Automating the Computation
of Nested Abnormality Theories

Zhendong Patrick Su

Advised by

Professor Vladimir Lifschitz

Read by

Professor Robert Boyer

Professor Alan Cline

Abstract

Nested Abnormality Theories (NATs) were introduced by Lifschitz to use
circumscription for representing knowledge. We describe a program CS (Cir-
cumscription Simplifier) for computing NATs. The main part of CS is SCAN,
developed by Engel and Ohlbach for the elimination of second-order quantifiers.
Our addition to SCAN 1is a new interface that allows us to use it to simplify
NATs. CS takes a NAT as input and if it terminates, the output is a set of for-
mulas whose conjunction is logically equivalent to the NAT we used as input. In

many cases, the resulting formulas are first-order.

1 Introduction

To formalize common sense remains a major challenge to the logical approach to Ar-
tificial Intelligence. In attempting to solve this problem, several non-monotonic for-
malisms emerged including circumscription. Circumscription, proposed by McCarthy,
is a syntactic transformation of formulas to formalize the kind of conjectural reasoning
used often by humans: The objects that they can determine to have certain properties
or relations are the only objects that do. The methodology for representing defaults
developed by McCarthy [1986] involves the use of an “abnormality predicate” and
the application of circumscription to minimize its extent. McCarthy explored several
possible strategies to perform the circumscription of abnormality, but none of them
turned out to be completely satisfactory.

Lifschitz [1995] proposed a new approach to the use of circumscription for rep-
resenting knowledge. This new framework is called Nested Abnormality Theories
(NATs). The main feature of this formalization is that it may have a nested struc-
ture. Each level of nesting gives a “block” that corresponds to one application of the
circumscription operator. As a result, the circumscriptions involved become rather
simple. In many examples, the second order quantifiers can be eliminated using the
existing techniques.

Two methods for computing circumscriptions exist. One of them is a generalization
of predicate completion [Lifschitz, 1993]. The other is based on the SCAN algorithm
[Gabbay and Ohlbach, 1992]. In this paper, we focus on the application of the SCAN
algorithm to computing circumscription. An implementation of the algorithm devel-
oped by Engel and Ohlbach is based on the OTTER theorem prover [McCune, 1990]
developed at Argonne National Laboratory. We have written a program called CS

which uses the SCAN program to automatically compute a set of first-order formulas

that are equivalent to a given NAT. It has worked successfully on several examples.
In the next few sections, we’ll review some of the syntax and semantics of NATs and

introduce the CS program. Also, directions of future work will be discussed.

2 Using Circumscription for Representing Knowledge

2.1 Why Non-monotonic Reasoning

Representing common sense knowledge is of major concern to Al researchers. Classical
logic is insufficient to solve this problem. It is monotonic in the following sense: As
the set of beliefs grows, so does the set of conclusions that can be drawn from those
beliefs. While much human reasoning is monotonic, some important human common
sense reasoning is not. We reach conclusions from certain premises that we would not
reach if certain other sentences were included in our premises. For example, if you
were told that “Birds fly and Tweety is a bird,” then you can conclude that “Tweety
flies”. But if you were told, in addition, that “Tweety is dead”, then you couldn’t
conclude that he flies this time. The inference here is non-monotonic. Without the
knowledge that Tweety is an atypical bird, you assume that it’s typical. But once
you learn something new about Tweety (for instance, that he is dead), you will need
to revise your conclusion that he flies. To formalize this kind of reasoning, several

formalisms have emerged, including circumscription.

2.2 Circumscription

Circumscription was introduced by McCarthy [1980, 1986]. The main idea of circum-
scription is to consider only the models of a given axiom set that satisfy a certain
minimality condition, rather than to consider arbitrary models of the axioms. Mathe-
matically, circumscription is defined as a syntactic transformation of logical formulae.
It transforms a sentence A to a stronger sentence A *, such that the models of A* are
precisely the minimal models of A.

Here is the formal definition of circumscription taken from [Lifschitz, 1993]. Let
A(P, 71, ..., Zy) be asentence containing a predicate constant P and object, function,
and/or predicate constants 71, ..., Z,, (and possibly other object, function, and predi-

cate constants). The circumscription of P in A with varied Z,, ..., Z,, is the sentence

AP, Zyy oy Zn) A 3pze, ooy 2m[A(Dy 21, - oy 2m) A < P,

where

p< P

in the formula stands for

Vap(z) D P(z))] A -Vz[p(z) = P(z)].

Here p is a predicate variable of the same arity as P; if Z; is an object constant,
then z; is an object variable, and if Z; is a function/predicate constant, then z; is a
function/predicate variable of the same arity. If we denote the tuple Z,,..., 7, by Z,

and z,...,2, by z, then the definition of circumscription above can be written as
A(P, Z) N—=3pz[A(p, 2) Ap < P].

This formula is denoted by CIRC[A;P;Z]. If Z is empty, the formula is then denoted
as CIRC[A;P]. 1t’s the basic circumscription of P in A.
Let’s look at a few examples taken from [Lifschitz, 1993].

Example 1. Let A be P(a), where a is an object constant. 7 is empty. Therefore,
it is a basic circumscription. CIRC[P(a);P] is

P(a) A—=3plp(a) Ap < PJ.

If we interpret P as a set and a as an object, then this formula expresses that a
belongs to the set denoted by P, and there doesn’t exist a proper subset of P that a
is a member. Which is equivalent to saying that P is a singleton set. We can conclude
that

CIRC[P(a); Pl =Vz[P(z) =z = a].

Example 2. Let A be Vz[Q(z) D P(z)]. With Z empty, circumscribing P in A

transforms the implication into an equivalence:

CIRC[A; Pl =Ve[Q(z) = P(z)].

Example 3. A is the same as in Example 2. With) varied this time, we get a

stronger formula:
CIRC[A; P; Q) =Ve—-Q(z) AVz—P(z).

This is because any model of Vz[Q(z) D P(z)] in which the extent of P is not empty
can be “improved” by making both P and) empty.

2.3 Nested Abnormality Theories (NATSs)

Nested Abnormality Theories (NATs) were proposed by Lifschitz [1995] as a new
approach to the use of circumscription for representing knowledge. They are similar to
simple abnormality theories introduced by McCarthy [1986], except that their axioms
may have a nested structure, with each level corresponding to another application of
the circumscription operator. This new style of applying circumscription sometimes

leads to more economical and elegant formalization.

2.3.1 Definitions

Consider a second-order language L that does not include Ab among its symbols. For
every natural number k, by L, we denote the language obtained from L by adding Ab

as a k-ary predicate constant.

Blocks: For any & and any list of function and/or predicate constants' C4,...,C,,
(m > 0) of L, if each of Ay,..., A, (n > 0) is a formula of Ly or a block, then
{Cy,...,Cy : Ay,..., A} is a block. The last expression reads: C,...,C,, are such
that Ay,..., A,. About C4,...,C,, we say that they are described by this block.
Note that, according to this definition, if A; and A; are formulas, and Ab occurs
in both, then it is used in both with the same number of arguments; if, however, A;

or A; is itself a block, then this is not guaranteed.

Nested Abnormality Theory (NAT): A NAT is a set of blocks, called its axioms.
Note that each axiom is a finite string of symbols, but there may be infinitely many
axioms in a NAT.

The semantics of NATs is characterized by a map ¢ that translates blocks into
sentences of L. It is convenient to make ¢ defined also on formulas of the languages
Ly. If A is such a formula, then @A stands for the universal closure of A. For blocks

we define, recursively:
e{Cy,...,Cp + Ay, ..., A} = JabF(ab),

where

F(Ab) = CIRC[pA; A ... A @Ay Ab; Cy,y .., Chl.

A sentence A of L will be identified with the block {: A}. We will call such blocks
trivial. It is easy to see that ¢{: A} is equivalent to A.

"This includes function constants of arity 0 (object constants) and predicate constants of arity 0

(propositional constants).

For any NAT T, ¢T stands for {¢A| A € T}. Thus ¢T is a second-order theory
in the language L. A model of T is a model of ¢T in the sense of classical logic. A
consequence of T is a sentence of L that is true in all models of T'.

If a block A is an axiom of T', then inserting an additional formula in A may result
in losing some of the consequences of T'. In this sense, the formalism defined here
is non-monotonic. But adding more axioms to a NAT can only make the set of its

consequences larger.

2.3.2 Example

Let’s look at an example of using NATs to represent knowledge. We’ll take the first
example from [Lifschitz, 1995], Section 3.

Example 4.
It’s a standard example: objects normally don’t fly; birds normally do; canaries are
birds; Tweety is a canary. These assertions can be formalized as the NAT whose only
axiom is
{Flies :
Flies(z) D Ab(z),
{Flies :
Bird(z) N —Ab(z) D Flies(z),
Canary(z) D Bird(z),
Canary(Tweety)
}
}.
The outer block describes the ability of objects to fly; the inner block gives more
specific information about the ability of birds to fly.
In order to apply ¢ to (1), we first to apply ¢ to the inner block. It is easy to
check, using the methods of [Lifschitz, 1993], Section 3, that the result is equivalent

to the conjunction of (the universal closures of) the formulas

Bird(z) D Flies(z), (2)
Canary(z) D Bird(x) (3)

and
Canary(Tweety). (4)

Using this technique again, we conclude that ¢ applied to (1) is equivalent to the
conjunction of (3), (4) and

Bird(z) = Flies(z).

3 Using CS

You can use CS on Sun OS, since the SCAN program is compiled under this environ-

ment. To use it type:
CS input_file output_file m n

where m and n are optional. They denote the times in seconds used for simplifying
the generated clauses.? Their default value is 1. If they are 0, no simplification will

be done on the generated clauses.

3.1 Formula Syntax

The formula syntax used by CS is the same as the SCAN/OTTER syntax [McCune,
1990].

Names are alphanumeric strings. A name may contain up to 50 characters. Names
are used as constant symbols, function symbols, predicate symbols, propositional vari-
ables, and regular variables. White space (spaces, tabs, newlines) can occur anywhere
except within names and between a function or predicate symbol and the opening
parenthesis. Most terms and atomic formulas (atoms) are written in prefix form as is
usual in logic. In addition, every name is also an atom (a propositional symbol), and
expressions (t; = ;) and (¢; '= t3) are atoms (= is the equality predicate, and != is
the inequality predicate). White space is required around = and !'=, and parentheses

are required.
Formulas
e Atoms are formulas.
o If F and G are formulas, then (F <=>) and (F ->) are formulas.

o If F,..., F, are formulas, then (F}y | ... | F,) and (F} & ... & F,) are formulas.

This simplification process is crucial in some cases. You may want to experiment with larger time

limits to see if more simplified results can be obtained.

e The symbols all and exists are quantifiers. If ¢,...,Q, are quantifiers,

Z1,...,%, are names, and F'is a formula, then (Q1z;...Q,z, F) is a formula.

e If F'is a non-negated formula, then -F is a formula.

The symbols have their expected meaning: - means “not”, <-> means “if and only
if”, => means “implies”, | means “or”, and & means “and”.
All parentheses are required, and white space is required around <->, ->, |, and

&, and after quantifiers and their associated variables.

3.2 Input File

The input file is a NAT, with each formula written in this syntax and followed by a
period, and with no commas between formulas. Formulas in the input file should not
have free variables.

For instance, the NAT from Example 4 should be represented like this:

{Flies:
(all x (Flies(x) -> Ab(x))).
{Flies:
(all x ((Bird(x) & -Ab(x)) -> Flies(x))).
(all x (Canary(x) -> Bird(x))).
Canary(Tweety) .

3.3 Output

CS generates output to an output file specified by the user and to the standard output,

the screen.

The following are directed to the screen:
e Error messages listed in Section 3.4
e Error and warning messages from SCAN/OTTER
e The simplification results

e Some statistical information

The following are directed to an output file:

e The simplification results

e Error and warning messages from SCAN/OTTER

Note that the set of formulas generated is sent to both the screen and an output
file. SCAN/OTTER generates messages if there are errors in the formulas or if some

of the limits are reached such as the time limit or the memory limit.

3.4 Error Messages
The following error messages may be generated if there are mistakes in the input file.

e input ERROR: missing colon on line n. This error message is generated if

no colon follows the opening braces and the predicate list.

e input ERROR: mismatched braces on line n. This error message is gener-

ated if the number of opening and closing braces don’t match.

e input ERROR: missing period at the end of formula on line n. Thiser-

ror message is generated if the period is missing after the formula on line n.

e input ERROR: too many periods at the end of formula on line n. This
error message is generated if there are two or more periods at the end of the

formula on line n.

4 Examples

We'll look at a few examples here.

Example 5. What’s On The Table: blocks are normally on the table; B1 and B2
are two blocks; B1 is not on the table. This is an example from [Lifschitz, 1993]. The

information above can be represented by the following NAT.

{Ontable:
(all x ((Block(x) & -Ab(x)) -> Ontable(x))).
-Ontable(B1).
Block(B1).
Block(B2).
(B1 != B2).

We’ll get the following as the result:

(all x0 (-Block(x0) | Ontable(x0) | x0=B1)).
-Ontable(B1).

Block(B1).

Block(B2).

(B1!=B2).

This first of these formulas can be written as:

Block(z) A x # B1 D Ontable(z).

Example 6. Whether Birds Can Fly
Now, let’s look at Example 4 from Section 2.3.2. Recall that it says objects normally

don’t fly; birds normally do; canaries are birds; Tweety is a canary. The input to CS
is the same as the one we used as example in Section 3.

Invoking CS, we get the following as the output:

(all x0 (-Canary(x0) | Bird(x0))).
(all x1 (-Bird(x1) | Flies(x1))).
(all x2 (-Flies(x2) | Bird(x2))).
Canary(Tweety) .

which can be simplified to the conjunction of the (universal closures of the) following

formulas:

Bird(z) = Flies(z).
Canary(Tweety).
Canary(z) D Bird(z).
Example 7. Objects normally don’t fly; birds normally do; objects that have wings
normally are birds; Tweety has wings; Pegasus has wings; Pegasus is not a bird. This

is an enhancement of the second example from [Lifschitz, 1995].

Our input to C8S is:

{Flies:
(all x (Flies(x) -> Ab(x))).
{Flies:

10

(all x ((Bird(x) & -Ab(x)) -> Flies(x))).

{Bird:
(all x ((HasWings(x) & -Ab(x)) -> Bird(x))).
HasWings(Tweety) .
HasWings(Pegasus).
-Bird(Pegasus).
}

}

We’ll get the following as the result:

(all x0 (-HasWings(x0) | Bird(x0) | xO=Pegasus)).
(all x1 (-Bird(x1) | Flies(x1))).

(all x2 (-Flies(x2) | Bird(x2))).
HasWings(Tweety) .

HasWings(Pegasus) .

-Bird(Pegasus).

Example 8. Nixon Diamond Example.
Let’s look at the famous Nixon Diamond example. We want to represent that Quakers
are normally pacifists; Republicans are normally hawks; a person cannot be both a
pacifist and a hawk; pacifists and hawks are politically active.

Our input to C8S is:

{Pacifist,Hawk,PoliticallyActive:
(all x ((Quaker(x) & -Ab(Aspectl,x)) -> Pacifist(x))).
(all x ((Republican(x) & -Ab(Aspect2,x)) -> Hawk(x))).
(all x (-(Pacifist(x) & Hawk(x)))).
(all x (Pacifist(x) -> PoliticallyActive(x))).
(all x (Hawk(x) -> PoliticallyActive(x))).
(Aspectl != Aspect2).
(all x (x = x)).
}

The last formula (all x (x = x)) was added since SCAN requires it for simplifying
formulas with equalities.

We’ll get the following as the result:

11

(all x0 (-Republican(x0) | Hawk(x0) | -Quaker(x0) | Pacifist(x0))).
(all x1 (-Quaker(x1) | Pacifist(x1) | Republican(x1))).

(all x2 (-Republican(x2) | Hawk(x2) | Quaker(x2))).

(all x3 (-Pacifist(x3) | -Hawk(x3))).

(all x4 (-Pacifist(x4) | PoliticallyActive(x4))).

(all x5 (-Hawk(x5) | PoliticallyActive(x5))).

(Aspectl!=Aspect2).

(all x6 (x6=x6)).

The formula (Aspectl !'= Aspect2) in the input can be placed outside of the block.
However, if we do that, it will not be used for simplifying the results.

Another example that we have looked at is the first example from [Kartha and
Lifschitz, 1995]. It was an example used to show how to use the existing methods of
computing circumscription to reason about actions. For this example, CS generated
a long and complicated second-order formula. The latest version of the SCAN pro-
gram which supports un-Skolemization can be used to produce a first-order formula.

However, the formula is still very lengthy and complicated.

5 Program Structure for CS

5.1 Choice of The Programming Language

We have implemented CS using a script language called PERL, short for Practical
Extraction and Report Language. CS contains several PERL scripts, and each of these
scripts does a specific job for simplifying NATs. Because our interface with SCAN
involves lots of character and string manipulations, and such facilities in PERL are

very efficient, it was chosen as the programming language.

5.2 SCAN

The formula @7 that defines the semantics of a NAT 7" (Section 2.3.1) involves second-
order quantifiers. Eliminating these quantifiers is the main computational task of CS.
The main part of CS is the SCAN program. SCAN [Gabbay and Ohlbach, 1992]
is an algorithm for eliminating second-order quantifiers over predicate variables in
formulas of type 3P,..., P,F where F' is any first-order formula. The resulting
formula is equivalent to the original formula if the algorithm terminates.
The algorithm normalizes the first-order formula F into clausal form and generates

all resolvents of the clauses with predicates F;. It is shown that the subset of the

12

generated clauses not containing predicates P, (maybe infinite) is equivalent to the
original formula. Since VP, ..., P, F is logically equivalent to =3P, ..., P,—F, we can
also use this algorithm to eliminate second-order predicates from universally quantified
formulas. An implementation of the SCAN algorithm has been developed by Engel
and Ohlbach.

5.3 Outline of Process

CS consists of several parts. Each part does a specific job for the computation. The
idea of CS is attacking a nontrivial innermost block first. It computes the results, and
replaces the innermost block with the resulting formulas. This process is repeated
until no more nontrivial blocks exist in the input file.

The main loop of CS is

while there are nontrivial blocks in the input file

l.extract the first nontrivial innermost block from the input file.
2. simplify this block.

3. replace it with the results from step 2.

end of while loop.

A single-level NAT has the form

{Q -
Al(Ab7Q)7

./i,;(Ab, Q)
}.

The map ¢ translates this block into the formula
dabF (ab), (5)

where
F(Ab) = A1 (Ab, Q) A ... A A, (AD, Q) (6)
A=Fab,q[Ai(ab, q) A ... A An(ab, q) A ab < Ab).
SCAN has to be called twice, first to eliminate Jab, ¢ in (6), and then to eliminate Jab
in (5). Recall that there are two optional parameters m and n when invoking CS. They
are parameters of the two calls to SCAN for eliminating redundant clauses. In the
first call to SCAN, A;(Ab,Q)A...NA,(Ab,Q) are used to simplify generated clauses.

The procedures for computing a single level block are

13

1. form the input for the first call to SCAN.

2. call the SCAN program.

3. replace the Skolem constants in the resulting clauses
by existentially quantified variables.

4. form F(ADb).

5. call the SCAN program the second time

6 Conclusion

We have presented a program CS to automatically simplify NATs. A few examples
have been used to demonstrate the efficacy of the program. In many cases, it gener-
ates a set of first-order formulas whose conjunction is equivalent to the second-order
formula represented by the NAT used as input. This transformation is useful since
automating reasoning for second-order predicate logic is much more difficult than for
first-order predicate logic. After this transformation being done, we can then employ
a first-order reasoning system to answer questions.

The program has some limitations. Some of these limitations are inherited from

the SCAN/OTTER program.

e NATs can have function symbols “described” by the nested blocks. But the
SCAN algorithm cannot eliminate function symbols from a set of formulas.
Therefore, CS cannot simplify NATs with functions “described”.

e The SCAN/OTTER program produces the equivalent first-order formula only if
it terminates. Therefore it will be desirable to isolate the classes of second-order
formulas that SCAN/OTTER terminates on.

e As demonstrated by the action example that we have tried in Section 4, the
simplification ability of SCAN is still not powerful enough. More techniques
should be devised to enhance this ability.

e The output of SCAN may include Skolem functions. CS turns them into second-
order variables and then returns a second-order formula. Engel and Ohlbach
have added un-Skolemization to the SCAN/OTTER program. They haven’t
made that available. The one that we have been using doesn’t have this feature.
This problem can be solved if the new version of SCAN/OTTER is available.

14

e In a NAT T, formulas outside a block can be used to simplify the block. Our
current implementation of CS doesn’t support this as noted in Example 8. We

plan to modify the program to add this feature.

Acknowledgments

First, [would like to thank my advisor Professor Vladimir Lifschitz for his patience and
helpful advice. Also I would like to thank Neelakantan Kartha, a recent Ph.D. from
the University of Texas at Austin for his help on using the SCAN program. Special
thanks to Thorsen Engel and Hans Juergen Ohlbach for making the implementation
of SCAN available to us. Thanks also go to Professor Robert Boyer and Professor
Alan Cline for reading this paper.

Appendix: A sample session of CS

The input file nat contains the NAT from Example 7.
CS was invoked by

CS nat out

It produced the following to the standard output (the screen).

Job run on 1995/5/23 13:43:24

Please be patient. This will take a while.
Processing ...

DONE.

The output is left in file: out

Job finished on 1995/5/23 13:43:48

Time elapsed: 24 seconds.

OCUTPUT

15

The inputed NAT is equivalent to the
CONJUNCTION of the following formula(s).
Hope that’s what you have expected.

(all x0 (-HasWings(x0) | Bird(x0) | xO=Pegasus)).
(all x1 (-Bird(x1) | Flies(x1))).

(all x2 (-Flies(x2) | Bird(x2))).
HasWings(Tweety) .

HasWings (Pegasus).

-Bird(Pegasus).

Time elapsed is the time between the job’s beginning and its termination.?

References

[1]

Dov Gabbay and Hans J. Ohlbach. Quantifier Elimination in Second-Order Pred-
icate Logic. In Bernhard Nebel, Charles Rich, and William Swartout, editors,
Proc. of the Third Int’l Conf. on Principles of Knowledge Representation and
Reasoning, 1992.

Matthew L. Ginsberg. Al and Nonmonotonic Reasoning. In D.M. Gabbay, C.J.
Hogger, and J.A. Robinson, editors, The Handbook of Logic in Al and Logic
Programming, volume 3, pages 1-33. Oxford University Press, 1993.

G. Neelakantan Kartha and Vladimir Lifschitz. A Simple Formalization of Actions
Using Circumscription. Submitted for publication, 1995.

Vladimir Lifschitz. Circumscription. In D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, editors, The Handbook of Logic in AI and Logic Programming, vol-
ume 3, pages 298-352. Oxford University Press, 1993.

Vladimir Lifschitz. Nested Abnormality Theories. To appear in Artificial Intel-
ligence, 1995.

John McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence, 13(1, 2):27-39,171-172, 1980.

#The number may vary due to load of the specific machine that CS is running on.

16

John McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 26(3):89-116, 1986.

John McCarthy. Mathematical logic in Artificial Intelligence. Dedalus, pages
297-311, 1988.

John McCarthy. Formalizing common sense: papers by John McCarthy. Ablex,
Norwood, NJ, 1990.

William W. McCune. OTTER 2.0 Users Guide. Argonne National Laboratory,
1990.

David Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27-48, 1988.

Larry Wall. PERL manual. PERL — Practical Extraction and Report Language.
URL: http://www.cis.ufl.edu/cgi-bin/plindex.

17

