program transformation for numerical precision.
In Proceedings of ACM SIGPLAN Workshop on Partial Evalu-
ation and Program Manipulation, pages 101–110, 2009.

[20] W. Miller. Toward mechanical verification of properties of
roundoff error propagation. In Proceedings of the ACM Sym-
posium on Theory of Computing, pages 50–58, 1973.

[21] W. Miller. Software for roundoff analysis. ACM Trans. Math.
Softw., 1(2):108–128, 1975.

[22] W. Miller and D. Spooner. Software for roundoff analysis, ii.
ACM Trans. Math. Softw., 4(4):369–387, 1978.

[23] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs. In Proceedings of the 11th International
Conference on Compiler Construction, pages 213–228, 2002.

[24] D. Parker, B. Pierce, and P. Eggert. Monte carlo arithmetic:
how to gamble with floating point and win. Computing in
Science & Engineering, 2(4):58–68, 2000.

[25] D. S. Parker, P. R. Eggert, and B. Pierce. Monte Carlo Arith-
metic: a framework for the statistical analysis of roundoff error,
1997.

[26] D. Quinlan. ROSE: Compiler support for object-oriented
frameworks. In Proceedings of Conference on Parallel Com-
pilers (CPC2000), pages 215–226, 2000.

[27] J. Vignes. A stochastic arithmetic for reliable scientific compu-
tation. Mathematics and Computers in Simulation, 30(6):481–
491, 1988.

[28] J. H. Wilkinson. Rounding Errors in Algebraic Processes.
HMSO, London, UK, 1963.

http://www.cs.berkeley.edu/~wkahan/improber.pdf
http://www.cs.berkeley.edu/~wkahan/improber.pdf

	Introduction
	Perturbation
	Usage
	Contributions

	Example
	Perturbation Algorithms
	Value Perturbation
	Expression Perturbation
	Exhaustive Expression Generation
	Monte Carlo Expression Generation

	Implementation
	Empirical Evaluation
	Test Subjects from the Literature
	Value Perturbation Results
	Expression Perturbation Results

	GSL
	Value Perturbation Results
	Expression Perturbation Results

	Threats to Validity

	Related Work
	Conclusion and Future Work

