
Detecting Logic Vulnerabilities in E-Commerce Applications

Fangqi Sun Liang Xu Zhendong Su

University of California, Davis
{fqsun, leoxu, su}@ucdavis.edu

Abstract—E-commerce has become a thriving business model.
With easy access to various tools and third-party cashiers, it is
straightforward to create and launch e-commerce web applica-
tions. However, it remains difficult to create secure ones. While
third-party cashiers help bridge the gap of trustiness between
merchants and customers, the involvement of cashiers as a new
party complicates logic flows of checkout processes. Even a small
loophole in a checkout process may lead to financial loss of
merchants, thus logic vulnerabilities pose serious threats to the
security of e-commerce applications. Performing manual code
reviews is challenging because of the diversity of logic flows
and the sophistication of checkout processes. Consequently, it
is important to develop automated detection techniques.

This paper proposes the first static detection of logic vulner-
abilities in e-commerce web applications. The main difficulty
of automated detection is the lack of a general and precise
notion of correct payment logic. Our key insight is that secure
checkout processes share a common invariant: A checkout process
is secure when it guarantees the integrity and authenticity of
critical payment status (order ID, order total, merchant ID
and currency). Our approach combines symbolic execution and
taint analysis to detect violations of the invariant by tracking
tainted payment status and analyzing critical logic flows among
merchants, cashiers and users. We have implemented a symbolic
execution framework for PHP. In our evaluation of 22 unique
payment modules, our tool detected 12 logic vulnerabilities, 11
of which are new. We have also performed successful proof-of-
concept experiments on live websites to confirm our findings.

I. INTRODUCTION

E-commerce web applications, a special type of web
applications designed for online shopping, play an important
role in the modern world. The U.S. Census Bureau of the
Department of Commerce estimated that U.S. retail e-commerce
sales for the second quarter of 2013 reached $64.8 billion, an
18.4% increase from the previous year [28]. The prevalence of
Internet and the rise of smart mobile devices contribute to the
rapid growth of e-commerce web applications. Unfortunately,
the complexity of e-commerce applications and the diversity of
third-party cashier APIs make it difficult to implement perfectly
secure checkout processes. Since logic attacks are tied directly

1. Order Initialization

3. Order confirmation

2. Payment of order total in currency

for order ID to merchant ID

Figure 1: Logic Flows in E-Commerce Web Applications.

to financial loss and merchant embarrassment, the impact of
logic vulnerabilities in e-commerce applications is often severe.

Business or application logic refers to application-specific
functionality and behavior. Besides general functionality (such
as user authentication), each application has its unique handling
of user inputs, user actions and communications with third-
party components. Although logic vulnerability is not the
most common type of web vulnerabilities, it often has serious
impact and is easily exploitable. A logic vulnerability typically
exists when an attacker abuses legitimate application-specific
functionality against developers’ intentions [10]. A report by
WhiteHat Security lists seven examples of logic flaws [16].
When building an application, developers often have a clear
picture of what the ideal application should be in their
minds. Unfortunately, in practice, the implemented application
often does more than what is intended. Put it another way,
unexpected user inputs and logic flows can allow attackers to
abuse insufficiently guarded application-specific functionality
in dangerous ways. The uniqueness and complexity of logic
flows complicate the establishment of a general line of defense
against application-specific attacks.

Logic vulnerabilities in e-commerce applications, being
a subset of general logic vulnerabilities, allow attackers to
purchase products or services with incorrect or no payment at
the expenses of merchants. Developers often make assumptions
about what user inputs are and how users navigate web
pages during checkout. However, when such assumptions do
not hold and developers fail to implement proper security
checks, attackers can exploit logic vulnerabilities in e-commerce
applications for financial gains. CVE-2009-2039 [9] describes
our motivating example where Luottokunta (version 1.2), a
payment module in the osCommerce software [1], has a logic
vulnerability that allowed attackers to tamper with order ID,
order total and merchant ID. The latest version of Luottokunta
(version 1.3) was released to patch this vulnerability by adding
logic checks on some components of payment status. However,
upon close examination, we were surprised to discover that it

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

Figure 2: Received Products from Vulnerable Websites.

is still vulnerable. The added check on order ID is insufficient,
thus attackers can pay for one order and bypass payments for
future orders. This is one of the new vulnerabilities that we
detected.

The use of third-party cashiers in e-commerce applications
introduces new security concerns even if the cashiers themselves
are secure. For flexibility, a modern web application often
presents several payment options during checkout by using
one payment module for each third-party cashier. However, the
integration of cashiers also increases the complexity of logic
flows in checkout processes. Figure 1 illustrates three critical
steps in a typical checkout process that involves a merchant,
a cashier and a user: 1) order initiation on the merchant’s
server, 2) payment transaction on the cashier’s server, and 3)
order confirmation on the merchant’s server. In the first step,
the merchant initiates the basic payment information of an
order. From then on, both the merchant and the cashier track
the payment status of the order. Ideally, the merchant should
either explicitly check every component of important payment
status or directly communicate with the cashier. In practice,
miscommunications between the merchant and the cashier may
harm the integrity or authenticity of payment status. Insufficient
or missing logic checks on payment status can allow an attacker
to skip the second step or carry it out incorrectly. In a successful
attack, the merchant is led to believe mistakenly that the order
has been paid in full, while the cashier actually receives no
payment or partial payment.

With the goal of confirming the real dangers that logic
vulnerabilities in e-commerce applications pose, we designed
responsible proof-of-concept experiments following the exam-
ple set by Wang et al. [30]. Each experiment was performed
on a live website that used a vulnerable payment module.
Specifically, we received three products (Figure 2) from three
websites which integrate vulnerable payment modules. First,
for payment module RBS WorldPay, we received a Ubuntu
notebook from the Ubuntu online shop by Canonical Ltd. We
paid less by changing the currency from British pounds to
U.S. dollars. Second, for payment module Authorize.net Credit
Card SIM, we received a diaper game package from a baby
products online shop. We paid nothing by replaying tokens
from a previous order. Third, for payment module PayPal
Standard, we received three chocolate pieces from a California
chocolate online shop. We paid nothing to the merchant by
changing the merchant ID from the chocolate shop owner’s ID
to our ID. After having received the products, we immediately
compensated the three merchants for the respective correct full

amounts. These experiments clearly demonstrate that insecure
uses of third-party cashiers, such as the heavily vetted cashier
PayPal, may give merchants a false sense of protection.

The detection of logic vulnerabilities in e-commerce appli-
cations is challenging for both manual and automated analyses
since any weak link in a checkout chain can result in a
logic vulnerability. On one hand, manual code review is time-
consuming and error-prone. Security analysts often spend much
time understanding different logic flows in an e-commerce
application before examining security checks of payment status.
In contrast, payment module developers are familiar with
logic flows but not various attack vectors. In either case, a
thorough manual code review of all possible logic flows in
a checkout process is a nontrivial task. On the other hand,
automatic code scanners cannot detect logic vulnerabilities
without the knowledge of application-specific business context.
E-commerce applications have various application-specific logic
flows and each payment method has its unique APIs and security
checks. Consequently, it is challenging to create general rules
to automate the detection process.

Researchers have proposed various techniques to detect
different logic vulnerabilities, including abnormal logic behav-
ior [15], multi-module vulnerabilities [3] and single sign-on
vulnerabilities [31, 33]. Each technique targets a particular
domain of logic vulnerabilities and checks web applications
against specifications in the given domain. Wang et al. [30, 33]
are the first to perform security analysis on Cashier-as-a-
Service based e-commerce applications. They found several
serious logic vulnerabilities in a few popular e-commerce
applications via manual code reviews [30] and proposed a proxy-
based approach to dynamically secure third-party web service
integrations which include the integration of cashiers [33].

In this paper, we propose the first static detection of logic
vulnerabilities in e-commerce applications. Our key observation
is that an invariant must be verified to secure a payment: A
merchant M should accept an order O from a user if and
only if the user has actually made a payment to the cashier
in the correct amount and currency for that specific order O
associated with merchant M . Based on this observation, we
designed a symbolic execution framework that explores critical
control flows exhaustively, tracking taint annotations for the
critical components of payment status (order ID, order total,
merchant ID and currency) and exposed signed tokens. Our
main contributions are:

• We provide an application-independent invariant for
detecting logic vulnerabilities in e-commerce web ap-
plications and discover a new attack vector: tampering
with currency.

• We propose the first static analysis to detect logic
vulnerabilities in e-commerce applications based on
symbolic execution and taint tracking of payment
status.

• We implement a scalable symbolic execution frame-
work for PHP web applications. Our analyzer system-
atically explores control flows to examine logic flows
in checkout processes.

• We evaluate our tool on 22 unique real-world payment

2

modules from various cashiers and detect logic vul-
nerabilities in 12 out of the 22 payment modules. We
also perform responsible proof-of-concept experiments
on live websites. Of the 12 detected vulnerabilities, 11
are new. The evaluation results demonstrate that our
approach is effective and scalable.

The rest of the paper is organized as follows. We first give an
example to illustrate the main steps of our approach (Section II).
Section III describes our detailed algorithm and approach.
Section IV presents the implementation of the automated
analyzer we developed, and Section V shows the vulnerability
report, the details of our experiments on live websites and the
performance of our tool on real-world e-commerce payment
modules. Finally, we survey related work (Section VI) and
conclude (Section VII).

II. ILLUSTRATIVE EXAMPLE

This section uses payment module Luottokunta (version 1.3)
to illustrate the major steps of our approach. This module, which
patched the vulnerability described in CVE-2009-2039 [9], is
still vulnerable because of an insufficient check on untrusted
order ID. During checkout, a user sends out the following four
critical HTTP requests, the last two of which are redirections
from HTTP responses with a status code of 302:

R1. User > Merchant(checkout_confirmation.php)
R2. User > Cashier(https://dmp2.luottokunta.fi)
R3. User > Merchant(checkout_process.php), 302
R4. User > Merchant(checkout_success.php), 302

With this payment module, a merchant can integrate
the service of third-party cashier Luottokunta. Of the four
requests, the second one is sent to the cashier and the rest
are sent to the merchant. The first request (R1) initializes
the checkout process for an order when the user navigates to
page checkout_confirmation.php. The second request
(R2) lets the user pass on the order information generated by
the merchant to the cashier. After the user has completed
the payment transaction on the cashier’s server, the cashier
sends the user a response that redirects the user to page
checkout_process.php (R3) on the merchant’s server
to process the order. If the order is accepted, the merchant
redirects the user to page checkout_success.php (R4).

Our symbolic execution starts from the first merchant page
checkout_confirmation.php in the checkout process.
To model the first request (R1), it symbolically executes
the intermediate representation (IR) of this page and si-
multaneously parses its symbolic HTML output in search
of critical HTML form elements. The analysis eventually
finds an HTTP form that serves as a communication channel
between the merchant and the cashier. Its elements record the
order information and its action URL points to the cashier’s
URL (https://dmp2.luottokunta.fi). This form also
contains a return URL (checkout_process.php), which
will be used by the cashier to redirect the user back to
the merchant’s server once a payment transaction has been
completed.

Since our analysis treats cashiers as black boxes that
work correctly, we assume that the cashier would properly

complete the payment transaction with the user (R2) and
redirect the user back to the merchant (R3). To continue
exploring logic flows, our analyzer symbolically executes page
checkout_process.php which is a part of the return
URL. A thorough examination requires the modeling of all
possible responses from the cashier. Therefore, we use the
symbolic top value (>), i.e., the most conservative value
that denotes any possible value, for the request variables of
R3. Our analyzer first propagates the end execution states
from the previous page checkout_confirmation.php
to the current page checkout_process.php, and then
symbolically executes the IR of the current page. The execution
eventually reaches function before_process() which has
the following checks on payment status:

function before_process() {
if (!isset($_GET[’orderID’])) {
tep_redirect(FILE_PAYMENT);

} else {
$orderID = $_GET[’orderID’];

}

$price = $_SESSION[’order’]->info[’total’];
$tarkiste = SECRET_KEY
. $price . $orderID . MERCHANT_ID;

$mac = strtoupper(md5($tarkiste));

if (($_POST[’LKMAC’] != $mac)
&& ($_GET[’LKMAC’] != $mac)) {

tep_redirect(FILE_PAYMENT);
}

}

Because request variable $_GET[’orderId’] has a
symbolic top value, both branches of the first if statement
are feasible. For the true branch, the user is redirected to
merchant page FILE_PAYMENT. This redirection forms a
backward flow, which does not contribute to the detection
of logic vulnerabilities. Therefore, this backward logic flow
is automatically discarded. For the false branch, an MD5
value is calculated and stored in variable $mac. Note that
the value of $orderID used in the calculation comes from
an untrusted request variable $_GET[’orderId’] which is
under attackers’ control.

Our taint analysis tracks the components of critical payment
status across logic flows in the checkout process. Initially, order
ID, order total, merchant ID, currency and secret are all tainted.
Secret refers to an unpredictable value that only the merchant
and the cashier know. Therefore, the cashier can use it to
sign messages. For taint manipulation, we have a set of rules.
One rule removes a taint annotation when a conditional check
verifies an untrusted value against a trusted component. For the
last conditional in function before_process(), we have
the following symbolic constraints for the false branch:

[or
($_POST[’LKMAC’] = strtoupper(md5(SECRET_KEY
. $_SESSION[’order’]->info[’total’]
. $_GET[’orderID’] . MERCHANT_ID)));

($_GET[’LKMAC’] = strtoupper(md5(SECRET_KEY
. $_SESSION[’order’]->info[’total’]
. $_GET[’orderID’] . MERCHANT_ID)));

]

Among the symbolic values in the above constraints,
$_SESSION[’order’]->info[’total’] is a trusted

3

session value, while MERCHANT_ID and SECRET_KEY are
trusted constants defined in the merchant’s database. This
conditional check guarantees that the cashier has received
a payment in full on behalf of the merchant. Therefore,
our analyzer removes the taint annotations of order total,
merchant ID and secret. In contrast, $_GET[’orderId’]
is an untrusted request variable, and there is no check for
currency.

After exploring before_process(), the symbolic ex-
ecution eventually redirects the user to the final page
checkout_success.php (R4). When the symbolic exe-
cution reaches this page, it means that the checkout process is
complete and our analysis generates a final vulnerability report.
In the report of this payment module, order ID and currency
are still tainted, indicating that this module is vulnerable to
two types of logic attacks. The first type of attacks allows an
attacker to pay for one order and avoid payments of future
orders by replaying the value of $_POST[’LKMAC’] or
$_GET[’LKMAC’] of the paid order. Note that the attacker
can easily intercept the value of $_POST[’LKMAC’] or
$_GET[’LKMAC’] of any paid order by changing the return
URL to her own choice in R2. The second type of attacks allows
an attacker to pay less by paying the cashier the correct amount
indicated by $_SESSION[’order’]->info[’total’],
but in a different currency. For example, the merchant might
list product prices in European euros, but an attacker can pay
in U.S. dollars instead. 1

To illustrate the first type of logic attacks on order ID,
suppose a user places two orders with IDs of 1001 and 1002
on a merchant’s server. For either order, the designated cashier
is assumed to generate a secret MD5 value and visit a URL
of page checkout_process.php with the secret value
only when a full payment has been made to the cashier. The
secret values of orders 1001 and 1002 should be different and
unpredictable. The URLs for the two orders are shown in the
following.

URL1: http://merchant.com/checkout_process.php?
orderID=1001&LKMAC=SecretMD5For1001

URL2: http://merchant.com/checkout_process.php?
orderID=1002&LKMAC=SecretMD5For1002

The key problem for the detected logic vulnerability is
that this e-commerce application does not check the request
parameter values of orderID and LKMAC against trusted order
ID and MD5 value. Suppose an attacker has paid for order
1001 and intercepted the secret value SecretMD5For1001
by changing the server in the return URL (URL1) from
merchant.com to attacker.com. For order 1002, rather
than making a payment and being redirected to URL2, the
attacker can skip payment and jump directly to a forged
merchant URL (URL1 shown above). The attacker can use
the GET and POST request parameter values of order 1001
for order 1002 to avoid payment. This substitution leads the
merchant to mistakenly believe that order 1002 has been paid,
while the cashier actually has received nothing on behalf of
the merchant for this order. Similarly, this vulnerability allows

1This attack can be launched when the cashier accepts multiple currencies
for payments.

the attacker to bypass payment for future orders as long as the
order total matches the total of order 1001.

III. APPROACH

This section presents our high-level approach. We first
define logic vulnerability in e-commerce applications, lay out
our assumption, and then describe the core algorithm of our
approach.

A. Definitions

Definition 1 (Merchant). A merchant accepts an order when
it has been properly paid via a third-party cashier by a
user. Merchant is the central role in e-commerce applications,
coordinating communications between users and cashiers
during checkout processes. Merchants are responsible for
initializing orders, tracking payment status, recording order
details, finalizing orders and shipping products (or providing
services) to users.

Definition 2 (Cashier). A third-party cashier accepts the
payment of an order from a user on behalf of a merchant.
Cashiers bridge the gap between merchants and users when
they lack mutual trust. Users trust cashiers with their private
information, and merchants expect cashiers to correctly charge
users.

Definition 3 (User). A user initiates a checkout process on
a merchant’s website, chooses a third-party cashier, makes a
payment to the cashier and receives products (or services) from
the merchant. User inputs and actions drive the logic flows
of checkout processes. Some users are malicious, therefore
merchants need to defend against untrusted user inputs and
actions.

Definition 4 (Logic Flows in E-commerce Applications).
Logic flows in e-commerce applications are communications
between three possible parties: merchant nodes, cashier nodes
and user. Any logic flow during checkout may influence
payment status. Note that one merchant web page may be
divided into multiple merchant nodes based on the runtime
values of its HTTP request variables. For instance, one page may
perform an “insert”, “update” or ”delete” operation depending
on the value of $_GET[’action’]. Our analysis starts at
the beginning merchant node n0 of a checkout process and ends
at the destination merchant node nk where orders are accepted,
tracking taint annotations of payment status and signed tokens
across logic flows. Suppose for any valid node ni in the
checkout process, we start the analysis of ni with execution
state set Qi. At the end of the analysis of ni, we would have
execution state set Qj and a node to be visited next, namely
nj . Formally, logic flows in an e-commerce application can be
represented as Π = {(ni, Qi)→ (nj , Qj) | 0 ≤ i, j ≤ k}.
Definition 5 (Logic State). A logic state consists of taint
annotations and links to other valid nodes of a checkout process.
The propagation of logic states reflects changes of payment
status. Specifically, for any order that a user places on a
merchant’s website with the integration of a third-party cashier,
a logic state stores taint annotations for the following payment
status components and exposed signed tokens:

4

• Order ID. The identifier of the order which should be
paid for before it is accepted.

• Order total. The total amount that the cashier should
receive from the user on behalf of the merchant.

• Merchant ID. The identifier used by the cashier for
the merchant who is selling products or services. The
cashier will ultimately transfer the received money
from the user to the merchant.

• Currency. The currency (system of money) in which
the order payment should be made.

• Exposed signed token. An encrypted value that is
signed with a secret between the merchant and the
cashier. It can act as a cashier’s signature and is
considered exposed when it is visible to users in the
Document Object Model (DOM) tree of a merchant
page.

Definition 6 (Logic Vulnerabilities in E-commerce Appli-
cations). A logic vulnerability in an e-commerce application
exists when for any accepted order ID, the merchant cannot
verify that the user has correctly paid the cashier the amount
of order total in the expected currency to merchant ID. Our
definition is inspired by and developed from an extensive study
of cashier documentation, open-source e-commerce applications
and related work [30, 33]. A payment is secure when both
the integrity and authenticity of payment status are ensured.
Tampering with currency is a new attack vector we discovered
in our study.

Assumption Third-party cashiers are secure. We treat third-
party cashiers as black boxes and assume that they are perfectly
secure. Most third-party cashiers’ source code is unavailable,
but many cashiers have been vetted heavily. The security
of a third-party cashier is orthogonal to the security of its
integration in an e-commerce web application. Developers of
payment modules are often less security-conscious than those
of cashiers, thus payment modules are generally more prone
to logic vulnerabilities.

Based on logic vulnerabilities in e-commerce web applica-
tions, it is easy to launch attacks on live websites. Simply using
browser extensions, attackers can withhold HTTP requests,
modify requests or completely forge requests. Moreover,
attackers can exploit a signed token to pose as a cashier, reuse
payment information from previous orders or intercept cashiers’
responses by changing return URLs in HTTP forms.

In summary, logic vulnerabilities in e-commerce applica-
tions are caused by the following five types of taint annotations:

• Tainted order ID. To bypass order payments, attackers
can replay the payment information of a previous order
from the same merchant. As long as the order total
and currency of unpaid orders match the ones of the
previously paid order, the unpaid orders would be
accepted because order ID is not verified.

• Tainted order total. Attackers can pay an arbitrary
amount for an order by tampering with the order total
sent to a third-party cashier if order total is not verified.
A partial payment to the cashier is still necessary.

• Tainted merchant ID. When merchant ID is tainted,
an attacker can set up her own merchant account
on the designated cashier’s server where the original
merchant ID was set up. This allows the attacker to
send payments to herself instead of the merchant for
orders placed on the merchant’s website. Note that
a check on the secret between the merchant and the
cashier can replace the check on merchant ID because
the secret is a unique, verifiable value set by the
merchant.

• Tainted currency. For cashiers that accept multiple
currencies, it is possible to pay less for orders via the
use of a different currency without changing the order
total amounts.

• Exposed signed token. An exposed signed token
invalidates any security checks against trusted symbolic
values. This is because such a signed request may be
forged by an attacker rather than coming from a trusted
cashier.

B. Automated Analysis

Section III-B1 presents our detection algorithm which
explores critical logic flows in e-commerce applications among
three parties (merchant, cashier and user). Section III-B2
describes taint manipulation rules which reflect changes to
payment status.

1) Logic Vulnerability Detection Algorithm: Figure 3
presents our vulnerability detection algorithm which forms
the core of our approach. It integrates symbolic execution of
merchant nodes and taint analysis, and connects individual
nodes to explore valid logic flows in e-commerce applications.
We have four possible pairs of HTTP requests from the client
side to the server side: (user, merchant), (user, cashier), (cashier,
merchant) and (merchant, cashier). Attackers may skip user-to-
cashier requests, but they need to send the same number of user-
to-merchant requests to carry out all necessary steps of during
checkout. Consequently, our algorithm analyzes merchant nodes
that belong to a checkout navigation path in order.

There are three functions in Figure 3 and the first function
DETECTVULS is the main function of our analysis algorithm.
The second function ANALYZENODE analyzes each merchant
node individually, and the third function GETNEXTNODE
connects nodes together for valid logic flows. The analysis
begins from start node ns with a start execution state qs. Both
ns and qs are extracted from specifications Spec. An execution
state q contains a logic state, memory maps for global and local
variables, alias information, etc. Our algorithm analyzes logic
flow (user, MERCHANT(ns)) first, and continues until all valid
logic flows are explored. In the end, for each execution state qf
in the final execution state set Qf , function CHECKLOGICVULS
checks the logic state in qf and reports any detected logic
vulnerabilities V uls.

Function ANALYZENODE recursively analyzes merchant
nodes of valid logic flows until the final node nf is reached. The
final execution state set Qf is only updated when a new final
execution state qf has a uniquely new logic state. The reason
behind this update strategy is that other data in an execution

5

DETECTVULS(Spec)
1 ns ← GETSTARTNODE(Spec)
2 qs ← INITSTATE(Spec)
3 qs ← ADDCOMM(user , MERCHANT(ns), qs)
4 Qf ← ANALYZENODE(ns , qs , ∅,Spec)
5 Vuls ← CHECKLOGICVULS(Qf)
6 return Vuls

ANALYZENODE(n, q ,Qf ,Spec)
1 nf ← GETFINALNODE(Spec)
2 if n = nf
3 then Qf ← Qf ∪ {qf}
4 return Qf

5 q ← PROPAGATENODESTATE(n, q)
6 Q ← SYMBOLICEXECUTION(n, q ,Spec)
7 for each qi in Q
8 do 〈n ′, qi〉 ← GETNEXTNODE(qi ,Spec)
9 Qf ← ANALYZENODE(n ′, qi ,Qf ,Spec)

10 return Qf

GETNEXTNODE(q ,Spec)
1 n ← RESETREDIRECTION(q)
2 if n = null
3 then n ← RESETFORMACTION(q)
4 if ISCASHIER(n,Spec)
5 then q ← ADDCOMM(user , CASHIER(n), q)
6 n ← RESETCALLBACKURL(q)
7 if n = null
8 then n ← RESETRETURNURL(q)
9 q ← ADDCOMM(user , MERCHANT(n), q)

10 return 〈n, q〉

Figure 3: Algorithm for Vulnerability Detection.

state have no impact on the final vulnerability results. Function
PROPAGATENODESTATE propagates an execution state q from a
previous node (np) to the current merchant node (n), performing
a few operations on q. Specifically, this function updates runtime
constants such as $_SERVER[’PHP_SELF’], updates array
$_GET based on the query string of node n, updates array
$_POST based on the form elements of node np and resets the
memory map of local variables. By default, request variables
have the symbolic top value, which represents all possible
values including null. Next, merchant node n is symbolically
executed via function SYMBOLICEXECUTION, and Q is the end
execution state set for n. During symbolic execution, HTML
form action URLs, form elements and parameter values of
merchant-to-cashier cURL 2 requests are monitored in search
of links to other merchant nodes or cashier nodes.

To connect nodes of valid logic flows, function GETNEXTN-
ODE examines and resets four types of links: redirection URL,
form action URL, callback URL and return URL. A redirection
URL or form action URL can point to either a cashier node
or a merchant node, while a callback URL or return URL
can only point to a merchant node. To navigate only along
valid logic flows, we discard URLs that form backward or

2http://curl.haxx.se/

self-cycle logic flows, and URLs that are irrelevant to checkout.
Each reset function within function GETNEXTNODE stores
in n the extracted value of a particular type of URL, and
resets the URL to null. The values of header redirection
URL (obtained via function RESETREDIRECTION) and form
action URL (obtained via function RESETFORMACTION) are
examined first. When URL n points to a cashier node, a logic
flow (user, CASHIER(n)) is added. To model cashiers’ responses,
this function examines the values of callback URL (obtained
via function RESETCALLBACKURL) and return URL (obtained
via function RESETRETURNURL). Note that callback URL and
return URL can only be set after a cashier has been visited.
Callback URL is optional and can be visited first by a cashier
to notify its merchant the completion of a payment transaction.
Return URL is required and a user must relay a cashier’s
response to this URL to confirm a paid order on a merchant’s
server. The return value of function GETNEXTNODE is a pair
of merchant node n that should be visited next and the updated
state q.

2) Taint Rules: To keep track of the integrity and authen-
ticity of payment status, we designed a few taint manipulation
rules. The integrity of payment status can thwart HTTP
parameter tampering attacks, and the authenticity of payment
status defends against forged payment status which is coined
with predictable or exposed values of request variables. To be
more specific, untainted order ID, order total, merchant ID
and currency ensure the integrity, while no exposure of signed
tokens ensures the authenticity. The underlying assumptions
of the taint rules are: 1) requests from users are untrusted;
2) unsigned cashier requests sent via insecure channels are
untrusted; and 3) cashier responses that are relayed by users
to merchants via HTTP redirection (status code 302) are also
untrusted. Initially, order ID, order total, merchant ID and
currency are all tainted.

When a merchant correctly verifies a payment status
component, the taint annotation of the checked component
should be removed. Our approach uses taint removal rules for
the following three cases:

• Conditional checks. When an (in)equality conditional
check verifies an untrusted value against a trusted
symbolic value of a payment status component, remove
taint from the checked payment status component.

• Writes to merchant database. When a tainted value
is written into a merchant’s database with INSERT
or UPDATE queries, conservatively remove taint from
the component. Before a merchant employee ships
a product or provides a service for an order, she
needs to review order details retrieved from database
tables. If a modified component is written to database,
the merchant employee can easily spot the modified
component and thus reject the order with the modified
component.

• Secure communication channels. For synchronous
merchant-to-cashier cURL requests, remove taint for
order total, merchant ID or currency when such com-
ponent are included in cURL request parameters, and
remove taint for order ID unconditionally. Synchronous
requests are sent via secure communication channels,

6

and thus can guarantee the authenticity of payment
status changes that pass through such channels.

Our approach has one taint addition rule: When a
conditional check for a cashier-to-merchant request relies on
an exposed signed token, add taint to the exposed signed
token. We keep track of all signed token values that are
disclosed in DOM trees to users (typically in hidden HTTP
form elements). Although hidden HTTP form elements are
invisible in the presentation layer of HTML pages, attackers
can obtain their values by simply viewing the source code
of web pages. Note that not all exposed signed tokens are
tainted. The taint addition rule only applies when an exposed
signed token is used as an unpredictable value in a conditional
check for a cashier-to-merchant request. Once a signed token
is exposed, it is no longer unpredictable and therefore should
not be used in a conditional check. For example, suppose we
have a signed token in a hidden HTML form with symbolic
value md5($secret.$orderId.$orderTotal). If our
analysis encounters equality check $_GET[’hash’] ==
md5($secret.$_GET[’oId’].$_GET[’oTotal’]),
it adds taint to the exposed signed token. This is because
although $secret is unpredictable, the values of the three
request variables are predictable. To pass the check, an attacker
can use the exposed signed token for $_GET[’hash’],
the order ID and order total associated with the exposed
signed token for $_GET[’oId’] and $_GET[’oTotal’]
respectively.

IV. IMPLEMENTATION

We developed a symbolic execution framework that in-
tegrates taint analysis for PHP, one of the most prevalent
languages for building web applications. We extended the
PHP lexer and parser of a static string analyzer [23, 27, 32]
written in OCaml. Our tool handles object-oriented features of
PHP, including classes, objects and method calls. We wrote
transfer functions for built-in PHP library functions, which
include string functions, database functions, I/O functions, etc.
Our tool consults Satisfiability Modulo Theories (SMT) solver
Z3 [13] for branch feasibility, supporting arithmetic constraints,
simple string constraints and some other types of constraints.
Our implementation contains a total of 25, 113 lines of OCaml
code. Although our implementation targets the PHP language,
the high-level approach is general and applicable to e-commerce
software written in other languages.

Figure 4 shows the architecture of our framework. Given
the source code of an e-commerce web application and a
specification for it, our analysis starts with a single execution
state qs at merchant node ns, the first node in the checkout
process. For each merchant node ni, our PHP lexer and parser
transform the corresponding merchant page into an Abstract
Syntax Tree ASTi, which is then transformed into an Internal
Representation IRi by our IR constructor. After the symbolic
execution engine explores all possible control flow paths of IRi,
we have a set of end execution states Qi. Next, the navigator
searches for valid logic flows, and continues symbolic execution
for new merchant nodes until the final merchant node nf is
reached. Finally, the logic analyzer checks all the unique logic
states of final execution state set Qf , and then reports any
detected logic vulnerabilities.

PHP

Lexer

and

Parser

IR

Constructor

Symbolic

Execution

Engine

Navigator

Logic

Analzyer

Vulnerability

Report

app

code

spec

IRi

ns, qs

nj, Qj

nf, Qf

ASTi

Qi

Figure 4: Symbolic Execution Framework.

To guide our automated analysis, we need developers
to specify application-specific variable names of payment
status components, critical merchant pages in the checkout
process, cashier URLs, callback URL, return URL, configurable
constants defined in the database and runtime values of a
few variables that are used for the resolution of dynamic file
inclusion and class construction. For instance, a payment class
can be dynamically constructed based on a user’s choice of
payment methods. If the user chooses PayPal Standard as
the payment method, we can specify the value of runtime
variable $_SESSION[’payment’] to be “paypal standard”
to precisely resolve the target of class $payment.

A. Symbolic Execution

For each merchant page in the checkout process of an e-
commerce application, our PHP lexer and parser transform its
source code into an IR. We followed the PHP language reference
and carefully wrote parsing rules to resolve reduce/reduce
conflicts, assigned operator precedence to resolve shift/reduce
conflicts and used associativity to resolve other types of
conflicts. We observed that a PHP page can either statically or
dynamically include other pages via PHP include or iframe,
and the pages that are included can in turn include other pages.
To fully expand a PHP page, our analyzer infers static targets
of included pages when possible, and resorts to specification
when targets can only be decided at run time. For example,
static include require(DIRS_CLASSES.‘cart.php’)
depends on the value of constant DIRS_CLASSES, while
dynamic include require($language.‘.php’) depends
on the runtime variable $language.

For heap modeling, our tool uses five variable maps:
a variable-to-symbolic-value memory map, an instance-to-
class-name map, an alias-to-variable map, an array-parent-to-
array-elements map and an object-parent-to-object-properties

7

map. First, the variable-to-symbolic-value map allows us to
model a heap symbolically. A symbolic value is a recursive
data structure composed of the following types: literal, basic
symbolic PHP variable, library function call, concatenation
of two symbolic values, arithmetic expression, comparison
expression and symbolic PHP resource. For instance, symbolic
value md5("hello".$_GET[’orderID’]) represents a
call to library function md5 with a symbolic argument of a
concatenation of two symbolic values: a string literal “hello”
and a basic symbolic variable $orderID of type integer.
Second, given a class instance and a method name, the
instance-to-class-name map enables us to quickly retrieve
the corresponding class method definition. Third, the alias-
to-variable map allows us to correctly update a symbolic heap.
Aliases are created when: a method is called from within
an object context ($this becomes available); a variable is
assigned by reference; and a function/method has pass-by-
reference arguments or returns a reference. Last, the two maps
for array and object variables enable us to track the children of
arrays and objects respectively. Our tool uses one memory map
for global variables and one memory map for local variables.

To model arrays and objects in PHP, we adopt the McCarthy
rule for list manipulations [13]. Given an array a, an array
element e and array index i, let a[i] represent an array select
and a{i ← e} represent an array store with the element at
index i set to e. By the McCarthy rule, we have the following:

(∀ array a)(∀ element e)(∀ index i, j)

i = j −→ a{i← e}[j] = e

∧ i 6= j −→ a{i← e}[j] = a[j]

Our implementation precisely retrieves and updates array
elements (or object properties) whenever possible. Otherwise,
when an index of an array variable (or the field of an object
property) is >, all possible values of the array elements (or
object properties) are merged. For example, suppose we have a
simple array $arr=array(1=>"x",2=>"y"). If the value
of array index $i is >, the value of $arr[$i] is either “x” or
“y”. We also use the McCarthy rule to symbolically represent
arrays and objects. As an example, the symbolic representation
of $arr is:

array update(array update(array(), 1, “x”), 2, “y”)

B. Path Exploration

Given a start execution state, our goal is to explore all
possible intra-procedural and inter-procedural edges in the
control-flow graph (CFG) of a merchant node. We use a work-
list-based algorithm and explore CFG edges with a depth-first
strategy. On one hand, to explore all possible control flows
within a function/method body, a work list stores execution
states for feasible branches that have not been explored yet.
Each execution state includes a program counter (consists of a
basic block number and a statement number within the basic
block), a logic state, path condition, memory maps of global
and local variables, etc. We set a configurable quota for the
maximum number of similar execution states in a work list
to avoid state explosion. When the quota for a work list is
exhausted, we only add an execution state to the work list if it
has either a new program counter or a new logic state. On the

other hand, to explore all possible inter-procedural edges, our
approach adopts a global call stack which stores snapshots of
previous function environment before function calls. A function
environment snapshot includes a parameter-argument map for
the inter-procedural function call which is going to be explored,
the work list and end execution states of the current function,
etc.

Our tool consults the SMT solver Z3 for constraint solving.
When a conditional is encountered during symbolic execution,
our analyzer transforms the conditional into a formula of the
smtlib2 format, conjuncts the new formula with the current
path condition, and feeds the merged path condition to Z3 to
get an answer. When both branches are feasible, we select one
branch to explore first, and add the other branch to the current
work list. We support the following types in our constraints:
boolean, integer, real, string, array, object, resource, null and
>. We try to infer the satisfiability of simple string constraints,
which can contain literals, string variables, and operators
such as =, 6=, <,≤, > and ≥. To symbolically represent PHP
library function calls, we use define-fun in Z3 for function
declarations.

$error = false;
if ($_POST[’x_response_code’] == ’1’) {
if (tep_not_null(AUTHORIZENET_MD5_HASH) &&

($_POST[’x_MD5_Hash’] != strtoupper(
md5(AUTHORIZENET_MD5_HASH .
AUTHORIZENET_LOGIN_ID .
$_POST[’x_trans_id’] .
$this->format_raw($order->info[’total’])

)))) {
$error = ’verification’;

} elseif ($_POST[’x_amount’] !=
$this->format_raw($order->info[’total’])) {

$error = ’verification’;
}

} elseif ($_POST[’x_response_code’] == ’2’) {
$error = ’declined’;

} else {
$error = ’general’;

}

if ($error != false) {
tep_redirect(tep_href_link(

FILENAME_CHECKOUT_PAYMENT,
’payment_error=’ . $this->code .
’&error=’ . $error, ’SSL’, true, false));

}

Figure 5: Example for Path Exploration.

Consider the example in Figure 5 for path exploration.
Since the default values of request variables are >,
all possible control-flow edges are explored. Only one
exploration path in the example leads to a valid logic
flow, while the other paths redirect users to a payment
node with an error message in $error. For the second
if conditional on the valid path, there is a method call
$this->format_raw($order->info[’total’]).
To follow this inter-procedural edge, our analyzer first looks
up the class name of object $this and then the definition
of method format_raw in the corresponding class. Next,
the analyzer updates aliases for pass-by-reference parameters
which include $this, initializes parameter values based on
the arguments of the method call, passes on the memory
map of global variables and pushes a snapshot of the current

8

function environment into the global call stack. At the end of
the symbolic execution for format_raw, we have a set of
execution states Q. After the method call returns, our analyzer
pops the function environment from the global call stack
and maps Q to Q′ to update method arguments that have
pass-by-reference parameters. To continue path exploration
after the call, Q′ is added to the current work list. When all
possible paths are explored, merchant ID and order total are
untainted in the execution state of the valid flow which keeps
the value of $error unchanged.

C. Logic Flows

The focus of our analysis is critical logic flows of a
successful checkout process. We discard backward flows, error
flows or aborted flows since they are irrelevant to our security
analysis. First, a backward flow happens when an error has
occurred in a merchant node n, and the user is redirected to a
previous merchant node or the same merchant node n. Second,
an error flow refers to a redirection to a special error page or a
visited page with an error message in a request variable. In the
first case, the special error page does not belong to the critical
checkout process and the flow to this page is discarded. In the
second case, flows to pages with a symbolic error message
variable are backward flows, which are automatically discarded.
Last, an aborted flow happens when a serious error occurs and
the rendering of a merchant page is stopped with an exit
statement.

In search of links to other nodes, our analyzer parses
symbolic values of HTTP forms and cURL parameters. Since
string literal is not the only type that a symbolic value can
represent, we cannot simply use regular expressions such
as <form \s*action\s*=\s*[ˆ>]*> to extract links.
Consequently, our parser recursively examines each component
of a symbolic value to correctly handle non-literals. In most
cases, merchants embed URLs in HTTP requests to cashiers
and our parser can find such URLs. However, a merchant may
also store the configurations of callback URL and return URL
on a cashier’s server. For this case, we need to specify the pre-
configured merchant URLs to continue exploring logic flows
after a user-to-cashier request.

Requests from cashiers often store critical payment status
in their parameters. Although the names of request parameters
vary for different cashiers, it is not necessary to associate
their names with payment status components unless their
values are written to a database. On one hand, when an
untrusted request parameter is compared against a trusted
payment status component, our tool can infer which pay-
ment status component a request parameter is associated
with, and apply taint rules for the involved payment sta-
tus component. For instance, for $_POST[’x_amount’]
==$order->info[’total’], our analyzer removes taint
from order total based on the trusted payment status compo-
nent $order->info[’total’] rather than the untrusted
$_POST[’x_amount’]. On the other hand, when untrusted
request variables from cashiers are written to a database
via INSERT or UPDATE queries, we need specifications of
which payment status components the request variables are
associated with. For example, suppose a specification associates
$_GET[’v1’] with order ID and $_GET[’v2’] with order

TABLE I: Payment Modules for Cashiers.

Cashier Modules Unique Callback

2Checkout 1 1 N
Authorize.net 2 2 N
ChronoPay 1 1 Y
inpay 1 1 Y
iPayment 3 1 Y
Luottokunta 2 2 N
Moneybookers 23 1 Y
NOCHEX 1 1 N
PayPal 5 5 Y
PayPoint.net 1 1 N
PSiGate 1 1 N
RBS WorldPay 1 1 Y
Sage Pay 3 3 Y
Sofortüberweisung 1 1 Y

Sum 46 22 8

total. If these two request parameters are written to a merchant’s
database, they will be read from the database and displayed
clearly to a merchant employee. Since she needs to review order
details before accepting an order, she may reject any order with
abnormal payment status. Consequently, the taint annotations
of order ID and order total should be removed based on the
specifications for $_GET[’v1’] and $_GET[’v2’].

V. EMPIRICAL EVALUATION

To evaluate the effectiveness and performance of our
tool, we performed experiments on osCommerce [1], one
of the most popular open-source e-commerce applications. It
has a long history of 13 years, powering more than 14,000
registered sites [1]. The latest stable release (version 2.3) of
osCommerce contains 987 files with 38,991 lines of PHP code.
It supports various third-party cashiers and multiple currencies
with different payment modules, which are integrated in the
main framework as add-ons. Each payment module provides a
payment method that a user can choose during checkout.

In total, We evaluated 46 payment modules, 22 of which
have distinct CFGs. There are 928 payment modules for
osCommerce, and new payment modules have been actively
added since 2003. In addition, payment modules evolve over
time. For example, module Luottokunta (version 1.2) was
reported to be vulnerable [9], and Luottokunta (version 1.3) was
released to patch the reported vulnerability. 46 payment modules
are included in osCommerce by default, and 44 of them are
developed to integrate third-party cashiers. The two remaining
payment modules are irrelevant to our security analysis: One
allows merchants to accept cash on delivery, and the other
enables merchants to accept mailed money orders. The 44
payment modules that accept online payment have 20 unique
CFGs. Modules that differ slightly from one another in terms
of variable names and cashier URLs may have identical CFGs.
Therefore, we evaluated 20 default payment modules that have
unique CFGs as well as the two Luottokunta payment modules.
All the experiments are run on a desktop PC with a quad-core
CPU (2.40 GHz) and 4GB of RAM.

9

TABLE II: Logic Vulnerability Analysis Results.

Payment Module Tainted / Exposed Safe
OrderId OrderTotal MerchantId Currency SignedToken

2Checkout 7 7 7 7 8
Authorize.net Credit Card AIM 3
Authorize.net Credit Card SIM 7 7 8
ChronoPay 7 7 7 7 7 8
inpay 3
iPayment (Credit Card) 7 8
Luottokunta (v1.2) 7 7 7 7 8
Luottokunta (v1.3) 7 7 8
Moneybookers 3
NOCHEX 7 7 7 7 8
PayPal Express 3
PayPal Pro - Direct Payments 3
PayPal Pro (Payflow) - Direct Payments 3
PayPal Pro (Payflow) - Express Checkout 3
PayPal Standard 7 8
PayPoint.net SECPay 7 7 7 8
PSiGate 7 7 7 7 8
RBS WorldPay Hosted 7 7 8
Sage Pay Direct 3
Sage Pay Form 7 7 8
Sage Pay Server 3
Sofortüberweisung Direkt 7 3∗

Total 9 7 6 11 2 9 + 1∗

Table I shows payment modules from 14 different cashiers.
Column “Modules” shows the number of payment modules
that a cashier has, and column “Unique” lists the number of
payment modules that have unique CFGs. All the payment
modules are in their latest versions except Luottokunta, for
which we included two versions with different CFGs. Cashier
Moneybookers provides 23 payment modules for various
countries and currencies, but we observed that all of them
share the same CFG. Therefore, it is sufficient to pick just one
Moneybookers module for our security analysis. In contrast,
PayPal has 5 payment modules and each of them has a unique
CFG.

A. Analysis Results

Table II shows the analysis results for the 22 unique payment
modules. Columns under “Tainted/Exposed” show the existence
of tainted components of payment status and exposed signed
tokens for each module. For these columns, a table cell marked
with “7” means that a payment status component is tainted or
a signed token is exposed. The last column “Safe” summarizes
the safety of a payment module. When a payment module
verifies all the components of payment status and exposes no
signed tokens, it is considered safe and marked with “3”;
otherwise, it is marked with “8”.

Table II shows that when a payment module is unsafe, it is
often vulnerable to several types of logic attacks on different
components of payment status. First, 9 modules fail to correctly
verify order ID. This allows attackers to pay once for an order,
and reuse the payment status values of the paid order to bypass

payment for future orders. Second, 7 modules fail to verify
order total, allowing attackers to pay arbitrary amounts. Third,
6 modules fail to verify merchant ID, allowing attackers to
pay themselves instead. Note that the verification of secret can
replace the verification of merchant ID. Fourth, 11 modules fail
to verify currency, making it the most neglected component of
payment status. When a cashier is configured to accept only
one currency for a merchant, not verifying currency is safe
and acceptable. However, we believe that the best practice is
to always verify currency so that additional currencies can be
easily added in the future. Last, 2 signed tokens are accidentally
exposed in plain text, allowing attackers to pose as cashiers.
We also tracked exposed secrets in our evaluation. When a
secret is exposed, an attacker can arbitrarily forge values for
order ID, order total, merchant ID and currency. Fortunately,
none of the modules makes such a mistake.

In summary, as shown in the last column of Table II, 9 out
of 22 modules are safe; module Sofortüberweisung Direkt is
safe when only one currency is accepted; the remaining 12
modules are vulnerable. We expected the patched version of
Luottokunta (v1.3) to be safe at first but were surprised to see
that it is still vulnerable. This shows the difficulty of writing a
perfectly secure payment module. We manually confirmed the
detected vulnerabilities on a local deployment of osCommerce,
successfully performed responsible experiments on live web
stores powered by osCommerce and communicated with the
developers of osCommerce about the detected vulnerabilities.
We classified the detected logic vulnerabilities into the following
categories.

10

1) Untrusted Request Variables: Payment module develop-
ers sometimes make the mistake of checking payment status
based on untrusted request variables. Verifying untrusted request
variables guarantees neither the integrity nor the authenticity
of payment status, but may give developers a false sense of
security. Four modules, namely, Authorize.net Credit Card AIM,
iPayment (Credit Card), Luottokunta (v1.3) and PayPoint.net
SECPay fall into this category. The values of untrusted request
variables that pass such insufficient checks may be inconsistent
with actual payment status components. For example, module
iPayment (Credit Card) performs a check on order ID based on
untrusted request variable $_GET[’ret_booknr’] in the
following code.

$_GET[’ret_param_checksum’] !=
md5(MODULE_PAYMENT_IPAYMENT_CC_USER_ID
. ($this->format_raw($order->info[’total’])
* 100) . $currency
. $_GET[’ret_authcode’] . $_GET[’ret_booknr’]
. IPAYMENT_CC_SECRET_HASH_PASSWORD)

An attacker could pay once for an order and intercept the
cashier-to-merchant request of the paid order by modifying the
return URL of the preceding merchant-to-cashier request. For
the above example, the attacker needs to record the values of
$_GET[’ret_param_checksum’], $_GET[’ret_authcode’]

and $_GET[’ret_booknr’]. For future orders, the attacker
can purchase different products and bypass payments as long
as the order total and currency are the same as the paid
order. Note that $_GET[’ret_param_checksum’] is supposed
to be an unpredictable and unique value signed with secret
IPAYMENT_CC_SECRET_HASH_PASSWORD. However, simply re-
playing the intercepted values of the three GET variables
would allow the attacker to pass the above payment status
check. The check in the example is insufficient because the
value of order ID in the conditional comes from untrusted
$_GET[’ret_booknr’].

2) Exposed Signed Tokens: An exposed signed token
nullifies the verification of payment status. Two modules
ChronoPay and RBS WorldPay Hosted expose their signed
tokens. Verification based on exposed signed tokens fails to
ensure the authenticity of payment status. An attacker could
record the values of signed tokens hidden in HTML forms and
forge a request to fake a completed payment. The following
exposed signed token from the form element M_hash, for
example, nullifies the verification on order ID, order total and
merchant ID (secret RBSWORLDPAY_HOSTED_MD5_PASSWORD

can also uniquely identify a merchant).

tep_draw_hidden_field(’M_hash’,
md5(tep_session_id() . $customer_id
. $order_id . $language
. number_format($order->info[’total’], 2)
. RBSWORLDPAY_HOSTED_MD5_PASSWORD));

Fundamentally, exposed signed tokens are caused by using
the same secret for both merchant signature and cashier
signature. We observed that a signed token is often exposed
when a merchant wishes to use it to authenticate herself to a
cashier. A signed token can work both as a merchant signature
and a cashier signature for non-cURL HTTP requests. When a
signed token is used for both purposes, it is considered exposed
if attackers can intercept cashier-to-merchant requests. There

are two methods to fix the problem. The first one is to use
just one secret but two ways of calculation to make the signed
tokens different. For example, by simply changing the orders
of the components of payment status in a calculation, we can
generate different signed tokens with the same secret. A better
method is to use two secrets to avoid exposing important signed
tokens. We can use one secret to authenticate a merchant and
the other to authenticate a cashier using the same calculation,
without worrying about the security of signed tokens.

3) Incomplete Payment Verification: Payment modules
sometimes only partially verify the components of payment
status. In other words, checks of some components of payment
status are missing rather than insufficient. Three modules,
namely, Sage Pay Form, Sofortüberweisung Direkt and PayPal
Standard belong to this category. Module Sage Pay Form
writes partial payment status into the database, but misses
checks on order total and currency. Module Sofortüberweisung
Direkt does not verify currency and therefore is vulnerable to
currency tampering attacks if cashiers are configured to support
multiple currencies. Module PayPal Standard misses the check
on merchant ID, allowing an attacker to pay herself instead.

4) Missing Payment Verification: Some payment modules
are not designed to defend against logic attacks and have
no security checks of payment status at all. They could
easily become the playground for attackers. The following
five payment modules unfortunately fall into this category:
ChronoPay, Luottokunta (v1.2), NOCHEX, 2Checkout and
PSiGate. Such payment modules should be patched as soon as
possible.

B. Experiments on Live Websites

To show the feasibility and ease of attacks based on the
detected logic vulnerabilities listed in Table II, we conducted
experiments on three live websites in a responsible manner. We
consulted lawyers at our university and followed the example of
Wang et al. in setting up attacker anonymity, purchasing a VISA
gift card at a supermarket with cash, and registering accounts
on third-party cashiers [30]. The Google Chrome browser with
no browser extensions suffices as our attack tool. Although
we initially paid nothing or less to the merchants for the three
orders we placed, we paid in full amounts to the merchants
after we received the products shown in Figure 2. We reported
the results of our experiments to osCommerce developers. The
details of the experiments are elaborated in the following.

The Ubuntu online shop by Canonical Ltd. (RBS World-
Pay Hosted). RBS WorldPay is a cashier mainly used in
the U.K. and supports multiple currencies. The Ubuntu online
shop is a featured osCommerce shop, and it uses the vulnerable
module RBS WorldPay Hosted. As Table II shows, this payment
module is vulnerable to currency attacks. We placed an order
in U.K. pounds but paid cashier WorldPay in U.S. dollars of
the same amount. About one week later, we received a Ubuntu
notebook (shown in Figure 2) even though we did not pay the
full amount at first.

A baby products online shop (Authorize.net Credit Card
SIM). Module Authorize.net Credit Card SIM is vulnerable
to order ID attacks. In our experiments on the baby products
online shop, we placed two orders of the same order total but

11

TABLE III: Performance Results.

Payment Module Files Nodes (%) Edges (%) Stmts (%) States Flows Time (s)

2Checkout 105 5,194 (19.09%) 6,176 (19.15%) 8,385 (25.01%) 40 4 16.04
Authorize.net Credit Card AIM 105 5,274 (19.95%) 6,284 (19.96%) 8,545 (25.97%) 43 4 17.65
Authorize.net Credit Card SIM 105 5,221 (19.66%) 6,221 (19.72%) 8,435 (25.52%) 46 4 16.89
ChronoPay 99 5,013 (15.67%) 5,969 (15.61%) 8,084 (20.75%) 69 5 31.51
inpay 100 5,118 (18.31%) 6,109 (18.42%) 8,408 (23.68%) 335 6 125.29
iPayment (Credit Card) 99 4,999 (16.09%) 5,932 (16.14%) 7,918 (21.62%) 38 5 21.86
Luottokunta (v1.2) 105 5,158 (18.94%) 6,127 (18.96%) 8,291 (24.72%) 34 4 15.33
Luottokunta (v1.3) 105 5,164 (18.99%) 6,135 (19.03%) 8,308 (24.80%) 35 4 15.33
Moneybookers 99 5,082 (15.90%) 6,059 (15.85%) 8,215 (21.08%) 66 4 80.85
NOCHEX 105 5,145 (18.90%) 6,111 (18.89%) 8,237 (24.67%) 33 4 15.03
PayPal Express 104 5,351 (12.63%) 6,379 (12.64%) 8,596 (17.95%) 62 11 42.15
PayPal Pro - Direct Payments 105 5,302 (19.85%) 6,339 (19.77%) 8,700 (25.61%) 65 4 20.76
PayPal Pro (Payflow) - Direct Payments 105 5,302 (19.92%) 6,339 (19.85%) 8,714 (25.71%) 63 4 20.85
PayPal Pro (Payflow) - Express Checkout 99 5,128 (14.41%) 6,107 (14.35%) 8,197 (20.08%) 31 10 31.95
PayPal Standard 99 5,040 (16.03%) 6,006 (16.01%) 8,170 (21.04%) 68 6 33.01
PayPoint.net SECPay 105 5,174 (19.09%) 6,152 (19.10%) 8,332 (24.97%) 40 4 15.80
PSiGate 106 5,231 (19.07%) 6,228 (19.04%) 8,436 (24.95%) 44 4 16.82
RBS WorldPay Hosted 99 5,019 (15.84%) 5,977 (15.92%) 8,121 (21.09%) 79 5 36.12
Sage Pay Direct 106 5,447 (20.71%) 6,515 (20.55%) 8,984 (25.97%) 95 4 26.20
Sage Pay Form 106 5,315 (19.52%) 6,329 (19.54%) 8,762 (24.55%) 55 4 19.96
Sage Pay Server 101 5,100 (14.72%) 6,067 (14.62%) 8,268 (19.78%) 42 6 28.26
Sofortüberweisung Direkt 98 5,038 (16.01%) 6,003 (15.96%) 8,160 (21.20%) 97 5 43.86

Average 102.73 5,173 (17.70%) 6,162 (17.69%) 8,376 (23.21%) 67.27 5.05 31.43

only paid for the first order. We set up a simple web page
on our server to record the values of HTTP request variables.
For the first order, we changed the value of return URL from
the merchant URL to that of our web page. This change lets
cashier Authorize.net send the payment notification request to
us instead of the merchant. We replayed the recorded values
of the request variables from the first order for the cashier-to-
merchant request of the second order. We paid nothing for the
second order at first but received a dirty diaper game package
shipped from California.

A chocolate online shop (PayPal Standard). Module
PayPal Standard is vulnerable to merchant ID attacks. PayPal
is one of the most popular cashiers in the U.S., yet it is not
used securely in this payment module. In our experiment on
the chocolate online shop, we simply changed the merchant
ID from the chocolate merchant’s PayPal account to our own
PayPal account for the user-to-cashier payment request. In
this way, we received three pieces of chocolate although the
payment was not made to the chocolate merchant at first.

C. Performance Evaluation

Table III shows some data that we collected during symbolic
execution to demonstrate the performance of our tool. Column
“Files” to column “States” show average numbers for all
merchant nodes, while columns “Flows” and “Time (s)” show
total numbers of merchant nodes. For the IR of each merchant
node, we report the number of parsed files (column “Files”),
the number of nodes and node coverage (column “Nodes (%)”),
the number of edges and edge coverage (column “Edges (%)”)
and the number of statements and statement coverage (column
“Stmts (%)”). Additionally, column “States” shows the total
number of end execution states; column “Flows” shows the total
number of logic flows among user, cashier and merchant during

checkout; and column “Time (s)” shows the total analysis time
in seconds for each payment module.

Merchant nodes are nontrivial to analyze. The number of
files that each merchant node includes ranges from 98 to 106,
with an average of 102.73. An IR has 5,173 basic blocks (nodes),
6,162 control flow edges and 8,376 statements on average.
The coverage of nodes, edges and statements is calculated
for the main function, function bodies and method bodies.
Some defined functions, defined class methods and even some
branches of the main function may not be executed at all in
the checkout process. On average, the symbolic execution of
each merchant node has a CFG node coverage of 17.70%, an
edge coverage of 17.69% and a statement coverage of 23.21%.

To estimate the efforts of manual code review, we have also
counted the lines of code that are related to the checkout process
for payment modules. In general, the number of lines of code is
slightly higher than the number of statements listed in Table III
for each payment module. For example, for module PayPal
Express, there are 8,727 lines of code in total to review while its
IR has 8,596 statements. In addition to code, manual reviewers
need to examine database tables and cashiers’ documentation.

On average, it takes 31.43 seconds to explore 67.72
execution states in 5.05 logic flows for each payment module.
In simple cases, it takes only 4 logic flows to initiate the
checkout process, make a payment on a cashier’s server, notify
the merchant of the payment and complete the order. Module
PayPal Express has the most complex logic flows. It uses 11
logic flows to obtain a ppe_token for each payment transaction,
start an express checkout with function setExpressCheckout,
make a payment on a PayPal server, get payer details with
function getExpressCheckoutDetails and complete the sale
with function doExpressCheckoutPayment. Module inpay has

12

TABLE IV: Coverage Results.

Payment Module Main Func Stmts (%) Class Stmts (%)
Nodes (%) Edges (%) Stmts (%)

2Checkout 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (17.65%) 4,891 (19.76%)
Authorize.net Credit Card AIM 498 (40.20%) 693 (29.37%) 1,246 (59.94%) 2,249 (19.65%) 5,051 (20.40%)
Authorize.net Credit Card SIM 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (18.45%) 4,941 (20.32%)
ChronoPay 463 (36.04%) 647 (26.24%) 1,130 (54.34%) 2,249 (14.64%) 4,705 (15.61%)
inpay 510 (39.70%) 709 (30.22%) 1,218 (56.17%) 2,276 (17.27%) 4,915 (18.60%)
iPayment (Credit Card) 454 (38.25%) 632 (27.90%) 1,116 (59.10%) 2,249 (16.10%) 4,554 (15.15%)
Luottokunta (v1.2) 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (17.30%) 4,797 (19.32%)
Luottokunta (v1.3) 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (17.34%) 4,814 (19.46%)
Moneybookers 471 (36.12%) 656 (26.63%) 1,139 (54.32%) 2,249 (14.52%) 4,828 (16.29%)
NOCHEX 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (17.30%) 4,743 (19.19%)
PayPal Express 575 (28.91%) 797 (21.32%) 1,324 (44.76%) 2,249 (11.75%) 5,024 (13.66%)
PayPal Pro - Direct Payments 498 (40.20%) 693 (29.37%) 1,246 (59.94%) 2,249 (19.88%) 5,206 (19.87%)
PayPal Pro (Payflow) - Direct Payments 498 (40.20%) 693 (29.37%) 1,246 (59.94%) 2,249 (19.81%) 5,220 (20.09%)
PayPal Pro (Payflow) - Express Checkout 508 (34.70%) 706 (25.71%) 1,201 (52.96%) 2,249 (13.12%) 4,747 (15.07%)
PayPal Standard 477 (36.76%) 665 (27.08%) 1,151 (54.88%) 2,249 (15.09%) 4,770 (15.69%)
PayPoint.net SECPay 498 (39.60%) 693 (28.86%) 1,246 (58.89%) 2,249 (17.67%) 4,838 (19.64%)
PSiGate 498 (40.20%) 693 (29.37%) 1,246 (59.98%) 2,249 (17.74%) 4,942 (19.39%)
RBS WorldPay Hosted 461 (36.63%) 643 (27.02%) 1,132 (55.35%) 2,249 (14.97%) 4,740 (15.81%)
Sage Pay Direct 498 (40.20%) 693 (29.37%) 1,246 (59.94%) 2,249 (20.08%) 5,490 (20.67%)
Sage Pay Form 498 (39.70%) 693 (29.00%) 1,246 (58.97%) 2,251 (17.55%) 5,266 (19.41%)
Sage Pay Server 463 (36.07%) 645 (26.28%) 1,151 (55.42%) 2,249 (13.45%) 4,868 (14.27%)
Sofortüberweisung Direkt 470 (36.69%) 653 (26.94%) 1,136 (55.28%) 2,249 (15.41%) 4,776 (15.82%)

Average 492 (38.10%) 685 (27.92%) 1,211 (57.03%) 2,250 (16.67%) 4,915 (17.89%)

the longest analysis time (125.29 seconds) and also the largest
number of execution states (335 states). The performance
results show that our automated detection is more efficient
and comprehensive than manual analysis. When we manually
confirmed the detected logic vulnerabilities, we need around
30 minutes for each payment module. We spent about 15
minutes to read control flows of merchant pages and cashier
documentation, and another 15 minutes to find valid inputs that
lead to logic attacks.

We have adopted a few optimizations to speed up our
analysis and two of them significantly reduced the analysis
time. The first optimization sets the maximum number of similar
execution states in a work list to one. This means that whenever
the analysis stores a new execution state in a work list, it first
checks if there already exists an execution state with the same
program counter and logic state. If yes, the new execution
state is discarded. Since such two execution states often differ
only slightly, discarding the second state has no impact on
the vulnerability analysis result. The analysis time for each
payment module is limited to 10 minutes. When we increased
the length of a work list to two, timeout events occurred before
the analyses were completed. The second optimization sets
some symbolic session variables to be not null, just like what
they should be in a normal checkout process. For example,
$_SESSION[’customer_id’] and $_SESSION[’cartId’] are
specified as not null. The first few basic blocks in the IR of a
merchant node often check whether some session variables are
null. The second optimization rules out irrelevant branches at
an early state of a symbolic execution process. This accelerates
our analysis considering that the number of states usually grows
at an exponential rate.

Table IV shows detailed coverage results. All the numbers in
this table are average numbers of all merchant nodes. Columns
under “Main” show the average numbers and coverage results
(listed in parentheses) for the nodes, edges, and statements
of the main functions in analyzed merchant nodes. Columns
“Func Stmts (%)” and “Class Stmts (%)” show the average
numbers and coverage results (listed in parentheses) for defined
functions and classes of analyzed merchant nodes respectively.

On average, our symbolic execution covers 38.10% of 492
main-function nodes, 27.92% of 685 main-function edges and
57.03% of 1,211 main-function statements. Additionally, it
covers 16.67% of 2,250 statements in defined function bodies
and 17.89% of 4,915 statements in defined classes. Main
function is the entry of each merchant node, and the average
coverage for the statements of main functions is much higher
than the coverage for defined functions and classes. It is obvious
in Table IV that the deviation of class statement coverage is
the highest. This is because different payment modules are
integrated into the checkout process as plug-ins with dynamic
class construction, and they have little influence on the statement
numbers of the main functions and defined functions.

Our symbolic execution is developed for security analysis
rather than achieving high coverage. The average coverage of
all three types of statements (23.21% as shown in Table III) is
lower than the coverage of main-function statements (57.03%),
but higher than the coverage of defined function statements
(16.67%) and the coverage of class statements (17.89%).
There are three reasons for the low coverage. First, not all
statements in defined functions and class methods are used
in each merchant node. One merchant node may only need
a few functionalities provided by defined functions and class

13

methods. Second, our tool explores control flows of CFGs
based on branch feasibility. Note that one merchant page is
often divided into multiple merchant nodes based on different
request parameter values. Our exploration is based on merchant
nodes, but the coverage is calculated using merchant pages. This
explains why some modules have low coverage. The callback
page of PayPal Express for example, has a switch statement
based on the value of request variable $_GET[’osC_Action’]

near the beginning of the page. It has different branches to
handle “cancel”, “callbackSet”, “retrieve” and default actions.
For a merchant node of this page, only one switch branch is
taken. Third, our specifications of some user inputs help us
avoid the exploration of a few irrelevant control flows. Not all
possible combinations of user inputs need to be examined for
vulnerability detection, therefore our analysis focuses on user
inputs that are related to the checkout process.

D. Discussions

The implementation of our detection tool is neither sound
nor complete. For all the logic vulnerabilities detected by our
tool, we carefully examined and tested each one to confirm that
they are true positives. There is no observed false positives to the
best of our knowledge. We cannot guarantee the absence of logic
vulnerabilities because of the difficulty of exploring all possible
logic flows in large real-world e-commerce applications. We
hope our tool can help developers write secure payment modules
and raise their security awareness.

Our static analysis still faces nontrivial challenges which
include dynamic features of PHP, constraint solving and regular
expressions. Typically, static analyses are limited in handling
dynamic language features (e.g. dynamic includes, dynamic
class, array and object construction), and the dynamic features
of PHP also most significantly influence the scalability and
precision of our analysis. For a precise resolution of dynamic
features, specifications are incorporated for some critical code.

Our current implementation does not support JavaScript
analysis yet. It is possible that some links to merchant nodes
or cashier nodes are generated by JavaScript code on the
client side. We did not encounter any JavaScript links in our
experiments but our test subject may not be representative of
other e-commerce applications. Detecting links in JavaScript
code is a difficult task because of the various dynamic features
of the JavaScript language. For example, its eval function,
which executes statements provided as strings at run time,
can be invoked in many different ways. For e-commerce
applications that heavily use JavaScript, we may need to
incorporate JavaScript analysis to detect critical URLs that
are dynamically generated.

Automated analysis incurs significant engineering efforts
and the amortized development cost can be kept low for e-
commerce software with a large number of payment modules.
Symbolic execution allows systematic exploration and is
particularly useful to model HTTP requests/responses from
cashiers and users as symbolic values can be used (rather
than concrete values). In contrast, manual code review is error-
prone, and it is difficult to cover all possible attack vectors and
important control-flows (which may explain why many serious
vulnerabilities still exist). The number of payment modules

(928 for osCommerce) and the two vulnerable Luottokunta
modules illustrate the difficulty of detecting missing/insufficient
checks. However, for basic e-commerce software with only a
few payment modules, manual code review may be a viable
alternative.

It is possible that there exist multiple execution states with
unique logic states when we reach the final merchant node
during checkout. There is no universal criterion as to which
logic state should be picked over another for valid logic flows,
and we leave the selection of logic states to developers who have
the best judgment. Our current tool includes all taint operations
and flows in logic states as a reference, and uses heuristics based
on our observations to rank logic states. The logic state that
should be picked is often the one that has the least number of
taint annotations, excluding exposed signed tokens. The reason
is that our symbolic execution may conservatively explore a
branch that will not be taken in practice, and only the opposite
branch contains checks on payment status.

VI. RELATED WORK

Logic vulnerabilities in e-commerce applications. The
uniqueness of logic vulnerabilities, together with their great
impact, has attracted the attention of researchers in recent years.
Wang et al. [30] are the first to analyze logic vulnerabilities in
Cashier-as-a-Service based web stores. Through manual security
analysis, they found serious logic flaws that can lead to inconsis-
tent payment status between a merchant’s server and a cashier’s
server. Their follow-up work, InteGuard [33], offers dynamic
protection of third-party web service integrations, including the
integration of cashier service in merchants’ websites. In contrast
to their work, we seek to comprehensively examine various
attack vectors on payment status and automatically detect
logic vulnerabilities before the deployments of e-commerce
applications. We discovered a new attack vector on currency
which allows an attacker to modify the currency of a payment to
her advantage, and designed a symbolic execution framework to
systematically explore critical logic flows of checkout processes.

Parameter pollution vulnerabilities in web applications.
Another active line of research is HTTP Parameter Pollution
(HPP) in web applications. It is a common attack vector
for various vulnerabilities which include logic vulnerabilities.
WAPTEC [5] takes a white-box approach that combines
symbolic execution and dynamic analysis to detect parameter
tampering vulnerabilities in PHP applications, while NoTam-
per [4] and PAPAS [2] adopt black-box based approaches.
NoTamper [4] detects insufficient server-side validations where
a server fails to replicate the validations on the client side.
PAPAS [2] aims at automated discovery of parameter pollution
based on a black-box scanning technique for vulnerable
parameters. Our approach also makes the assumption that user
inputs are untrusted. However, in contrast to parameter pollution
detection which examines parameters in isolation, our approach
detects logic vulnerabilities in e-commerce applications by
linking and analyzing the logic flows of a checkout process.

Other logic vulnerabilities in web applications. Besides
attacks on e-commerce applications, logic vulnerabilities also
open doors to other attacks which include access control
attacks, single sign-on attacks and workflow violations in

14

web applications. First, access control vulnerability exposes
privileged functionality or resources to unauthenticated users.
Nemesis [12] performs dynamic information flow tracking
based on specified access control lists, while static approaches
analyze source code to detect unprotected accesses [14, 26, 27].
Second, Wang et al. discovered new single sign-on attacks [31],
and InteGuard moves a step forward [33] by using a proxy-
based approach which checks a set of inferred invariants to
let merchants safely integrate third-party web services. Third,
to detect deviations of normal workflows, it is important to
first establish a good guideline of correct workflows. Such a
guideline can be specified by developers [19], inferred from
client-side validations which should be replicated on the server
side [4, 17], or obtained from dynamic analyses [3, 11, 15, 22].
An alternative way of thwarting logic attacks is secure-by-
construction. Both Swift [8] and Ripley [29] aim to offload some
computations to the client side while ensuring the consistency
of logic states between servers and clients for modern web
applications. Logic vulnerabilities in e-commerce applications
are one important subtype of general logic vulnerabilities in
web applications. Focusing on this particular domain, we are
able to design an invariant of secure payments to detect logic
vulnerabilities which are application-specific.

Symbolic execution and taint analysis. Symbolic ex-
ecution and taint analysis are two widely used techniques
in security research. Schwartz et al. [25] provide a high-level
view of dynamic taint analysis and forward symbolic execution.
Symbolic execution is a powerful technique that can be adopted
for a diverse set of languages and problem settings ever since
the seminal work by King [21]. For traditional programs,
KLEE [6] is capable of automatically generating tests that
achieve high coverage on even complex programs. For server-
side languages, Halfond et al. [18] apply symbolic execution to
precisely identify interfaces in the Java Enterprise Edition (JEE)
framework, while Rubyx [7] detects security vulnerabilities
based on specifications by symbolically executing Ruby-on-
Rails web applications. For JavaScript, a client-side language
widely used in web applications, Saxena et al. [24] designed
and implemented a symbolic execution framework which can
handle string constraints. Pixy [20] is a static taint analyzer built
for PHP applications, and it detects injection vulnerabilities
with taint analysis based on specifications of taint sources and
sinks. Our approach combines symbolic execution with taint
analysis in a novel way to detect potential logic attacks on
payment status.

VII. CONCLUSION

Merchants should carefully verify each critical component
of payment status to ensure the consistency of payment status
between merchants’ severs and cashiers’ servers. This paper
proposes the first static approach to automatically detect
logic vulnerabilities in e-commerce web applications. Our key
observation is that secure checks on payment status must verify
the integrity and authenticity of order ID, order total, merchant
ID and currency. Our framework integrates symbolic execution
with taint analysis to track critical logic states, which include
payment status, across checkout nodes. Our tool explored
important logic flows, scaled to 22 unique real-world payment
modules and detected 11 unknown vulnerabilities along with

one known vulnerability. For future work, we plan to support
additional path exploration strategies for our symbolic execution,
add function summaries to improve performance and apply
our analysis to a larger number of popular e-commerce web
applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd,
Davide Balzarotti, for useful feedback on earlier versions
of this paper. We also gratefully acknowledge Ellen Auriti,
Michael Sweeney, and Lynette Temple with the University
of California for advice on our proof-of-concept experiments.
This research was supported in part by NSF Grants 0917392,
1117603, 1319187, and 1349528. The information presented
here does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

REFERENCES

[1] osCommerce Online Merchant. http://www.oscommerce.
com/.

[2] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda.
Automated discovery of parameter pollution vulnerabilities
in web applications. In Proceedings of Network and
Distributed System Security, 2011.

[3] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna.
Multi-module vulnerability analysis of web-based applica-
tions. In Proceedings of Computer and Communications
Security, 2007.

[4] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. N. Venkatakrishnan. NoTamper: Automatic blackbox
detection of parameter tampering opportunities in web
applications. In Proceedings of Computer and Communi-
cations Security, 2010.

[5] Bisht, Prithvi and Hinrichs, Timothy and Skrupsky,
Nazari and Venkatakrishnan, V. N. WAPTEC: Whitebox
analysis of web applications for parameter tampering
exploit construction. In Proceedings of Computer and
Communications Security, 2011.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of Operating
Systems Design and Implementation, 2008.

[7] A. Chaudhuri and J. S. Foster. Symbolic security analysis
of ruby-on-rails web applications. In Proceedings of
Computer and Communications Security, 2010.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic
partitioning. In Proceedings of Symposium on Operating
Systems Principles, 2007.

[9] Common Vulnerabilities and Exposures. CVE-2009-
2039. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-2039, 2009.

[10] Common Weakness Enumeration. CWE-840 business
logic errors. http://cwe.mitre.org/data/definitions/840.html.

15

[11] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna.
Swaddler: An approach for the anomaly-based detection
of state violations in web applications. In Proceedings of
Recent Advances in Intrusion Detection, 2007.

[12] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis:
Preventing authentication and access control vulnerabili-
ties in web applications. In Proceedings of the USENIX
Security Symposium, 2009.

[13] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[14] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear
the EAR: Discovering and mitigating execution after
redirect vulnerabilities. In Proceedings of Computer and
Communications Security, 2011.

[15] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.
Toward automated detection of logic vulnerabilities in
web applications. In Proceedings of the USENIX Security
Symposium, 2010.

[16] J. Grossman. Seven business logic flaws that put your
website at risk. http://www.whitehatsec.com/home/assets/
WP bizlogic092407.pdf, 2007.

[17] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In Proceedings of
World Wide Web, 2009.

[18] W. G. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web
applications. In Proceedings of International Symposium
on Software Testing and Analysis, 2009.

[19] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating
navigation errors in web applications via model checking
and runtime enforcement of navigation state machines. In
Proceedings of Automated Software Engineering, 2010.

[20] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper). In Proceedings of Symposium on Security
and Privacy, 2006.

[21] J. C. King. Symbolic execution and program testing. In
Communications of ACM, 1976.

[22] X. Li and Y. Xue. BLOCK: A black-box approach
for detection of state violation attacks towards web
applications. In Proceedings of Annual Computer Security
Applications Conference, 2011.

[23] Y. Minamide. Static approximation of dynamically
generated web pages. In Proceedings of World Wide
Web, 2005.

[24] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for
JavaScript. In Proceedings of Symposium on Security
and Privacy, 2010.

[25] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid
to ask). In Proceedings of Symposium on Security and
Privacy, 2010.

[26] S. Son, K. S. McKinley, and V. Shmatikov. Fix Me Up:
Repairing access-control bugs in web applications. In
Proceedings of Network and Distributed System Security,
2013.

[27] F. Sun, L. Xu, and Z. Su. Static detection of access control
vulnerabilities in web applications. In Proceedings of the
USENIX Security Symposium, 2011.

[28] U.S. Census Bureau. Quarterly retail e-commerce
sales. http://www.census.gov/retail/mrts/www/data/pdf/
ec current.pdf, 2013.

[29] K. Vikram, A. Prateek, and B. Livshits. Ripley: Automat-
ically securing Web 2.0 applications through replicated
execution. In Proceedings of Computer and Communica-
tions Security, 2009.

[30] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to
shop for free online – security analysis of Cashier-as-a-
Service based web stores. In Proceedings of Symposium
on Security and Privacy, 2011.

[31] R. Wang, S. Chen, and X. Wang. Signing me onto your
accounts through Facebook and Google: A traffic-guided
security study of commercially deployed Single-Sign-On
web services. In Proceedings of Symposium on Security
and Privacy, 2012.

[32] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
Proceedings of Programming Language Design and
Implementation, 2007.

[33] L. Xing, Y. Chen, X. Wang, and S. Chen. InteGuard:
Toward automatic protection of third-party web service
integrations. In Proceedings of Network and Distributed
System Security, 2013.

16

