
An Analysis Framework for Security in Web Applications

Gary Wassermann Zhendong Su
Department of Computer Science

University of California, Davis

{wassermg, su}@cs.ucdavis.edu

ABSTRACT
Software systems interact with outside environments (e.g.,
by taking inputs from a user) and usually have particular
assumptions about these environments. Unchecked or im-
properly checked assumptions can affect security and reli-
ability of the systems. A major class of such problems is
the improper validation of user inputs. In this paper, we
present the design of a static analysis framework to address
these input related problems in the context of web applica-
tions. In particular, we study how to prevent the class of
SQL command injection attacks. In our framework, we use
an abstract model of a source program that takes user in-
puts and dynamically constructs SQL queries. In particular,
we conservatively approximate the set of SQL queries that
a program may generate as a finite state automaton. Our
framework then applies some novel checking algorithms on
this automaton to indicate or verify the absence of security
violations in the original application program. Work is in
progress to build a prototype of our analysis.

1. INTRODUCTION
Web applications are designed to allow any user with a

web browser and an internet connection to interact with
them in a platform independent way. They are typically
constructed in a two- or three-tiered architecture consisting
of at least an application running on a web server, and a
back-end database. Both components may have trust as-
sumptions about their respective environments. The appli-
cation may be designed with the assumption that users will
only enter valid input as the programmer intended, in terms
of both input values and ways of entering input. The back-
end database may be set up with the assumption that the
application will only send it authorized queries for the active
user, in terms of both the types of actions the queries per-
form and the ranges of tuples the queries act on. All of these
assumptions, if not checked properly, risk being violated, by
malicious users.
Catching violations early (e.g., at the application as op-

posed to at the database) is desirable in preventing mali-
cious users from executing dangerous queries. However, the
meta-programming aspect of these applications makes static
checking difficult. A meta-program is a program in some
source language that manipulates object-programs, perhaps
by constructing object-programs or combining object-pro-
gram fragments into larger object programs. In this sense,
a Java/JDBC program or a CGI script that constructs SQL
queries to retrieve information from a database is a meta-
program. The source language is Java or Perl, and the target
language is SQL.

1.1 SQL Command Injection
For web applications, one common class of security prob-

lems is the so-called SQL command injection attacks [9,23].
We use a simple example to illustrate the problem. Many
applications include code that looks like the following:
string query = "SELECT * FROM employee WHERE name

= ’" + name + "’";

The user supplies the value of the name variable, and if the
user inputs “John” (an expected value), then the query vari-
able contains the string: "SELECT * FROM employee WHERE

name = ’John’". A malicious user, however, can input “John’
or 1=1--,” which results in the following query being con-
structed: "SELECT * FROM employee WHERE name = ’John’

OR 1=1--’". The “--” is the single-line comment operator
supported by many relational database servers, including
MS SQL Server, IBM DB2, Oracle, PostreSQL, and MySQL.
In this way, the attacker can supply arbitrary code to be ex-
ecuted by the server and exploit the vulnerability.
Although the source language, e.g., Java, may have a

strong type system, it provides no guarantee about the dy-
namically generated SQL queries. Certainly direct string
manipulation is a low-level programming model, but it is
still widely used, and command injections do pose a serious
threat both to legacy systems and to new code. A recent
web-search easily revealed several sites susceptible to such
attacks.
At the heart of command injections is an input validation

problem, i.e., to accept only certain expected inputs. Proper
input validation turns out to be very difficult. Several tech-
niques exist to address it, and we give an overview here.
At a low level, input can either be filtered, so that “bad”
inputs are rejected, or altered with the design of making
all inputs “good.” One suggested technique is to enumer-
ate the strings that the programmer believes are necessary
for an injection attack but not for normal use. If any of
those strings appear as substrings in the input, either the
input can be rejected, or they can be cut out, leaving usually

1

nonsense or harmless code. Another common practice is to
limit the length of input strings. More generally, inputs can
be filtered by matching them against a regular expression
and rejecting them if they do not match. An alternative
is to alter input by adding slashes in front of quotes in or-
der to prevent the quotes that surround literals from being
closed within the input. Common ways to do this are with
PHP’s addslashes function and PHP’s magic quotes set-
ting. Recent research efforts provide ways of systematically
specifying and enforcing constraints on user inputs. Power-
Forms provides a domain-specific language to generate both
client-side and server-side checks of constraints expressed as
regular expressions [4]. Scott and Sharp propose using a
proxy to enforce slightly more expressive constraints (e.g.,
they can restrict numeric values of input) on individual user
inputs [20]. A number of commercial products, such as Sanc-
tum’s AppShield [13] and Kavado’s InterDo [14], offer simi-
lar strategies. One recent project proposes a type system to
ensure that all data is “trusted”; that type system considers
input to be trusted once it has passed through a filter [11].
Perl’s “tainted mode” has a similar goal, but it operates at
runtime [24].
All of these techniques are an improvement over unregu-

lated input, but they have weaknesses. None of them can
say anything about the syntactic structure of the generated
queries, and all may still admit bad input. It is easy to
miss important strings when enumerating “bad” strings, or
to fail to consider the interactions between seemingly “safe”
strings. Dangerous commands can be written quite con-
cisely, so short strings are not necessarily “safe.” Regu-
lar expression filters may also be under-restrictive. PHP’s
addslashes has led to some confusion because when used in
combination with magic quotes, the slashes get duplicated.
Also, if a numeric input is expected and arbitrary characters
can be entered, no quotes are needed to execute an injection
attack. In the absence of a principled analysis to check these
methods, they cannot provide security guarantees. Because
vulnerabilities are known to be possible even when these
measures are taken, black-box testing tools have been built.
One from the research community is called WAVES (Web
Application Vulnerability and Error Scanner) [10], and sev-
eral commercial products also exist, such as AppScan [12],
WebInspect [6], and ScanDo [14]. While testing can be use-
ful in practice for finding vulnerabilities, it cannot be used
to make guarantees either.
Other techniques deal with input validation by enforcing

that all input will take the syntactic position of literals. Bind
variables and parameters in stored procedures can be used
as placeholders for literals within queries, so that whatever
they hold will be treated as literals and not as arbitrary code.
This is the most recommended practice because of increased
security and performance. A recently proposed instruction
set randomization for SQL in web applications has a similar
effect [3]. It relies on a proxy to translate instructions dy-
namically, so SQL keywords entered as input will not reach
the SQL server as keywords. These will not be acceptable
solutions in the rare case when users are to be allowed to
enter column names or anything more than literals. Also,
these techniques guarantee that only the SQL code from the
source program will be executed, but they cannot guarantee
that those SQL queries will be “safe.” There is currently no
formal static verification technique to perform early detec-
tion of dangerous SQL commands in source code. Further-

more, although using stored procedures is less error-prone
than string manipulation, many web applications have been
written and continue to be written using string manipula-
tion to construct dynamic SQL queries.
In this paper, we propose a static analysis framework to

detect SQL command injection attacks. In our framework,
we cast the SQL command injection problem as a version of
the analysis of meta-programs [21] and propose a technique
based on a combination of well-known automata-theoretic
techniques [8], an extension of context-free language (CFL)
reachability [18], and novel algorithms for checking automata
for security violations [22].

1.2 Overview of Analysis Framework
In our framework, we assume that the user inputs are re-

stricted with some regular expressions for input validation.
The absence of such a filter means that all inputs are possi-
ble. The use of regular expressions makes possible the auto-
matic generation of code for checking user inputs. We then
statically verify that the regular expressions provide proper
input checking such that no command injection is possible.
Our proposed analysis operates directly on the source code

of the application. We consider Java programs in particular,
but the programs can be written in any other language. Our
analysis builds on top of two recent works on analysis of
dynamically generated database queries, one for syntactic
correctness [5] and one for type correctness [7].
Our analysis is split into two main steps. First, it starts

with a conservative, dataflow-based analysis, similar to a
pointer analysis [1], to approximate the set of possible que-
ries that the program generates for a particular query vari-
able at a particular program location. We take into ac-
count that the application programmer may check user in-
put against a regular expression filter. The result for each
query variable, e.g., query in the earlier example, is a fi-
nite state automaton which represents a conservative set of
possible string values that the variable can take at runtime.
In the second step, our analysis performs semantic checks

on the generated automaton to detect security violations. In
this step, two main checks are performed. First, we check
access control against a given security policy specified by the
underlying database. This also includes the detection of po-
tential dangerous commands such as deleting a whole table.
Second, we analyze the parts of the automaton correspond-
ing to the WHERE clauses of the generated queries to check
whether there is a tautology. The existence of a tautology in-
dicates a potential vulnerability and the corresponding regu-
lar expressions need to be examined and perhaps redesigned.
Knowing exactly which column the column names may refer
to enables us to view the columns as variables in the object
program. Whereas type checking of generated queries rea-
sons about the types of these “variables,” we reason about
their values to check for tautologies in WHERE clauses. If no
violations are detected, the soundness of our analysis guar-
antees that the original source-program does not produce
any “threatening” SQL commands.

1.3 Paper Outline
The rest of the paper is structured as follows. We first

present our analysis framework in detail (Section 2). In
particular, we discuss the previous works on string analy-
sis [5] (Section 2.1) and query structure discovery [7] (Sec-
tion 2.2), followed by a discussion of the checks we perform

2

(Section 2.3). We then present an algorithm for tautology
checking (Section 3) and discuss some current limitations of
our approach and areas for future work (Section 4). Finally,
we survey related work (Section 5) and conclude (Section 6).

2. ANALYSIS FRAMEWORK
In this section, we give a more detailed description of our

analysis framework. We mentioned earlier that manual in-
put filtering and validation of user inputs are error prone.
In our framework, we suggest the use of regular expressions
to filter user inputs. Our framework can then check the
correctness of these regular expression specifications. Our
analysis technique, however, is general and can also validate
other input checking mechanisms, including the use of ad
hoc input validation routines.

2.1 Abstract Model of Generated Queries
As the first step of our analysis, we build an abstract

model of all the possible dynamically generated SQL queries
by a source program. In particular, we consider programs
written in Java.
This step of our analysis builds upon a string analysis of

Java programs by Christensen et al. [5]. The string analysis
approximates the set of possible strings that the program
may generate for a particular string variable at a particu-
lar program location, which is called a hotspot. The string
analysis represents the set of possible strings by generating
a finite state automaton (FSA); that is, the set of strings
the automaton accepts is a superset of the set of strings
the program actually produces at that hotspot. For our
purpose, the hotspots are the string variables that produce
SQL query strings. For example, the string variable query

at the statement:
return statement.executeQuery(query);

is a hotspot for that program.
We can model regular expression filters, in the string anal-

ysis, as casts on the corresponding Java program variables;
that is, all string values of a particular Java expression may
be declared to be within a given regular expression. These
casts can be thought of in much the same way as type casts
in any typed programming language. We refer interested
readers to Christensen et al.’s paper [5] for technical details
on the string analysis.
Finally, the rest of our analysis requires that each FSA

accepts only syntactically correct queries. We enforce this
by first constructing an FSA which accepts an under ap-
proximation of the SQL language. By intersecting it with
the FSA for the generated queries, we ensure syntactic cor-
rectness. (Section 4 discusses some limitations imposed by
this approach.)

2.2 Syntactic Structure of Generated Queries
In order to analyze the FSA representation of database

queries, we need to understand the queries’ syntactic struc-
ture. We utilize aspects of earlier work on static type check-
ing of generated queries [7] to discover the parsing structure
of queries. Discovering the structure allows us to locate
WHERE clauses to check for tautologies, for example. For in-
dividual programs, the structure is obtained by parsing the
program according to the language’s grammar. Our situa-
tion is different: instead of individual programs, we have an
FSA which may accept a potentially infinite set of programs
(database queries, in this context).

We use an extension of the context-free language (CFL)
reachability algorithm [17, 18] to simulate parsing on the
FSA. The CFL-reachability problem takes as inputs a con-
text-free grammar G with terminals T and nonterminals N ,
and a directed graph A with edges labeled with symbols from
T ∪N . Let S be the start symbol of G, and Σ = T ∪N . A
path in the graph is called an S-path if its word is derived
from the start symbol S. The CFL-reachability problem is
to find all pairs of vertices s and t such that there is an
S-path between s and t.
The SQL-language grammar and the generated FSA are

inputs to the CFL-reachability algorithm. We need to ex-
tend the standard CFL reachability algorithm to record which
edges in the graph led to the addition of each new edge to
find the structure of every query accepted by the FSA. For
example, it tells us not only that there is a SELECT state-
ment starting at vertex s and ending at vertex t, but it also
tells us every path between s and t that accepts a SELECT

statement and whether each segment of each path is a WHERE
clause, a column-list, or something else.
Having the complete structure of every query in the set

enables the analysis to match each column name with the
set of columns it may refer to. Note that because of the
branching structure of the FSA, column names may refer to
any of a set of columns, as in the following example:

SELECT id FROM
table1

table2

To facilitate the next phase of analysis, we modify the FSA
by adding transitions labeled with fully-qualified column
identifiers (e.g., id.table1) parallel to transitions labeled
with column names. Further details regarding structure dis-
covery can be found in Gould et al.’s paper [7].

2.3 Security Checking of Generated Queries
In the final step, we check for various security violations in

the generated queries. We mention two of the main checks
that one can perform.

2.3.1 Checking Access Control Policies
Access control policies grant entities permissions on re-

sources. Our analysis checks the generated queries against
some given access control policy for the database.
DBMSs usually use role-based access control (RBAC) [2],

in which the entities are roles (e.g., administrator, manager,
employee, customer, etc.) and users act as one of these
roles when accessing the database. The active role for each
hotspot is an input to our analysis. The permissions in-
clude, for example, SELECT, INSERT, UPDATE, DELETE, DROP,
etc. The resources are tables and columns. As a result of
“parsing” the FSA with CFL-reachability, we know for each
column transition, all contexts (e.g., SELECT, INSERT, etc.)
in which it may appear in the generated queries. We use
this to discover access control violations. For example, if
the role customer does not have the INSERT permission on
id.table2, even if id.table2 is mentioned in a SELECT sub-
query of an INSERT statement, we will discover and flag the
violation.

2.3.2 Detecting Tautologies
The second main check we perform on the generated SQL

queries is to verify the absence of tautologies from all WHERE

3

clauses. Generally, if an honest user wants to return all
tuples for a query, the query will not have a WHERE clause.
In the context of web applications, a tautology in a WHERE

clause is an almost-certain sign of an attack, in which the
attacker attempts to circumvent limitations on what web
users are allowed to do.
Detecting generated tautologies is a non-trivial task. Ear-

lier work on type checking dynamically generated queries [7]
reasons about the types of constants, columns, and expres-
sions. Tautology checking, on the other hand, has to reason
about values, which is a much deeper semantic analysis than
type checking.
To discover tautologies, we first extract the portions of

the FSA that accept the conditional expressions in WHERE

clauses, which we call Boolean FSAs. Detecting tautologies
in acyclic portions of the FSA is straightforward because
acyclic portions accept only a finite set of expressions. Cy-
cles in the FSA make tautology detection challenging. We
classify cycles as either arithmetic or logical, depending on
the sort of expressions they accept. We conceptually view
arithmetic portions of the FSA as network flow problems,
and solve them using a decision procedure for first-order
arithmetic. Logical loops cannot be handled this way. In-
stead, we “unroll” them the minimal number of times needed
to ensure that if any tautology is accepted, at least one will
be found. The next section explains tautology detection in
more detail. If a tautology is discovered, we issue a warning.

3. CHECKING FOR TAUTOLOGIES
For web applications, a tautology in the WHERE clause of

a database query indicates a highly likely command injec-
tion problem. Perhaps the attacker wants to view all the
information in a database, where only a subset is intended
for any given user. In another setting, user names and pass-
words may be stored in a database so that the application
authenticates users by querying the database to check for
the supplied name and password. A tautology in such a
query would nullify the authentication mechanism.
Checking for tautologies is challenging because tautolo-

gies may be non-trivial, such as “(a > b) OR NOT ((b -

1 > c) AND (2 - b - c > -a - b)).” In fact, the general
problem is undecidable because of the undecidability of solv-
ing Diophantine equations [16].
We restrict ourselves in this paper to discovering tautolo-

gies in linear arithmetic (“+” and “−” but no “×”) over
real numbers. Multiplication by a constant is within linear
arithmetic, and we include it in our algorithm when it ap-
pears in an acyclic region of the FSA. However, for an FSA
that has, for example, a loop over “× 2,” if we attempt to
include all multiplication by constants, we would character-
ize the multiplication as “× 2n” for some n. Exponentiation
with variables is difficult to reason about, so when multipli-
cation appears in a cyclic region of the FSA or has variables
as its multiplicands, we flag a warning. Columns of type
Integer are approximated by real numbers. Relations over
strings (e.g., “’a’=’a’”) can be translated into questions
over numbers, for example by mapping strings to numbers.
If the set of queries represented by the automaton is infi-

nite, it is because the automaton has cycles. Cycles in the
automaton come from both cyclic behavior in the source
program, either from looping control structures or recur-
sion, and repetition in regular expression filters (e.g., “*”).
Although cycles are finite structures, a single pass through

a cycle may not reveal everything we need to know. Mul-
tiple passes through even a simple loop may be needed to
discover a tautology. Consider the following example:

b

a

−

≥ − b OR b ≥ a

After two passes through the loop, the automaton accepts
the string “a - b - b ≥ - b OR b ≥ a,” which is seman-
tically equivalent to “a ≥ b OR b ≥ a”, a tautology.

3.1 Our Approach
In formulating an analysis to discover tautologies in the

presence of cycles in a Boolean FSA, we first note a use-
ful consequence of the syntactic-correctness property: the
transitions of the Boolean FSA can be partitioned into four
transition types. A transition of type:

(I) accepts part of an arithmetic expression ({+, -, (), 1,
x, . . . }) before a comparison operator;

(II) accepts a comparison operator ({>, ≥, =, ≤, <, 6=});

(III) accepts part of an arithmetic expressions after a com-
parison operator;

(IV) accepts a logical operator ({AND, OR, NOT}) or a paren-
thesis at the logical level.

This partitioning must be possible because, for example, if
a transition that accepts a constant could be classified as
both type I and type III, then the FSA would accept some
string in place of a comparison expression which either had
two comparison operators (e.g., “. . . x > 5 < 5. . . ”) or none
(e.g., “. . . AND 5 OR. . . ”). Consider also the notion of par-
enthetic nesting for each transition in a path as the number
of logical (arithmetic) open parentheses minus the number
of logical (arithmetic) closed parentheses encountered since
the beginning of the path. Although a transition may be
encountered on many different paths, it will always have the
same parenthetic nesting. If this were not so, the FSA would
accept some string with imbalanced parentheses.
Our analysis relies on this partitioning. Rather than try-

ing to handle arbitrary cycles in the FSA uniformly, we clas-
sify each cycle as either arithmetic, if it only includes type
I or type III transitions, or logical, if it includes type IV
transitions. In order to handle each class of cycles without
concerning ourselves with the other, we define an arithmetic
FSA such that it can be viewed in isolation when we ad-
dress arithmetic cycles and it can be abstracted out when
we address logical cycles:

• The start state s immediately follows a type IV tran-
sition and immediately precedes a type I transition;

• The final state t immediately follows a type III transi-
tion and immediately precedes a type IV transition;

• All states and transitions are included that are reach-
able on some s-t path that has no type IV transitions.

The FSA fragment in Figure 1 has two arithmetic FSAs.
The one defined by (s1, t) includes all states and solid tran-
sitions in the figure. The one defined by (s2, t) excludes
the state s1 and the x-transition. Finding the arithmetic

4

OR
s1 x

+

<
1

z

t
AND

AND
s2

y

Figure 1: Example for arithmetic FSAs.

in=1
W

b

X a Y

+c

Z

≥ b +c

out=1

∃W, X, Y, Z : } flow variables
1 = X + W ∧
X + W + Y = Y + Z

∧ Z = 1

flow balance equations

∀a, b, c : } object-program variables

W × (a) + X × (b) + Y × (c) ≥ Z × (b + c) } flow-
comparison expression

Figure 2: Flow equations for arithmetic loops.

FSAs in a Boolean FSA is straightforward in our frame-
work. The structure discovery from Section 2.2 adds a tran-
sition between each pair of states that accepts a comparison
expression—these states become s and t in an arithmetic
FSA. The structure discovery adds to the new transition ref-
erences to the transitions that allowed it to be added—these
transitions are followed to find the states and transitions be-
tween s and t.
For reasoning about comparison expressions, which arith-

metic FSAs accept, we view arithmetic FSAs as network
flow problems with single source and sink nodes and solve
these problems using a construction in linear arithmetic (see
Section 3.2). Boolean expressions are comparison expres-
sions connected with logical operators (e.g., “AND,” “OR,”
“NOT”). We discover tautologies by unrolling logical loops
a bounded number of times sufficient to ensure that if a tau-
tology is accepted, we will find one. We simulate unrolling
by repeating instances of the network flow problems. We
determine the precise number of times to unroll based on
the structure of the strong connections among arithmetic
FSAs and the number of object-program variables in each
arithmetic FSA (see Section 3.3).

3.2 Arithmetic Loops
We address arithmetic loops by casting questions about

arithmetic automata as questions about network flows. We
present the technique by the example in Figure 2. We con-
sider the path taken as the FSA accepts a string to be a flow.
Except at the entrance and exit states, each state’s in-flow
must equal its out-flow. In other words, if on an accepting
path, a state is entered three times, then on the same path
it must also be exited three times.
In order to capture this intuition, we label the incoming

and outgoing transitions at each state where branching or
joining occurs. In the example, we label four transitions as
W , X, Y , and Z. The labels become the variable names for

arithmetic FSA

OR

Figure 3: A simple logical loop.

the flow variables. The value of a flow variable equals the
number of times the corresponding transition was taken in
some accepting path. For the start state, the final state, and
each state with branching or joining, we write flow balance
equations. The label of each transition entering that state
appears on one side of the equation and the label of each
transition leaving appears on the other. For the start and
final states of the arithmetic automaton, we specify a value
of “1” entering and leaving respectively.
Paths through the FSA accept expressions of constants

and object-program variables (i.e., column names, in the
present context). A tautology is an expression true for all
values of the variables, so we universally quantify the object-
program variables named in the FSA.
Finally, we write flow-comparison expressions to link the

flow through the FSA to the semantics of the accepted ex-
pression. In flow-comparison expressions, flow variables are
multiplied by the expressions on their corresponding paths
because each trip through a path adds the expression that la-
bels the path to the accepted string. In Figure 2, {W, Y, Z ←
1;X ← 0} makes the expression true, and corresponds to
the string “b + c ≥ b + c.” Additional expressions can
prevent most false positives (e.g., by preventing path vari-
ables from taking negative values), but we do not discuss
them here due to space constraints.
Tarski’s theorem [22] establishing the decidability of first-

order arithmetic guarantees that expressions of this form are
decidable when the variables range over real numbers. We
state here a soundness result:

Theorem 3.1. If we do not discover a tautology then the
FSA does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linked
in a linear structure by logical connectors (e.g., “AND” or
“OR”), we can merge in a natural way the equations we gen-
erate to model the arithmetic automata, and the soundness
result holds for the sequence of automata:

Theorem 3.2. If we do not discover a tautology, then the
linear chain of arithmetic FSAs does not accept a tautology.

Incompleteness Allowing the variables to range over real
numbers does leave a margin of incompleteness. If the flow
variables take on non-integral values, they will not corre-
spond to any path through the FSA. We discuss this further
in Section 4.

3.3 Logical Loops
Consider the simple abstract FSA in Figure 3. The arith-

metic FSA might not accept any tautology, but two or more
passes through the arithmetic FSA joined by “OR” may be
a tautology.
Unfortunately, we cannot use equations to address logical

loops as we did for arithmetic loops. If we did, the equations
for arithmetic loops would not be expressible in first-order

5

a.
NOT (

A
AND

B
OR

OR

C
)

b.
NOT (

A

AND

B
OR

OR

C
)

OR
B

OR

c.
ε ((

¬A

OR

¬B
AND

AND

¬C
)

) AND
¬B

) AND

Figure 4: Removing “NOT” from a Boolean FSA.

arithmetic. Instead, we “unroll” the loop enough times that
if the loop accepts some tautology, the unrolling must also
accept some tautology. This section presents our technique
for discovering tautologies in the presence of logical loops by
explaining how we address transitions labeled with each of
the four logical keywords: NOT, OR, AND, and (), in that
order.

3.3.1 NOT-transitions
The first phase of the analysis takes as input a Boolean

FSA F and transforms it into a Boolean FSA F ′, such that
the sets of expressions that F and F ′ accept are logically
equivalent, and F ′ has no transitions labeled “NOT.” Fig-
ure 4 illustrates this transformation. Labeled states rep-
resent FSAs that accept comparison expressions (as in Fig-
ure 3). Because “AND” has a higher precedence than “OR,”
applying DeMorgan’s law to a negated expression requires
that parentheses be added to preserve the precedence in the
original expression. However, because we are dealing with
FSAs, not single expressions, adding parentheses along one
path may lead to imbalanced parentheses on another path.
To address this, the transformation first duplicates states
that have differently labeled incoming or outgoing transi-
tions. For example, the state B in the original Boolean FSA
in Figure 4a has incoming transitions labeled “AND” and
“OR,” so it gets duplicated as in Figure 4b. The trans-
formation then adds parentheses at transitions that termi-
nate sequences of AND-transitions, flips the AND’s and the
OR’s, and flags the states with “¬.” When a state is flagged
with “¬,” the comparison operators in the arithmetic FSA
get swapped with their opposites (e.g., < À ≥). Figure 4c
shows the last step on the example.

3.3.2 OR-transitions
By Theorem 3.2, we can determine whether a linear bool-

ean FSA accepts any tautologies. In this section, given an
arbitrary Boolean FSA which has only OR-transitions, we
generate a finite set of linear Boolean FSAs such that at
least one accepts a tautology iff the original Boolean FSA
accepts a tautology.
If all strongly connected components (SCCs) in an FSA

are viewed as single states, the FSA is acyclic and all paths

1
OR

2

OR
⇒

3

OR

4
OR

1
OR

3
OR

OR

4
OR

OR

2

OR

Figure 5: Transforming a complex looping structure

into multiple self-loops.

A

OR

⇒ A1
OR

A2
OR OR

An+2

Figure 6: Logical-loop unrolling.

through it can be enumerated. The paths can be used to
produce a finite set of linear FSAs, and iff the original FSA
accepts a tautology, one of the linear FSAs accepts a tautol-
ogy. The following lemma allows us to transform complex
looping structures of SCCs into linear sequences of states
with self-loops, as in Figure 5.

Lemma 3.3. Let F be a Boolean FSA with only OR-tran-
sitions which is linear except for SCCs. If F is transformed
into F ′ by allowing only unique incoming and outgoing tran-
sitions for each state (so that F ′ is linear) and adding a self-
loop to each state which was originally in an SCC, F accepts
a tautology iff F ′ accepts a tautology.

Lemma 3.3 follows directly from the commutative prop-
erty of “OR.” If we can determine the maximum number of
times each state with a self-loop must be visited to discover
a tautology, we can “unroll” the self-loops that number of
times to produce linear Boolean FSAs. The following theo-
rem yields this number:

Theorem 3.4. Let T be an expression of the form t1 ∨
. . . ∨ tm, where each ti is a comparison of two linear arith-
metic expressions. Let S map expressions to sets by map-
ping an expression E to the set of comparisons in E, so that
S(T) = {t1, . . . , tm}. T is a tautology, iff there exists some
tautology T ′, such that S(T ′) ⊆ S(T) and |S(T ′)| ≤ n + 2,
where n is the number of variables named in T .

Due to space constraints we omit the proof of Theorem 3.4.
The theorem is established through a connection between
the maximum number of comparisons needed for a tautology
and the maximum number of linearly independent vectors in
n dimensions. Figure 6 illustrates how we use Theorem 3.4:
if A represents an arithmetic FSA, and a total of n distinct
program variables label the transitions of the FSA, the loop
can be unrolled n + 2 times to guarantee that if the loop
accepts all or part of a tautology, the unrolling does too.

3.3.3 AND-transitions
This section extends the algorithm from Section 3.3.2 to

deal with AND-transitions. Because “AND” has a higher
precedence than “OR,” we cannot simply put self-loops on
all states in an SCC. The following definitions will be useful
in our algorithm:

Definition 3.5 (AND-chain). An AND-chain is a se-
quence of states in an SCC connected sequentially by AND-
transitions where OR-transitions in the SCC immediately

6

1

AND

2
AND

OR

3

OR

AND

4

AND

OR
5

AND

minimal AND-chain set
︷ ︸︸ ︷

1
AND

4 3

⇓

5
AND

2

(
1

OR

)
�����

(
4

OR

) OR
3

OR

OR (
5

OR

)
�����

(
2

OR

)

⇓
�

1

���

← 2(n + 2)→

���

1

	 ����� �

4

���

← 2(n + 2)→

���

4

	 ���

3

���

← 4(n + 2)→

���

3

Figure 7: Forming a linear FSA from a strongly con-

nected component to discover tautologies.

precede and follow the first and last states in the sequence
respectively.

Definition 3.6 (Minimal AND-chain set). The min-
imal AND-chain set of an SCC in a Boolean FSA is a subset
S of the set of all AND-chains of an SCC, such that there are
no pairs of AND-chains where the states in one AND-chain
form a subset of the states in the other.

Lemma 3.7. Let F be a Boolean FSA with OR- and AND-
transitions, and let F be linear except for SCC’s which are
entered and exited through OR-transitions. Let F be trans-
formed into F ′ by replacing the SCC’s with their minimal
AND-chain sets, connecting them linearly with OR-transi-
tions, and adding an OR-transition from the last to the first
state of each AND-chain. F accepts a tautology, iff F ′ ac-
cepts a tautology.

Lemma 3.7 follows first from the commutative property
of “OR” because the order in which AND-chains occur does
not influence whether or not a tautology is accepted. The
minimal AND-chain set can be used because the conjunction
of two non-tautologies can never form a tautology. An algo-
rithm to construct this set finds all states in an SCC with
incoming OR-transitions and from those states all acyclic
paths which terminate at the first encountered state with an
outgoing OR-transition. Figure 7 shows the minimal AND-
chain set for an example SCC. In pathological cases this al-
gorithm will discover an exponential number of AND-chains,
but we expect this number to be small in practice.
Lemma 3.7 specifies a transformation from FSA F to F ′

such that F accepts a tautology iff F ′ accepts a tautology.
The distributive property of “AND” can be used to trans-
form F ′ into a linear FSA of states with self-loops and tran-
sitions with parentheses which accepts a tautology iff F ′

accepts a tautology. We create such an FSA directly from
the AND-chains, as shown in Figure 7.

a. 1

AND

2

AND

3

OR

4

(

5
AND

(

6

AND
OR

7
AND

AND

8
OR

9

)

b. 1

AND

2

AND
AND

3

OR

{4,6}

OR

AND

5
AND

{5,6}

AND
OR

c.
(

1

OR

) AND (
J4,6K

OR

) OR

d. J4,6K

OR

≡ 7
AND

AND

8
OR

9

OR

e.
(
1

OR

) AND ((
7

OR

) AND (
8

OR

) OR (
7

OR

) AND (
9

OR

)) OR

Figure 8: Forming a linear FSA from a strongly con-

nected component with parentheses.

We can put an upper bound on the number of times each
self-loop must be unrolled using Theorem 3.4. To find this
number, we consider an example. Suppose an SCC has two
AND-chains: (1) and (2)–(3). From these AND-chains we
can construct a linear FSA F with self-loops as in Figure 7.
We can also construct two sets of states where each set has
exactly one state from each AND-chain: {(1), (2)} and {(1),
(3)}. From these sets we can construct FSAs F1 and F2

where both F1 and F2 have only OR-transitions and the
states have self-loops. The FSA F accepts a tautology iff
F1 and F2 each accepts a tautology. The “only if” direc-
tion is straightforward. To prove the “if” direction, con-
sider that if F1 accepts the tautology “e1 OR e2,” and F2

accepts the tautology “e′1 OR e3,” then F accepts “e1 OR

e′1 OR (e2) AND (e3).” This expression in conjunctive nor-
mal form is “(e1 OR e′1 OR e2) AND (e1 OR e′1 OR e3),” a
tautology. By Theorem 3.4 the self-loops in F1 and F2 need
be unrolled at most n + 2 times, where n is the number of
variables that label the transitions in F1 and F2. A self-loop
over state i in F must be unrolled m(n+2) times, where m

is the product of the numbers of states in the AND-chains
which do not include state i. Figure 7 shows the final FSA
with the unrollings of self-loops.

3.3.4 ()-transitions
This section extends the algorithm from Section 3.3.3 to

deal with transitions labeled “(” and “).” Because paren-

7

theses have a higher precedence than “AND,” we discover
AND-chains only among states and transitions of the FSA
that have a common parenthetic nesting depth. Recall from
Section 3.1 that parentheses must be balanced on all paths,
and each state has a unique parenthetic nesting depth. Fig-
ure 8 illustrates this algorithm on the FSA in Figure 8a.
Before the algorithm discovers AND-chains at depth i, it
collapses pairs of states that enter/exit depth i+1 into sin-
gle states, and temporarily removes all states and transi-
tions at depths > i. For example, in Figure 8a, states (4)
and (5) enter depth 1 and state (6) exits, so {4,6} is one
pair and {5,6} is another pair. Figure 8b shows the FSA
with collapsed states ({4,6}) and ({5,6}). The meaning of a
collapsed states ({qs,qt}) is the sub-automaton that can be
entered from state qs and exited from state qt, and is written
(Jqs,qtK). The algorithm finds all AND-chains in the FSA,
creates a linear FSA with self-loops (as in Figure 7), and
replaces collapsed states with their meanings. Figure 8c
shows only the beginning of this FSA in order to use the
AND-chain (1)–(J4,6K) as an example. Figure 8d shows the
sub-automaton that (J4,6K) with a self-loop represents. In
order to “unroll” the self-loop on (J4,6K), the algorithm re-
curses on the represented sub-automaton. In this case, the
sub-automaton has AND-chains (7)–(8) and (7)–(9). The
algorithm produces a linear FSA with self-loops for this sub-
automaton, and puts it in place of (J4,6K). Figure 8e shows
the result. When the FSA has no more collapsed states, the
self-loops can be unrolled as in Figure 7.
The algorithm for analyzing Boolean FSAs is both sound

and complete:

Theorem 3.8 (Soundness and Completeness). Giv-
en a decision procedure for flow-comparison expressions, our
algorithm discovers a tautology in an FSA F iff F accepts a
tautology and accepts only syntactically correct expressions
of comparisons of linear arithmetic expressions.

Theorem 3.8 follows from Lemma 3.7 and the distributive
property of “AND.” A tautology discovered in a linear FSA
can be mapped back to a path in the original FSA for the
purpose of a useful error message.

3.4 Complexity
The removal of NOT-transitions (Section 3.3.1) runs in

time linear in the size of F , i.e., O(|F |), and expands F by
a constant factor. The number of paths through F is expo-
nential in the number of “acyclic” (cannot be reached from

themselves) states in F , i.e., O(2|Facyc|). Each path is a
query to decision procedure. The number of AND-chains is
exponential in the number of “strongly connected” (can be

reached from themselves) states in F , i.e., O(2|Fsc|). The
length of each path is bounded by either the number of
acyclic states or the product of the number of AND-chains
and the size of the alphabet, i.e., O(max(|Facyc|, 2

2|Fsc||Σ|)).
Therefore the number of queries is exponential and the size
of each query is also exponential. For this analysis, we con-
sider each query as being sent to an oracle.
Although in the worst case this algorithm runs in expo-

nential time, we expect this to scale well because FSAs based
on real-world programs typically do not have large and com-
plex structures.

4. LIMITATIONS AND FUTURE WORK

In this section, we discuss some limitations of our current
analysis and leave them for future work.
The first limitation lies in the way that we ensure syn-

tactic correctness of the generated queries. The use of an
FSA under-approximation of the SQL grammar may be too
restrictive to remove some possible malicious queries from
the represented set (Section 2.1). Based on the results from
earlier work [5,7], we do not expect this in practice. We can
also check for automata containment to make sure that the
generated queries are syntactically correct.
The second limitation is our use of a decision procedure for

first-order arithmetic over real numbers to solve our network
flow problems (Section 3.2). It may be possible that the path
variables could admit a tautology by taking on non-integral
values which do not correspond to a path in the FSA. This
makes our analysis incomplete. However, we do not view
this as a serious limitation, because the analysis remains
sound by modeling integer variables with real values. It is
possible to address this by finding a decision procedure for
the particular kind of constraints we have by exploiting their
simple structure.
We do not yet have good ways to handle some operators,

such as “LIKE” and “×.” Generated constants pose simi-
lar problems for automata-based analyses. Questions about
each of these is decidable in the absence of certain classes of
loops, so loop unrolling algorithms, similar to the algorithm
in Section 3.3, may provide good approximations.
Finally, to experimentally validate the effectiveness of our

analysis framework, we are working on a prototype of the
analysis and planning to apply it to some real-world exam-
ples.

5. RELATED WORK
In this section, we survey closely related work. Two previ-

ous projects are closely related to this work. The first is the
string analysis of Christensen, Møller, and Schwartzbach [5].
Their string analysis ensures that the generated queries are
syntactically correct. However, it does not provide any se-
mantic correctness guarantee of the generated queries. The
second, which builds on this string analysis, is on type check-
ing of generated queries by Gould, Su, and Devanbu [7].
Their analysis takes the first step in the semantic checking
of object-programs by ensuring that all generated queries
are type-correct. Our analysis builds on these and goes a
step further by checking deeper semantic properties.
Several tutorials are available on how to create web ap-

plications safely to avoid SQL command injection [9]. The
only other research that we know of intended specifically for
preventing command injection attacks uses instruction set
randomization [3]. That technique relies on an intermediary
system to translate instructions dynamically; our analysis is
completely static, so it adds nothing to the run-time system.
Several other techniques are mentioned in Section 1.
Several other automata-based techniques have been pro-

posed with security in view, but they use automata in a fun-
damentally different way. For example, Schneider proposed
formalizing security properties using security automata, which
define the legal sequences of program actions [19]. In con-
trast, our analysis uses automata to represent values of vari-
ables at specified program points (hotspots).
To be put in a broader context, our research can be viewed

as an instance of providing static safety guarantee for meta-
programming [21]. Macros are a very old and established

8

meta-programming technique; this was perhaps the first set-
ting where the issue of correctness of generated code arose.
Powerful macro languages comprise a complete program-
ming facility, which enable macro programmers to create
complex meta-programs that control macro-expansion and
generate code in the target language. Here, basic syntac-
tic correctness, let alone semantic properties, of the gener-
ated code cannot be taken for granted, and only limited
static checking of such meta-programs is available. The
levels of static checking available include none, syntactic,
hygienic, and type checking. The widely used cpp macro
pre-processor allows programmers to manipulate and gener-
ate arbitrary textual strings, and it provides no checking.
The programmable syntax macros of Weise & Crew [25]
work at the level of correct abstract-syntax tree (AST) frag-
ments, and guarantee that generated code is syntactically
correct with respect (specifically) to the C language. Weise
& Crew macros are validated via standard type-checking:
static type-checking guarantees that AST fragments (e.g.,
Expressions, Statements, etc.) are used appropriately in
macro meta-programs. Because macros insert program frag-
ments into new locations, they risk “capturing” variable
names unexpectedly. Preventing variable capture is called
hygiene. Hygienic macro expansion algorithms, beginning
with Kohlbecker et al. [15] provide hygiene guarantees. Re-
cent work, such as that of Taha & Sheard [21], focuses on
designing type checking of object-programs into functional
meta-programming languages. We do not introduce new
languages or new language designs. In this particular work,
our goal is to ensure that strings passed into a database from
an arbitrary Java program are “non-threatening” SQL que-
ries from the perspective of a given database security policy.
We expect the general technique outlined in this paper can
be extended to apply in other settings as well.

6. CONCLUSIONS
We have presented the design of the first static analysis

framework for verifying a class of security properties for web
applications. In particular, we have presented techniques for
the detection of SQL command injection vulnerabilities in
these applications. Our analysis is sound. We are currently
working on an implementation of the analysis. Based on
encouraging results from earlier work on syntactic and se-
mantic checking of dynamically generated database queries
and properties of the constructions presented in this paper,
we expect our analysis to work well in practice and have a
low false positive rate. Finally, we expect our analysis tech-
nique may be applicable in some other meta-programming
paradigms.

7. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis,
University of Copenhagen, May 1994.

[2] M. Bishop. Computer Security: Art and Science.
Addison Wesley Professional, 2002.

[3] S. W. Boyd and A. D. Keromytis. SQLrand:
Preventing SQL injection attacks. In ACNS, 2004.

[4] C. Brabrand, A. Møller, M. Ricky, and M. I.
Schwartzbach. Powerforms: Declarative client-side
form field validation. World Wide Web, 2000.

[5] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. SAS’03,
pages 1–18, 2003. URL: http://www.brics.dk/JSA/.

[6] S. Dynamics. Web application security assessment.
SPI Dynamics Whitepaper, 2003.

[7] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In Proc. ICSE’04, May 2004.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Language, and Computation.
Addison-Wesley, Reading, MA, 1979.

[9] M. Howard and D. LeBlanc. Writing Secure Code.
Microsoft Press, 2002.

[10] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In World Wide Web, 2003.

[11] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In World Wide
Web, pages 40–52, 2004.

[12] S. Inc. Web application security testing-appscan 3.5.
URL: http://www.sanctuminc.com.

[13] S. Inc. Appshield 4.0 whitepaper., 2002.
URL: http://www.sanctuminc.com.

[14] I. Kavado. InterDo Vers. 3.0, 2003.

[15] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygienic macro expansion. In Conference on
LISP and Functional Programming, 1986.

[16] Y. Matiyasevich. Solution of the tenth problem of
hilbert. Mat. Lapok, 21:83–87, 1970.

[17] D. Melski and T. Reps. Interconvertbility of set
constraints and context-free language reachability. In
Proc. PEPM’97, pages 74–89, 1997.

[18] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In Proc. POPL’95, pages 49–61, 1995.

[19] F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[20] D. Scott and R. Sharp. Abstracting application-level
web security. In World Wide Web, 2002.

[21] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. In Proc. PEPM’97, 1997.

[22] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, 1951.

[23] J. Viega and G. McGraw. Building Secure Software:
How to Avoid Security Problems the Right Way.
Addison Wesley Professional, 2001.

[24] L. Wall, T. Christiansen, and R. L. Schwartz.
Programming Perl (3rd Edition). O’Reilly, 2000.

[25] D. Weise and R. Crew. Programmable syntax macros.
In Proc. PLDI’93, pages 156–165, 1993.

9

