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Abstract—Natural languages like English are rich, complex,
and powerful. The highly creative and graceful use of languages
like English and Tamil, by masters like Shakespeare and Avvai-
yar, can certainly delight and inspire. But in practice, given cog-
nitive constraints and the exigencies of daily life, most human
utterances are far simpler and much more repetitive and pre-
dictable. In fact, these utterances can be very usefully modeled
using modern statistical methods. This fact has led to the phe-
nomenal success of statistical approaches to speech recognition,
natural language translation, question-answering, and text min-
ing and comprehension.

We begin with the conjecture that most software is also natu-
ral, in the sense that it is created by humans at work, with all
the attendant constraints and limitations—and thus, like natu-
ral language, it is also likely to be repetitive and predictable. We
then proceed to ask whether a) code can be usefully modeled by
statistical language models and b) such models can be leveraged
to support software engineers. Using the widely adopted n-gram
model, we provide empirical evidence supportive of a positive
answer to both these questions. We show that code is also very
repetitive, and in fact even more so than natural languages. As
an example use of the model, we have developed a simple code
completion engine for Java that, despite its simplicity, already
improves Eclipse’s completion capability. We conclude the pa-
per by laying out a vision for future research in this area.

Keywords-language models; n-gram; nature language process-
ing; code completion; code suggestion

I. INTRODUCTION

The word “natural” in the title of this paper refers to the
fact that code, despite being written in an artificial language
(like C or Java) is a natural product of human effort. This use
of the word natural derives from the field of natural language
processing, where the goal is to automatically process texts in
natural languages, such as English and Tamil, for tasks such
as translation (to other natural languages), summarization,
understanding, and speech recognition.

The field of natural language processing (“NLP”, see
Sparck-Jones [1] for a brief history) went through several
decades of rather slow and painstaking progress, beginning
with early struggles with dictionary and grammar-based ef-
forts in the 1960’s. In the 70’s and 80’s, the field was re-
animated with ideas from logic and formal semantics, which
still proved too cumbersome to perform practical tasks at scale.
Both these approaches essentially dealt with NLP from first
principles—addressing language, in all its rich theoretical
glory, rather than examining corpora of actual utterances, i.e.,

what people actually write or say. In the 1980’s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple lan-
guages1, along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely-available practical applications, such as statisti-
cal translation used by translate.google.com.2 We argue
that an essential fact underlying this modern, exciting phase
of NLP is this: natural language may be complex and admit a
great wealth of expression, but what people write and say is
largely regular and predictable.

Our central hypothesis is that the same argument applies to
software:

Programming languages, in theory, are complex, flex-
ible and powerful, but the programs that real people
actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical proper-
ties that can be captured in statistical language models
and leveraged for software engineering tasks.

We believe that this is a general, useful and practical notion
that, together with the very large publicly available corpora
of open-source code, will enable a new, rigorous, statistical
approach to a wide range of applications, in program analysis,
error checking, software mining, program summarization, and
code searching.

This paper is the first step in what we hope will be a long
and fruitful journey. We make the following contributions:

1) We provide support for our central hypothesis by instan-
tiating a simple, widely-used statistical language model,
using modern estimation techniques over large software
corpora;

2) We demonstrate, using standard cross-entropy and per-

1This included the Canadian Hansard (parliamentary proceedings), and
similar outputs from the European parliament.

2Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is
reputed to have exclaimed: “everytime a linguist leaves our group, the per-
formance of our speech recognition goes up”!!! See http://en.wikiquote.org/
wiki/Fred Jelinek.

http://en.wikiquote.org/wiki/Fred_Jelinek
http://en.wikiquote.org/wiki/Fred_Jelinek
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plexity measures, that the model is indeed capturing the
high-level statistical regularity that exists in software at
the n-gram level (probabilistic chains of tokens);

3) We illustrate the use of such a language model by devel-
oping a simple code suggestion tool that already substan-
tially improves upon the existing suggestion facility in
the widely-used Eclipse IDE; and

4) We lay out our vision for an ambitious research agenda
that exploits large-corpus statistical models of natural
software to aid in a range of different software engineer-
ing tasks.

II. MOTIVATION & BACKGROUND

There are many ways one could exploit the statistics of
natural programs. We begin with a simple motivating example.
We present more ambitious possibilities later in the paper.

Consider a speech recognizer, receiving a (noisy) radio
broadcast corresponding to “In Berlin today, Chancellor An-
gela <radio buzz> announced . . . ”. A good speech recog-
nizer might guess that the buzzed-out word was “Merkel”
from context. Likewise, consider an integrated development
environment (IDE) into which a programmer has typed in the
partial statement: “for(i=0;i<10”. In this context, it would
be quite reasonable for the IDE to suggest the completion
“;i++){ ” to the programmer.

Why do these guesses seem so reasonable to us? In the
first case, the reason lies in the highly predictable nature of
newscasts. News reports, like many other forms of culturally
contextualized and stylized natural language expression, tend
to be well-structured and repetitive. With a reasonable prior
knowledge of this style, it is quite possible to fill in the blanks.
Thus if we hear the world “Chancellor Angela”, we can expect
that, in most cases the next word is “Merkel”. This fact is well-
known and exploited by speech recognizers, natural language
translation devices, and even some OCR (optical character
recognition) tools. The second example relies on a lesser-
known fact: natural programs are quite repetitive. This fact
was first observed and reported in a very large-scale study of
code by Gabel & Su [2], which found that code fragments
of surprisingly large size tend to reoccur. Thus, if we see
the fragment for(i=0;i<10 we know what follows in most
cases. In general, if we know the most likely sequences in a
code body, we can often help programmers complete code.
What this essentially amounts to is the following: using a
code corpus to estimate the probability distribution of code
sequences. With the ability to calculate such a distribution
and if this distribution has low-entropy, given a prefix of a
code sequence, we should often be able to guess with high
confidence what follows.

What should the form of a such a distribution be, and how
should we estimate its parameters? In NLP, these distributions
are called “language models”.

A. Language Models

A language model essentially assigns a probability to an
utterance. For us, “utterances” are programs. More formally,
consider a set of allowable program tokens3 T , and the (over-
generous) set of possible program sequences T ∗; we assume
the set of possible implemented systems to be S ⊂ T ∗. A
language model is a probability distribution p(.) over systems
s ∈ S, i.e.,

∀s ∈ S [0 < p(s) < 1] ∧
∑
s∈S

p(s) = 1

In practice, given a corpus C of programs C ⊆ S, and a
suitably chosen parametric distribution p(.), we attempt to
calculate a maximum-likelihood estimate of the parameters of
this distribution; this gives us an estimated language model.
The choice of a language model is usually driven by practical-
ities: how easy is it to estimate and how easy is it to use. For
these reasons, the most ubiquitous is the n-gram model, which
we now describe.

Consider the sequence of tokens in a document (in our case,
a system s), a1a2 . . . ai . . . an. N -gram models statistically
estimate how likely tokens are to follow other tokens. Thus,
we can estimate the probability of a document based on the
product of a series of conditional probabilities:

p(s) = p(a1)p(a2 | a1)p(a3 | a1a2) . . . p(an|a1 . . . an−1)

N-gram models assume a Markov property, i.e., token oc-
currences are influenced only by a limited prefix of length n,
thus for 4-gram models, we assume

p(ai|a1 . . . ai−1) ' p(ai | ai−3ai−2ai−1)

These models are estimated from a corpus using simple
maximum-likelihood based frequency-counting of token se-
quences. Thus, if “∗” is a wildcard, we ask, how relatively
often are the tokens a1, a2, a3 followed by a4:

p(a4|a1a2a3) =
count(a1a2a3a4)

count(a1a2a3∗)
In practice, estimation of n-gram models is quite a bit more

complicated. The main difficulties arise from data sparsity,
i.e., the richness of the model in comparison to the available
data. For example, with 104 token vocabulary, a trigram model
must estimate 1012 coefficients. Some trigrams may never oc-
cur in one corpus, but may in fact occur elsewhere. This will
lead to technical difficulties; when we encounter a previously
unseen n-gram, we are in principle “infinitely surprised”, be-
cause an “infinitely improbable” event x estimated from the
previously seen corpus to have p(x) = 0 actually occurs; this
leads to infinite entropy values, as will become evident below.
Smoothing is a technique to handle cases we where have not
seen the n-grams yet and still produce usable results with suf-
ficient statistical rigour. Fortunately, there exist a variety of

3Here we use a token to mean its lexeme.
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techniques for smoothing the estimates of a very large number
of coefficients, some of which are larger than they should be
and others smaller. Sometimes it is better to back-off from a
trigram model to a bigram model. The technical details are
beyond the scope of this paper, but can be found in any ad-
vanced NLP textbook. In practice we found that Kneser-Ney
smoothing (e.g., Koehn [3], §7) gives good results for software
corpora. However, we note that these are very early efforts in
this area, and new software language models and estimation
techniques might improve on the results presented below.

But how do we know when we have a good language model?

B. What Makes a Good Model?

Given a repetitive and highly predictable corpus of docu-
ments (or programs), a good model captures the regularities
in the corpus. Thus, a good model, estimated carefully from
a representative corpus, will predict with high confidence the
contents of a new document drawn from the same population.
Such a model can guess the contents of the new document
with very high probability. In other words, the model will not
find a new document particularly surprising, or “perplexing”.
In NLP, this idea is captured by a measure called perplexity,
or its log-transformed version, cross-entropy4. Given a doc-
ument s = a1 . . . an, of length n, and a language modelM,
we assume that the probability of the document estimated by
the model is pM(s). We can write down the cross-entropy
measure as:

HM(s) = − 1

n
log pM(a1 . . . an)

and by the formulation presented in Section II-A:

HM(s) = − 1

n

n∑
1

log pM(ai | a1 . . . ai−1)

This is a measure of how “surprised” a model is by the
given document. A good model has low entropy for most
documents. It gives higher probabilities, (closer to 1, and thus
lower absolute log values) to most words in the document.
If one could manage to deploy a (hypothetical) truly superb
model within an IDE to help programmers complete code
fragments, it might be able to guess with high probability
most of the program, so that most of the programming work
can be done by just hitting a tab key! In practice of course, we
would probably be satisfied with a lot less.

But how good are the models that we can actually build
for “natural” software? Is software is really as “natural” (i.e.,
unsurprising) as natural language?

III. METHODOLOGY & FINDINGS

To shed light on this question, we performed a series of
experiments with both natural language and code corpora, first
comparing the “naturalness” (using cross-entropy) of code

4http://en.wikipedia.org/wiki/Cross entropy; see also [4], §2.2, page 75,
equation 2.50

Tokens
Java Project Version Lines Total Unique

Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298

Cassandra 20110122 135992 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652

Log4J 20101119 68528 247001 8056
Lucene 20100319 429957 2130349 32676
Maven2 20101118 61622 263831 7637
Maven3 20110122 114527 462397 10839
Xalan-J 20091212 349837 1085022 39383
Xerces 20110111 257572 992623 19542

Tokens
Ubuntu Domain Version Lines Total Unique

Admin 10.10 9092325 41208531 1140555
Doc 10.10 87192 362501 15373

Graphics 10.10 1422514 7453031 188792
Interpreters 10.10 1416361 6388351 201538

Mail 10.10 1049136 4408776 137324
Net 10.10 5012473 20666917 541896

Sound 10.10 1698584 29310969 436377
Tex 10.10 1405674 14342943 375845
Text 10.10 1325700 6291804 155177
Web 10.10 1743376 11361332 216474

Tokens
English Corpus Version Lines Total Unique

Brown 20101101 81851 1161192 56057
Gutenberg 20101101 55578 2621613 51156

Table I: 10 Java Projects, C code from 10 Ubuntu 10.10 Cat-
egories, 3 English Corpus used in our study. English is the
concatenation of Brown and Gutenberg. Ubuntu 10.10 Maver-
ick was released on 2010/10/10.

with English texts, and then comparing various code corpora
to each other to further gain insight into the similarities and
differences between code corpora.

Our natural language studies were based on two very widely
used corpora: the Brown corpus, and the Gutenberg corpus5.
For code, we used several sets of corpora, including a collec-
tion of Java projects, as well a collection of applications from
Ubuntu, broken up into application domain categories. All are
listed in Table I.

After removing comments, the projects were lexically ana-
lyzed to produce token sequences that were used to estimate
n-gram language models. Most of our corpora are in C and
Java. Extending to other languages is trivial.

The Java projects were our central focus; we used them
both for cross-entropy studies, and some experiments with an
Eclipse plug-in for a language-model-based code-suggestion
task. Table I describes the 10 Java projects that we used. The
Version indicates the date of the last revision in the Git repos-
itory when we cloned the project. Unique Tokens refers to
the number of different kinds of tokens that make up the to-
tal token count given in the Tokens field. Lines is calculated
using Unix wc on all files within each repository, and tokens

5We retrieved these corpora from http://www.nltk.org/.
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Figure 1: Comparison of English Cross-Entropy versus the
Code Cross Entropy of 10 projects.

are extracted from each of these files. The Ubuntu domain
categories were quite large in some cases, ranging up to 9
million lines, 41 million tokens (one million unique). The
number of unique tokens is interesting and relevant, as they
give a very rough indication on the potential “surprisingness”
of the project corpus. If these unique token were uniformly
distributed throughout the project (highly unlikely), we could
expect a cross-entropy of log2(1.15E6), or approximately 20
bits. A similar calculation for the Java projects ranges from
about 13 bits to about 17 bits.

A. Cross-Entropy of Code

Cross-entropy is a measure of how surprising a test docu-
ment is to a distribution model estimated from a corpus. Thus
if one tests a corpus against itself, one has to set aside some
portion of the corpus for testing, and estimate (train) the model
on the rest of the corpus. In all our experiments, we measured
cross-entropy by averaging out over a 10-fold cross-validation:
we split the corpus 90%–10% (in lines) at random 10 loca-
tions, trained on the 90% and tested on 10%, and measured
the average cross-entropy. A further bit of notation: when we
say we measured the cross-entropy of X to Y , Y is the train-
ing corpus used to estimate the parameters of the distribution
modelMY used to calculate HMY (X).

First, we wanted to see if there was evidence to support
the claim that software was “natural”, in the same way that
English is natural, viz., whether regularities in software could
be captured by language models.

RQ 1: Do n-gram language models capture regularities in
software?

To answer this question, we estimated n-gram models for
several values of n over both the English corpus and the 10
Java language project corpora, using averages over 10-fold
cross validation (each corpus to itself) as described above. The
results are in Figure 1. The single line above is the average
over the 10 folds for the English corpus, beginning at about
10 bits for unigram models, and trailing down to under 8 bits
for 10-gram models. The average self cross-entropy for the 10
projects are shown below in boxplots, one for each order from
unigram models to 10-gram models. Several observations can
be made. First, software unigram entropy is much lower than
might be expected from a uniform distribution over unique
tokens, because token frequencies are obviously very skewed.

Second, cross-entropy declines rapidly with n-gram order,
saturating around tri- or 4-grams. The similarity in the decline
in English and the Java projects is striking. This decline sug-
gests that there is as much of repetitive local context that is
being captured by the language model in Java programs, as
it is in the English corpora. We take this to be highly encour-
aging: the ability to model the regularity of the local context
in natural languages has proven to be extremely valuable in
statistical natural language processing; we hope (and in fact,
provide some evidence to support the claim) that this regularity
can be exploited for software tools.

Last, but not least, software is far more regular than English
with entropies sinking down to under 2 bits in some cases.

Corpus-based statistical language models can capture
a high level of local regularity in software, even more so
than in English.

This raises a worrying question: is the increased regularity
we are capturing in software merely a difference between En-
glish and Java? Java is certainly a much simpler language than
English, with a far more structured syntax. Might not the lower
entropy be simply an artifact of the artificially simple syntax
for Java? If the statistical regularity of the local context being
captured by the language model were simply arising from the
simplicity of Java, then we should find this uniformly across
all the projects; in particular, if we train a model on one Java
project, and test on another, we should successfully capture
the local regularity in the language. Thus, we sublimate this
anxiety-provoking question into the following:

RQ 2: Is the local regularity that the statistical language
model captures merely language-specific or is it also
project-specific?

This is a pretty simple experiment. For each of the 10
projects, we train a trigram model, and evaluate its cross-
entropy with each of the 9 others, and compare the value
with the average 10-fold cross-entropy against itself. This
plot is shown in Figure 3. The x-axis lists all the different
Java projects, and, for each, the boxplot shows the range of
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Ant Batik Cassandra Eclipse Log4j Lucene Maven2 Maven3 Xalan−J Xerces2

2
4

6
8

1
0

1
2

1
4

Corpus Projects

C
ro

s
s
 E

n
tr

o
p
y

Self Cross Entropy

Figure 3: 10 projects cross-entropy versus self cross-entropy.

cross-entropies with the other nine projects. The red line at
the bottom shows the average self cross-entropy of the project
against itself. As can be seen the self-entropy is always lower.

The language models are capturing a significant level
of local regularity that is not an artifact of the program-
ming language syntax, but rather arising from “natural-
ness” or repetitiveness specific to each project.

This is a rather noteworthy result: it appears each project
has its own type of local, non-Java-specific regularity that is
being captured by the model; furthermore, the local regularity
of each project is special unto itself, and different from that
of the other projects. Most software engineers will find this
intuitive: each project has its own vocabulary, and specific
local patterns of iteration, field access, method calls, etc. It
is important to note that the models are capturing non-Java-
specific project regularity beyond simply the differences in
unigram vocabularies. In section IV, we discuss the application

of the multi-token local regularity captured by the models to
a completion task. As we demonstrate in that section, the
models are able to successfully suggest non-linguistic tokens
(tokens that are not Java keywords) about 50% of the time;
this also provides evidence that the low entropy produced by
the models are not just because of Java language simplicity.

But projects do not exist in isolation; the entire idea of
product-line engineering rests on the fact that products in
similar domains are quite similar to each other. This raises the
interesting question:

RQ 3: Do n-gram models capture similarities within and
differences between project domains?

We approached this question by studying categories of appli-
cations within Ubuntu. We selected 10 the application domain
categories, listed in Table I, each of which had a sizeable num-
ber of members. The categories (with number of projects in
each category) are Administration (116), Documentation (22),
Graphics (21), Interpreters (23), Mail (15), Networking (86),
Sound/Audio (26), Tex/Latex related (135), Text processing
(118), and Web (31). For each category, we calculated the
self cross-entropy within the category (red box) and the other
cross-entropy, the cross-entropy against all the other categories
(boxplot), shown in Figure 2. Here again, as in Figure 3, we
see that there appears to be a lot of local regularity repeated
within application domains, and much less so across applica-
tion domains. Some domains, e.g. the Web, appear to have a
very high-level of regularity (and lower self-entropy); this is
an interesting phenomenon, requiring further study.

Concluding Discussion We have seen that a high degree of
local repetitiveness, or regularity, is present in code corpora
and, furthermore, that n-gram models effectively capture these
local regularities. We find evidence suggesting that these local
regularities are specific to both projects and to application
domains. We also find evidence that these regularities arise
not merely from the relatively more regular (when compared

5
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to natural languages) syntax of Java, but also arise from other
types of project- and domain-specific local regularities that
exist in the code. In the next section, we demonstrate that
these project-specific regularities are actually useful, by using
project-specific models to extend the Eclipse suggestion en-
gine; we also show that the n-gram models quite often (about
50% of the time) provide suggestions that are project-specific,
rather than merely suggesting Java keywords guessable from
context.

In Natural language, these local regularities have proven
to be of profound value, for tasks such as translation. It is
our belief that these simple local regularities can be used for
code summarization and code searching; we also believe that
deeper, semantic properties will also be in general manifest in
these same local regularities. These are discussed further in
future work section (Section VI).

IV. SUGGESTING THE NEXT TOKEN

The strikingly low entropy (between 3 and 4 bits) produced
by the smoothed n-gram model indicates that even at the local
token-sequence level, there is a high degree of “naturalness”.
If we make 8-16 guesses (23 − 24) as to what the next token
is, we may very well guess the right one!

Eclipse Suggestion Plug-in We built an Eclipse plug-in to
test this idea. Eclipse, like many other IDEs, has a built-in
suggestion engine that suggests a next token whenever it can.
Eclipse (and other IDEs) suggestions are typically based on
type information available in context. We conjectured that
corpus-based n-gram models suggestion engine (for brevity,
NGSE) could enhance eclipse’s built-in suggestion engine
(for brevity, ECSE) by offering tokens that tend to naturally
follow from preceding ones in the relevant corpus.

The NGSE uses a trigram model built from the corpus of
a lexed project. At every point in the code, NGSE uses the
previous two tokens, already entered into the text buffer, and
attempts to guess the next token. The language model built
from the corpus gives maximum likelihood estimates of the
probability of a specific choice of next token; this probability
can be used to rank order the likely next tokens. Our imple-
mentation produces rank-ordered suggestions in less than 0.2
seconds on average. Both NGSE and ECSE produce many
suggestions. Presenting all would be overwhelming. Therefore
we need to come up with a heuristic to merge the lists from
the two groups: given an admissible number n of suggestions
to be presented to the user, choose n candidates from both
NGSE’s and ECSE’s offers.

We observed that in general, NGSE was good at recom-
mending shorter tokens, and ECSE was better at longer to-
kens (we discuss the reasons for this phenomenon later in this
section). This suggested the simple merge algorithmMSE ,
defined in Algorithm 1. Whenever Eclipse offers long tokens
(we picked 7 as the break-even length, based on observation)
within the top n, we greedily pick all the top n offers from

Algorithm 1MSE(eproposals, nproposals, maxrank, minlen)
Require: eproposals and nproposals are ordered sets of

Eclipse and N-gram proposals.

elong := {p ∈ eproposals[1..maxrank] | strlen(p) > 6}
if elong 6= ∅ then

return eproposals[1..maxrank]
end if
return eproposals[1..dmaxrank

2 e] ◦ nproposals[1..bmaxrank
2 c]

Eclipse. Otherwise, we pick half from Eclipse and half from
n-grams.

The relative performance ofMSE and ECSE in actual prac-
tice might depend on a great many factors, and would require a
well-controlled, human study to be done at scale. A suggestion
engine can present more or fewer choices; it may offer all sug-
gestions, or only offer suggestions that are long. Suggestions
could be selected with a touch-screen, with a mouse, or with
a down-arrow key. Since our goal here is to gauge the power
of corpus-based language models, as opposed to building the
most user-friendly merged suggestion engine (which remains
future work) we conducted an automated experiment, rather
than a human-subject study.

We controlled for 2 factors in our experiments: the string
length of suggestions l, and the number of choices n presented
to the user. We repeated the experiment varying n, for n =
2, 6, 10 and l, for l = 3, 4, 5, . . . 15. We omitted suggestions
less than 3 characters, as not useful. Also, when merging
two suggestion lists, we chose to pick at least one from each,
and thus n ≥ 2. We felt that more than 10 choices would
be overwhelming—although our findings do not change very
much at all even with 16 and 20 choices. We choose 5 projects
for study: Ant, Maven, Log4J, Xalan, and Xerces. In each
project, we set aside a test set of 40 randomly chosen files
(200 set aside in all) and built a trigram language model on the
remaining files for each project. We then used theMSE and
ECSE algorithms to predict every token in the 40 set-aside
files, and evaluated how many more times theMSE made a
successful suggestion, when compared to the basic ECSE . In
each case, we evaluated the advantage ofMSE over ECSE ,
measured as the (percent and absolute) gain in number of
correct suggestions at each combination of factors n and l.

How does the language model help? The results are pre-
sented in Figure 4. Note that the figure has two y-scales: the
left side (black circle points) is percent additional correct sug-
gestions, and the right side (red square points) are the raw
counts. Since the raw count of successful suggestions from
the Eclipse engine ECSE also declines with length, both mea-
sures are useful. As can be seenMSE provides measurable
advantage over ECSE in all settings of both factors, although
the advantage in general declines with l. The gains up through
6-character tokens are quite substantial, in the range of 33–

6
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(c) Gain using top 10 suggestions.

Figure 4: Suggestion gains from merging n-gram suggestions into those of Eclipse.

67% additional suggestions from the language model that are
correct; between 7 and 15 characters, the gains range from
3–16%.

The additional suggestions from NGSE run the gamut,
including methods, classes & fields predictable from fre-
quent trigrams in the corpus, (e.g., println, iterator,

IOException, append, toString, assertEquals,

transform), package names (e.g., apache, tools,

util, java) as well as language keywords (e.g., import,
public, return, this). An examination of the tokens
reveals why the n-grams approach adds most value with
shorter tokens. The language model we build is based on all
the files in the system, and the most frequent n-grams are
those that occur frequently in all the files. In the corpus, we
find that coders tend to choose shorter names for entities that
are used more widely and more often; naturally these give rise
to stronger signals that are picked up by the n-gram language
model. It is worth repeating here that a significant portion,
viz.., 50% of the successful suggestions are not Java keywords
guessed from language context—they are project-specific
tokens. This reinforces our claim that the statistical language
model is capturing a significant level of local regularity in the
project corpus.

In the table below, we present we present a different way of
looking at the benefit ofMSE ; the total number of keystrokes
saved by using the base ECSE , (first row) theMSE (second
row) and the percent gain from usingMSE .

Top 2 Top 6 Top 10

ECSE 42743 77245 95318
MSE 68798 103100 120750
Increase 61% 33% 27%

We close this section by pointing out that we used one spe-
cific language model to enhance one specific software tool, a

suggestion engine. With more sophisticated language models,
specifically ones that combines syntax, scoping and type in-
formation, we expect to achieve even lower entropy, and thus
better performance in this and other software tools.

V. RELATED WORK

There are a few related areas of research, into which this
line of work could be reasonably contextualized.

Code Completion and Suggestion By completion we mean
the task of completing a partially typed-in token; by suggestion
we mean suggesting a complete token. The discussion above
concerned suggestion engines.

Several modern mature software development environments
(SDEs) provide both code completion and code suggestion,
often with a unified interface. Two notable open-source Java-
based examples are Eclipse and IntelliJ IDEA. As in our work,
these tools draw possible completions from existing code, but
the methods of suggestion are fundamentally different.

Eclipse and IntelliJ IDEA respond to a programmer’s com-
pletion request (a keyboard shortcut such as ctrl+space) by
deducing what tokens “might apply” in the current syntactic
context. Here, the tools are primarily guided by Java program-
ming language semantics. For example, both Eclipse and Intel-
liJ IDEA respond to a completion request, by parsing available
source code, and create a short list of expected token types. If
this list contains, say, a reference type, the tools use the rules
of the type system to add a list of currently-defined type-names
to the list of completions. Similarly, if a variable is expected,
the tools names visible in the symbol table. Eclipse and IDEA
implement dozens of these “syntactic and semantic rules” for
various classes of syntactic constructs. As a final step, both
tools rank the completions with a collection of apparently
hand-coded heuristics.

Our approach is complementary. Rather than using language
semantics and immediate context, to guess what might apply,
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our n-gram language model captures what most often does ap-
ply. Our approach offers a great deal more flexibility and it also
has the potential to be much more precise: the space of com-
monly used completions is naturally far smaller than the space
of “language-allowed” completions. We emphasize, however,
that our approach is generally complementary; language based
guesses can be enhanced (or ordered) using corpus statistics.
It’s noteworthy that perhaps some of the strongest evidence
for the “naturalness” of software, though, is how well our
completion prototype functions in spite of not doing this.

There are approaches arguably more advanced than those
currently available in IDEs. The BMN completion algorithm
of Bruch et al. [5] is focused on finding the most likely method
calls likely to complete an expression by using frequency of
method calls and prior usage in similar circumstances. We
propose a broad vision for using language models of code
corpora in software tools. Our specific illustrative completion
application has a broader completion goal, completing all
types of tokens, not just method calls. Later, Bruch et al. [6]
lay out a vision for next-generation IDEs that take advantage
of “collective wisdom” embodied in code bodies and recorded
human action. We enthusiastically concur with this vision;
our specific approach is that “natural software” has statistical
regularities that allow techniques from statistical NLP to be
profitably applied in the endeavor to make this vision a reality.

Robbes and Lanza [7] compare a set of different method-
call and class-name completion strategies, which start with
a multi-letter prefix. They introduce an approach based on
history and show that it improves performance. Our approach
is complementary to theirs: it can provide full-token comple-
tion of any token and is based a language model that exploits
regularities in program corpora. Han et al. [8] uses Hidden
Markov Models (HMM) to infer likely tokens from short form
tokens mentioned. They make use of a dynamic programming
trellis approach for backtracking and suggestion. Their HMM
is in fact a language model, but the paper does not describe
how effective a model it is or how well it would perform for
completion tasks without user-provided abbreviations.

Jacob and Tairas [9] used N-gram language models for a
different application: to find matching code clones relevant to
partial programming task. Language models were built over
clone groups (not entire corpora as we propose) and used to
retrieve and present candidate clones relevant to a partially
completed coding task.

Hou and Pletcher [10] used context-specific API informa-
tion in order to enable the sorting of Eclipse code completions
by using static type-based information. Users may optionally
filter out future completion proposals.

The “naturalness” of names in code There has been a line
of work on automatically evaluating the quality of entity names
in code: do the names reflect the meanings of the artifacts, and
if not, how could they be improved [11, 12]? Work by Høst and
Østvold [13, 14] also concerns method naming: they combine

static analysis with an entropy-based measure over the distri-
bution of simple semantic properties of methods in a corpus to
determine which method names are most discriminatory, and
they use it to detect names whose usage are inconsistent with
the corpus. While this work does not explicitly use a language
model to capture the general “naturalness” of software over a
large corpus, it does have some similarity to a future line of
work we propose below.

Summarization and Concern Location There is also a line
of work on generating natural language descriptions (sum-
maries) of code [15–17]. This work relies on inferring seman-
tic properties of code by static analysis, rather than leveraging
the “natural” regularities of software corpora as captured by
statistical models; it is complementary to ours: properties de-
rived by static analysis (as long as they can be done efficiently,
and at scale) could be used to enrich statistical models of large
software corpora. Another line of work seeks to locate parts of
code relevant to a specified concern (e.g. “place auction bid”),
which could be local or cross-cutting, based on fragments of
code names [18], facts mined from code [19], or co-occurrence
of related words in code [20].

NLP and Requirements Researchers have studied the use of
natural language in requirements engineering: can we utilize
natural language specifications to automatically generate more
formal specifications, or even code? [21–23] Some of these
approaches make use of NLP tools like parsers and part-of-
speech taggers. Our approach considers instead the “natural-
ness” of code, as embodied in statistical models built from
large corpora of artifacts; however we also consider (in future
work) the possibility of using aligned (code/natural language)
corpora for tasks such as code summarization or code search,
which could be viewed as translation tasks.

Software Mining Work in this very active area [24] aims to
mine useful information from software repositories. Many pa-
pers can be found in MSR conference series at ICSE, and rep-
resentative works include mining API usages [25, 26], patterns
of errors [27, 28], topic extraction [29], guiding changes [30]
and several others. The approaches used vary. We argue that
the “naturalness” of software provides a conceptual perspec-
tive for this work, and also offers some novel implementation
approaches. The conceptual perspective rests on the idea use-
ful information is often manifest in software in uniform, and
uncomplicated ways; the implementation approach indicates
that the uniform and uncomplicated manifestation of useful
facts can be determined from a large, representative software
corpus in which the required information is already known
and annotated. This corpus can be used to estimate the statisti-
cal relationship between the required information and readily
observable facts; this relationship can be used to reliably find
similar information in new programs similar to the corpus. We
explain this further in future work (Sections VI-C and VI-D).
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VI. FUTURE DIRECTIONS

We present now possible applications of corpus-based sta-
tistical methods to aid software engineering tasks.

A. Improved Language Models

In this paper, we exploited a common language model (n-
grams) that effectively captures local regularity. There are
several avenues for extension. Existing, very large bodies of
code can be readily parsed, typed, scoped, and even subject to
simple semantic analysis. All of these can be modeled using
enhanced language models to capture regularities that exist at
syntactic, type, scope, and even semantic levels.

There’s a difficulty here: the richer a model, the more data
is needed to provide good estimates for the model parameters;
thus the risk of data sparsity grows as we enrich our models.
Ideas analogous to the smoothing techniques used in n-gram
models will have to be adapted and applied to build richer
models of software corpora. Still, if regularities in syntax,
type, scope, and even semantic properties can be captured in
models, these may then be exploited for software engineering
tasks, some of which we discuss further below.

B. Language Models for Accessibility

Some programmers have difficulty using keyboards, be-
cause of RSI or visual impairment. There has been quite a bit
of work on aiding such programmers using speech recognition
(e.g., [31–33]). However, these approaches suffer from fairly
high recognition error rates and are not widely used [34]. None
of the published approaches make use of a statistical language
model trained on specific code corpora. We hypothesize that
the use of a language model can significantly reduce the error
rates; they certainly play a crucial role in conventional speech
recognition engines. Because a large proportion of develop-
ment work occurs in a maintenance or re-engineering context,
language models derived from existing code should improve
the performance of these speech recognition systems. Even
when only a small amount of relevant code exists, language
model adaptation techniques [35] could be applied, using cor-
pora of similar code.

C. Summarizing and/or Retrieving Code

Consider the task of summarizing a fragment of code (or
change to code) in English. Consider also the approximate
reverse task: finding/retrieving a relevant fragment of code
(e.g. method call) given an English description. We draw an
analogy between these two problems and statistical natural
language translation, (SNLT ). Code and English are two
languages, and essentially both the above are translation tasks.
SNLT relies on access to an aligned corpus, which is a large
set of sentences simultaneously presented in two or more
languages (e.g.., proceedings of parliaments in Canada and
Europe). Consider the problem of translating a Tamil sentence
T to an English sentence E. The translation process works by

calculating the most likely sentence using a conceptually sim-
ple Bayesian probability formulation, by maximizing the right
hand size of this equation over all possible English sentences
E:

p(E | T ) = p(T | E).p(E)

p(T )

The denominator can safely be ignored, as long as we just
maximize the numerator. Of the two terms in the numerator,
the distribution p(T | E) is estimated using an aligned corpus;
and the distribution p(E) can be estimated over the English
part of the aligned corpus, or another available English corpus.
Note the formulations works both ways, and be used for the
reverse translation task.

We propose to tackle the summarization/retrieval task using
statistical estimates derived from several corpora. First, we
use an aligned (English/Code) corpora built from multiple
sources: One source arises from the version history of a pro-
gram. Each commit in a typical project offers a matched pair
of a log message (English), and some changes (Code). An-
other source of aligned examples are in-line comments that are
clearly matchable with nearby code [36]. Second, we can use
the any available English language text associated with a given
project, including all comments in the code, any available code
or design documents, bug reports, discussions on mailing lists
etc, to build a relevant English corpus. Finally, we use the code
of the project to build the code corpus. With these corpora one
can build estimate models of distributions of the form p(C)
for code fragments, p(C|E) of code probability distributions
conditional on aligned English text, and vice versa; these mod-
els can then be used to select maximally likely code fragments
given English descriptions, or vice versa, using the standard
Bayesian formulation presented above. This approach could
use semantic properties of code, as well; however, unlike Buse
& Weimer [16], who document the semantics of each change
in isolation, we would use statistics of semantic properties
over large aligned code/text corpora; these statistics might
allow us to provide the reason why changes were made, rather
than just documenting what was changed.

D. Software Tools

We hypothesize that the “naturalness” of software implies a
“naturalness” of deeper properties of software, such as those
normally computed by powerful but expensive software tools;
we hypothesize that (because programmers tend to be repet-
itive, and not too creative) deeper, more semantic properties
of programs are also manifest in programs in superficially
similar ways. More specifically, we hypothesize that seman-
tic properties are usually manifest in superficial ways that
are computationally cheap to detect, particularly when com-
pared to the cost (or even infeasibility) of determining these
properties by sound (or complete) static analysis.

For example, the use of unprotected string functions like
strcat (as opposed to strncat) is evidence for a potential
buffer flow, but not conclusive proof. As another example,
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suppose 3 related methods (wherein the “relatedness” has
been detected using a recommender system [37, 38]) open,
access, close are called together in the same method, with
the 3 methods occurring in that textual order in the code, and
access occurring within a loop. This is evidence (albeit not
conclusive) that the 3 methods are to be used with the proto-
col open-access∗-close. These are heuristics, analogous
to the probabilistic constraints used in Merlin (See Livshits
et al. [39], Figure 3). But where do they come from? In Mer-
lin, they are hard-coded heuristics based on researchers’ in-
tuitions; we argue rather that they should be derived from
building corpus-level distribution models, making using of
prior knowledge about protocols already known to be in use
in those corpora.

This admittedly is a leap of faith; however, if it holds up (and
we have found anecdotal evidence that it does, and some prior
research implicitly makes a version of this assumption [39])
one can leverage this notion to build simple, scalable, and
effective approximations in a wide variety of settings, as we
now describe.

Consider a very general formulation of a software tool that
computes a function f over a system s, drawn from a domain
of systems S thus:

f(s) : S −→ D,

where the range D represents a fact derived by analysis (e.g.
a may-alias fact), or a mined rule (e.g. an API protocol), or a
error message (e.g. buffer-overflow warning), or even a new,
transformed version of the input system s ∈ S . Let us assume
that the function f is in general expensive or even infeasible
to calculate, and is thus subject to approximation error and cal-
culation delays in practice. We reformulate this problem by es-
timating f using an alternative formulation, f̂ , which chooses
the most likely value of f(s), given an easily calculated and
readily observed set of evidence features e1(s), e2(s), . . . Fea-
tures ei(s) are like “symptoms” that are not deterministic,
conclusive proof of a specific conclusion f(s), but neverthe-
less provide varying levels of justification for a probabilistic
belief in f(s).

We can formulate this from a Bayesian perspective. First,
we write down the probability that d holds of system s, given
the observed bits of evidence ei(s):

p(d | s) = p(e1(s), e2(s), . . . en(s))|d).p(d)
p(e1(s), e2(s), . . . , en(s))

We argue that the distributions on the right-hand side can
be estimated using large-corpus statistics. The denominator
can be estimated using the observed frequencies of evidence
events. For the numerator, the prior distribution p(d) is the
prior frequency of the output domain of f . The prior could be
estimated from observations in the corpus (e.g. How often due
concurrency or buffer overflow errors occur? How often do
different protocol patterns occur? etc.). In the absence of such
information, a uninformative (uniform) prior could be chosen.

Next, we estimate the strength of the association (likeli-
hood) between the conclusion d and the observed features
e1(s) . . . en(s) in the corpus. p(e1(s), e2(s), . . . en(s))|d) is
the conditioned frequency of observation of feature observa-
tions in the corpus when the output domain property d holds.
This term requires the availability of a corpus annotated with
property d . Even in cases where d must be manually annotated,
we argue that such corpora may be well-worth the investment
(by analogy with the Penn Tree Bank [40]) and can be con-
structed using volunteer open-source community, and perhaps
such market mechanisms as the Mechanical Turk [41]. In some
cases, the manual annotation is not a huge effort. Consider the
problem of mining a protocol for a given API from a code body.
Assume for example a (previously known) API with 3 methods,
grouped in the protocol connect-access∗-disconnect,
and a large corpus of code known to correctly use this API.
This corpus can then be used to evaluate the strength of the
association between this known protocol and features in the
code; the only manual effort required here is to select the
indicative features, and identify the corpus and the relevant
protocol. Once the association strength of a number of known
protocols is evaluated, it becomes possible, given a new API
and a code corpus that uses this API, to scan through a corpus
quickly and evaluate the evidence in support of the different
possible protocols applicable to this API.

A similar case applies when a good body of bug-fix data is
available, in version history, and the etiology of the bugs is
well-known. In this case, we could use version control tools to
establish the provenance of different types of bugs, which are
a form of annotation d over the buggy code fragments.

Finally, assuming suitable models to enable calculation of
p(d | s) can be estimated, we write the alternative, probabilis-
tic function f̂ to choose the most likely d:

f̂(s) = argmax
d∈D

p(d | s)

We hasten to add that this Bayesian formulation is just to
provide an intuition on how corpus-based statistics can be used
in a principled way to aid in the construction of approximating
software engineering tools. In practice, a machine learning for-
mulation (such as decision-trees, support-vector machines, or
even simple regression models) might prove more expedient.

VII. CONCLUSION

Although Linguists (sometimes) revel in the theoretical
complexities of natural languages, most “natural” utterances,
in practice, are quite regular and predictable and can in fact be
modeled by rigorous statistical methods. This fact has revolu-
tionized computational linguistics. We offer evidence support-
ing an analogous claim for software: though software in theory
can be very complex, in practice, it appears that even a fairly
simple statistical model can capture a surprising amount of
regularity in “natural” software. This simple model is strong
enough for us to quickly and easily implement a fairly power-
ful suggestion engine that already improves a state-of-the-art
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IDE. We also lay out a vision for future work. Specifically,
we believe that natural language translation approaches can
be used for code summarization and code search in a sym-
metric way; we also hypothesize that the “naturalness” of
software implies a sort of “naturalness” of deeper properties
of software, such as those normally computed by powerful,
traditional software analysis tools. These are challenging tasks,
but with potentially high pay-off, and we hope others will join
us in this work.
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