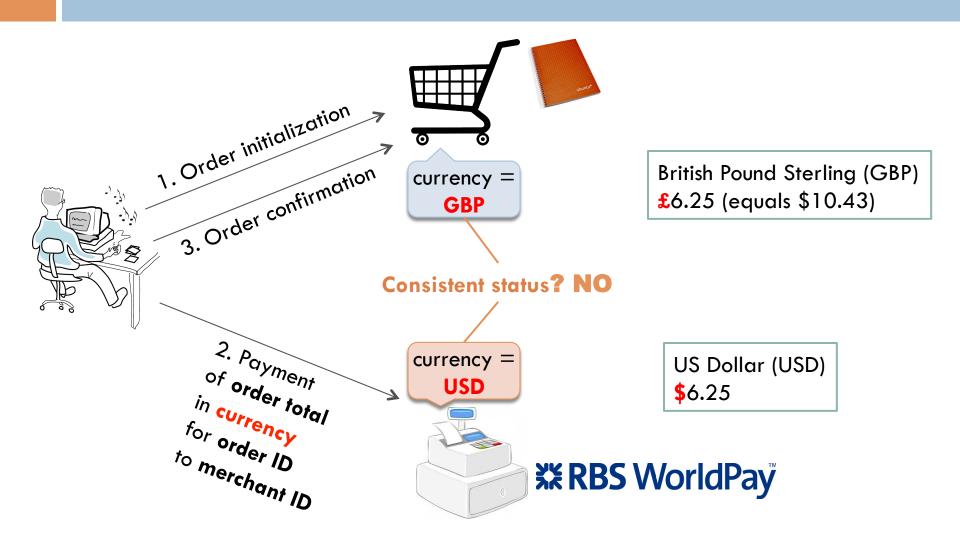
Detecting Logic Vulnerabilities in E-Commerce Applications

Fangqi Sun, Liang Xu, Zhendong Su

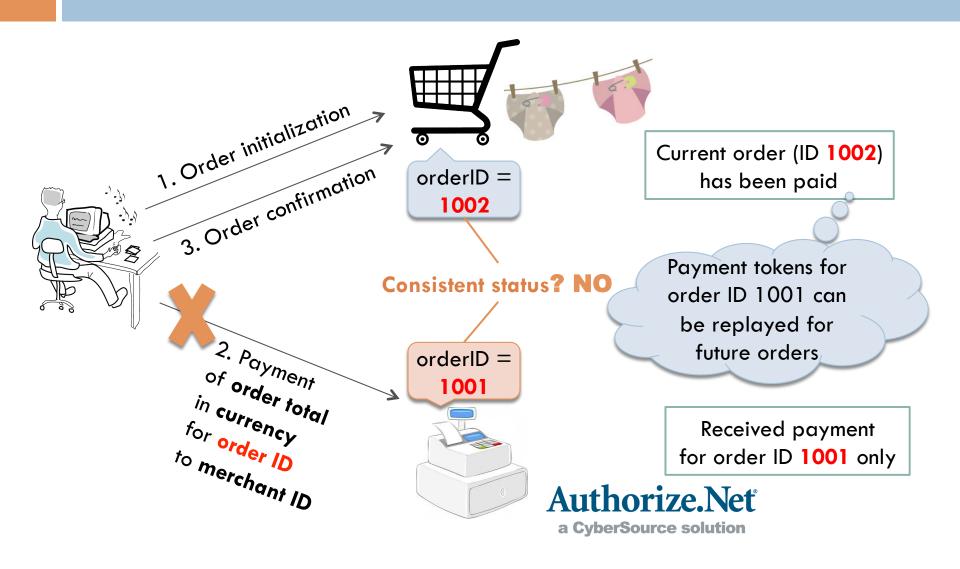
** RBS WorldPay

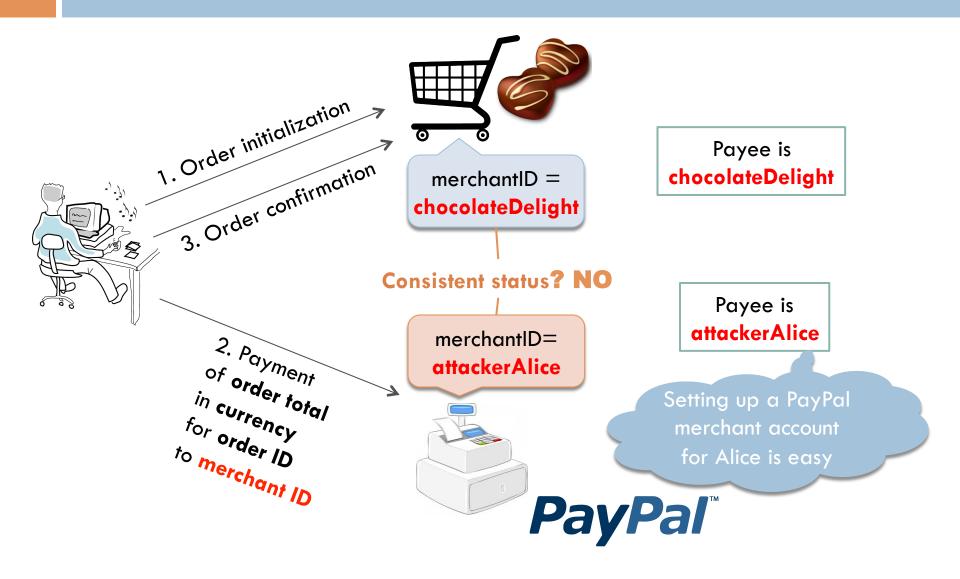
Authorize.Net a CyberSource solution




() oscommerce

Logic Vulnerabilities in E-Commerce Web Applications


- Third-party cashiers
 - Bridge the trustiness gap between customers and merchants
 - Complicate logic flows during checkout
- Logic vulnerabilities in e-commerce web applications
 - Abuse application-specific functionality
 - Allow attackers to purchase products or services with incorrect or no payment
 - Have multiple attack vectors
 - Assumptions of user inputs and user actions should be explicitly checked
 - Example
 - CVE-2009-2039 is reported for Luottokunta (v1.2) but the patched Luottokunta (v1.3) is still vulnerable


Attack on Currency

Attack on Order ID

Attack on Merchant ID

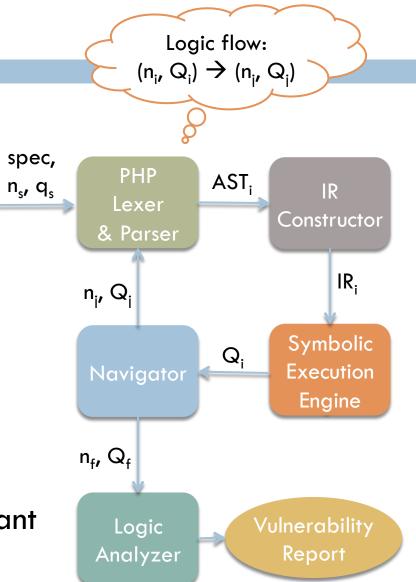
Key Challenge

- Logic vulnerabilities in e-commerce web applications are application-specific
 - Thorough code review of all possible logic flows is non-trivial
 - Various application-specific logic flows, cashier APIs and security checks make automated detection difficult
- Key challenge of automated detection

The lack of a general and precise notion of correct payment logic

Key Insight

□ A common invariant for automated detection


A checkout is secure when it guarantees the integrity and authenticity of critical payment status (order ID, order total, merchant ID and currency)

Our Approach

 A symbolic execution framework that explores critical control flows exhaustively

- Tracking taint annotations across checkout nodes
 - Payment status
 - Exposed signed token (signed with a cashier-merchant secret)

Taint Removal Rules

- Conditional checks of (in)equality
 - When an untrusted value is verified against a trusted one
 - Example of removing taint from order total md5(SECRET . \$_SESSION['order']→info['total']) == md5(SECRET . \$_GET['oTotal'])
- Writes to merchant databases
 - When an untrusted value is included in an INSERT/UPDATE query
 - Merchant employee can easily spot tampered values
- Secure communication channels (merchant-to-cashier cURL requests)
 - Remove taint from order ID, order total, merchant ID or currency when such components are present in request parameters

Taint Addition Rule

- Add an exposed signed token when used in a conditional check of a cashier-to-merchant request
 - Security by obscurity is insufficient

- Example
 - Hidden HTML form element: md5(\$secret . \$orderId . \$orderTotal)
 - \$_GET['hash'] == md5(\$secret . \$_GET['old'] . \$_GET['oTotal'])
 - This exposed signed token md5(\$secret . \$orderId . \$orderTotal) nullifies checks on order ID and order total

Vulnerability Detection Example

- □ R1. User → Merchant(checkoutConfirmation.php)
 - Symbolic HTML form contains two URLs: cashier URL and return URL(checkoutProcess.php).
- R2. User Cashier(https://dmp2.luottokunta.fi)
 - Modeling cashier as trusted black box
- \square R3. User \rightarrow Merchant(checkoutProcess.php), redirection
 - Representing all possible cashier responses with symbolic inputs
- □ R4. User → Merchant(checkoutSuccess.php), redirection
 - Analyzing logic states at this destination node (end of checkout) to detect logic vulnerabilities

Luottokunta (v1.3)

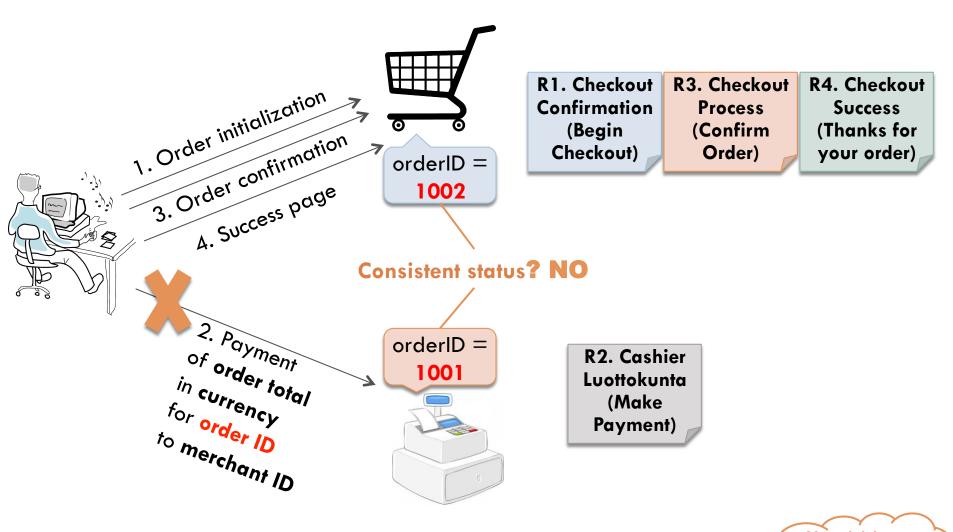
R1. Checkout Confirmation (Begin Checkout) R2. Cashier Luottokunta (Make Payment) R3. Checkout **Process** (Confirm Order) R4. Checkout Success (Thanks for

your order)

```
1. function before_process() {
    if (!isset($_GET['orderID'])) {
2.
3.
     tep redirect(FILE PAYMENT);
    } else {
      $orderID = $_GET['orderID'];
5.
6.
    $price = $_SESSION['order']-
   >info['total'];
    $tarkiste = SECRET_KEY . $price
8.
9.
                . $orderID .
   MERCHANT ID;
10. $mac = strtoupper(md5($tarkiste));
11. if (($_POST['LKMAC'] != $mac)
       && ($_GET['LKMAC'] != $mac)) {
12.
     tep_redirect(FILE_PAYMENT);
13.
14. } else {
                         R3. Checkout
15.
                           Process
16.}
                           (Confirm
```

Order)

17.}


```
Path condition for 'else branch' (line 15):

[ or
    ($_POST['LKMAC'] =
        strtoupper(md5(SECRET_KEY
        . $_SESSION['order']->info['total']
        . $_GET['orderID'] . MERCHANT_ID)));

($_GET['LKMAC'] = ...);

]
```

- Remove taint from order total
 (\$_SESSION['order']->info['total'])
 and merchant ID (MERCHANT_ID).
- Order ID and currency are still tainted: \$_GET['orderID'] is an untrusted user input.
- 'If' branch is a backward logic flow;
 'else' branch is a forward logic flow

R3 for order ID 1002: http://merchant.com/checkoutProcess.php? orderID=1001&LKMAC=SecretMD5For1001

Should be SecretMD5 For1002

Evaluation

- Subjects: 22 unique payment modules of osCommerce
 - More than 14,000 registered websites, 928 payment modules, 13 years of history (osCommerce v2.3)
 - 20 out of 46 default modules with distinct CFGs
 - 2 Luottokunta payment modules (v1.2 & v1.3)
- Metrics
 - Effectiveness: Detected 12 logic vulnerabilities (11 new) with no false positives
 - Performance

Logic Vulnerability Analysis Results

Payment Module	Safe	Payment Module	Safe
2Checkout	×	PayPal Pro - Direct Payments	✓
Authorize.net CC AIM	✓	PayPal (Payflow) - Direct Payments	✓
Authorize.net CC SIM	×	PayPal (Payflow) - Express Checkout	✓
ChronoPay	×	PayPal Standard	X
inpay	✓	PayPoint.net SECPay	Х
iPayment (Credit Card)	X	PSiGate	X
Luottokunta (v1.2)	×	RBS WorldPay Hosted	X
Luottokunta (v1.3)	×	Sage Pay Direct	✓
Moneybookers	1	Sage Pay Form	X
NOCHEX	×	Sage Pay Server	V
PayPal Express	V	Sofortüberweisung Direkt	/ *

Taint Annotations of 12 Vulnerable Payment Modules

Payment Module	Order Id	Order Total	Merchant Id	Currency	Signed Tokens
2Checkout	Х	X	Х	X	
Authorize.net SIM	X			X	
ChronoPay	X	X	X	X	X
iPayment (Credit card)	X				
Luottokunta (v1.2)	X	X	X	X	
Luottokunta (v1.3)	X			X	
NOCHEX	X	X	X	X	
PayPal Standard			X		
PayPoint.net SECPay	Х	X		X	
PSiGate	Х	Х	Х	X	
RBS WorldPay Hosted				X	Х
Sage Pay Form		Х		X	
Total	9	7	6	10	2

Performance Results of 12 Vulnerable Payment Modules

Payment Module	Files	Nodes	Edges	Stmts	States	Flows	Time(s)
2Checkout	105	5,194	6,176	8,385	40	4	16.04
Authorize.net SIM	105	5,221	6,221	8,435	46	4	16.89
ChronoPay	99	5,013	5,969	8,084	69	5	31.51
iPayment (Credit card)	99	4,999	5,932	7,918	38	5	21.86
Luottokunta (v1.2)	105	5,158	6,127	8,291	34	4	15.33
Luottokunta (v1.3)	105	5,164	6,135	8,308	35	4	15.33
NOCHEX	105	5,145	6,111	8,237	33	4	15.03
PayPal Standard	99	5,040	6,006	8,170	68	6	33.01
PayPoint.net SECPay	105	5,174	6,152	8,332	40	4	15.80
PSiGate	106	5,231	6,228	8,436	44	4	16.82
RBS WorldPay Hosted	99	5,019	5,977	8,121	79	5	36.12
Sage Pay Form	106	5,315	6,329	8,762	55	4	19.96
Average of 22	102.73	5,173	6,162	8,376	67.27	5.05	31.43

Conclusion

- First static detection of logic vulnerabilities in e-commerce applications
 - Based on an application-independent invariant
 - A scalable symbolic execution framework for PHP applications, incorporating taint tracking of payment status
- Three responsible proof-of-concept experiments on live websites

 Evaluated our tool on 22 unique payment modules and detected 12 logic vulnerabilities (11 are new)