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Abstract

Web applications are popular targets of security attacke €dm-
mon type of such attacks is SQL injection, where an attacker
exploits faulty application code to execute maliciouslyafted
database queries. Both static and dynamic approaches kave b
proposed to detect or prevent SQL injections; while dynamic
approaches provide protection for deployed softwarejcstgi-
proaches can detect potential vulnerabilities beforensof de-
ployment. Previous static approaches are mostly basedimeda
information flow tracking and have at least some of the follayv
limitations: (1) they do not model the precise semanticsnpfut
sanitization routines; (2) they require manually writtgreaifica-
tions, either for each query or for bug patterns; or (3) they a
not fully automated and may require user intervention aiovar
points in the analysis. In this paper, we address thesegliimits by
proposing grecise sound andfully automatedanalysis technique
for SQL injection. Our technique avoids the need for speaific
tions by considering as attacks those queries for which inpeit
changes the intended syntactic structure of the generaey.dt
checks conformance to this policy by conservatively charaing
the values a string variable may assume with a context freegr
mar, tracking the nonterminals that represent user-matdfidata,
and modeling string operations precisely as languagedtaess.

1. Introduction

Web applications enable much of today’s online businedsdiiog
banking, shopping, university admissions, and variouggowen-
tal activities. Anyone with a web browser can access thewhtlae
data they manage typically has significant value both to gessu
and to the service providers. Consequently, vulneratslithat al-
low an attacker to compromise a web application’s controitsf
data pose a significant threat. SQL command injection valvier
ities (SQLCIVs) comprise most of this class. Not only are SQL
CIVs serious, but they are pervasive. In 2006, 14% of the CVEs
(i.e., reported vulnerabitilities) were SQLCIVs, making SQLeoj
tion the second most frequently reported security threatg§6me
web security analysts speculate that because web apptisaiire
highly accessible and databases often hold valuable irtiom,
the percentage of SQL injection attacks being executedyisfii
cantly higher than the percentage of reported vulneraslitvould
suggest [26].

SQLCIVs are common primarily because applications typjical
communicate with backend databases by passing queriegas st
Figure 1 shows the typical three-tiered web applicatiohitecture
and illustrates the communication among the tiers: web beosv
provide a ubiquitous user interface, application serveanage the
business logic, and back-end databases store the persistan

We have implemented the proposed technique for PHP, the mostBecause the application layer uses a low-level, queriesragys

widely-used web scripting language. Our tool successflifgov-
ered previously unknown and sometimes subtle vulneragslin
real-world programs, has a low false positive rate, andescti
large programs (with approx. 100K loc).
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API to communicate with the database, the application cootst
queries via low-level string manipulation and treats usted user
inputs as isolated lexical entities. This is especially own in
web applications written in scripting languages such as, RiHRh
generally do not provide more sophisticated APIs and usegstr
as the default representation for data and code. Conséysmhe
paths in application code may incorporate user input unfieati
or unchecked into database queries. The modificationd{shefc
user input on other paths may not adequately constrain he in
to function in the generated query as the application prograr
intended (see Figure 2 for an example).

1.1 Existing Approaches

Many approaches have been proposed for preventing SQltiotec
attacks, both dynamic [7, 23, 24, 25] and static [12, 18, Bljp-
time approaches are useful for protecting deployed soéwaut
static approaches are desirable during software develuparel
testing for a number of reasons. First, a single programraermgy
often manifests itself as multiple different bugs, so s#dly veri-
fying code to be free from one kind of errae.{, static type check-
ing) helps to reduce the risk of other errors. Second, theheasl
that general techniques incur significantly exceeds theneaal of
appropriate, well-placed checks on untrusted input. Ei/greinet-
work latency dominates the overhead of a runtime check fan-a s
gle user, the added overhead can prevent a server fromduairai
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Figure 1. Web application architecture.

effectively under a heavy load of requests. Finally, sonrgime
techniques [23, 24] require a modified runtime system, whari
stitutes a practical limitation in terms of deployment apdrading.

01 isset ($_GET['userid']) 7

02 $userid = $_GET['userid'] : $userid = '';
03 if ($USER['groupid'] != 1)

04 {

05 // permission denied

06 unp_msg ($gp_permserror) ;

o7 exit;

08 }

09 if ($userid == '")

10 {

11 unp_msg($gp_invalidrequest);
12 exit;

13 }

14 if (leregi('[0-9]+', $userid))

Static analyses to find SQLCIVs have also been proposed, butis {

none of them runs without user intervention and can guagahie
absence of SQLCIVs. String analysis-based technique[3js2
formal languages to characterize conservatively the sealoks a
string variable may assume at runtime. They do not trackdhece
of string values, so they require a specification, in the fofa
regular expression, for each query-generating poirtiaispotin
the program — a tedious and error-prone task that few program
mers are willing to do. Static taint analyses [12, 18, 31¢krthe
flow of tainted (.e., untrusted) values through a program and re-
quire that no tainted values flow into hotspots. Because tisey
a binary classification for data (tainted or untainted)ytblassify
functions as either being santitizeise( all return values are un-
tainted) or being security irrelevant. Because the poliat these
techniques check is context-agnostic, it cannot guaratieeab-
sence of SQLCIVs without being overly conservative. Formexa
ple, if the escape_quotes function (which precedes quotes with
an “escaping” character so that they will be interpretedresarc-
ter literals and not as string delimiters) is consideredrgtizar, an
SQLCIV exists but would not be found in an application thatco
structs a query using escaped input to supply an expectednmm
value, which need not be delimited by quotes. Additionadtgtic
taint analyses for PHP typically require user assistancegolve
dynamic includes (a construct in which the name of the inetlid
file is generated dynamically).

1.2 Our Approach

We propose a sound, automated static analysis algorithnaeie o
come the limitations described above. It is grammar-basesd;
model string values as context free grammars (CFGs) anaystri
operations as language transducers following Minamidg [Pis
string analysis-based approach tracks the effects ofgsbprera-
tions and retains the structure of the values that flow intsgats
(i.e., where query construction occurs). If all of each stringha t
language of a nonterminal comes from a source that can be influ
enced by a user, we label the nonterminal with one of two fabel
We assign adirect” label if a user can influence the source di-
rectly (as WithGET parameters) and dridirect” label if a user can
influence the source indirectly (as with data returned bytalzese
query). Such labeling tracks the source of string values.ugée
a syntax-based definition of SQL injection attacks [25], akhie-
quires that input from a user be syntactically isolated imithgen-
erated query. This policy does not need user-provided fpeci
tions. Finally, we check policy conformance by first abdiragrthe
labeled subgrammars out of the generated CFG to find their con
texts. We then use regular language containment and cdneext
language derivability [28], to check that each subgramneaivels
only syntactically isolated expressions.

We have implemented this analysis for PHP, and applied it to
several real-world web applications. Our tool scales tgdazode
bases — it successfully analyzes the largest PHP web apptica

16 unp.msg('You entered an invalid user ID.');
17 exit;

18 }

19 $getuser = $DB->query("SELECT * FROM “unp_user "
20 ."WHERE userid='$userid'");
21 if (!$DB->is_single_row($getuser))

22 {

23 unp_msg('You entered an invalid user ID.');
24 exit;

25 }

Figure 2. Example code with an SQLCIV.

previously analyzed in the literature (about 100K loc).isodvered
many vulnerabilities, some previously unknown and somedas
insufficient filtering, and generated few false positives.

2. Overview

In order to motivate our analysis, we first present the paliet
defines SQLCIVs, and then give an overview of how our analysis
checks web applications against that policy.

2.1 SQL Command Injection Vulnerabilities
This section illustrates SQLCIVs and formally defines them.

2.1.1 Example Vulnerability

Figure 2 shows a code fragment excerpted from Utopia News Pro
a real-world news management system written in PHP; we will
use this code to illustrate the key points of our algorithrhisT
code authenticates users to perform sensitive operatsoes, as
managing user accounts and editing news sources. Injtiaky
variable$userid gets assigned data fromG&T parameter, which

a user can easily set to arbitrary values. The code thenrpesfiovo
checks on the value ¢fuserid before incorporating it into an SQL
query. The query should return a single row for a legitimateru
and no rows otherwise. From lind it is clear that the programmer
intends$userid to be numeric, and from lingo it is clear that
the programmer intends th@tiserid evaluate to a single value
in the SQL query for comparison to theerid column. However,
because the regular expression on lindacks anchors (“ and ‘$’

for the beginning and end of the string, respectively), aadye for
$userid that has at least one numeric character will be included
into the generated query. If a user sets ¢E& parameter to1';
DROP TABLE unp_user; --", this code will send to the database
the folloing query:

SELECT * FROM “unp_user™ WHERE userid='1';
DROP TABLE unp_user; —-'
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and delete user account data.

2.1.2 Definition of SQLCIVs

This section presents the formal definition of command iigec
attacks that serves as the basis for the policy we seek tooenfo

A web application takes input strings, which it may modifiyda
generates a query in the form of a string, usually by combginin
constant strings and filtered inputs. To reflect this, we ipresty
defined aveb applicatioras follows [25]:

Definition 2.1 (Web Application) A web applicationP :

(X*,...,X") — X" is a mapping from user inputs (over an
alphabetr) to query strings (oveE). In particular,P is given by
{{fi,.- s fn),(s1,-..,8m)} Where:

e fi:X* — X" isaninputfilter;

e 5 X" is aconstant string.

The argument td is ank-tuple ofinput strings(i1, . .., ix), and
P returns aqueryq = q1 + . .. + qe Where, forl < j </,
wheres € {s1,...,5m}

S
= { f(@) wheref € {fi,...,fn} Ni€{ir,... i}
That is, eacly; is either a static string or a filtered input.

Definition 2.1 primarily serves to help define SQL command
injection attacks. This definition does not allow certaiinst oper-
ations that real web applications can do, but, significanafstatic
analysis, it does allow arbitrary control constructs, @&y filter-
ing, and concatenation. Sections 3.1.2 and 3.1.3 addrkes ap-
erations that web applications do and how to handle them avith
static analysis.

The syntactic structure of the generated query determioes h
it will be evaluated. We state here our definition of SQL comtha
injection attacks [25] in terms of sentential forms.

Let G = (V,X,S,R) be a context-free grammar with non-
terminalsV/, terminalsX, a start symbolS, and productionsR.
Let ‘=’ denote “derives in one step” so thatAf =« ayp if
A — v € R, and let =’ denote the reflexive transitive closure
of ‘=¢. If S =¢ v, theny is a “sentential form.” The following
definition formalizes syntactic confinement:

Definition 2.2 (Syntactic Confinement) Given a gramma6i =

(V,X,S,R) and a stringg = 010203 € X7, 02 is syntactically
confinedin o iff there exists a sentential form; X o3 such that
X e VandS :>E; o1X03 :>*G 010203.

In the attack shown in Section 2.1.1, the user-provided sub-
string is not syntactically confined. The criterion of systia con-
finement effectively distinguishes SQL injection attacka safe
queries [25]. We therefore attempt to enforce the policy tser-
provided substrings be syntactically confined.

Definition 2.3 (SQL Command Injection Attack)Given a web
applicationP = {{(f1,..., fa), (s1,...,5m)} and a query string

g constructed from the inpyi1, . .., %), ¢ isacommand injection
attackif there existsi € {i1,...,ixtandf € {fi,..., fm} such
thatg = ¢1 + f(4) + g2 and f(4) is not syntactically confined ig
with respect to the SQL grammar.

A web application has an SQLCIV if it may generate an SQL
command injection attack.

2.2 Analysis Overview

Our analysis takes PHP files as input and returns as outjhetr it
list of bug reports or the message “verified.”

In order to provide useful bug reports, we first categorize
sources of untrusted input as being eitbigect or indirect. Direct
sources, such agET parameters, provide data immediately from
users; indirect sources, such as results from a databasg g
vide data from a source whose data may come from untrustesl use
In practice, the rise of attacks from indirect sources is k=vere
than that of standard injection attacks for two reasonstHiro-
grams often regulate which data is allowed to go into thetueta
(or other sources), and second, attackers must pass throagh
steps and take more time to execute an indirect attack thexeto
cute a standard injection attack.

Figure 3 shows a high-level overview of our analysis aldmonit
It has two main phases. The first phase generates a congervati
annotated approximation of the query strings a program reay g
erate; the annotations show which substrings in the queiygst
are untrustedi.e., are from eithemDIRECT or INDIRECT Sources.
This phase is based on existing string analysis techni@®s[ig-
mented to propagate taint information. The string-tairalyrer
takes as input a PHP file that provides the top-level code for a
web page (analogous tomin function in C). As it encounters
dynamic include statements, it determines the possihiegstal-
ues of the argument to thinclude, and analyzes those files as
well. The string-taint analyzer represents the set of qetings
using an annotated context free grammar (CFG) — the nontermi
nals whose sub-languages represent untrusted stringalzeked
with “direct” or “indirect,” as appropriate. We choose to represent
sets of strings with CFGs for several reasons: (1) taintbdtsing
boundaries can be represented simply by labeling certaiteno
minals; (2) our policy is grammar-based, and a CFG repratent
can capture context-free query construction that folldvesgolicy;

(3) regular expression-based string operations (commdPHR)
can be represented as finite state transducers (FSTs),amabe
of a CFG over an FST is context free.

The second phase of our analysis takes the annotated CFG pro-
duced by the first phase, and checks whether all strings ifathe
guage of the CFG are safee., they are not SQL command in-
jection attacks according to Definition 2.3. This analysiseks for
common cases (of both SQL command injection attacks anckatta
free grammars) efficiently by (1) abstracting the subgrarsrttzat
represent untrusted substrings out of the larger CFG, (2)mn-
ing the syntactic contexts of those subgrammars within angel



query — queryl'

queryl — query?2 userid

query2 — query3wHERE userid='
query3 — SELECT * FROM ~“unp_user”
userid — GETuid

GETuid— Xx [0-9] Xx

direct = {GETuid} indirect = {}

Figure 4. Grammar productions of possible query strings from
Figure 2.

CFG, and (3) checking for (the absence of) policy violatitrings
in the languages of the subgrammars. For large grammassisthi
significantly more efficient than checking the language efdbn-
erated CFG as a whole. If the policy conformance checker fingls
violations, it issues a bug report. Because this algorithisound,
if it does not issue any bug reports, the PHP code is guamoee
be free from SQLCIVs.

To illustrate this algorithm on the example code in Figuréh2,
string-taint analysis will produce the grammar producishown
in Figure 4; the annotations are shown in terms of sets ofanent
minals annotated withdirect” and “indirect,” respectively. The
regular expression notation on the right hand side of therids
is notational shorthand intended to simplify the presématThe
grammar fouuseridreflects the regular expression match on line
because the string-taint analyzer propogates the reggpagssion
predicate. The nontermin@ETuidhas the labeldirect,” because
it represents strings fromGET parameter.

(a) $X = $UNTRUSTED; (b) $X1 = $UNTRUSTED;
if ($8) { if ($4) {
$X = $X."s"; $X2 = $X1."s";
} else { } else {
$X = $X."s"; $X3 = $X1."s";
}
$z = $X; $X4 = p($X2, $X3);
$Z = $X4;
(c) UNTRUSTED — ¥~
X1 — UNTRUSTED
X2 —>Xls
X:; HX1S
X4 — X5 | X3
Z — Xy

Figure 5. Grammar reflects dataflow.

tions provide the function from strings to tainted subgsinin
addition to that reason, a natural way to design and implémen
a CFG-based string analysis produces CFGs that reflect tie pr
gram’s dataflow, so taint annotations applied at untrustenlces
appear in the final CFG. Minamide designed his string anatyrs
way, so we review the main steps of his analysis here and shaw h
to adapt it to track taint information [20].

The contrived example program in Figure 5a serves to shaw tha
the generated grammar reflects the program’s dataflow. Téte fir
step of the string analysis translates the program intecsatgle
assignment form, as shown in Figure 5b. SSA form makes data-

The policy-conformance checker then receives this labeled dependencies explicit, so translating each assignmeténstat

grammar. The check first replaces the annot&&uid nonter-
minal with a new terminat ¢ X. By intersecting this modified
grammar with an appropriate regular language, the chechds fi
that for all sentential forms . GETuid.o» derivable fromquery;
GETuidis between quotes in the syntactic position of a string lit-
eral. The checker therefore uses another regular langnégyséc-
tion to check the language rooted@E Tuidfor un-escaped quotes.

into a grammar production yields a CFG that reflects the progr
dataflow, as in Figure 5c. By simply annotating the nonteadsin
corresponding to direct and indirect sources appropyiated have
a string-taint anlysis for programs with concatenatiosigements,
and control flow.

In general, right hand sides of assignment statements nray co
tain string functions, such asscape_quotes(), which adds a

When it finds them, it issues a bug report. The checker does notslash before each quote character in its argument. Trargslas-

only check for the case of string literals, but that sufficesthis
example.

3. Analysis Algorithm
This section describes our analysis algorithm in detail.

3.1 String-Taint Analysis

The first phase of our analysis combines ideas from statit tai
analysis with string analysis.

3.1.1 Adapting String Analysis

String analysis has the goal of producing a representaticadl o
strings values that a variable may assume at a given progoarh p
This goal does not imply any relationship between the strect
of that representation and the way that the program prodhecsse
values. If the string analysis represents languages as finftomata
and it determinizes intermediate results, the final DFA Wwdle
little relation to the program’s dataflow [3]. Our analysiashthe
goal of producing not only a representation of all stringresl that
a variable may assume, but also a function from string vaioes
substrings whose values come from direct or indirect saurice
terms of Definition 2.3, we need to identify occurences @f) in
each query string.

signments into grammar productions then yeilds an exteded
that has functions in its productions’ right hand sides. @oting
extended CFGs into standard CFGs requires some approaimati
and Minamide models string operations as finite state traresd
(FSTs) in order to capture their effects and make the appration
reasonably precise. Section 3.1.2 describes how FSTs cdelmo
string operations and how we track annotated sources thritnegn

in more detail.

3.1.2 Tracking Substrings through Filters

Definition 2.1 specifies that web applications can apply fions
on strings to untrusted inputs. In order to avoid reportimmynfalse
positives, the string-taint analyzer must model the effetffilters
and propagate annotations through them. This sectiorws\iew
Minamide’s string analysis models the effects of filters dmen
describes how we adapt these techniques.

A transducer is an automaton with output. A finite state trans
ducer is similar to a Mealy machine, except that a finite states-
ducer has one or more final states and may be non-deterministi
Many string operations that PHP provides as library fumsibe-
have as finite state transducers. For exampte, replace takes
three strings as arguments: a pattern, a replacement, argjexts
The FST in Figure 6 describes the effectssof_replace when
the pattern is* '’ and the replacement is” The notation ¢1 /¢’

Section 2.2 gives as one reason for using CFGs to representon the transitions means that on input charaeterthe transition

sets of query strings that tainted substring boundariebearpre-
sented by labeling certain nonterminals—thus the stridgsiva-

can be taken and it will output. In Figure 6,4 matches any char-
acter except*. The string analysis converts a grammar production
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Figure 6. A finite state transducer equivalent of the function
str_replace(" ten s nen s $B), A c 2 \ {l}

with a string operation, such as
x — escape_quotes(y)

into a standard grammar production by finding the image of the
CFG rooted at the operation’s argumen} ¢ver the FST that the
string operations represents.

A CFG has acycleif there exists a sentential form derivable
from a nonterminal that contains the nonterminals. If aredéed
grammar has the production shown above, and if

y =G azf

then theescape_quotes operation occurs in a cycle. String oper-
ations that occur in cycles within the extended CFG must be ap
proximated because the complete CFG rooted at the opégation
argument ) cannot be constructed independently of the string op-
eration.

Some string operations are more expressive than finite state
even context free, transducers. For example, PHP provideg-a
ular expression-based replace functipeg_replace. Its three
arguments are: a regular expression pattern, a paraneztaiz
placement, and a subject. Within the replacement, an occeref
“\n,” wheren is a number, represents the string matched by the ex-
pression between thet open parenthesis and its matching close
parenthesis in the pattern. As an example,

preg_replace("/a([0-9]*)b/",
"x\\1\\1y",
"a01ba234b")

"x0101yx234234y"

The “\\1” puts the substring matched by the expression within the
first pair of parentheses (because the numbe} isto the output.
Although the image of a CFL under a regular expression replac
ment is not necessarily context free (because of the abilitysert
multiple copies of a regular expression match, as abovehrhmd
Sproat describe how to approximate it using two FSTs [21].

The string analysis also uses a similar technique to maintai
precision from conditional expressions when constructireggex-
tended CFG. If the condition is a regular expression matsigra
line 14 in Figure 2, the string analysis adds an intersection wigh th
condition’s regular expression to the beginning of then branch
and an intersection with the complement of the regular esgioa
to theelse branch.

An adaptation of the standard context free language-réditha
algorithm [19] computes the intersection of a CFG and an FS& a
CFG without constructing an intermediate push-down automa
and we add to the algorithm to propagate annotations. Figure
shows the algorithm with our additions: the functionINTIF()
and the two calls to it on linego and 28 of INTERSECT). The
following theorem states that this algorithm propagatewtations
appropriately.

Theorem 3.1. GivenC’ = INTERSECT(C, F), s€ L(C) N L(F),
and a parse treeof s underC, there exist1, s2, andss such that
s18283 = s andss is derivable from alirect-labeled nonterminal

INTERSECTG = (Vb, 2o, So, Ro), FSA = (Q, %, 6, qo,qr))
(V, X, S, R) «— NORMALIZE((Vb, X0, So, Ro))
Vi1
R — 0
for each(gi,o,q;)ind
doV’' —V'U {O’ij}
R «— R U{oi; — o}
I* |rhs| = 0*
for eachX — ¢ in R
do for eachgq; in Q
doV' —V'U {X“}
R — R U {X“ — 6}
WkLst «— V'
for eacha;; in WkLst
do WkLst «— WkLst \ {c;}
I* |rhs| = 1*
for eachX — « in R
doif not (X;; in V')
then WkLst — WkLst U {Xi;}
V' —V'U {XL]}
TAINTIF(X, X;)
R/ — Rl @] {X” — Oéij}
I* |rhs| = 2*
for eachX — af in R
do for eachg; in V'
doif not (X, in V')
then WkLst — WkLst U { X}
V —V'uU {XLk}
TAINTIF(X, X1)
R — R'U{Xik — ai;Bjr}
if Sopin V'
then return (V', %, Sos, R')
else return({S'},{}, 5", {})

[En

29
30
31
32

NORMALIZE(G = (V, X, S, R))
1 R 90
2 WkLst — R
3 for each X — [v]in WkLst
4 do WkLst — WkLst \ {X — [y]}

5 if length[y] > 2

6 then X’ <+ FRESHVAR()

7 V—Vu{Xx'}

8 R «— R'U{X — head[) X"}

9 WkLst +— WkLst U{X" — tailly]}
10 else R — R U{X — [7]}

11 return (V,%, S, R')

TAINTIF( X1, X2)
1 if HASLABEL(X;, direct)

2  then ADDLABEL(X2, direct)
3 if HASLABEL (X1, indirect)
4  then ADDLABEL(Xp,indirect)

Figure 7. Taint propagation in CFG-FSA intersection.

in p iff there exists a parse trgg of s underC’ such thatss is
derivable from alirect-labeled nonterminal ip’.

The proof is by a straightforward induction on the heighthaf t
derivation ofs. Due to space constraints, we omit the proof here.
The case for INDIRECT” is identical.

The algorithm for finding the image of a CFG over an FST
is similar to the CFG-FSA intersection algorithm, excepattthe
FST's output symbols replace the CFG's terminals as thegmat



explode(s1, s2)

expld(si, s1, L, s)

expld(si, s2, L, s), |s2| < |s1]
expld(si, s1”s2, L, s)
expld(si, c”s2, L, s),|c| =1

expld(si, s2, [ 1,¢€)
LQ[s]

LQ[s"s2]

expld(si, s2, LQ[s], €)
expld(si, s2, L, s™¢c)

Figure 8. Semantics oéxplode.

the FST’s input symbols. The modifications for propogatiaigtt
information are the same for that algorithm as in Figure 9, the
proof of correctness is analogous to the proof of Theorem 3.1

Definition 2.1 only allows string concatenation after infilt
ters. The taint-propagating algorithm in Figure 7 corregtlopa-
gates tainted substring boundaries even for filters thatatpen
inputs concatenated with other strings. Thus we extend efiaid
tion of SQLCIVs to web applications with operations beyonase
that Definition 2.1 allows and still check for SQLCIVs withghi
precision.

3.1.3 Handling Other String Operations

Real-world web applications also perform operations iviva
strings that do not simply map strings to strings. For each syp-
eration, we must determine how substrings in the input mapibe
strings in the output and propagate annotations accosdivifg use
as a straightforward but representative example#pd ode func-
tion, which takes two string arguments: a delimiter and gesuib
It returns an array of substrings formed by splitting thejscton
boundaries formed by the delimiter. Figure 8 shows the sénsn
of explode. Because the strings that it returns are taken directly
from the subject, the meaning of untrusted substring flovieiarc
The string analysis models the effectseafplode accurately,
except that it loses the order of the strings in the returmesd/a-it
produces a grammar whose language is that set of stringsldte
rithm (due to Minamide [20]) uses two FSTs constructed from t
delimiter, and because we propagate labels through FSTeotigr
(see Section 3.1.2), we track tainted substrings accyrtiedugh
the explode function. Space limitations prevent us from giving a
full presentation of the algorithm here.

3.2 Policy-Conformance Analysis

The second phase of our analysis checks the generatedatethot
grammar for SQL injection attacks. In most cases, prograrsime
tend that inputs take the syntactic position of literalt®a 3.2.1
describes our checks for this case, and Section 3.2.2 pisesen
approach for the case when the input may be derived from &n arb
trary nonterminal in the reference (SQL) grammar.

3.2.1 Untrusted Substrings as Literals

This section describes how we attempt for each annotatemon
minal X either to verify that all strings derivable frod are syn-
tactically confined or to find that some string derivable frém
are not syntactically confined. We apply the algorithm désckin
Section 3.2.2 to nonterminals for which the checks in thidise
fail to provide conclusive results.

The first check attempts to find untrusted substrings thatatan
be syntactically confined in any SQL query. In particulacdese
quotes delimit string literals in SQL, if any untrusted swing has

an odd number of un-escaped quotes (escaped quotes reapresen

characters rather than delimiters in string literals), dahmot be
syntactically confined. The grammar generated by the steirg
analysis reflects the program’s dataflow, so the strings/alele
from labeled nonterminals are the possible untrusted sngstin
generated SQL queries. LEt be the set of labeled nonterminals in

V. ForeachX eV, if

0 L(V,S, X, R)NL(/~ ([ TN\ 7!
(L TN\ 7!
(LTI * [\ 7 ) *
(1IN *$/)

then there exists a string derivable fra¥nthat is not syntactically
confined (the Perl regular expression matches strings witbdal
number of unescaped quotes), and we remgvieom V.

The second check finds the nonterminald/irthat occur only
in the syntactic position of string literals and, for eacte peither
verifies it as safe or finds that it derives some unconfinedgstiihe
algorithm identifies the syntactic position of labeled momntinals
by creating from the grammar production $eta new production
setR;: for each labeled nontermin& € V/, replace right-hand-
side occurences of in R with a fresh terminatx ¢ ¥ and add
tx to X. For each labeled € V, if for all stringsoi1txos €
L(V,X,S, Re), o1 has an odd number of unescaped quotes, then
X only occurs in the syntactic position of a string literal.eTh
following implements this check:

0=L(V,S,S,RYNL(/["']*
C T TIND =
CCNIINIS TN ?
RN DL
tx .*$/)

For eachX € V; for which the test above succeeds, if anyc
L(V,X, X, R) has unescaped quotes in X, derives unconfined
strings; otherwiseX is safe. We then remov& from V.

The third check attempts to identify those remaining nanter
nals inV; that only derive numeric literals. For eagh e V;, if

0=L(V,E, X, R)NL(/"(([70-9.+-1.%["0-9.1/)
[CL.1.x[.10))

then X derives only numeric literals and is safe; removefrom
Vi.

Finally, if X can produce a non-numeric string outside of
quotes, it likely represents an SQLCIV. To confirm this, weah
whether X can derive any of a given set of strings that cannot
be syntactically confinede(g:'DROP WHERE,” “--" etc.). If it can,
thenX is unsafe, and we remove it frol.

3.2.2 Untrusted Substrings Confined Arbitrarily

If any nonterminals remain ifiY; after the checks in Section 3.2.1,
we wish to check whether each string derivable from themiis-de
able from some nonterminal in the SQL grammar. In general; co
text free language inclusion is undecidable, but we cancqppr
mate it by checking grammar derivabilifye., whether the gener-
ated grammar is derivable from the SQL grammar [28].

Definition 3.2 (Derivability). GrammarG: = (V41,3%, S1, R1) is
derivablefrom grammaiGz = (V2, X, S2, R2) iff
3o: (ViUuX) — (VaUY)
(13(51) =S5 A
VseX O(s) =sA
V(X —v) € R ®(X) =¢, 2°(v)

whered™ is @ lifted to (V1 U X)*, i.e,

D (e) = €
() = P(a) foraeVhux
" (af) = ()P (B)

Lemma 3.3. If G; is derivable fromGs, thenL(G1) C L(G2).

We check derivability using an extension of Earley’s paysii
gorithm [4] that parses sentential forms and treats noritedsnin



G4 as variables that range over terminals and nonterminais alh isset ($_GET['newsid']) 7

gorithm is inspired by and is similar to Thiemann’s algamitf28]. $getnewsid = $_GET['newsid']

We do not require that the entire generated grammar be tiégiva $getnewsid = false;

from the SQL grammar; we require derivability for the sulmgra if (($getnewsid != false) &&

mar rooted atX and all sentential forms that includg. If the (!pregmatch('/~[\d]+$/', $getnewsid)))

derivability check fails, we consideX to be unsafe.
unp_msg('You entered an invalid news ID.');
3.3 Soundness exit;

We state and sketch the proof of a soundness result here. }

Theorem 3.4 (Soundness) If our analysis algorithm does Not i+ (1gshowall & $getnewsid)
report any SQLCIVs for a given web applicatid?, then P has {

no SQLCIVs. $getnews = $DB->query("SELECT * FROM “unp_news™"
."WHERE “newsid ='$getnewsid'"

Proof. The string analysis produces a CEGrom web application "ORDER BY “date DESC LIMIT 1"):

P that derives all strings thd may generate as query strings [20]. }
The algorithm for constructing: reflectsP’s dataflow so that for
assignments and concatenation, labels on nonterminais diro Figure 9. Source of a false positive.

trusted sources accurately identify untrusted substriBgsTheo-

rem 3.1, the CFGs constructed as the intersection of a CFG and

an FSA, or the image of a CFG over an FST, is labeled to reflect what kinds of errors it would find and what would cause false

the boundaries of untrusted substrings. The conformaneekaig positives. We use the following subjects in our evaluatieh07
algorithm from Section 3.2 generates an error message ¢tnl@ac  and Warp Content Management System are content management
beled nonterminal unless the algorithm can verify it todeonly systems; EVE Activity Tracker is an activity tracker foreégration
syntactically confined strings, as required by DefinitioB.2. O into existing IGB homepages; and Tiger PHP News System and
Utopia News Pro are news management systems. Table 1 ksts th
4. Implementation size of each of these web applications in terms of the number o

files and the number of lines of PHP code. The test suite fahano

We implemented our technique for PHP, using and modifying Mi PHP analysis tool [31] includes an earlier version of e10d, \@e

nfamide’s str!ng gnalyzer: In addition to the changes desdrpre- do not know of any database-backed PHP web application with
V'OLt’Szjy (adding m;‘ormatlondflotvr\: trackllng and check? on ih?g t more lines of code. We ran the analysis on a machine with a 3GHz
erated grammars), we made the analyzer more automated in two : I

ways. First, we added specifications for 243 PHP functioes- S processor and 8GB of RAM running Linux — Fedora Core 5.

ond, we enhanced its support for dynamic includes. Prelyjotlie 5.2 Accuracy and Bug Reports

analyzer would fail if it reached an include statement, dechram-
mar it had generated for the include statement’s argumeh@ha
infinite language. For example, if the analyzer recordegtssible
values for$choice as being:*, the analyzer would fail at:

The code in Figure 2 shows a vulnerability that our tool fotoyd
modeling regular expressions precisely. Two others in ldtblgws
Pro are similar to this one. Although some of the SQLCIVs that
tool found were trivial, others crossed file and class botieda

include("e107_languages/lan_".$choice.".php"); For example, the SQLCIV in €107 comes from a field read from
We address this by considering the file and directory layouiet a cookie, which a user can modify, that is used in a query in a
part of the specification. If the analyzer encounters suclinan  differentfile. .
clude statement, it builds a regular expression repretientaf Across this test suite, our tool had®/ (19+5)) = 20.8% false
the directory layout starting from the analyzed projectstr It positive rate. Thls_false positive rate demqnstrate theapproach
then intersects the (finite) language of this regular exgioeswith is effective for finding SQLCIVs and verifying the absencefefm.
the language of the grammar to find the list of files to include. = Our tool produced the false positives that it did because of i
This language-based approach does not model the full seman-does not track_lnformatlon with sufficient precision thrt_n_lgpe
tics of paths €.g, “..” as parent directory), but we believe this ~ CONVersions. Figure 9 shows one of the two false positives fr

choice to be appropriate for two reasons. First, we have not e Utopia News Pro (the other is similar). The PHP runtime syste
countered cases where the programmer-intended valuesrief va Will dynamically cast between any of the scalar types wittumm-

ables like$choice include “. .”; and second, security exploits on  Plaint. It casts a value of type string to a value of type baole
dynamic inclusion vulnerabilities generally reveal séwsiinfor- producing a value ofalse if the string is *” (empty) or “0,” and
mation stored in files and do not facilitate SQL command ftigec true otherwise. To avoid the false_ positive s_hovv_n in F|g_ure _9, the
attacks. analyzer would have to model this conversion in the first cond
The string analyzer does not support all features for PHP. Fo tional expression and propagate its implications beyosdttien”
example, itincludes only limited support for references. jsan to branch. The three false positives from Tiger PHP News Systéem
add support for these features, but until full-support ailable, we ~ Sulted from a hand-written string sanitizing routine. Degieg on
manually approximate unsupported lines of PHP code andyveri gchqracters ASCII value, this routine will either encotlerikeep
that the changes do not remove potential errors. it as is. The string analyzer does not have a map from chasacte

to their ASCII values, so it failed to track the precise effeof
; this routine. Both of these types of false positives couldvmded
5. Evaluation by equipping the string analyzer with more information atigpe
This section presents the setup and results of our evatuatio conversions.
. Evaluating whetheindirect error reports represent real errors
5.1 TestSubjects is difficult because it requires making assumptions aboutt\ithta
We evaluated our tool on five real-world PHP web applications  can flow into the sourcee(g, the database). However, Figure 10
order to test its scalability and its false positive rateq am see shows one example of andirect error report that seems to repre-



Name (version) Files | Lines Grammar Time (h:m:s) Errors
Size String SQLCIV direct indirect
VI | IR Analysis Check | Real | False

el07 (0.7.5) 741 | 132,850 62,350 377,348 | 3:39:26.23| 35:36.12 1 4
EVE Activity Tracker (1.0) 8 905 57 1628 0.40 0.06 4 0 1
Tiger PHP News System (1.0 beta 3p) 16 7,961 | 82,082 | 1,078,768 3:14:06.95 5.39 0 3 2
Utopia News Pro (1.3.0) 25 5,611 | 5,222| 336,362| 25:00.08| 2:08.69 14 2 12
Warp Content MS (1.2.1) 42 23,003 | 1,025 73,543 21.10 0.08 0 0 0

| Totals [ 19] 5] 17 ]

Table 1. Evaluation results.
$newsposter = $USER['username']; different in one key respect. Unlike for many program analys

$newsposterid = $USER['userid'];
// Verification
if (unp-isEmpty($subject) || unp_isEmpty($news))
unp_msg($gp_allfields) ;
exit;
}

if (!pregmatch('/~[\d]+$/', $newsposterid))

unp_msg($gp_invalidrequest);

exit;
}
$submitnews = $DB->query("INSERT INTO ~unp_news "
."(“date”, “subject’, “news’, “posterid’,"
."“poster )"
." VALUES "

."('$posttime', '$subject', '$news',"
."'$newsposterid’, '$newsposter')");

Figure 10. Source of arindirect error report.

sent a true vulnerability. Botbnewsposter and$newsposterid
are assigned from th&USER array, which is populated elsewhere
from the results of a database query. The fact $hatrsposterid

is checked and natnewsposter seems to indicate the possibil-
ity of unexpected values, and at the least it representsifistent
programming.

5.3 Scalability and Performance

As stated in Section 4, our string analyzer currently hasestm-
itations in terms of the PHP constructs it supports. Neetess,
on three of the subjects in our test suite (EVE Activity Traick

settings where a code base has a single top-level functiain th
can be passed to an analyzer, each file that represents oae pag
in a web application defines a top level function. In many web
applications, most files defining top-level functions imtgand use

the same helper functions in other files, and our tool reyaesl
these included files each time. In such cases, our tool agmlyz
most of the code in a small fraction of the time required tdyarea

the whole web application. This also illustrates that gtntforward

use of memorization or concurrent executions of the analyaald
improve the performance dramatically in some cases.

A few points are particularly noteworthy here. First, thargr
mar size is not necessarily proportional to the web appdinatize.
The query grammar generated from Tiger PHP News Systentis sig
nificantly larger than that of e107, which is over an order afgm
nitude larger in terms of lines of code. This reflects in soemese
the size of the web application devoted to database queries.

Second, the string analysis time is not necessarily priait
to the grammar size. The grammar size reported is only for the
grammar representing possible database queries. Thg atraly-
sis works “eagerly,” analyzing some string expressionstihge no
influence on the generated database queries. This eaggsianad
troduce significant unnecessary overhead in web applitaticat
process user input for marked up display, such as in an oblike
letin board or forum. Tiger PHP News System includes suclecod
that substitutes html tags for forum equivalergsy( <bold> for
[bold]l) and designated character sequences for “emoticon” links.
Tiger PHP News System is designed to be secure, and it irclude
a forum with such code. Each regular expression or strinig.cep
ment function (potentially) causes its argument’'s gramtoan-
crease by some factor, so that a sequence of these replaaexnen
pressions leads to a blow up that is exponential in the nurober
replacements. We removed two sections of such code fronr Tige
PHP News System in order to speed up the analysis, but inipienc

Utopia News Pro, and Warp Content Management System) the an-the analyzer could use a backward dataflow analysis to diterm

alyzer ran successfully. The others include certain ctigremsup-
ported constructs, and we manually modified the code to ahew
analyzer to continue but without causing any potential rerto

which variables may influence a database query, and refram f
analyzing the rest. We expect that this would speed up thly-ana
sis significantly. Additionally, dynamic file inclusionsrcdéead to

be missed. The unsupported construct that we encountersti mo 5 combinatorial blow up. Each time a file is included, it iseiried

frequently was thestr_replace function with array-type argu-
ments, which were generally given statically. We expandhede
str_replace Statements into sequences sffr_replace state-
ments, each with scalar arguments. These unsupportedwcisst
do not represent a shortcoming in our technique, but onlyi@ot
limitation in our prototype.

Regarding scalability, we note first that our tool succdlsfu
analyzed all of the web applications in our test suite. Tdblists
the size of the grammars representing SQL queries that alr to
generates in terms of the number of nontermin&l§|)(and the
number of production rulesR|). Next to the grammar size, it lists
the time spent on string analysis and the time spent chechimg
generated grammars for SQLCIVs. Analyzing web applicatisn

in situ and its top-level scope is merged into the scope where it is
included. If one file has an include statement whose arguiisent
entirely unspecified statically, the analyzer will try tcinde every
other file in the project and with each of them, which ever fitesy
may include. In the case of €107 with 741 files, we had to pevid
file names for two include statements.

Finally, the SQLCIV checking phase is relatively efficieAt:
though the grammars had more than one million productioasrul
in some cases, SQLCIV checking never took more than a few min-
utes, and usually took less.



6. Related Work
In this section we survey closely related work.

6.1 Static String Analysis

The study of static string analysis grew out of the study af te
processing programs. An early work to use formal languages (
regular languages) to represent string values is XDuce HLRIn-
guage designed for XML transformations. Tabuehal. designed
regular expression types for strings in a functional lagguaith a
type system that could handle certain programming coristiich
greater precision than had been done before [27].

Christenseret al. introduced the study of static string analy-
sis for imperative (and real-world) languages by showireyuke-
fulness of string analysis for analyzing reflective code aval
programs and checking for errors in dynamically generat®tl S
queries [3]. They designed an analysis for Java that has BSAs
its target language representation; they chose FSAs be&&is
are closed under the standard language operations. Thewls
plied techniques from computational linguistics to getreigood
FSA approximations of CFGs [21]. Their analysis, howeveesl
not track the sourced of data, and because it must deteertingz
FSAs between each operation, it is less efficient than othiegs
analyses and not practical for finding SQLCIVs. Goetdil. used
this analysis to type check dynamically generated qudsigsnade
approximations that would cause them to miss SQLCIVs [6].

Minamide borrowed techniques from Christenstral. to de-
sign a string analysis for PHP that does not approximate GBGs
FSAs, so it can be more efficient and more accurate [20]. He als
utilized techniques from computational linguistiosz( language
transducers) [22] to improve the precision of his analysémaodel
the effects of string operations, which are used frequentbgript-
ing languages. His analysis does not track the source obdpte-
itly, and it is designed to validate dynamically generatetVHL,
which has a flatter grammar than SQL. For both Minamide and
Christenseret al’s analyses, the user must provide regular expres-
sion specifications of the permitted queries at each questitan.
We avoid the need for manually written specifications firstibyng
a general policy based on both dataflow and string strucane,
second by adding explicit dataflow information to the gramisna
nonterminals in Minamide’s analysis.

6.2 Static Taint Checking

Static taint checking is essentially information flow arsidyspe-
cialized to determine whether data from an untrusted sdioes
into a sensitive sink. Static taint checking has a long hystiout
Huanget al. were perhaps the first to apply it to SQLCIVs [11].
They used a CQual-like [5] type system to propagate taiormé-
tion through PHP programs. Livshits and Lam [17] used a peeci
points-to analysis for Java [30] and queries specified in P®lLto
find paths in Java programs that allow “raw” input to flow infQIS
queries. Both of these tools are sound with respect to theybley
enforce and the language features they support, and botméng
vulnerabilities, but both consider all values returnechfrdesig-
nated filtering functions to be safe. Because the policy tsy
says nothing about the context of the user input and thetatreiof
the query, both techniques may miss real SQLCIVs. Additigna
Huanget al's type system does not support some of PHP's more
dynamic features, in part because it does not track strihgesa
at all and supporting these features would result in too nfialsg
positives.

Jovanovicet al. sought to address this last shortcoming with
Pixy [12, 13], a static taint analysis for PHP that propagéitaited
string information and implements a finely tuned alias asialyie
and Aiken designed a more precise and scalable analysisftimd
SQLCIVs in PHP by using block- and function-summaries [31].

The precision they gained comes at the expense of automation
the user must provide the filenames when the analysis eramsunt

a dynamic include statement, and the user must tell the sisaly
whether each regular expression encountered in a filtewimgtion

is “safe.” We are able to make a stronger guarantee about the
absence of SQLCIVs because we analyze the possible valties of
strings and check conformance to a policy that takes intowatc

the query’s structure.

6.3 Runtime Enforcement

Because more information about data and program execugion i
available at runtime, several groups have proposed tegésitp
enforce more expressive policies than simply tracking the tf
tainted input, which Perl’s taint mode already provides|[Z9v-
NESIA, by Halfond and Orso, uses Christensgral’s Java string
analyzer to construct a policy requiring user inputs to belsito-
kens in constructed queries, and enforces that policy &imnerj8].

The effectiveness of this approach is limited by the stringly

sis’ precision. Buehreet al. also enforce a policy that user in-
put must be a single token in the query, but they do not rely on
a static analysis [2]. They bound user input, parse the guaeny
check whether the parse tree retains the same structure tben
user input is replaced by a single dummy node. Java provides a
PreparedStatement API, which forces inputs in queries built
with it to be string or numeric literals. Boyd and Keromytaught

to enforce this via instruction set randomization [1i4,, by ran-
domizing the SQL keywords in the web application, so thatsise
could not guess the keywords [1]. This technique cannotigeov
guarantees, because the user may guess the randomization ke

Both Nguyen-Tuongpt al.[23] and Pietraszek and Berghe [24]
propose to enforce the same policy for PHP more rigorousigyT
modify the PHP interpreter to track taint information at thear-
acter level, tokenize the completed query, and check whetie
tainted characters appear in any tainted characters. Afi@dadin-
terpreter has the advantage that it can add security gessubd
arbitrary web applications, but practical issues of depieyt and
system maintenance limit such a technique’s effectivenggsset
al. propose a source-to-source translator for C that addsttack-
ing [32]. It can be used to ameliorate the system maintenprate
lem by adding taint-tracking to new versions of the PHP inter
preter’s source code.

WAasp, by Halfondet al., enforces approximately the same pol-
icy for Java, but they uspositive tainting i.e., they taint trusted
strings, and allow only tainted characters in keywords sslie
programmer specifies with a regular expression that uset mpy
include certain keywords [7]. Additionally, instead of nifythg
the JVM, they provide a byte code instrumenter. Su and Wasser
mann use delimiters to track user input into generated gsiegind
parse the queries based on a modified grammar to check whether
the user input is parsable under any of a permitted set ofenont
minals within the query [25]. The policy we enforce allowsus
input to be parsable under any nonterminal, but in principée
could limit the allowable nonterminals. Although these tmne
techniques to prevent SQL injection attacks are more pebisn
static analyses in general, some SQLCIVs are indicativargfelr
programming errors. Static analysis can help to find and fehsu
errors prior to deployment. Additionally, general runtiereforce-
ment techniques incur more runtime overhead than apptepria
well-placed filters, which static analysis can check.

7. Conclusion

In this paper we have proposed a new static analysis algorith
to find SQLCIVs. It characterizes the sets of possible da@ba
queries that a web application may generate using contegt fr
grammars, and tracks information flow from untrusted sainc®



those grammars. By using a general definition of SQLCIVsdbase
on the context of untrusted substrings, we avoid the neeaému-
ally written policies. Our implementation worked well umd®al-
uation. It was precise, detected unknown vulnerabilitiesedal-
world web applications with few false positives, demortstgthe
effectiveness of our approach.

We plan to make three improvements to our tool: first, we plan
to extend it to support all of PHP's features; second, we faud
a backward dataflow analysis to prevent it from analyzinggem
string expressions that do not influence database qudhied, we
plan to track line numbers from PHP source files through to the
grammars’ nonterminals in order to improve the quality & bug
reports. We would like to apply the same technique to detgcti
vulnerabilities that allow cross-site scripting attacks which a
server may deliver untrusted JavaScript code to be exedyted
client browser with the full permissions of the trusted ser\We are
also interested in integrating our analysis into a broadsiness
logic analysis of web applications [15] in order to track sses
variables as they flow from one page to another and provide mor
precise and informative warnings.
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