
Sound and Precise Analysis of Web Applications
for Injection Vulnerabilities ∗

Gary Wassermann Zhendong Su
University of California, Davis
{wassermg, su}@cs.ucdavis.edu

Abstract
Web applications are popular targets of security attacks. One com-
mon type of such attacks is SQL injection, where an attacker
exploits faulty application code to execute maliciously crafted
database queries. Both static and dynamic approaches have been
proposed to detect or prevent SQL injections; while dynamic
approaches provide protection for deployed software, static ap-
proaches can detect potential vulnerabilities before software de-
ployment. Previous static approaches are mostly based on tainted
information flow tracking and have at least some of the following
limitations: (1) they do not model the precise semantics of input
sanitization routines; (2) they require manually written specifica-
tions, either for each query or for bug patterns; or (3) they are
not fully automated and may require user intervention at various
points in the analysis. In this paper, we address these limitations by
proposing aprecise, sound, andfully automatedanalysis technique
for SQL injection. Our technique avoids the need for specifica-
tions by considering as attacks those queries for which userinput
changes the intended syntactic structure of the generated query. It
checks conformance to this policy by conservatively characterizing
the values a string variable may assume with a context free gram-
mar, tracking the nonterminals that represent user-modifiable data,
and modeling string operations precisely as language transducers.
We have implemented the proposed technique for PHP, the most
widely-used web scripting language. Our tool successfullydiscov-
ered previously unknown and sometimes subtle vulnerabilities in
real-world programs, has a low false positive rate, and scales to
large programs (with approx. 100K loc).

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation

General Terms Languages, Security, Verification

Keywords Static Analysis, String Analysis, Web Applications

∗ This research was supported in part by NSF NeTS-NBD Grant No.
0520320, NSF CAREER Grant No. 0546844, NSF CyberTrust GrantNo.
0627749, and a generous gift from Intel. The information presented here
does not necessarily reflect the position or the policy of theGovernment
and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

1. Introduction
Web applications enable much of today’s online business including
banking, shopping, university admissions, and various governmen-
tal activities. Anyone with a web browser can access them, and the
data they manage typically has significant value both to the users
and to the service providers. Consequently, vulnerabilities that al-
low an attacker to compromise a web application’s control ofits
data pose a significant threat. SQL command injection vulnerabil-
ities (SQLCIVs) comprise most of this class. Not only are SQL-
CIVs serious, but they are pervasive. In 2006, 14% of the CVEs
(i.e., reported vulnerabitilities) were SQLCIVs, making SQL injec-
tion the second most frequently reported security threat [9]. Some
web security analysts speculate that because web applications are
highly accessible and databases often hold valuable information,
the percentage of SQL injection attacks being executed is signifi-
cantly higher than the percentage of reported vulnerabilities would
suggest [26].

SQLCIVs are common primarily because applications typically
communicate with backend databases by passing queries as strings.
Figure 1 shows the typical three-tiered web application architecture
and illustrates the communication among the tiers: web browsers
provide a ubiquitous user interface, application servers manage the
business logic, and back-end databases store the persistent data.
Because the application layer uses a low-level, queries-as-strings
API to communicate with the database, the application constructs
queries via low-level string manipulation and treats untrusted user
inputs as isolated lexical entities. This is especially common in
web applications written in scripting languages such as PHP, which
generally do not provide more sophisticated APIs and use strings
as the default representation for data and code. Consequently, some
paths in application code may incorporate user input unmodified
or unchecked into database queries. The modifications/checks of
user input on other paths may not adequately constrain the input
to function in the generated query as the application programmer
intended (see Figure 2 for an example).

1.1 Existing Approaches

Many approaches have been proposed for preventing SQL injection
attacks, both dynamic [7, 23, 24, 25] and static [12, 18, 31].Run-
time approaches are useful for protecting deployed software, but
static approaches are desirable during software development and
testing for a number of reasons. First, a single programmingerror
often manifests itself as multiple different bugs, so statically veri-
fying code to be free from one kind of error (e.g., static type check-
ing) helps to reduce the risk of other errors. Second, the overhead
that general techniques incur significantly exceeds the overhead of
appropriate, well-placed checks on untrusted input. Even if the net-
work latency dominates the overhead of a runtime check for a sin-
gle user, the added overhead can prevent a server from functioning

Figure 1. Web application architecture.

effectively under a heavy load of requests. Finally, some runtime
techniques [23, 24] require a modified runtime system, whichcon-
stitutes a practical limitation in terms of deployment and upgrading.

Static analyses to find SQLCIVs have also been proposed, but
none of them runs without user intervention and can guarantee the
absence of SQLCIVs. String analysis-based techniques [3, 20] use
formal languages to characterize conservatively the set ofvalues a
string variable may assume at runtime. They do not track the source
of string values, so they require a specification, in the formof a
regular expression, for each query-generating point orhotspotin
the program — a tedious and error-prone task that few program-
mers are willing to do. Static taint analyses [12, 18, 31] track the
flow of tainted (i.e., untrusted) values through a program and re-
quire that no tainted values flow into hotspots. Because theyuse
a binary classification for data (tainted or untainted), they classify
functions as either being santitizers (i.e., all return values are un-
tainted) or being security irrelevant. Because the policy that these
techniques check is context-agnostic, it cannot guaranteethe ab-
sence of SQLCIVs without being overly conservative. For exam-
ple, if theescape quotes function (which precedes quotes with
an “escaping” character so that they will be interpreted as charac-
ter literals and not as string delimiters) is considered a sanitizer, an
SQLCIV exists but would not be found in an application that con-
structs a query using escaped input to supply an expected numeric
value, which need not be delimited by quotes. Additionally,static
taint analyses for PHP typically require user assistance toresolve
dynamic includes (a construct in which the name of the included
file is generated dynamically).

1.2 Our Approach

We propose a sound, automated static analysis algorithm to over-
come the limitations described above. It is grammar-based;we
model string values as context free grammars (CFGs) and string
operations as language transducers following Minamide [20]. This
string analysis-based approach tracks the effects of string opera-
tions and retains the structure of the values that flow into hotspots
(i.e., where query construction occurs). If all of each string in the
language of a nonterminal comes from a source that can be influ-
enced by a user, we label the nonterminal with one of two labels.
We assign a “direct” label if a user can influence the source di-
rectly (as withGET parameters) and a “indirect” label if a user can
influence the source indirectly (as with data returned by a database
query). Such labeling tracks the source of string values. Weuse
a syntax-based definition of SQL injection attacks [25], which re-
quires that input from a user be syntactically isolated within a gen-
erated query. This policy does not need user-provided specifica-
tions. Finally, we check policy conformance by first abstracting the
labeled subgrammars out of the generated CFG to find their con-
texts. We then use regular language containment and contextfree
language derivability [28], to check that each subgrammar derives
only syntactically isolated expressions.

We have implemented this analysis for PHP, and applied it to
several real-world web applications. Our tool scales to large code
bases — it successfully analyzes the largest PHP web application

...
01 isset ($ GET['userid']) ?
02 $userid = $ GET['userid'] : $userid = '';
03 if ($USER['groupid'] != 1)
04 {
05 // permission denied
06 unp msg($gp permserror);
07 exit;
08 }
09 if ($userid == '')
10 {
11 unp msg($gp invalidrequest);
12 exit;
13 }
14 if (!eregi('[0-9]+', $userid))
15 {
16 unp msg('You entered an invalid user ID.');
17 exit;
18 }
19 $getuser = $DB->query("SELECT * FROM `unp user`"
20 ."WHERE userid='$userid'");
21 if (!$DB->is single row($getuser))
22 {
23 unp msg('You entered an invalid user ID.');
24 exit;
25 }
...

Figure 2. Example code with an SQLCIV.

previously analyzed in the literature (about 100K loc). It discovered
many vulnerabilities, some previously unknown and some based on
insufficient filtering, and generated few false positives.

2. Overview
In order to motivate our analysis, we first present the policythat
defines SQLCIVs, and then give an overview of how our analysis
checks web applications against that policy.

2.1 SQL Command Injection Vulnerabilities

This section illustrates SQLCIVs and formally defines them.

2.1.1 Example Vulnerability

Figure 2 shows a code fragment excerpted from Utopia News Pro,
a real-world news management system written in PHP; we will
use this code to illustrate the key points of our algorithm. This
code authenticates users to perform sensitive operations,such as
managing user accounts and editing news sources. Initially, the
variable$userid gets assigned data from aGET parameter, which
a user can easily set to arbitrary values. The code then performs two
checks on the value of$userid before incorporating it into an SQL
query. The query should return a single row for a legitimate user,
and no rows otherwise. From line14 it is clear that the programmer
intends$userid to be numeric, and from line20 it is clear that
the programmer intends that$userid evaluate to a single value
in the SQL query for comparison to theuserid column. However,
because the regular expression on line14 lacks anchors (‘̂’ and ‘$’
for the beginning and end of the string, respectively), any value for
$userid that has at least one numeric character will be included
into the generated query. If a user sets theGET parameter to “1';
DROP TABLE unp user; --”, this code will send to the database
the folloing query:

SELECT * FROM `unp user` WHERE userid='1';
DROP TABLE unp user; --'

Figure 3. SQLCIV analysis workflow.

and delete user account data.

2.1.2 Definition of SQLCIVs

This section presents the formal definition of command injection
attacks that serves as the basis for the policy we seek to enforce.

A web application takes input strings, which it may modify, and
generates a query in the form of a string, usually by combining
constant strings and filtered inputs. To reflect this, we previously
defined aweb applicationas follows [25]:

Definition 2.1 (Web Application). A web applicationP :
〈Σ∗, . . . , Σ∗〉 → Σ∗ is a mapping from user inputs (over an
alphabetΣ) to query strings (overΣ). In particular,P is given by
{〈f1, . . . , fn〉, 〈s1, . . . , sm〉} where:

• fi : Σ∗ → Σ∗ is aninput filter;
• si : Σ∗ is aconstant string.

The argument toP is ank-tuple of input strings〈i1, . . . , ik〉, and
P returns aqueryq = q1 + . . . + qℓ where, for1 ≤ j ≤ ℓ,

qj =



s wheres ∈ {s1, . . . , sm}
f(i) wheref ∈ {f1, . . . , fn} ∧ i ∈ {i1, . . . , ik}

That is, eachqj is either a static string or a filtered input.

Definition 2.1 primarily serves to help define SQL command
injection attacks. This definition does not allow certain string oper-
ations that real web applications can do, but, significant for a static
analysis, it does allow arbitrary control constructs, arbitrary filter-
ing, and concatenation. Sections 3.1.2 and 3.1.3 address other op-
erations that web applications do and how to handle them witha
static analysis.

The syntactic structure of the generated query determines how
it will be evaluated. We state here our definition of SQL command
injection attacks [25] in terms of sentential forms.

Let G = (V, Σ, S, R) be a context-free grammar with non-
terminalsV , terminalsΣ, a start symbolS, and productionsR.
Let ‘⇒G’ denote “derives in one step” so thatαAβ ⇒G αγβ if
A → γ ∈ R, and let ‘⇒∗

G’ denote the reflexive transitive closure
of ‘⇒G.’ If S ⇒∗

G γ, thenγ is a “sentential form.” The following
definition formalizes syntactic confinement:

Definition 2.2 (Syntactic Confinement). Given a grammarG =
(V, Σ, S, R) and a stringσ = σ1σ2σ3 ∈ Σ∗, σ2 is syntactically
confinedin σ iff there exists a sentential formσ1Xσ3 such that
X ∈ V andS ⇒∗

G σ1Xσ3 ⇒
∗

G σ1σ2σ3.

In the attack shown in Section 2.1.1, the user-provided sub-
string is not syntactically confined. The criterion of syntactic con-
finement effectively distinguishes SQL injection attacks from safe
queries [25]. We therefore attempt to enforce the policy that user-
provided substrings be syntactically confined.

Definition 2.3 (SQL Command Injection Attack). Given a web
applicationP = {〈f1, . . . , fn〉, 〈s1, . . . , sm〉} and a query string

q constructed from the input〈i1, . . . , ik〉, q is acommand injection
attackif there existsi ∈ {i1, . . . , ik} andf ∈ {f1, . . . , fm} such
thatq = q1 + f(i) + q2 andf(i) is not syntactically confined inq
with respect to the SQL grammar.

A web application has an SQLCIV if it may generate an SQL
command injection attack.

2.2 Analysis Overview

Our analysis takes PHP files as input and returns as output either a
list of bug reports or the message “verified.”

In order to provide useful bug reports, we first categorize
sources of untrusted input as being eitherdirect or indirect. Direct
sources, such asGET parameters, provide data immediately from
users; indirect sources, such as results from a database query, pro-
vide data from a source whose data may come from untrusted users.
In practice, the rise of attacks from indirect sources is less severe
than that of standard injection attacks for two reasons. First, pro-
grams often regulate which data is allowed to go into the database
(or other sources), and second, attackers must pass throughmore
steps and take more time to execute an indirect attack than toexe-
cute a standard injection attack.

Figure 3 shows a high-level overview of our analysis algorithm.
It has two main phases. The first phase generates a conservative,
annotated approximation of the query strings a program may gen-
erate; the annotations show which substrings in the query string
are untrusted,i.e., are from eitherDIRECT or INDIRECT sources.
This phase is based on existing string analysis techniques [20] aug-
mented to propagate taint information. The string-taint analyzer
takes as input a PHP file that provides the top-level code for a
web page (analogous to amain function in C). As it encounters
dynamic include statements, it determines the possible string val-
ues of the argument to theinclude, and analyzes those files as
well. The string-taint analyzer represents the set of querystrings
using an annotated context free grammar (CFG) — the nontermi-
nals whose sub-languages represent untrusted strings are labeled
with “direct” or “ indirect,” as appropriate. We choose to represent
sets of strings with CFGs for several reasons: (1) tainted substring
boundaries can be represented simply by labeling certain nonter-
minals; (2) our policy is grammar-based, and a CFG representation
can capture context-free query construction that follows the policy;
(3) regular expression-based string operations (common inPHP)
can be represented as finite state transducers (FSTs), and the image
of a CFG over an FST is context free.

The second phase of our analysis takes the annotated CFG pro-
duced by the first phase, and checks whether all strings in thelan-
guage of the CFG are safe,i.e., they are not SQL command in-
jection attacks according to Definition 2.3. This analysis checks for
common cases (of both SQL command injection attacks and attack-
free grammars) efficiently by (1) abstracting the subgrammars that
represent untrusted substrings out of the larger CFG, (2) determin-
ing the syntactic contexts of those subgrammars within the larger

query → query1'
query1 → query2 userid
query2 → query3WHERE userid='
query3 → SELECT * FROM `unp user`
userid → GETuid
GETuid→ Σ∗ [0–9] Σ∗

direct = {GETuid} indirect = {}

Figure 4. Grammar productions of possible query strings from
Figure 2.

CFG, and (3) checking for (the absence of) policy violating strings
in the languages of the subgrammars. For large grammars, this is
significantly more efficient than checking the language of the gen-
erated CFG as a whole. If the policy conformance checker findsany
violations, it issues a bug report. Because this algorithm is sound,
if it does not issue any bug reports, the PHP code is guaranteed to
be free from SQLCIVs.

To illustrate this algorithm on the example code in Figure 2,the
string-taint analysis will produce the grammar productions shown
in Figure 4; the annotations are shown in terms of sets of nonter-
minals annotated with “direct” and “indirect,” respectively. The
regular expression notation on the right hand side of the last rule
is notational shorthand intended to simplify the presentation. The
grammar foruseridreflects the regular expression match on line14,
because the string-taint analyzer propogates the regular expression
predicate. The nonterminalGETuidhas the label “direct,” because
it represents strings from aGET parameter.

The policy-conformance checker then receives this labeled
grammar. The check first replaces the annotatedGETuid nonter-
minal with a new terminalt /∈ Σ. By intersecting this modified
grammar with an appropriate regular language, the checker finds
that for all sentential formsσ1.GETuid .σ2 derivable fromquery,
GETuid is between quotes in the syntactic position of a string lit-
eral. The checker therefore uses another regular language intersec-
tion to check the language rooted atGETuidfor un-escaped quotes.
When it finds them, it issues a bug report. The checker does not
only check for the case of string literals, but that suffices for this
example.

3. Analysis Algorithm
This section describes our analysis algorithm in detail.

3.1 String-Taint Analysis

The first phase of our analysis combines ideas from static taint
analysis with string analysis.

3.1.1 Adapting String Analysis

String analysis has the goal of producing a representation of all
strings values that a variable may assume at a given program point.
This goal does not imply any relationship between the structure
of that representation and the way that the program producesthose
values. If the string analysis represents languages as finite automata
and it determinizes intermediate results, the final DFA willhave
little relation to the program’s dataflow [3]. Our analysis has the
goal of producing not only a representation of all string values that
a variable may assume, but also a function from string valuesto
substrings whose values come from direct or indirect sources. In
terms of Definition 2.3, we need to identify occurences off(i) in
each query stringq.

Section 2.2 gives as one reason for using CFGs to represent
sets of query strings that tainted substring boundaries canbe repre-
sented by labeling certain nonterminals—thus the strings’deriva-

(a) $X = $UNTRUSTED;
if ($A) {

$X = $X."s";
} else {

$X = $X."s";
}
$Z = $X;

(b) $X1 = $UNTRUSTED;
if ($A) {

$X2 = $X1."s";
} else {

$X3 = $X1."s";
}
$X4 = ϕ($X2, $X3);
$Z = $X4;

(c) UNTRUSTED → Σ∗

X1 → UNTRUSTED
X2 →X1s
X3 →X1s
X4 →X2 | X3

Z →X4

Figure 5. Grammar reflects dataflow.

tions provide the function from strings to tainted substrings. In
addition to that reason, a natural way to design and implement
a CFG-based string analysis produces CFGs that reflect the pro-
gram’s dataflow, so taint annotations applied at untrusted sources
appear in the final CFG. Minamide designed his string analysis this
way, so we review the main steps of his analysis here and show how
to adapt it to track taint information [20].

The contrived example program in Figure 5a serves to show that
the generated grammar reflects the program’s dataflow. The first
step of the string analysis translates the program into static single
assignment form, as shown in Figure 5b. SSA form makes data-
dependencies explicit, so translating each assignment statement
into a grammar production yields a CFG that reflects the program’s
dataflow, as in Figure 5c. By simply annotating the nonterminals
corresponding to direct and indirect sources appropriately, we have
a string-taint anlysis for programs with concatenation, assignments,
and control flow.

In general, right hand sides of assignment statements may con-
tain string functions, such asescape quotes(), which adds a
slash before each quote character in its argument. Translating as-
signments into grammar productions then yeilds an extendedCFG
that has functions in its productions’ right hand sides. Converting
extended CFGs into standard CFGs requires some approximation,
and Minamide models string operations as finite state transducers
(FSTs) in order to capture their effects and make the approximation
reasonably precise. Section 3.1.2 describes how FSTs can model
string operations and how we track annotated sources through them
in more detail.

3.1.2 Tracking Substrings through Filters

Definition 2.1 specifies that web applications can apply functions
on strings to untrusted inputs. In order to avoid reporting many false
positives, the string-taint analyzer must model the effects of filters
and propagate annotations through them. This section reviews how
Minamide’s string analysis models the effects of filters andthen
describes how we adapt these techniques.

A transducer is an automaton with output. A finite state trans-
ducer is similar to a Mealy machine, except that a finite statetrans-
ducer has one or more final states and may be non-deterministic.
Many string operations that PHP provides as library functions be-
have as finite state transducers. For example,str replace takes
three strings as arguments: a pattern, a replacement, and a subject.
The FST in Figure 6 describes the effects ofstr replace when
the pattern is ‘''’ and the replacement is ‘'.’ The notation ‘c1/c2’
on the transitions means that on input characterc1, the transition
can be taken and it will outputc2. In Figure 6,A matches any char-
acter except ‘'.’ The string analysis converts a grammar production

1

A/'A

'/'
2

'/ǫ

A/A

'/'
3

Figure 6. A finite state transducer equivalent of the function
str replace("''", "'", $B); A ∈ Σ \ {'}.

with a string operation, such as

x→ escape quotes(y)

into a standard grammar production by finding the image of the
CFG rooted at the operation’s argument (y) over the FST that the
string operations represents.

A CFG has acycle if there exists a sentential form derivable
from a nonterminal that contains the nonterminals. If an extended
grammar has the production shown above, and if

y ⇒∗

G αxβ

then theescape quotes operation occurs in a cycle. String oper-
ations that occur in cycles within the extended CFG must be ap-
proximated because the complete CFG rooted at the operation’s
argument (y) cannot be constructed independently of the string op-
eration.

Some string operations are more expressive than finite state, or
even context free, transducers. For example, PHP provides areg-
ular expression-based replace function,preg replace. Its three
arguments are: a regular expression pattern, a parameterized re-
placement, and a subject. Within the replacement, an occurence of
“\n,” wheren is a number, represents the string matched by the ex-
pression between thenth open parenthesis and its matching close
parenthesis in the pattern. As an example,

preg_replace("/a([0-9]*)b/",
"x\\1\\1y",
"a01ba234b") = "x0101yx234234y"

The “\\1” puts the substring matched by the expression within the
first pair of parentheses (because the number is1) into the output.
Although the image of a CFL under a regular expression replace-
ment is not necessarily context free (because of the abilityto insert
multiple copies of a regular expression match, as above), Mohri and
Sproat describe how to approximate it using two FSTs [21].

The string analysis also uses a similar technique to maintain
precision from conditional expressions when constructingthe ex-
tended CFG. If the condition is a regular expression match, as on
line 14 in Figure 2, the string analysis adds an intersection with the
condition’s regular expression to the beginning of thethen branch
and an intersection with the complement of the regular expression
to theelse branch.

An adaptation of the standard context free language-reachability
algorithm [19] computes the intersection of a CFG and an FSA as a
CFG without constructing an intermediate push-down automaton,
and we add to the algorithm to propagate annotations. Figure7
shows the algorithm with our additions: the function TAINT IF()
and the two calls to it on lines20 and28 of INTERSECT(). The
following theorem states that this algorithm propagates annotations
appropriately.

Theorem 3.1. GivenC′ = INTERSECT(C,F), s∈ L(C) ∩ L(F),
and a parse treep of s underC, there exists1, s2, ands3 such that
s1s2s3 = s ands2 is derivable from adirect-labeled nonterminal

INTERSECT(G = 〈V0, Σ0, S0, R0〉,FSA = 〈Q, Σ, δ, q0, qf 〉)
1 〈V, Σ, S, R〉 ← NORMALIZE(〈V0, Σ0, S0, R0〉)
2 V ′ ← ∅
3 R′ ← ∅
4 for each (qi, σ, qj) in δ
5 do V ′ ← V ′ ∪ {σij}
6 R′ ← R′ ∪ {σij → σ}
7 /* |rhs | = 0 */
8 for eachX → ǫ in R
9 do for eachqi in Q

10 do V ′ ← V ′ ∪ {Xii}
11 R′ ← R′ ∪ {Xii → ǫ}
12 WkLst ← V ′

13 for eachαij in WkLst
14 do WkLst ←WkLst \ {αij}
15 /* |rhs | = 1 */
16 for eachX → α in R
17 do if not (Xij in V ′)
18 then WkLst ←WkLst ∪ {Xij}
19 V ′ ← V ′ ∪ {Xij}
20 TAINT IF(X, Xij)
21 R′ ← R′ ∪ {Xij → αij}
22 /* |rhs | = 2 */
23 for eachX → αβ in R
24 do for eachβjk in V ′

25 do if not (Xik in V ′)
26 then WkLst ←WkLst ∪ {Xik}
27 V ′ ← V ′ ∪ {Xik}
28 TAINT IF(X, Xik)
29 R′ ← R′ ∪ {Xik → αijβjk}
30 if S0f in V ′

31 then return 〈V ′, Σ, S0f , R′〉
32 else return 〈{S′}, {}, S′, {}〉

NORMALIZE(G = 〈V, Σ, S, R〉)
1 R′ ← ∅
2 WkLst ← R
3 for eachX → [γ] in WkLst
4 do WkLst ←WkLst \ {X → [γ]}
5 if length [γ] > 2
6 then X ′ ← FRESHVAR()
7 V ← V ∪ {X ′}
8 R′ ← R′ ∪ {X → head [γ]X ′}
9 WkLst ←WkLst ∪ {X ′ → tail [γ]}

10 else R′ ← R′ ∪ {X → [γ]}
11 return 〈V, Σ, S, R′〉

TAINT IF(X1, X2)
1 if HASLABEL(X1, direct)
2 then ADDLABEL(X2, direct)
3 if HASLABEL(X1, indirect)
4 then ADDLABEL(X2, indirect)

Figure 7. Taint propagation in CFG-FSA intersection.

in p iff there exists a parse treep′ of s underC′ such thats2 is
derivable from adirect-labeled nonterminal inp′.

The proof is by a straightforward induction on the height of the
derivation ofs. Due to space constraints, we omit the proof here.
The case for “INDIRECT” is identical.

The algorithm for finding the image of a CFG over an FST
is similar to the CFG-FSA intersection algorithm, except that the
FST’s output symbols replace the CFG’s terminals as they match

explode(s1, s2) = expld(s1, s2, [], ǫ)
expld(s1, s1, L, s) = L@[s]
expld(s1, s2, L, s), |s2| ≤ |s1| = L@[s^s2]
expld(s1, s1^s2, L, s) = expld(s1, s2, L@[s], ǫ)
expld(s1, c^s2, L, s), |c| = 1 = expld(s1, s2, L, s^c)

Figure 8. Semantics ofexplode.

the FST’s input symbols. The modifications for propogating taint
information are the same for that algorithm as in Figure 7, and the
proof of correctness is analogous to the proof of Theorem 3.1.

Definition 2.1 only allows string concatenation after inputfil-
ters. The taint-propagating algorithm in Figure 7 correctly propa-
gates tainted substring boundaries even for filters that operate on
inputs concatenated with other strings. Thus we extend the defini-
tion of SQLCIVs to web applications with operations beyond those
that Definition 2.1 allows and still check for SQLCIVs with high
precision.

3.1.3 Handling Other String Operations

Real-world web applications also perform operations involving
strings that do not simply map strings to strings. For each such op-
eration, we must determine how substrings in the input map tosub-
strings in the output and propagate annotations accordingly. We use
as a straightforward but representative example theexplode func-
tion, which takes two string arguments: a delimiter and a subject.
It returns an array of substrings formed by splitting the subject on
boundaries formed by the delimiter. Figure 8 shows the semantics
of explode. Because the strings that it returns are taken directly
from the subject, the meaning of untrusted substring flow is clear.

The string analysis models the effects ofexplode accurately,
except that it loses the order of the strings in the returned array—it
produces a grammar whose language is that set of strings. Thealgo-
rithm (due to Minamide [20]) uses two FSTs constructed from the
delimiter, and because we propagate labels through FSTs correctly
(see Section 3.1.2), we track tainted substrings accurately through
theexplode function. Space limitations prevent us from giving a
full presentation of the algorithm here.

3.2 Policy-Conformance Analysis

The second phase of our analysis checks the generated, annotated
grammar for SQL injection attacks. In most cases, programmers in-
tend that inputs take the syntactic position of literals. Section 3.2.1
describes our checks for this case, and Section 3.2.2 presents our
approach for the case when the input may be derived from an arbi-
trary nonterminal in the reference (SQL) grammar.

3.2.1 Untrusted Substrings as Literals

This section describes how we attempt for each annotated nonter-
minal X either to verify that all strings derivable fromX are syn-
tactically confined or to find that some string derivable fromX
are not syntactically confined. We apply the algorithm described in
Section 3.2.2 to nonterminals for which the checks in this section
fail to provide conclusive results.

The first check attempts to find untrusted substrings that cannot
be syntactically confined in any SQL query. In particular, because
quotes delimit string literals in SQL, if any untrusted substring has
an odd number of un-escaped quotes (escaped quotes represent
characters rather than delimiters in string literals), it cannot be
syntactically confined. The grammar generated by the string-taint
analysis reflects the program’s dataflow, so the strings derivable
from labeled nonterminals are the possible untrusted substrings in
generated SQL queries. LetVl be the set of labeled nonterminals in

V . For eachX ∈ Vl, if

∅ 6= L(V, Σ, X, R) ∩ L(/^(([^']|\')*[^\])?'
((([^']|\')*[^\])?'
(([^']|\')*[^\])?')*
([^']|\')*$/)

then there exists a string derivable fromX that is not syntactically
confined (the Perl regular expression matches strings with an odd
number of unescaped quotes), and we removeX from Vl.

The second check finds the nonterminals inVl that occur only
in the syntactic position of string literals and, for each one, either
verifies it as safe or finds that it derives some unconfined string. The
algorithm identifies the syntactic position of labeled nonterminals
by creating from the grammar production setR a new production
setRt: for each labeled nonterminalX ∈ V , replace right-hand-
side occurences ofX in R with a fresh terminaltX /∈ Σ and add
tX to Σ. For each labeledX ∈ V , if for all strings σ1tXσ2 ∈
L(V, Σ, S, Rt), σ1 has an odd number of unescaped quotes, then
X only occurs in the syntactic position of a string literal. The
following implements this check:

∅ = L(V, Σ, S, R′) ∩ L(/^[^']*
('(([^']|\')*

(([^\][\\]+)|[^'\]))?
'[^']*)*

tX.*$/)

For eachX ∈ Vl for which the test above succeeds, if anyσ ∈
L(V, Σ, X, R) has unescaped quotes in it,X derives unconfined
strings; otherwiseX is safe. We then removeX from Vl.

The third check attempts to identify those remaining nontermi-
nals inVl that only derive numeric literals. For eachX ∈ Vl, if

∅ = L(V, Σ, X, R) ∩ L(/^(([^0-9.+-].*[^0-9.]/)
|([.].*[.])))

thenX derives only numeric literals and is safe; removeX from
Vl.

Finally, if X can produce a non-numeric string outside of
quotes, it likely represents an SQLCIV. To confirm this, we check
whetherX can derive any of a given set of strings that cannot
be syntactically confined (e.g.“DROP WHERE,” “ --,” etc.). If it can,
thenX is unsafe, and we remove it fromVl.

3.2.2 Untrusted Substrings Confined Arbitrarily

If any nonterminals remain inVl after the checks in Section 3.2.1,
we wish to check whether each string derivable from them is deriv-
able from some nonterminal in the SQL grammar. In general, con-
text free language inclusion is undecidable, but we can approxi-
mate it by checking grammar derivability,i.e., whether the gener-
ated grammar is derivable from the SQL grammar [28].

Definition 3.2 (Derivability). GrammarG1 = (V1, Σ, S1, R1) is
derivablefrom grammarG2 = (V2, Σ, S2, R2) iff

∃ Φ : (V1 ∪ Σ)→ (V2 ∪ Σ)
Φ(S1) = S2 ∧
∀ s ∈ Σ Φ(s) = s ∧
∀ (X → γ) ∈ R1 Φ(X)⇒∗

G2
Φ∗(γ)

whereΦ∗ is Φ lifted to (V1 ∪ Σ)∗, i.e.,

Φ∗(ǫ) = ǫ
Φ∗(α) = Φ(α) for α ∈ V1 ∪ Σ

Φ∗(αβ) = Φ∗(α)Φ∗(β)

Lemma 3.3. If G1 is derivable fromG2, thenL(G1) ⊆ L(G2).

We check derivability using an extension of Earley’s parsing al-
gorithm [4] that parses sentential forms and treats nonterminals in

G1 as variables that range over terminals and nonterminals. This al-
gorithm is inspired by and is similar to Thiemann’s algorithm [28].
We do not require that the entire generated grammar be derivable
from the SQL grammar; we require derivability for the subgram-
mar rooted atX and all sentential forms that includeX. If the
derivability check fails, we considerX to be unsafe.

3.3 Soundness

We state and sketch the proof of a soundness result here.

Theorem 3.4 (Soundness). If our analysis algorithm does not
report any SQLCIVs for a given web applicationP , thenP has
no SQLCIVs.

Proof. The string analysis produces a CFGG from web application
P that derives all strings thatP may generate as query strings [20].
The algorithm for constructingG reflectsP ’s dataflow so that for
assignments and concatenation, labels on nonterminals from un-
trusted sources accurately identify untrusted substrings. By Theo-
rem 3.1, the CFGs constructed as the intersection of a CFG and
an FSA, or the image of a CFG over an FST, is labeled to reflect
the boundaries of untrusted substrings. The conformance checking
algorithm from Section 3.2 generates an error message on each la-
beled nonterminal unless the algorithm can verify it to derive only
syntactically confined strings, as required by Definition 2.3.

4. Implementation
We implemented our technique for PHP, using and modifying Mi-
namide’s string analyzer. In addition to the changes described pre-
viously (adding information flow tracking and checks on the gen-
erated grammars), we made the analyzer more automated in two
ways. First, we added specifications for 243 PHP functions. Sec-
ond, we enhanced its support for dynamic includes. Previously, the
analyzer would fail if it reached an include statement, and the gram-
mar it had generated for the include statement’s argument had an
infinite language. For example, if the analyzer recorded thepossible
values for$choice as beingΣ∗, the analyzer would fail at:

include("e107_languages/lan_".$choice.".php");

We address this by considering the file and directory layout to be
part of the specification. If the analyzer encounters such anin-
clude statement, it builds a regular expression representation of
the directory layout starting from the analyzed project’s root. It
then intersects the (finite) language of this regular expression with
the language of the grammar to find the list of files to include.
This language-based approach does not model the full seman-
tics of paths (e.g., “..” as parent directory), but we believe this
choice to be appropriate for two reasons. First, we have not en-
countered cases where the programmer-intended values of vari-
ables like$choice include “..”; and second, security exploits on
dynamic inclusion vulnerabilities generally reveal sensitive infor-
mation stored in files and do not facilitate SQL command injection
attacks.

The string analyzer does not support all features for PHP. For
example, it includes only limited support for references. We plan to
add support for these features, but until full-support is available, we
manually approximate unsupported lines of PHP code and verify
that the changes do not remove potential errors.

5. Evaluation
This section presents the setup and results of our evaluation.

5.1 Test Subjects

We evaluated our tool on five real-world PHP web applicationsin
order to test its scalability and its false positive rate, and to see

isset($ GET['newsid']) ?
$getnewsid = $ GET['newsid'] :
$getnewsid = false;

if (($getnewsid != false) &&
(!preg match('/^[\d]+$/', $getnewsid)))

{
unp msg('You entered an invalid news ID.');
exit;

}
...
if (!$showall && $getnewsid)
{

$getnews = $DB->query("SELECT * FROM `unp news`"
."WHERE `newsid`='$getnewsid'"
."ORDER BY `date`DESC LIMIT 1");

}

Figure 9. Source of a false positive.

what kinds of errors it would find and what would cause false
positives. We use the following subjects in our evaluation:e107
and Warp Content Management System are content management
systems; EVE Activity Tracker is an activity tracker for integration
into existing IGB homepages; and Tiger PHP News System and
Utopia News Pro are news management systems. Table 1 lists the
size of each of these web applications in terms of the number of
files and the number of lines of PHP code. The test suite for another
PHP analysis tool [31] includes an earlier version of e107, and we
do not know of any database-backed PHP web application with
more lines of code. We ran the analysis on a machine with a 3GHz
processor and 8GB of RAM running Linux – Fedora Core 5.

5.2 Accuracy and Bug Reports

The code in Figure 2 shows a vulnerability that our tool foundby
modeling regular expressions precisely. Two others in Utopia News
Pro are similar to this one. Although some of the SQLCIVs thatour
tool found were trivial, others crossed file and class boundaries.
For example, the SQLCIV in e107 comes from a field read from
a cookie, which a user can modify, that is used in a query in a
different file.

Across this test suite, our tool had a(5/(19+5)) = 20.8% false
positive rate. This false positive rate demonstrate that our approach
is effective for finding SQLCIVs and verifying the absence ofthem.

Our tool produced the false positives that it did because of it
does not track information with sufficient precision through type
conversions. Figure 9 shows one of the two false positives from
Utopia News Pro (the other is similar). The PHP runtime system
will dynamically cast between any of the scalar types without com-
plaint. It casts a value of type string to a value of type boolean
producing a value offalse if the string is “” (empty) or “0,” and
true otherwise. To avoid the false positive shown in Figure 9, the
analyzer would have to model this conversion in the first condi-
tional expression and propagate its implications beyond the “then”
branch. The three false positives from Tiger PHP News Systemre-
sulted from a hand-written string sanitizing routine. Depending on
a character’s ASCII value, this routine will either encode it or keep
it as is. The string analyzer does not have a map from characters
to their ASCII values, so it failed to track the precise effects of
this routine. Both of these types of false positives could beavoided
by equipping the string analyzer with more information about type
conversions.

Evaluating whetherindirect error reports represent real errors
is difficult because it requires making assumptions about what data
can flow into the source (e.g., the database). However, Figure 10
shows one example of anindirect error report that seems to repre-

Name (version) Files Lines Grammar Time (h:m:s) Errors
Size String SQLCIV direct indirect

|V | |R| Analysis Check Real False
e107 (0.7.5) 741 132,850 62,350 377,348 3:39:26.23 35:36.12 1 0 4
EVE Activity Tracker (1.0) 8 905 57 1628 0.40 0.06 4 0 1
Tiger PHP News System (1.0 beta 39) 16 7,961 82,082 1,078,768 3:14:06.95 5.39 0 3 2
Utopia News Pro (1.3.0) 25 5,611 5,222 336,362 25:00.08 2:08.69 14 2 12
Warp Content MS (1.2.1) 42 23,003 1,025 73,543 21.10 0.08 0 0 0
Totals 19 5 17

Table 1. Evaluation results.

$newsposter = $USER['username'];
$newsposterid = $USER['userid'];
// Verification
if (unp isEmpty($subject) || unp isEmpty($news))
{

unp msg($gp allfields);
exit;

}
if (!preg match('/^[\d]+$/', $newsposterid))
{

unp msg($gp invalidrequest);
exit;

}
$submitnews = $DB->query("INSERT INTO `unp news`"

."(`date`, `subject`, `news`, `posterid`,"
."`poster`)"

." VALUES "

."('$posttime','$subject','$news',"
."'$newsposterid','$newsposter')");

Figure 10. Source of anindirect error report.

sent a true vulnerability. Both$newsposter and$newsposterid
are assigned from the$USER array, which is populated elsewhere
from the results of a database query. The fact that$newsposterid
is checked and not$newsposter seems to indicate the possibil-
ity of unexpected values, and at the least it represents inconsistent
programming.

5.3 Scalability and Performance

As stated in Section 4, our string analyzer currently has some lim-
itations in terms of the PHP constructs it supports. Nevertheless,
on three of the subjects in our test suite (EVE Activity Tracker,
Utopia News Pro, and Warp Content Management System) the an-
alyzer ran successfully. The others include certain currently unsup-
ported constructs, and we manually modified the code to allowthe
analyzer to continue but without causing any potential errors to
be missed. The unsupported construct that we encountered most
frequently was thestr replace function with array-type argu-
ments, which were generally given statically. We expanded these
str replace statements into sequences ofstr replace state-
ments, each with scalar arguments. These unsupported constructs
do not represent a shortcoming in our technique, but only a current
limitation in our prototype.

Regarding scalability, we note first that our tool successfully
analyzed all of the web applications in our test suite. Table1 lists
the size of the grammars representing SQL queries that our tool
generates in terms of the number of nonterminals (|V |) and the
number of production rules (|R|). Next to the grammar size, it lists
the time spent on string analysis and the time spent checkingthe
generated grammars for SQLCIVs. Analyzing web applications is

different in one key respect. Unlike for many program analysis
settings where a code base has a single top-level function that
can be passed to an analyzer, each file that represents one page
in a web application defines a top level function. In many web
applications, most files defining top-level functions include and use
the same helper functions in other files, and our tool re-analyzes
these included files each time. In such cases, our tool analyzes
most of the code in a small fraction of the time required to analyze
the whole web application. This also illustrates that straightforward
use of memorization or concurrent executions of the analyzer could
improve the performance dramatically in some cases.

A few points are particularly noteworthy here. First, the gram-
mar size is not necessarily proportional to the web application size.
The query grammar generated from Tiger PHP News System is sig-
nificantly larger than that of e107, which is over an order of mag-
nitude larger in terms of lines of code. This reflects in some sense
the size of the web application devoted to database queries.

Second, the string analysis time is not necessarily proportional
to the grammar size. The grammar size reported is only for the
grammar representing possible database queries. The string analy-
sis works “eagerly,” analyzing some string expressions that have no
influence on the generated database queries. This eager analysis in-
troduce significant unnecessary overhead in web applications that
process user input for marked up display, such as in an onlinebul-
letin board or forum. Tiger PHP News System includes such code,
that substitutes html tags for forum equivalents (e.g., <bold> for
[bold]) and designated character sequences for “emoticon” links.
Tiger PHP News System is designed to be secure, and it includes
a forum with such code. Each regular expression or string replace-
ment function (potentially) causes its argument’s grammarto in-
crease by some factor, so that a sequence of these replacement ex-
pressions leads to a blow up that is exponential in the numberof
replacements. We removed two sections of such code from Tiger
PHP News System in order to speed up the analysis, but in principle
the analyzer could use a backward dataflow analysis to determine
which variables may influence a database query, and refrain from
analyzing the rest. We expect that this would speed up the analy-
sis significantly. Additionally, dynamic file inclusions can lead to
a combinatorial blow up. Each time a file is included, it is inserted
in situ and its top-level scope is merged into the scope where it is
included. If one file has an include statement whose argumentis
entirely unspecified statically, the analyzer will try to include every
other file in the project and with each of them, which ever filesthey
may include. In the case of e107 with 741 files, we had to provide
file names for two include statements.

Finally, the SQLCIV checking phase is relatively efficient.Al-
though the grammars had more than one million production rules
in some cases, SQLCIV checking never took more than a few min-
utes, and usually took less.

6. Related Work
In this section we survey closely related work.

6.1 Static String Analysis

The study of static string analysis grew out of the study of text
processing programs. An early work to use formal languages (viz.
regular languages) to represent string values is XDuce [10], a lan-
guage designed for XML transformations. Tabuchiet al. designed
regular expression types for strings in a functional language with a
type system that could handle certain programming constructs with
greater precision than had been done before [27].

Christensenet al. introduced the study of static string analy-
sis for imperative (and real-world) languages by showing the use-
fulness of string analysis for analyzing reflective code in Java
programs and checking for errors in dynamically generated SQL
queries [3]. They designed an analysis for Java that has FSAsas
its target language representation; they chose FSAs because FSAs
are closed under the standard language operations. They also ap-
plied techniques from computational linguistics to generate good
FSA approximations of CFGs [21]. Their analysis, however, does
not track the sourced of data, and because it must determinize the
FSAs between each operation, it is less efficient than other string
analyses and not practical for finding SQLCIVs. Gouldet al. used
this analysis to type check dynamically generated queries,but made
approximations that would cause them to miss SQLCIVs [6].

Minamide borrowed techniques from Christensenet al. to de-
sign a string analysis for PHP that does not approximate CFGsto
FSAs, so it can be more efficient and more accurate [20]. He also
utilized techniques from computational linguistics (viz. language
transducers) [22] to improve the precision of his analysis and model
the effects of string operations, which are used frequentlyin script-
ing languages. His analysis does not track the source of dataexplic-
itly, and it is designed to validate dynamically generated HTML,
which has a flatter grammar than SQL. For both Minamide and
Christensenet al.’s analyses, the user must provide regular expres-
sion specifications of the permitted queries at each query location.
We avoid the need for manually written specifications first byusing
a general policy based on both dataflow and string structure,and
second by adding explicit dataflow information to the grammar’s
nonterminals in Minamide’s analysis.

6.2 Static Taint Checking

Static taint checking is essentially information flow analysis spe-
cialized to determine whether data from an untrusted sourceflows
into a sensitive sink. Static taint checking has a long history, but
Huanget al. were perhaps the first to apply it to SQLCIVs [11].
They used a CQual-like [5] type system to propagate taint informa-
tion through PHP programs. Livshits and Lam [17] used a precise
points-to analysis for Java [30] and queries specified in PQL[16] to
find paths in Java programs that allow “raw” input to flow into SQL
queries. Both of these tools are sound with respect to the policy they
enforce and the language features they support, and both findmany
vulnerabilities, but both consider all values returned from desig-
nated filtering functions to be safe. Because the policy theyuse
says nothing about the context of the user input and the structure of
the query, both techniques may miss real SQLCIVs. Additionally,
Huanget al.’s type system does not support some of PHP’s more
dynamic features, in part because it does not track string values
at all and supporting these features would result in too manyfalse
positives.

Jovanovicet al. sought to address this last shortcoming with
Pixy [12, 13], a static taint analysis for PHP that propagates limited
string information and implements a finely tuned alias analysis. Xie
and Aiken designed a more precise and scalable analysis for finding
SQLCIVs in PHP by using block- and function-summaries [31].

The precision they gained comes at the expense of automation—
the user must provide the filenames when the analysis encounters
a dynamic include statement, and the user must tell the analysis
whether each regular expression encountered in a filtering function
is “safe.” We are able to make a stronger guarantee about the
absence of SQLCIVs because we analyze the possible values ofthe
strings and check conformance to a policy that takes into account
the query’s structure.

6.3 Runtime Enforcement

Because more information about data and program execution is
available at runtime, several groups have proposed techniques to
enforce more expressive policies than simply tracking the flow of
tainted input, which Perl’s taint mode already provides [29]. A M-
NESIA, by Halfond and Orso, uses Christensenet al.’s Java string
analyzer to construct a policy requiring user inputs to be single to-
kens in constructed queries, and enforces that policy at runtime [8].
The effectiveness of this approach is limited by the string analy-
sis’ precision. Buehreret al. also enforce a policy that user in-
put must be a single token in the query, but they do not rely on
a static analysis [2]. They bound user input, parse the query, and
check whether the parse tree retains the same structure whenthe
user input is replaced by a single dummy node. Java provides a
PreparedStatement API, which forces inputs in queries built
with it to be string or numeric literals. Boyd and Keromytis sought
to enforce this via instruction set randomization [14],i.e., by ran-
domizing the SQL keywords in the web application, so that users
could not guess the keywords [1]. This technique cannot provide
guarantees, because the user may guess the randomization key.

Both Nguyen-Tuonget al. [23] and Pietraszek and Berghe [24]
propose to enforce the same policy for PHP more rigorously. They
modify the PHP interpreter to track taint information at thechar-
acter level, tokenize the completed query, and check whether any
tainted characters appear in any tainted characters. A modified in-
terpreter has the advantage that it can add security guarantees to
arbitrary web applications, but practical issues of deployment and
system maintenance limit such a technique’s effectiveness. Xu et
al. propose a source-to-source translator for C that adds tainttrack-
ing [32]. It can be used to ameliorate the system maintenanceprob-
lem by adding taint-tracking to new versions of the PHP inter-
preter’s source code.

WASP, by Halfondet al., enforces approximately the same pol-
icy for Java, but they usepositive tainting, i.e., they taint trusted
strings, and allow only tainted characters in keywords unless the
programmer specifies with a regular expression that user input may
include certain keywords [7]. Additionally, instead of modifying
the JVM, they provide a byte code instrumenter. Su and Wasser-
mann use delimiters to track user input into generated queries, and
parse the queries based on a modified grammar to check whether
the user input is parsable under any of a permitted set of nonter-
minals within the query [25]. The policy we enforce allows user
input to be parsable under any nonterminal, but in principlewe
could limit the allowable nonterminals. Although these runtime
techniques to prevent SQL injection attacks are more precise than
static analyses in general, some SQLCIVs are indicative of larger
programming errors. Static analysis can help to find and fix such
errors prior to deployment. Additionally, general runtimeenforce-
ment techniques incur more runtime overhead than appropriate,
well-placed filters, which static analysis can check.

7. Conclusion
In this paper we have proposed a new static analysis algorithm
to find SQLCIVs. It characterizes the sets of possible database
queries that a web application may generate using context free
grammars, and tracks information flow from untrusted sources into

those grammars. By using a general definition of SQLCIVs based
on the context of untrusted substrings, we avoid the need formanu-
ally written policies. Our implementation worked well under eval-
uation. It was precise, detected unknown vulnerabilities in real-
world web applications with few false positives, demonstrating the
effectiveness of our approach.

We plan to make three improvements to our tool: first, we plan
to extend it to support all of PHP’s features; second, we planto add
a backward dataflow analysis to prevent it from analyzing complex
string expressions that do not influence database queries; third, we
plan to track line numbers from PHP source files through to the
grammars’ nonterminals in order to improve the quality of the bug
reports. We would like to apply the same technique to detecting
vulnerabilities that allow cross-site scripting attacks,in which a
server may deliver untrusted JavaScript code to be executedby a
client browser with the full permissions of the trusted server. We are
also interested in integrating our analysis into a broader business
logic analysis of web applications [15] in order to track session
variables as they flow from one page to another and provide more
precise and informative warnings.

Acknowledgments
We thank the PLDI anonymous reviewers for their useful and
detailed comments, which helped improve the presentation of this
work. We also thank Yasuhiko Minamide for developing the PHP
string analyzer that we used in this work and for answering our
questions about his tool.

References
[1] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection attacks.

In International Conference on Applied Cryptography and Network Security
(ACNS), LNCS, volume 2, 2004.

[2] G. T. Buehrer, B. W. Weide, and P. A. Sivilotti. Using parse tree validation to
prevent SQL injection attacks. InProceedings of the International Workshop
on Software Engineering and Middleware (SEM) at Joint FSE and ESEC, Sept.
2005.

[3] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of
string expressions. InProceedings of the 10th International Static Analysis
Symposium, SAS ’03, volume 2694 ofLNCS, pages 1–18. Springer-Verlag, June
2003. Available fromhttp://www.brics.dk/JSA/.

[4] J. Earley. An efficient context-free parsing algorithm.Communications of the
Association for Compution Machinery, 13(2):94–102, 1970.

[5] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. InPLDI
’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 1–12, New York, NY, USA, 2002.
ACM Press.

[6] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated
queries in database applications. InProceedings of the 25th International
Conference on Software Engineering (ICSE), pages 645–654, May 2004.

[7] W. Halfond, A. Orso, and P. Manolios. Using Positive Tainting and Syntax-
Aware Evaluation to Counter SQL Injection Attacks. InProceedings of the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE
2006), Portland, Oregon, November 2006.

[8] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks. InProceedings of 20th ACM International
Conference on Automated Software Engineering (ASE), Nov. 2005.

[9] K. J. Higgins. Cross-site scripting: Attackers’ new favorite flaw, Septem-
ber 2006. http://www.darkreading.com/document.asp?doc_id=

103774&WT.svl=news1_1.

[10] H. Hosoya and B. C. Pierce. Xduce: A typed xml processinglanguage
(preliminary report). InSelected papers from the Third International Workshop
WebDB 2000 on The World Wide Web and Databases, pages 226–244, London,
UK, 2001. Springer-Verlag.

[11] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protection. In WWW ’04:
Proceedings of the 13th international conference on World Wide Web, pages
40–52, New York, NY, USA, 2004. ACM Press.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In2006 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2006.

[13] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for syntactic
detection of web application vulnerabilities. InACM SIGPLAN Workshop
on Programming Languages and Analysis for Security, Ottowa, Canada, June
2006.

[14] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counteringcode-injection attacks
with instruction-set randomization. InProc. CCS’03, pages 272–280, 2003.

[15] C. Kirkegaard and A. Møller. Static analysis for Java Servlets and JSP. In
Proceedings of the 13th International Static Analysis Symposium, SAS ’06,
volume 4134 ofLNCS. Springer-Verlag, August 2006. Full version available as
BRICS RS-06-10.

[16] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel. Context-sensitive program analysis as database queries. In
Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems. ACM, June 2005.

[17] V. B. Livshits and M. S. Lam. Finding security errors in Java programs with
static analysis. InProceedings of the 14th Usenix Security Symposium, pages
271–286, Aug. 2005.

[18] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using PQL: a program query language. InOOPSLA ’05: Proceedings of
the 20th annual ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 365–383, 2005.

[19] D. Melski and T. Reps. Interconvertbility of set constraints and context-free
language reachability. InProceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, pages 74–89,
1997.

[20] Y. Minamide. Static Approximation of Dynamically Generated Web Pages. In
WWW’05: Proceedings of the 14th International Conference on the World Wide
Web, pages 432–441, 2005.

[21] M. Mohri and M. Nederhof. Regular approximation of context-free grammars
through transformation.Robustness in Language and Speech Technology, pages
153–163, 2001.

[22] M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In Meeting of the Association for Computational Linguistics, pages 231–238,
1996.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. In Twentieth
IFIP International Information Security Conference (SEC’05), 2005.

[24] T. Pietraszek and C. V. Berghe. Defending against Injection Attacks through
Context-Sensitive String Evaluation. InProceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection (RAID), Sept. 2005.

[25] Z. Su and G. Wassermann. The essence of command injection attacks in web
applications. InProceedings of the 33rd Annual Symposium on Principles of
Programming Languages, pages 372–382, Charleston, SC, Jan. 2006. ACM
Press New York, NY, USA.

[26] M. Sutton. How prevalent are sql injection vulnerabilities?, September 2006.
http://portal.spidynamics.com/blogs/msutton/archive/2006/

09/26/How-Prevalent-Are-SQL-Injection-Vulnerabilities_
3F00_.aspx.

[27] N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression types for strings
in a text processing language (extended abstract). InProceedings of TIP’02
Workshop on Types in Programming, pages 1–18, July 2002.

[28] P. Thiemann. Grammar-based analysis of string expressions. In 2005
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation (TLDI), pages 59–70, 2005.

[29] L. Wall, T. Christiansen, and R. L. Schwartz.Programming Perl (3rd Edition).
O’Reilly, 2000.

[30] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. InPLDI ’04: Proceedings of the
ACM SIGPLAN 2004 conference on Programming language designand
implementation, pages 131–144, New York, NY, USA, 2004. ACM Press.

[31] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting
languages. InProceedings of the 15th USENIX Security Symposium, pages
179–192, July 2006.

[32] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks. InProceedings of the 15th
USENIX Security Symposium, Aug. 2006.

