
Validity Checking for Finite Automata over Linear
Arithmetic Constraints

�

Gary Wassermann and Zhendong Su

University of California, Davis
���

Abstract In this paper, we introduce a new validity checking problem over linear
arithmetic constraints and present a decision procedure for the problem. Instead
of considering the validity of any particular linear arithmetic constraint, we con-
sider the following problem: Given a finite automaton accepting linear arithmetic
constraints, does the automaton produce any constraint that is a tautology? This
problem arises in the context of static verification of meta-programs, i.e., pro-
grams dynamically generating other programs. This paper gives the first decision
procedure to perform validity checking of finite automata over linear arithmetic
constraints. Our algorithm will enable advanced verification of meta-programs.

1 Introduction
Many program analysis and formal verification problems reduce to validity or satisfi-
ability checking over some logical theories. Consequently, significant effort has been
put into designing efficient decision procedures for these theories. The validity of a
given formula has been considered thus far in the literature. In this paper, we explore
a new direction for the study of decision procedures. Rather than checking the validity
of a given formula, we are interested in checking whether any formula accepted by a
given finite state automaton (FSA) is valid. In particular, we consider the theory of lin-
ear arithmetic constraints, one of the most widely-used formalisms in program analysis
and verification. The problem we study is: Given a finite automaton

�
accepting linear

arithmetic constraints, does
�

accept a constraint � such that � is valid?
This problem arises in the static verification of meta-programs, programs manipu-

lating and dynamically generating other programs. We motivate the problem through a
concrete example in the analysis of web and database applications. Consider a web ap-
plication that takes user input (e.g., username and password) and dynamically constructs
database queries to send to a backend database (e.g., a banking system) to authenticate
the user’s access to the database. Errors in the application may allow a malicious user
to send specifically crafted input to cause the application to generate a query with a
tautology as its conditional clause. This is one example of a widespread security vul-
nerability known as database command injection. Here is how we can provide formal
guarantee that a web application is free of this class of errors: By using an FSA to con-
servatively characterize the set of database queries a web application may generate, we
�

Part of the results in this paper appeared in Workshop on Specification and Verification of
Component-Based Systems (SAVCBS’04), a workshop with no formal proceedings.���
Authors’ address: Department of Computer Science, 2063 Kemper Hall, University of Cali-
fornia, Davis,CA 95616, USA, � wassermg,su � @cs.ucdavis.edu.

��� ���
������

���
��� � �

�	� �
�

OR

�
� �

� � �

OR� � �

(a) (b)

Figure 1. Two example FSAs

reduce the verification problem to the question of whether the FSA accepts any tautolo-
gies. We expect our decision procedure to be general and applicable in the checking and
verification of other classes of meta-programs.

The challenge in validity checking for automata is that automata may produce infi-
nite number of individual constraints. Consider, for example, the FSA shown in Fig. 1a,
where “OR” denotes the logical operator � . Because of cycles in the automaton, it ac-
cepts an infinite language. A decision procedure must explore the automaton’s finite
structure. In the case of Fig. 1a, by considering single passes through each of its cy-
cles, we discover the tautology “2y + z 2x + z OR 2x + 2 y + y +
2.” However, a single pass through a cycle is not sufficient to discover possible tau-
tologies in general. For example, two passes through the cycle in Fig. 1b are needed to
discover the tautology “x - y - y -y OR y x.”

Our algorithm for validity checking of automata uses a combination of automaton
transformations and a novel theorem bounding the number of constraints needed for
a tautology. Validity queries are generated and fed to a first-order arithmetic decision
procedure. If the FSA accepts some tautology, at least one of the finite number of first-
order arithmetic queries must be a tautology.

We assume that the FSA only generates syntactically correct linear arithmetic con-
straints. This assumption can also be enforced. The only difficulty is that in order to
balance parentheses, a context free grammar is required to describe the syntax of linear
arithmetic constraints. It is undecidable to check the inclusion of a regular language
by a context-free language. However, we can check the automaton against some suit-
ably close finite state under-approximation of the context-free grammar, as is done by
Christensen et al. in a string analysis for Java [6].

We classify cycles as either arithmetic or logical, depending on the sort of expres-
sions they accept. We conceptually view arithmetic portions of the FSA as network flow
problems, and solve them using a decision procedure for first-order arithmetic. Logical
loops cannot be handled this way. Instead, we bound the number of times they must be
“unrolled” to ensure that if any tautology is accepted, at least one will be found.

Because of the undecidability of Diophantine equations [9], the general problem of
validity checking for arithmetic constraints is undecidable. We restrict ourselves in this
paper to discovering tautologies in linear arithmetic (“ � ” and “ � ” but no “ � ”) over
real numbers. Multiplication by a constant is within linear arithmetic, and we allow
it to appear in an acyclic region of the FSA. If we allowed, for example, an FSA to
have a loop (cycle) over “ � 2,” we would characterize the multiplication as “ � 2n.”
Exponentiation with variables is difficult to reason about, so we exclude multiplication
from cyclic regions of the FSA.

2

The rest of the paper is structured as follows. Section 2 provides some useful defi-
nitions based on the syntactic correctness requirement. Sections 3 and 4 address arith-
metic and logical loops respectively, and Sect. 5 gives the complexity of our algorithm.
Section 6 gives the proof of our key theorem, and Sect. 7 surveys some related work.
Finally, Sect. 8 concludes.

2 Overview of Our Approach
In formulating an analysis to discover tautologies in the presence of cycles in an FSA,
we first note a useful consequence of the syntactic-correctness property: the transitions
of the FSA can be partitioned into four transition types. A transition of type:

(I) accepts part of an arithmetic expression (� +, -, (), 1, x, . . . �) before a compar-
ison operator;

(II) accepts a comparison operator (��� , , � , � , � , ����);
(III) accepts part of an arithmetic expressions after a comparison operator;
(IV) accepts a logical operator (� AND, OR, NOT �) or a parenthesis at the logical level.

This partitioning must be possible because, for example, if a transition that accepts a
constant could be classified as both type I and type III, then the FSA would accept some
string in place of a comparison expression which either had two comparison operators
(e.g., “. . .x > 5 < 5. . . ”) or none (e.g., “. . .AND 5 OR. . . ”). Consider also the no-
tion of parenthetic nesting for each transition in a path as the number of logical (arith-
metic) open parentheses minus the number of logical (arithmetic) closed parentheses
encountered since the beginning of the path. Although a transition may be encountered
on many different paths, it will always have the same parenthetic nesting. If this were
not so, the FSA would accept some string with imbalanced parentheses.

Our analysis relies on this partitioning. Rather than trying to handle arbitrary cycles
in the FSA uniformly, we classify each cycle as either arithmetic, if it only includes
type I or type III transitions, or logical, if it includes type IV transitions. In order to
handle each class of cycles without concerning ourselves with the other, we define an
arithmetic FSA such that it can be viewed in isolation when we address arithmetic cycles
and it can be abstracted out when we address logical cycles:

– The start state 	 immediately follows a type IV transition and immediately precedes
a type I transition;

– The final state
 immediately follows a type III transition and immediately precedes
a type IV transition;

– All states and transitions are included that are reachable on some 	 -
 path that has
no type IV transitions.

The FSA fragment in Figure 2 has two arithmetic FSAs. The one defined by ��	����
�� in-
cludes all states and solid transitions in the figure. The one defined by ��	 ����
�� excludes
the state 	� and the � -transition. Finding the arithmetic FSAs in an FSA is straightfor-
ward through a simple graph traversal.

For reasoning about comparison expressions, which arithmetic FSAs accept, we
view arithmetic FSAs as network flow problems with single source and sink nodes and
solve these problems using a construction in linear arithmetic (see Section 3). Boolean

3

OR ��� �

�
� �

�
� AND

AND ��� �

Figure 2. Example for arithmetic FSAs.

�
	�� � ��
��� �

���

�
� � ���

����� � �
��� �"!#�%$&��')(� flow variables* �,+ ! � �.-0/ * ! � � � $ + $ � ',-1/ * ' +2� - � flow balance equations3 � � � � � (� arithmetic variables�54 * � - � !64 * � - � $74 * � - � '84 * � �9� - � flow-comparison expression

Figure 3. Flow equations for arithmetic loops.

expressions are comparison expressions connected with logical operators (e.g., “AND,”
“OR,” “NOT”). We discover tautologies by unrolling logical loops a bounded number
of times sufficient to ensure that if a tautology is accepted, we will find one. We simulate
unrolling by repeating instances of the network flow problems. We determine the pre-
cise number of times to unroll based on the structure of the strong connections among
arithmetic FSAs and the number of arithmetic variables in each arithmetic FSA (see
Section 4).

3 Arithmetic Loops

We address arithmetic loops by casting questions about arithmetic automata as ques-
tions about network flows. We present the technique by the example in Figure 3. We
consider the path taken as the FSA accepts a string to be a flow. Except at the entrance
and exit states, each state’s in-flow must equal its out-flow. In other words, if on an ac-
cepting path, a state is entered three times, then on the same path it must also be exited
three times.

In order to capture this intuition, we label the incoming and outgoing transitions at
each state where branching or joining occurs. In the example, we label four transitions
as : , ; , < , and = . The labels become the variable names for the flow variables. The
value of a flow variable equals the number of times the corresponding transition was
taken in some accepting path. For the start state, the final state, and each state with
branching or joining, we write flow balance equations. The label of each transition
entering that state appears on one side of the equation and the label of each transition
leaving appears on the other. For the start and final states of the arithmetic automaton,
we specify a value of “ > ” entering and leaving respectively.

Paths through the FSA accept expressions of constants and arithmetic variables. A
tautology is an expression true for all values of the variables, so we universally quantify
the arithmetic variables named in the FSA.

4

Finally, we write flow-comparison expressions to link the flow through the FSA to
the semantics of the accepted expression. In flow-comparison expressions, flow vari-
ables are multiplied by the expressions on their corresponding paths because each trip
through a path adds the expression that labels the path to the accepted string. In Fig-
ure 3, � : � < � = � >���; ��� � satisfies the expression, and corresponds to the string
“b + c b + c.” Additional expressions can prevent most false positives (e.g., by
preventing path variables from taking negative values), but we do not discuss them here
due to space constraints.

Tarski’s theorem [19] establishing the decidability of first-order arithmetic guar-
antees that expressions of this form are decidable when the variables range over real
numbers. We state here a soundness result:

Theorem 1. If we do not discover a tautology then the FSA does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linked in a linear structure by
logical connectors (e.g., “AND” or “OR”), we can merge in a natural way the equations
we generate to model the arithmetic automata, and the soundness result holds for the
sequence of automata:

Theorem 2. If we do not discover a tautology, then the linear chain of arithmetic FSAs
does not accept a tautology.

Incompleteness Allowing the variables to range over real numbers does leave a mar-
gin of incompleteness. If the flow variables take on non-integral values, they will not
correspond to any path through the FSA.

4 Logical Loops
Consider an arithmetic FSA with an OR-transition from its last state to its first state.
The arithmetic FSA might not accept any tautology, but two or more passes through the
arithmetic FSA joined by “OR” may be a tautology.

Unfortunately, we cannot use equations to address logical loops as we did for arith-
metic loops. If we did, the equations for arithmetic loops would not be expressible in
first-order arithmetic. Instead, we “unroll” the loop enough times that if the loop accepts
some tautology, the unrolling must also accept some tautology. This section presents our
technique for discovering tautologies in the presence of logical loops by explaining how
we address transitions labeled with each of the three logical keywords: NOT, OR, and
AND, and parentheses at the logical level.

4.1 NOT-transitions

The first phase of the analysis takes as input an FSA
�

and transforms it into an FSA���
, such that the sets of expressions that

�
and

���
accept are logically equivalent, and���

has no transitions labeled “NOT.” Figure 4 illustrates this transformation. Labeled
states represent FSAs that accept comparison expressions. Because “AND” has a higher
precedence than “OR,” applying DeMorgan’s law to a negated expression requires that
parentheses be added to preserve the precedence in the original expression. However,
because we are dealing with FSAs, not single expressions, adding parentheses along one

5

a.
NOT (� AND � OR

OR
�)

b.
NOT (�

AND

� OR
OR

�)

OR�OR

c.
� ((� �

OR

� � AND
AND � �)

) AND� �) AND

Figure 4. Removing “NOT” from a boolean FSA.

path may lead to imbalanced parentheses on another path. To address this, the transfor-
mation first duplicates states that have differently labeled incoming or outgoing transi-
tions. For example, the state � in the original FSA in Figure 4a has incoming transitions
labeled “AND” and “OR,” so it gets duplicated as in Figure 4b. The transformation then
adds parentheses at transitions that terminate sequences of AND-transitions, flips the
AND’s and the OR’s, and flags the states with “ � .” When a state is flagged with “ � ,”
the comparison operators in the arithmetic FSA get swapped with their opposites (e.g.,
���). Figure 4c shows the last step on the example.

4.2 OR-transitions

By Theorem 2, we can determine whether a linear FSA accepts any tautologies. In this
section, given an arbitrary FSA which has only OR-transitions, we generate a finite set
of linear FSAs such that at least one accepts a tautology iff the original FSA accepts a
tautology.

If all strongly connected components (SCCs) in an FSA are viewed as single states,
the FSA is acyclic and all paths through it can be enumerated. The paths can be used
to produce a finite set of linear FSAs, and the original FSA accepts a tautology iff one
of the linear FSAs accepts a tautology. The following lemma allows us to transform
complex looping structures of SCCs into linear sequences of states with self-loops, as
in Figure 5.

Lemma 3. Let
�

be an FSA with only OR-transitions which is linear except for SCCs.
If

�
is transformed into

� �
by allowing only unique incoming and outgoing transitions

for each state (so that
� �

is linear) and adding a self-loop to each state which was
originally in an SCC,

�
accepts a tautology iff

���
accepts a tautology.

Lemma 3 follows directly from the commutative property of “OR.” If we can de-
termine the maximum number of times each state with a self-loop must be visited to
discover a tautology, we can “unroll” the self-loops that number of times to produce
linear FSAs. The following theorem yields this number:

6

� OR �

OR �
�

OR

�OR � OR � OR

OR

� OR

OR

�
OR

Figure 5. Transforming a complex looping structure into multiple self-loops.

�OR � � � OR � � OR OR � 	�� �

Figure 6. Logical-loop unrolling.

Theorem 4 (Key Theorem). Let � �
 �����	� �
�
 , where each
� is a comparison
of linear arithmetic expressions. Let � map expressions of comparisons to sets of the
same comparisons, so that � ��� � � �
 �	���	� ��
�
 � . � is a tautology, iff there exists some
tautology � � , such that � ��� � ����� ��� � and � � ��� � ��� ��� ��� , where � is the number of
variables named in � .

We defer the proof of Theorem 4 to Sect. 6. Figure 6 illustrates how we use Theo-
rem 4: if � represents an arithmetic FSA, and a total of � distinct arithmetic variables
label the transitions of the FSA, the loop can be unrolled � ��� times to guarantee that
if the loop accepts all or part of a tautology, the unrolling does too.

4.3 AND-transitions

This section extends the algorithm from Section 4.2 to deal with AND-transitions. Be-
cause “AND” has a higher precedence than “OR,” we cannot simply put self-loops on
all states in an SCC. The following definitions will be useful in our algorithm:

Definition 5 (AND-chain). An AND-chain is a sequence of states in an SCC connected
sequentially by AND-transitions where OR-transitions in the SCC immediately precede
and follow the first and last states in the sequence respectively.

Definition 6 (Minimal AND-chain set). The minimal AND-chain set of an SCC in an
FSA is a subset � of the set of all AND-chains of an SCC, such that there are no pairs of
AND-chains where the states in one AND-chain form a subset of the states in the other.

Lemma 7. Let
�

be an FSA with OR- and AND-transitions, and let
�

be linear except
for SCC’s which are entered and exited through OR-transitions. Let

�
be transformed

into
���

by replacing the SCC’s with their minimal AND-chain sets, connecting them
linearly with OR-transitions, and adding an OR-transition from the last to the first state
of each AND-chain.

�
accepts a tautology, iff

���
accepts a tautology.

Lemma 7 follows first from the commutative property of “OR” because the order in
which AND-chains occur does not influence whether or not a tautology is accepted. The
minimal AND-chain set can be used because the conjunction of two non-tautologies

7

�

AND

�AND

OR

�
OR

AND� AND
OR �

AND

minimal AND-chain set� ��� �
� AND � �

�
� AND �

(
�

OR

) �	��
 (
�

OR

) OR
�

OR

OR (
�

OR

) ���
 (
�

OR

)�
�
�
���

� � *�� � � -��
���
�
� ���
 � � ���

� � *�� � � -��
��� � � ��� � ���

� � *�� � � -��
��� �

Figure 7. Forming a linear FSA from a strongly connected component to discover tautologies.

can never form a tautology. An algorithm to construct this set finds all states in an SCC
with incoming OR-transitions and from those states all acyclic paths which terminate at
the first encountered state with an outgoing OR-transition. Figure 7 shows the minimal
AND-chain set for an example SCC.

Lemma 7 specifies a transformation from FSA
�

to
� �

such that
�

accepts a tau-
tology iff

���
accepts a tautology. The distributive property of “AND” can be used to

transform
� �

into a linear FSA of states with self-loops and transitions with parenthe-
ses which accepts a tautology iff

���
accepts a tautology. We create such an FSA directly

from the AND-chains, as shown in Figure 7.
We can put an upper bound on the number of times each self-loop must be unrolled

using Theorem 4. To find this number, we consider an example. Suppose an SCC has
two AND-chains: (1) and (2)–(3). From these AND-chains we can construct a linear
FSA

�
with self-loops as in Figure 7. We can also construct two sets of states where

each set has exactly one state from each AND-chain: � (1), (2) � and � (1), (3) � . From
these sets we can construct FSAs

� and
� � where both

� and
� � have only OR-

transitions and the states have self-loops. The FSA
�

accepts a tautology iff
� and

� �
each accepts a tautology. The “only if” direction is straightforward. To prove the “if”
direction, consider that if

� accepts the tautology “ � OR � � ,” and
� � accepts the

tautology “ � � OR ��� ,” then
�

accepts “ � OR � � OR (� �) AND (���).” This ex-
pression in conjunctive normal form is “(�� OR � � OR � �) AND (� OR � � OR
���),” a tautology. By Theorem 4 the self-loops in

� and
� � need be unrolled at most

� � � times, where � is the number of variables that label the transitions in
� and

� � .
A self-loop over state � in

�
must be unrolled � ��� � � � times, where � is the product

of the numbers of states in the AND-chains which do not include state � . Figure 7 shows
the final FSA with the unrollings of self-loops.

4.4 ()-transitions

This section extends the algorithm from Section 4.3 to deal with transitions labeled “(”
and “).” Because parentheses have a higher precedence than “AND,” we discover AND-
chains only among states and transitions of the FSA that have a common parenthetic
nesting depth. Recall from Section 2 that parentheses must be balanced on all paths,

8

a. �
AND

�

AND

�OR

�
(

�AND

(

� AND
OR

� AND

AND

� OR �)

b. �
AND

�

AND
AND

�OR

� � , � �
OR

AND

�
AND

� � ,
� �
AND

OR

c.
(
�

OR

) AND (

� �
,
���OR

) OR
d.

� �
,
���OR � � AND

AND

� OR �OR

e.
(
�

OR

) AND ((
�OR

) AND (
�OR

) OR (
�OR

) AND (
�OR

)) OR

Figure 8. Forming a linear FSA from a strongly connected component with parentheses.

and each state has a unique parenthetic nesting depth. Figure 8 illustrates this algorithm
on the FSA in Figure 8a. Before the algorithm discovers AND-chains at depth � , it
collapses pairs of states that enter/exit depth � � > into single states, and temporarily
removes all states and transitions at depths � � . For example, in Figure 8a, states (4)
and (5) enter depth 1 and state (6) exits, so � 4,6 � is one pair and � 5,6 � is another pair.
Figure 8b shows the FSA with collapsed states (� 4,6 �) and (� 5,6 �). The meaning of
a collapsed states (�
	
� , 	����) is the sub-automaton that can be entered from state 	� and
exited from state 	�� , and is written (��	
� , 	����). The algorithm finds all AND-chains in the
FSA, creates a linear FSA with self-loops (as in Figure 7), and replaces collapsed states
with their meanings. Figure 8c shows only the beginning of this FSA in order to use the
AND-chain (1)–(� 4,6 �) as an example. Figure 8d shows the sub-automaton that (� 4,6 �)
with a self-loop represents. In order to “unroll” the self-loop on (� 4,6 �), the algorithm
recurses on the represented sub-automaton. In this case, the sub-automaton has AND-
chains (7)–(8) and (7)–(9). The algorithm produces a linear FSA with self-loops for
this sub-automaton, and puts it in place of (� 4,6 �). Figure 8e shows the result. When the
FSA has no more collapsed states, the self-loops can be unrolled as in Figure 7.

The algorithm for analyzing FSAs is both sound and complete:

Theorem 8 (Soundness and Completeness). Given a decision procedure for flow-
comparison expressions, our algorithm discovers a tautology in an FSA

�
iff

�
accepts

a tautology and accepts only syntactically correct expressions of comparisons of linear
arithmetic expressions.

Theorem 8 follows from Lemma 7 and the distributive property of “AND.” A tautology
discovered in a linear FSA can be mapped back to a path in the original FSA for the
purpose of a useful error message.

9

5 Complexity
The removal of NOT-transitions (Section 4.1) runs in time linear in the size of

�
, i.e.,� � � � � � , and expands

�
by a constant factor. The number of paths through

�
is expo-

nential in the number of “acyclic” (cannot be reached from themselves) states in
�

, i.e.,� � ��� � acyc � � . Each path is a query to decision procedure. The number of AND-chains is
exponential in the number of “strongly connected” (can be reached from themselves)
states in

�
, i.e.,

� � ��� � sc � � . The length of each path is bounded by either the number of
acyclic states or the product of the number of AND-chains and the size of the alphabet,
i.e.,

� ���	��
 � � � acyc � � � � � � sc � � � � ��� . Therefore the number of queries is exponential and
the size of each query is also exponential. For this analysis, we consider each query as
being sent to an oracle.

6 Proof of Key Theorem
We start with some notational conventions and then give the proof of Theorem 4.

Notational Conventions Let � map expressions of comparisons to sets of the same
comparisons, so that � ��� � � �
 �	�	��� ��
�
 � . Let � be a tautology and have the form

 �
 � � �	�	� , where each
� is a comparison of two linear arithmetic expressions over �
variables. Let ��� �������	��� be inequalities in ��� , let � � � ��� �	�	��� be sets of inequalities in
��� , let � � 	 be points in ��� , and let � ��� ���	��� be vectors normal to ��� �	���	� in ��� . Let all
inequalities be normalized to ��� �����	� �� � � � � (or “ � � ”). Let � T be a matrix
where for each �� � , one column in � T is ���	�� � . Let ��� � be the truth value of at
point � (that is, with � ��	���	� � � � assigned to ’s variables), let !�� be the conjunction
of inequalities in � , and let ! � �"� � be the conjunction of truth values of inequalities
in � at point � . Let $# be the equation formed from by replacing the comparison
operator with ‘ � ’, and let �%# be defined as �& #'� �(# �&)� � � . Also, let * �,+ �-+ � be an
overloaded Cartesian distance function: if its arguments are two points in �(� , it is the
distance between them; and if one argument is a point � and the other an inequality ,
it is the distance between � and 	 where ��	 � holds and * �"� � 	 � is minimized.

Proof. [of Theorem 4] Given tautology � , let � � be a tautology such that � ��� � � �
� ��� � , � � ��� � �	� � � , and for all other tautologies � � � , if � ��� � � � � � ��� � , then � � ��� � � ���
� . By Lemma 9, if the comparison operators ��� � ���� are prohibited, the maximum
value for � is decreased by 1. By Lemma 10, if the comparison operators ��� � ���� are
prohibited, � ��� � > , where � variables are named in � . Therefore, � � � ��� . ./
Lemma 9. For all tautologies � , prohibiting the
 � ’s from using ��� � ���� decreases the
maximum number of comparison expressions needed for validity by at most 1.

Proof. Because � �� � � is equivalent to � � � � � � � � � , prohibiting the use of “ �� ”
does not decrease the maximum number of comparison expressions needed for validity.

Suppose for contradiction that there exists some � , � � � � � � , and � � � � �&0 � such
that: the � � ’s are linear arithmetic expressions, � ��� � � � � � and � � � � � � �&0 � are both
not valid, and � � � � � � � � � � ��� � � 0 � is valid. By our assumption, there exist points
� and 1 such that � � � � � � ��� � and � ��� � � 0 � ��1 � hold, but � � � � � � ��1 � , � ��� � � 0 � �"� � ,
���"� � , and � ��1 � do not hold. Because the set of real numbers is dense, there exists point	 between � and 1 . Because � � � � � � ��1 � and � ��� � � 0 � ��� � do not hold, � � � � � � � 	 �

10

and � ��� � � 0 � � 	 � do not hold. Because � � � � � � � � � � ��� � � 0 � is valid, ����	 � must
hold. For all
 � in � , if
 � ��	 � holds,
 � �"� � or
 � ��1 � holds, so � �"� � or ��� 1 � holds. This
contradicts the claims that ���"� � and ��� 1�� do not hold. Therefore, prohibiting the use
of “ � ” does not decrease the maximum number of comparison expressions needed for
validity by more than 1. ./
Lemma 10. For all tautologies � where “ � ” and “ �� ” are not used, there exists some
tautology � � such that � ��� � � � � ��� � and � � ��� � ��� � � � > .
Proof. Overview: Given tautology � , � � is an unsatisfiable conjunction. We can take
from � � � � � a smallest pair ������� � such that !�� � � � . The pair � � ��� � is a smallest
pair such that !�� � � � , iff !�� � � � and the vector � normal to � is a negative
linear combination of the vectors ��� normal to � � � . Because at most � vectors are
needed to construct a new vector in ��� , � � � � � and � ��� � � � ��� ��� � > � .

Given tautology � , � � is an unsatisfiable conjunction. Let � � � � . Consider the
set � of all pairs � � ��� � such that ����� � � � , � � � � � � , �
	��� , ! � is satisfiable, and
� ! � ��� � is unsatisfiable. Select from � some “smallest” pair ������� � , such that for all
other pairs ��� � ��� � ����� , � � � � � � � .

Vectors only specify direction and magnitude; they do not specify a beginning point,
so the implicit beginning is the origin. In order to ensure that an argument about vectors
applies to � and � , we will translate the origin such that the hyperplanes defined by �
all pass through it. We then create a new inequality � such that the hyperplane defined
by � passes through the origin and !�� � � . More specifically, � � !�� # �"� � , and
translating the origin

�
to � maintains implications. Define � such that � # � � � holds

and ��� � is unsatisfiable (i.e., � � � �). If ��'� � , then � � ��� , i.e., � ’s comparison
operator is “ � .” Otherwise, � � ��� . Therefore, ! � � � .

We now prove that � is a positive linear combination of � T, by showing that if it is
not then !���� � , which is false. We show this in three cases. First, by Lemma 11, �
must be some linear combination of � T:

� ���� � � T � ����� � ��� ��� � � , (1)

Second, by Lemma 12, � must not be a negative linear combination of � T:

���� � � � T � ��� ��! � � �
� � � � � � ��� � ��� � � � � � � �"� �#� � � (2)

Third, by Lemma 13, � must not be both expressible as a linear combination of � T and
not expressible as either a positive or a negative linear combination of � T:

�"�� � � T � �����$�
�%!&� � � � T � �'� � � � ����(�)� � � � � � � ��(� � ��� � ��� �#� � � (3)

Together, (1), (2), and (3) imply:

��� � � � � � ���� � � � T � ���*�+! � � �
� � � � � ��� (4)

Finally, we have the converse of (4) by Lemma 12:

�"�� � ��� T � ��� ��! � � �)� � � � � ��� � �"� � � � � (5)

11

If � is not a linearly independent set, then for some �� � which is a linear combi-
nation of ��� �& � , � is a positive linear combination of ��� � � , and ! � ��� � ��� � � . This
contradicts our assumption that � � ��� � is a smallest pair such that ! � � � � . Because
at most � vectors can be linearly independent in ��� , � � � � � and � � ��� � �	� � � � > . ./

Lemma 11. Given � and � such that � is satisfiable and ! ��� # � � � # � � � � � holds, if
���� � � T � �'� , then ! ��� � .

Proof. Assume that � is not a linear combination of � T. We will construct a point that
demonstrates that �#� � .

Let � � ��� ������� , where �� � � T � � ��� and ! � ��� T ��� + ����� � � . Let �
be a point such that ! ����� � holds. Let vector � � � �	��� ��
 ��� � � � , where
 is
an arbitrarily small positive number. The point

� ��� demonstrates that ! � � � .
Because ���������� �
 �"� � � �� , ��+�� � � . Therefore � � � ��� � does not hold.
Because ! � � � T � � + � ��� � � and
 �"� � � � + � � � , !�� � � ��� � holds. ./

Lemma 12. Given � and � such that � is satisfiable and ! ��� # � � � # � � � � � holds, if
�� � � � T � �'� � � �%! � � ��� � � � � � (i.e., � is a positive linear combination of � T), then
! � � � .

Proof. Consider a point � such that ! � � � � ����� � . We can expand ����� � to � � �
�	�	� � � � � � � (or “ � � ”). Let � � be the left-hand side of the expression. Because
 � �"� � holds, � � � . By our assumption, � ����	��� ��� � � . Use the following inference
rule: � �	���	� ��� � ��� �	���	� ��� � � � � � � +-+-+ ��� � � � � . By definition, the right-
hand side of the inference rule equals � �"� � . Because point � was picked arbitrarily, this
holds for all points, and ! � � � . ./

Lemma 13. Given � and � such that � is satisfiable and ! ��� # � � � # � � � � � holds, if
for all � such that � T � ��� , � ����� (�
� � � ����� � (� � , then ! ��� � .

Proof. This proof requires that � T have a non-zero determinant. If � T does not span
the vector space of � � , we must augment � . Let ��� be a basis for the orthogonal
complement of the vector space spanned by � T. Let � ��� � � � . Let ����� be the set of
inequalities created from the vectors in ��� . The choice of ��� is arbitrary within the
constraint that it be a basis for � T’s orthogonal complement, and it does not affect the
following argument. For the rest of this proof, we consider � to be augmented.

By Cramer’s Rule [8], we know that for��
 � + +-+ �

...
. . .

...
 � + +-+ � �

!#"
$
��
 � ...
� �

!#"
$ �

��
 � ...
� �

!#"
$ � � � �&%	')(��� � �%	')(��� T �

where

� � �
��
 � +-+ + +* �-, /.� � 0* �21 /. � +-+-+ � ...

...
...

...
...

 � +-+ + 0* �-, /. � � � 0* �21 3. � +-+-+ � �

!#"
$ �

12

Because � T spans � � , %	')(��� T � �� � . We will use this definition to find a point in � �
that demonstrates �#� � .

Let � � %	')(� � T ��+ � . By the assumption of the lemma, � � ����(�
� � � � � � � � � ����(�
� � , so �� � ��� (��� � ��� � � � �&� ��� (� � � . By definition,

%	'�(� � T � �
�

�	� �, �
� �
�� +-+ + �
��

where the summation ranges over all permutations � � � +-+ +�� � of the set ��>�� � �	�	��� �� � .
The sign is � or � according to whether the permutation � � � + +-+�� � is even or odd.

We wish to find some vector � such that for all ��� , � +�� � � , but � + � � � .
We will first find a vector � such that � +�� � � , for some ���� (��� , � � +�� � � and
� (+�� � � , and for all other � � , � +�� � � . Let � � � � and � (� � . We can “factor
out” ��� from � � as � � � %	')(��� � � �
��
� #

 (� � � �	� � �
�� + +-+�+* (, 3.�
����� �! 0* (1 3.�
�� �!" �! +-+ +�0* � , 3.�
� � � �! �#
��,0* �21 /.$
� � " �� + +-+ �
 � �

From what remains, we form the vector � :

� (� �
��� �, �
 � +-+ +�0* (, 3.�
�� ��� �! +* (1 /.$
���!" �! + +-+�0* � , 3.�
�� � � �� �
 �,0* �21 3.�
�� � " �! +-+-+� �
��

So, � + � � � % ')(��� � � �%� � � � . Factoring out � � from %	')(��� � � to get � and multiplying
�)+ �$� has the effect of replacing � � by �$� in � � to get � �� and finding %	'�(� � �� � . This
new matrix, � �� , looks like��

 +-+ +�0* (, /. � +* (1 /. +-+-+ 0* � , 3.� � 0* �21 3. � +-+ + � ...
...

...
...

...
...

...
...

 � +-+ + +* (, 3. � � � 0* (1 3. � +-+-+ 0* � , 3. � � � 0* � 1 /. � +-+ + � �

! "
$

By swapping � � and � in � �� , we get��
 +-+ +�0* (, /. � 0* (1 3.� + +-+ 0* �-, /. � �0* �21 3. � +-+ + � ...

...
...

...
...

...
...

...
 � +-+ + +* (, 3. � � � 0* (1 /. � + +-+ 0* � , 3. � � � 0* � 1 /. � +-+ + � �

!#"
$

which is exactly � (. It is a property of determinants that if matrix � results from matrix
� by interchanging two rows/columns of � , then %	')(� � � � � %	')(��� � . Therefore, ��+
� � � %	')(��� �� � � � % ')(� � (� � �&� (. Consequently, �%+ ��� � � iff � (� � , which, by our
assumption, it is.

Now suppose we find � + � . This is equivalent to finding %	'�(��� � �� � , where � � �� ���
 +-+ + 0* (, /. � 0* (1 /.� + +-+ 0* � , 3.� � 0* �21 3. � +-+ + � ...

...
...

...
...

...
...

...
 � +-+ + 0* (, 3. � � � +* (1 /. � + +-+ 0* � , 3. � � � +* � 1 3. � +-+ + � �

! "
$

It is also a property of determinants that if two rows/columns of � are equal, then%	')(��� � � � , so � + � � � . This is also the case with � +&� � for � ��(' ��*) .

13

We will now find the vector � we were originally searching for. Let the vector name
����� � denote the property that ����� � +���� , ����� � +���� � � , ����� � +�� � � , and for ' �� � �� �
����� � + � � � � . In the previous paragraph, we constructed � � � � given that � � � � � � and
��� (� � � . Using the same technique, for all � � we construct � ��� � if � � � � , and ��� �	�
if � � � � . If � � � � , � ���	� be � � , which is orthogonal to � . Let the set
 contain all of
these � ��� � vectors. Dot products have the property: � + ��� �'� + �� � � + � ��� � �� � . If
� ����
 , then � + ��� � and for all �� � , � +-� � � .

The vectors � and � plus the point
�

define a plane, and the angle between � and �
is � ��� . The vector � ��� � � ��
 ��� � ��� lies in the same plane, and the angle between
� and � ��� is ��� � ��
 � � � . Because the set of real numbers is dense, for small
 , we still
have that for all ��� , � +�� ��� � � , so !���� � � � ��� � holds. Because � +�� ��� � � ,
� � � �*� ��� � does not hold. Thus ��� � . ./

7 Related Work
In this section, we survey closely related work.

First-Order Theories Tarski established the decidability of the first-order theory
of real numbers with addition and multiplication through quantifier elimination [19].
Collins used cylindrical decomposition to check validity in the same theory more effi-
ciently, but his algorithm also has high complexity [7]. The first-order theory over inte-
gers is undecidable because of the undecidability of solving Diophantine equations [9].
However, an important fragment, Presburger Arithmetic, is decidable.

Linear Constraints In program analysis and formal verification, decision procedures
for linear constraints are widely used. Some proposed techniques include Fourier-Motz-
kin variable elimination [15], the Sup-Inf method of Bledsoe [5], and Nelson’s method
based on Simplex [11]. More tractable algorithms can be found by restricting the class
of integer constraints further. Pratt gives a polynomial time algorithm for the form of
linear constraints � � � � ' , where ' is an integer [14]. Shostak considers a slightly
more general problem �� � �#� � ' , where , � , and ' are integer constants [16]. He
uses “loop residues” for an algorithm which requires exponential time in the worst case.
Aspvall and Shiloach give a refined algorithm for the same form which runs in polyno-
mial time [1]. Su and Wagner leverage ideas from Pratt and Shostak to propose the first
polynomial time algorithm for a general class of integer range constraints [18].

Decision Procedures based on Combined Theories In 1979, Nelson and Oppen pro-
posed a method for combining theories in a decision procedure [12]. Contemporary
theorem provers, such as in Necula and Lee’s certifying compiler [10], use Nelson and
Oppen’s architecture for cooperating decision procedures. In 1984, Shostak introduced
an algorithm for deciding the satisfiability of quantifier-free formulas in a combined
theory [17]. This algorithm improved over previous decision procedures by enabling
multiple theories to be integrated uniformly instead of using separate, communicating
processes. This algorithm serves as the basis for decision procedures found in several
tools including PVS [13], STeP [4], and SVC [3]. SVC uses a decision procedure for a
fragment of first-order logic which excludes quantifiers, but includes equality, uninter-
preted functions and constants, arrays, records, and bit-vectors, as well as propositional
connectives. CVC Lite [2] is a descendant of SVC that includes a builtin SAT solver
and support for quantifiers.

14

8 Conclusions and Future Work
We have introduced the validity checking problem for finite automata over linear arith-
metic constraints, motivated by the need for advanced checking of meta-programs.
More importantly, we have presented the first decision procedure for this validity prob-
lem, which enables the implementation of formal analysis tools for meta-programs. Our
decision procedure is based on a novel use of network-flow problems and a theorem
bounding the number of constraints needed in a disjunctive tautology. For future work,
we plan to design and implement a tool to check for or verify the absence of database
command injection problems in web and database applications. It might also be interest-
ing to consider the dual problem, namely the satisfiability problem. Our proof technique
for validity seems also applicable for satisfiability. Finally, it is interesting to investigate
the application of our decision procedure in other settings of analyzing meta-programs.

References

1. B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems of linear
inequalities with two variables per inequality. SIAM Computing, 9(4):827–845, 1980.

2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proc. CAV’04, July 2004.

3. C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity Checking for Combinations of Theories
with Equality. In Proc. FMCAD’96, pages 187–201, 1996.

4. N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. Sipma, and T. E.
Uribe. STeP: Deductive-algorithmic verification of reactive and real-time systems. In Proc.
CAV’96, pages 415–418, 1996.

5. W. Bledsoe. The Sup-Inf method in Presburger arithmetic. Technical report, University of
Texas Math Department, Dec. 1974.

6. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.
In Proc. SAS’03, pages 1–18, 2003. URL: http://www.brics.dk/JSA/.

7. G. E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Automata Theory and Formal Languages, 1975.

8. B. Kolman. Introductory Linear Algebra with Applications. Prentice Hall, 1997.
9. Y. Matiyasevich. Solution of the tenth problem of hilbert. Mat. Lapok, 21:83–87, 1970.

10. G. C. Necula and P. Lee. The design and implementation of a certifying compiler. In Proc.
PLDI’98, pages 333–344, 1998.

11. G. Nelson. Techniques for program verification. Technical report, Xerox PARC, 1981.
12. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM

TOPLAS, 1(2):245–257, 1979.
13. S. Owre, N. Shankar, and J. Rushby. PVS: A Prototype Verification System. In CADE 11,

1992.
14. V. Pratt. Two easy theories whose combination is hard. Technical report, MIT, Sept. 1977.
15. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. In Proc. Supercomputing, pages 4–13, 1991.
16. R. Shostak. Deciding linear inequalities by computing loop residues. J. ACM, 28(4), 1981.
17. R. E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.
18. Z. Su and D. Wagner. A class of polynomially solvable range constraints for interval analysis

without widenings and narrowings. In Proc. TACAS’04, 2004.
19. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Califor-

nia Press, 1951.

15

