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ABSTRACT
XML transformation languages (e.g., XSLT) take an XML
document as input and produce another XML document as
output. It is useful to know statically that such transforma-
tions always produce valid documents, for static debugging
of the transformation program or for eliminating dynamic
checks on the output documents. Type- and automata-
theoretic techniques that exploit XML’s tree structure have
been proposed to address this problem. However, existing
approaches are not capable of reasoning about size informa-
tion of produced XML documents, such as that two locations
in the output documents always have the same number of
elements, which occurs when data is repeated. This paper
presents a type-based inference system to discover size re-
lationships in output documents from XML transformation
programs through refined type checking. For example, our
system can identify program fragments producing the same
number of elements for all input documents. Programs that
use or produce parallel or repeated data will benefit from
this analysis. The novel aspects of our system are tech-
niques to deal with the rich tree structure of XML types
(i.e., schemas), whereas array analyses (e.g., bounds check-
ing) for languages such as C deal with flat arrays.

1. INTRODUCTION
Since XML [9] became a W3C recommendation in 1998,

XML has been increasingly accepted as the standard for-
mat for electronic data exchange. Two parties who wish
to exchange data generally organize their data differently.
Thus, one or both of the parties must transform their data
so that it is suitable for the other to use. In the context of
XML, “schemas” (e.g., XML Schema) [21] are used to spec-
ify data organization. When data is exchanged using XML,
the recipient specifies a schema to which all received XML
documents must conform. The sender must write a trans-
formation program to convert data from his own schema to
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the recipient’s schema. If the sender can determine that his
program performs the transformation correctly, no run-time
checks are necessary.

This gives rise to the XML type checking problem. Let
T be the set of all XML documents (T is a mnemonic for
“trees”; all XML documents have a tree structure). An
XML type is a subset of all documents: τ ⊆ T , often called
a schema. The XML type checking problem asks, for source
and target types τs and τt respectively, and transformation
program P , is it true that ∀x ∈ τs.P (x) ∈ τt [25]? One
common approach to answer this question is based on type
inference: an output type τ ′ is conservatively inferred based
on the program and the source type: P (τs) ⊆ τ ′. If the
inferred type is a subtype of the target type, τ ′ ⊆ τt, then
the program successfully type checks.

We introduce the notion of sizes in XML documents and
types: a size denotes the number of XML elements and/or
scalars in a consecutive sequence under a common parent.
For a particular XML document, sizes are always known
constants. However, sizes may not remain constant across
all documents conforming to a single type. In this case, the
sizes of the type are represented by variables, which may be
constrained to allow only values valid for some document
within the type. When some sizes of a type are constrained
in terms of other sizes (currently not supported in XML
Schema), we call those size relations. Because of the com-
mon use of Kleene stars in types, it is generally impossible
to discover the actual values of sizes. Rather, we aim at
discovering relationships among sizes in output documents.

Some practical settings require size information. For ex-
ample, in a document with parallel lists of movie titles and
the years those movies were made, the length of those lists
can vary provided that they are equal to each other. Alter-
natively, consider a specification manual that must include
the same information in multiple languages. The number of
headings in one linguistic section can vary provided that it
equals the number of headings in every other linguistic sec-
tion. Size relationships arise in settings that include parallel
or repeated data. The ability to infer size relationships may
find application in ensuring the correct composition of Web
services [7].

No previous technique for XML type checking can accu-
rately type check a program when the target type has size
relations and the program output is not confined to a regular
subtype of the output type. The decidability of XML type
checking has been established using k-pebble tree transduc-
ers when no size relations are present [20]. It is unclear how
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τt = doc
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titles isbns

title*n isbn*n

τ ′ = doc
GGGuuu

titles isbns

title* isbn*

τ ′ * τt!

Figure 1: A target type with size relations. Con-
servatively inferred types using existing techniques
cause correct programs to fail to type check.

well these automata-based techniques would work in prac-
tice because of their high computational complexity, and
more fundamentally, how to incorporate size information
into these formalisms to retain decidability of type check-
ing. Existing type-based approaches [8] may provide more
practical, if less precise, solutions. However, currently these
approaches are unable to infer types with size relations. The
main contribution of our paper is a type-based inference sys-
tem to discover size relations for XML transformation pro-
grams. To the best of our knowledge, ours is the first system
capable of reasoning about size relations for XML transfor-
mations.

Several languages have been proposed for XML trans-
formations, including XSLT [6], XQuery [8], XDuce [14],
CDuce [2], HaXml [27], and Relaxer [11]. The XML trans-
formation language in this paper used to explain our tech-
nique has much of the expressive power of these languages.
It includes iterations over subtrees, pattern matching based
on tag or type, conditional expressions, etc. Section 2 intro-
duces our language.

For illustration purposes, we consider first the following
XQuery program:
<doc>

<titles>

for $a in document("cat.xml")//catalog/book/title

return $a

</titles>

<isbns>

for $b in document("cat.xml")//catalog/book/isbn

return $b

</isbns>

</doc>

The program takes an XML catalog of books and creates
an output document with lists of titles and ISBNs, perhaps
for easy ISBN lookup by title in a printed listing. Because
each book has exactly one title and ISBN, the lists rooted at
titles and isbns must have the same number of elements—
that is, they must have the same size. The programmer
would like to confirm that this size relationship holds.

Figure 1 gives the output type τt (omitting the scalar chil-
dren of title and isbn) as the programmer intends it. We
portray types as trees to provide a graphical view of the tree
structure of XML types. A vertical or diagonal line means
that the type at the lower end of the line is a child of the type
at the upper end. In the type τ ′ in Figure 1, titles, isbns

is a sequence type; the sequence constructor is implicit be-
cause titles and isbns are children of the same parent and
are next to each other. Using existing type inference meth-
ods, the type τ ′ would be inferred. Because τ ′ * τt, this
correct program fails to type check. Repeated data arises
in many settings, and each time it does, this shortcoming of
existing techniques limits the amount of automated checking

τs = root

lev1∗

lev2∗

1 for w in children(root) do

2 for x in children(w) do

3 S ,

4 for y in children(root) do

5 for z in children(y) do

6 T

(a) (b)

Figure 2: A source type with nested repetitions.

root

lev1*

lev2*

root1

lev1*m

lev2*ni , i ∈ [1..m]

root1

lev1*m

lev2*n

(a) (b) (c)

Figure 3: Two ways to annotate a source type τs.

available to programmers.

1.1 Difficulties with Size Relation Inference
At first consideration, it may seem as though the use of

integer constraints, which enable array analyses in languages
such as C, would be sufficient for inferring size relationships.
Surprisingly, it is not that simple. The main problem is that
because XML transformations operate on trees, a very rich
data structure, size relationship inference must interrelate
tree sub-structures. Standard array analyses, however, need
only reason about how size information for arrays, a flat
data structure, flows in C-like programs.

Consider the source type τs and program shown in Fig-
ure 2. Lines 1–3 and 4–6 of the program in Figure 2 have
the same semantics as /root/~/~ (where ~ is a wildcard that
matches any tag), except line 3 substitutes an S for what-
ever the output would have been, and equivalently with T

on line 6. In general, the semantics of paths can be achieved
through nested for and case expressions. For example, in
Figure 10, lines 1–10 are equivalent to /catalog/book/title.

Clearly this program produces the same number of S’s
as T’s. However, standard type systems perform a modular
analysis, using only the types of subexpressions and some
global type environments for type checking and inference.
Therefore, in discovering a relation, such as size equality
between two expressions, the type system is restricted to
using information it has available at the time of typing both
expressions: the input type. It must discover size relations
between the input type and the type of each expression in
order to relate the sizes of the expressions’ types to each
other. Suppose that in hoping to discover the size relation-
ships precisely, we annotate τs as in Figure 3b, where 1, m,
and ni are size annotations for the corresponding types.

We argue that the precision aimed at cannot be achieved.
The for expression has the form (for x in e1 do e2). The
expression e1 evaluates to a list, and for each element a in
that list, x gets bound to a and e2 gets executed. There are
two approaches to typing the for expression. We first look
at the approach used in XQuery’s type system [8]: first, x
is bound to the union of the unit types in e1’s type, τ1, and
e2 is typed once with x having that binding. Then type
constructors are added to the inferred type based on their
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τ1 = lev1*m

lev2*ni , i ∈ [1..m]

......

τu = lev11

lev2*n1| . . . |nm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ1b = lev2*n1| . . . |nm

⇒ τ1b = lev2*r, {min(ni) ≤ r ≤ max(ni)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τub = lev21
... τ2b = S1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
τ ′ = S*p, {min(m×ni) ≤ p ≤ max(m×ni)}

Figure 4: Some inferred types in our first attempt
to infer all size relationships precisely.

τu1 = lev11

lev2*n1

τu2 = lev11

lev2*n2

τu3 = lev11

lev2*n3
· · ·

Figure 5: Some inferred types in our next attempt
to infer all size relationships precisely.

occurrences in τ1.
In inferring a type for the program in Figure 2b, if τs

is annotated as shown in Figure 3b, the type of expression
children(root) on line 1 is τ1, as shown in Figure 4. Fig-
ure 4 also shows the rest of the types we refer to in this
paragraph. Suppose we find the type of w, τu, by taking
the union of the unit types in τ1, as done in XQuery’s type
system. The type of children(w) on line 2 is then τ1b. How-
ever, it is not clear what the size annotation on τ1b means.
To add clarity, we rewrite the size annotation as shown in
Figure 4. We can now find the unit type to which x gets
assigned as τub, and so the body of the inner for expression
on line 3 is typed as τ2b. We then go back up and compose
the type τ2b with *r. When going up again to find the type
of the for expression on line 1, we compose the type of the
nested for expression with *m. The result is τ ′ (for clarity,
r has been simplified out of the constraints).

Unfortunately, all we know about p’s value is that it is
confined to a given range. When the for expression on line
4 is typed, the result will also be a starred type whose size is
confined to the same range. Knowing that two numbers are
in the same range is usually not sufficient to relate the two
numbers concretely (e.g., describing one as a function of the
other). Thus, this approach is not suitable for discovering
interesting size relations.

The second approach to typing the for expression is the
one taken by Fernandez et al. [10]: find a type for the body
of a for expression for every named unit type in τ1 and
combine them based on the type structure of τ1. Given the
annotation for τs in Figure 3b, the type of children(root)
is again τ1, as shown in Figure 4. Because the number of
children (ni) may be different for each of the m lev1’s, the
first unique unit type here is τu1 , as shown in Figure 5. The
second is τu2 , the third is τu3 , etc. Trying to infer a type
for the for expression by inferring a type for e2 based on
τu1 , τu2 , τu3 , . . . , is cumbersome and requires complicated
symbolic reasoning about summations such as

∑m
i=1 ni.

Why cannot we get precise size information through pre-
cise source type annotations? When a type element in a tree
type has a Kleene star (e.g., lev1* in Figure 2), its children

in the type tree (e.g., lev2*) represent uniformly all lists of
child elements of the starred element in an actual document.
Adding precise size annotations to Kleene starred elements
(e.g., lev2*ni) of the input type distinguishes within the type
tree the concrete lists that the Kleene starred element rep-
resents. After distinctions have been added to the input
type, either the type system “factors out” the distinctions,
resulting in a loss of precision (as shown in Figure 4), or in
addressing the distinctions directly, the type system faces
increased complexity (as shown in Figure 5). In this paper,
we present an approach to overcome these problems.

1.2 Our Approach
The key insight of our approach is that the elements of

a list are usually treated uniformly, both in the type and
in the program, so the only information we need is the to-
tal number of elements in a concrete tree represented by
an element (or more precisely, by a path) in the type tree.
In some XML transformation languages, there is no mech-
anism to access the elements in a list non-uniformly. For
example, it is impossible to remove the first element from
a given list. In other languages (e.g., CDuce), constructs
that handle list-elements non-uniformly can be typed con-
servatively. We take advantage of this in our analysis. We
annotate the source type as shown in Figure 3c. The annota-
tion n on lev2 in Figure 3c denotes the total number of lev2
elements in the input document that have as parent a lev1
element and as grandparent a root element. Note the differ-
ence between this annotation and a size: the elements may
not all have a common parent. For an alternating sequence
of for and case expressions that match the semantics of
/root/lev1/lev2,1 the body of the innermost case will be
executed n times. Consequently our type system multiplies
the size of the innermost case expression by n to find the
size of the outermost for expression.

Because our annotations do not introduce distinctions into
τs, we avoid the trouble shown in Figure 5. We therefore
leverage the more powerful second approach to typing the
for expression. The union operation used in the first ap-
proach loses information whenever an element type has more
than one child type and so cannot achieve the precision nec-
essary to infer size relationships.

Conditional expressions are often used to select certain
elements of a list and pass over others, so they, too, influence
the sizes of output types. A solution that leads to sizes
confined to ranges has the same problems as discussed in
Section 1.1, but unless all parts of the boolean expression
are static, we cannot determine statically which branch of
the conditional will be executed. To address this we use
pair types. Like conditional types [1], pair types preserve the
relationship between the types of the branches of conditional
expressions and true and false evaluations of the boolean
expression. We relate the size of a pair type to the sizes
of the conditional expression’s true and false branches as
well as to the identity of the boolean condition. If, in a pre-
processing phase, two boolean conditions can be found to
be equivalent, then it becomes possible to relate the sizes of
the corresponding conditional expressions.

2. THE SOURCE LANGUAGE
1The first and second halves of the program in Figure 2
would match this semantics if the appropriate case expres-
sions were inserted.
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tag a
variable x
constant n ::= cint | cstr | cbool
operator op ::= + | - | and | or

| = | <

expression e ::= n | x | a[e] | e , e
| () | e op e | let x = e do e
| for x in e do e | children(e)
| case e of x:p => e | x => e end

| if e then e else e
| f(e;...;e)

pattern p ::= a | ~ | s
data d ::= n | a[d] | d , d | ()

Figure 6: XML transformation language.

tag a
type name x
size type r ::= c | n

scalar type s ::= String | Boolean | Integer

unit type u ::= a[τ] | ~[τ] | s
type z ::= x | τ , τ | τ∗ | ()

| <τ , τ> | τ | τ | ∅
annotated type τ ::= u1 | zr

Figure 7: Type language.

Figure 6 gives the syntax of our XML transformation lan-
guage. Most of the constructs are standard. The expres-
sion a[e] constructs XML elements. Paths can be expressed
through for and case expressions. We omit the expres-
sion to select the parent of an element, which can be typed
conservatively, as is done in other XML transformation lan-
guages with type systems, such as XQuery. Beyond that, our
language does not include, for example, sorting, explicit type
casts, and modules. We do not expect much difficulty in ex-
tending our technique to cover these language constructs.

Note that the case expression matches a value against a
p, defined by the “pattern” derivation (which parallels the
“unit type” derivation in Figure 7). Also, as shown by the
“data” derivation, we denote XML elements as tag[. . . ]
rather than <tag>. . . </tag> to simplify notation. The dy-
namic semantics for this language is standard, but the com-
panion technical report gives a complete presentation [24].

3. OUR TYPE LANGUAGE
Figure 7 gives our type language. The “size type” shows

that either a constant or a variable can be used as a size an-
notation on a type. The size annotation denotes the number
of unit values that may be matched to the annotated type.
The grammar allows nonsense types to be written (e.g., ()2),
but our type system only infers meaningful types and pro-
grams only type check if all types are meaningful. The wild-
card unit type, ~[τ], is defined such that a[τ] is a subtype
of ~[τ] for all tags a, following Fernandez et al. [10].

Among the types z, “τ , τ” is the type of two values in
sequence. The union type is “τ | τ”; a value whose type
is either of the choices matches it. We introduce the pair
type, “<τ , τ>,” for typing conditional expressions. Like

expression e ::= c | n | (Γπ(π)) | (e)
| e + e | e× e

path π ::= π/a | ε
constraint C ::= C ∪ {n = e} | C ∪ {π} | ∅

Figure 8: Constraint language.

the choice type, a value of either of the two types may match
it. Unlike the choice type, the order of the two types is pre-
served, i.e., (τ1 | τ2) = (τ2 | τ1), but <τ1,τ2> 6= <τ2,τ1>,
when τ1 6= τ2. Because the order is preserved, it is possible
to reason about the types of different conditional expressions
in relation to each other. The “∅” is an identity for choice
types, and is needed for typing repetition expressions.

We also have a constraint language to capture size re-
lations. Figure 8 shows our constraint language. There
are two kinds of constraints. The first kind consists of
equality constraints between a size variable and an arith-
metic expression. The function Γπ maps paths to size vari-
ables/constants. The second kind of constraint is a path, π,
which is not explicitly related to anything else in the con-
straints or types. Paths remain in the constraint set only
temporarily during the typing of for expressions that match
the semantics of paths. Paths, the function Γπ, and the con-
nection between them are explained in Section 4.3.

4. TYPE RULES
We use a constraint-based formulation of our type system.

The type judgment Γ ` e : τ, C is read: in environment Γ ,
expression e has type τ, where the size variables in Γ and
τ are subject to the constraints C. Type environments are
defined by the following grammar:

Γ ::= ∅ | Γ ] {x : τ} | Γ ] {for x : τ}

where {for x : τ} is used in typing the for expression. A
type environment, Γ , maps variables and “for” variables to
types according to the following rules:

Γ ] {x : τ} (x′) = τ if x = x′

= Γ (x′) otherwise
Γ ] {for x : τ} (x′) = τ if x = x′

= Γ (x′) otherwise

Due to space constraints we explain here the typing of the
three most interesting expressions to size types in increasing
order of difficulty. The complete list of type rules can be
found in the companion technical report [24]. In the type
rules that we discuss next, z, u, and τ are as in Figure 7: z
is a type without a size annotation, u is a unit type without
an annotation, and τ is a type with an annotation.

In Section 4.1, we explain the type rule for sequence ex-
pressions, in which two subexpressions are put in sequence.
In Section 4.2, we explain the type rule for conditionals. In
Section 4.3, we explain the typing of the for expression,
which is the most involved because it is the main language
construct used to produce subtrees of unknown size. We also
discuss the typing of recursive functions in Section 4.3.2.

4.1 Sequence Expressions
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The type rule for sequence expressions is as follows:

τ1 = zm11 τ2 = zm22

Γ ` e1 : τ1, C1 Γ ` e2 : τ2, C2 n is fresh

Γ ` e1,e2 : (τ1, τ2)n, C1 ∪ C2 ∪ {n = m1 + m2}
This rule is straightforward: the number of XML elements
produced by the sequence expression as a whole is the sum
of the numbers of XML elements produced by its subexpres-
sions. The rule adds the constraint that n, the size of the
sequence expression, equals m1 + m2, the sum of the sizes of
the subexpressions.

4.2 Conditional Expressions
Our type system allows the true and false branches of a

conditional expression to have different types. The type of
the conditional expression in most type systems is a choice
type composed of the types of the branches: (τ1|τ2). The
loss of precision from this approach poses a problem: we
can determine that the value of the size variable for the
conditional expression is within the range of the sizes of its
branches, but we can no longer conclude that two sizes are
equal. We address this by means of a pair type, introduced
in Section 3, plus related constraints.

The main ideas is this: if two different if expressions
have the same boolean condition with equivalently bound
variables and get executed the same number of times in one
run of the program, then their true and false branches get
executed the same number of times respectively. We can use
unification to conservatively determine which variables have
the same binding. A straightforward analysis can conserva-
tively determine which boolean expressions are equivalent
and are executed the same number of times. All if ex-
pressions are given labels, and two if expressions will have
the same label if and only if their boolean expressions were
found to be equivalent.

Our type rule for conditional expressions is as follows:

Γ ` eb : Boolean1, Cb

Γ ` e1 : τ1, C1 Γ ` e2 : τ2, C2

τ1= z1
n1 τ2= z2

n2 if.label = p n is fresh

Γ ` if eb then e1 else e2 : <τ1, τ2>
n,

Cb ∪ C1 ∪ C2 ∪ {n = p× n1 + notp× n2}

The hypothesis “if.label =p” extracts the label, and uses it
as a fresh size variable. The rule also uses the label to create
a fresh size variable, notp, which represents the unknown
number of times the boolean expression evaluates to false.
The constraint uses the label to relate the sizes of conditional
expressions with equivalent booleans.

4.3 Repetition Expressions
The for expression is the principle mechanism for pro-

ducing lists of unspecified length, and is the most involved
to handle in our type system.

Consider the input type and the program fragment shown
in Figure 9. By inspection of the input type, we conclude
that the expression “children(book0)” has type:

τ = title[ String ] , author[ String ]+ n

In other words, all data that children(book0) produces are
included in the set defined by τ. Although the “n” in τ does
not tell us how many elements each member of τ has, it
does say that the number of elements produced is the same
as the number of the input elements. The body of the for

book
GG

��
title author+ n

String String

let book0 : Book

1 for x in children(book0)

2 do case x of

3 x1:author => x1

4 x2 => ()

5 end

(a) (b)

Figure 9: Simple type tree and expression.

expression operates on each element individually from the
value of the “children” expression. Each execution of the
for expression produces data included in the type:

τ ′ = author[ String ]+ n

Two main ideas allow us to infer such types. The first
idea is the use of auxiliary rules for typing the for expres-
sion. Auxiliary rules allow us to infer a type for the for

expression which has the same regular structure as the type
it iterates over. The second idea is that the input type and
the program contain implicit size-related information, which
we make explicit. We determine which information to make
explicit based on the argument in Section 1.1. We then
equip the for rules to use this information.

4.3.1 Auxiliary Rules
Auxiliary rules for the for expression were introduced by

Fernandez, Siméon, and Wadler [10], and we review them
here. The for expression has the form:

for x in e1 do e2 .

Suppose that for the program fragment in Figure 9b, we
have determined that “children(book0)” has type:

τ1 = title , author+

String String

We show the sequence constructor here to make it explicit
that this is a sequence type. Fernandez et al.’s type rule
(which does not reason about sizes) for the for expression
looks roughly like:

Γ ` e1 : τ1

Γ ] {for x:τ1} ` e2 : τ2

Γ ` for x in e1 do e2 : τ2

We have already found τ1, and at the top level, τ1 is a se-
quence type. To find τ2 for the second hypothesis, we first
use the following auxiliary rule:

Γ ] {for x:τ1} ` e2 : τ ′
1

Γ ] {for x:τ2} ` e2 : τ ′
2

Γ ] {for x:τ1,τ2} ` e2 : τ ′
1,τ

′
2

This rules types the original program fragment by

• finding the for expression’s type as though e1 had type
title[..],

• finding the for expression’s type as though e1 had type
author[..]+,

• and putting those two types in sequence.
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τs = catalog

book*

OOOOnnnnggggggggg

author+ title subtitle? ISBN

Str Str Str Int

−→ τs = catalog1

book*n

PPPPmmmmffffffffff

author+m titlen subtitle?r ISBNn

Strm Strn Strr Intn

Figure 11: The input type tree annotated.

let cat0 : Catalog

1 titles[ for w in children(cat0) do

2 case w of

3 w1:book =>

4 for x in children(w1) do

5 case x of

6 x1:title => x1

7 x2 => ()

8 end

9 w2 => ()

10 end ],

11 isbns[ for y in children(cat0) do

12 case y of

13 y1:book =>

14 for z in children(y1) do

15 case z of

16 z1:isbn => z1

17 z2 => ()

18 end

19 y2 => ()

20 end ]

Figure 10: A program that makes a list of all titles
followed by all ISBNs from a catalog.

Other auxiliary rules handle other type constructors, such as
repetitions (“+”). If e1’s type is a unit type (e.g., title[..]),
then the for expression can be typed like a let expression.
The purpose of these auxiliary rules is to decompose the in-
put type, infer types for the for expression over unit types,
and compose the inferred types according to the structure
of the input type. The resulting type of the for expression
in Figure 9 is:

τ2 = () , author+ = author+

String String

4.3.2 Making Size-related Information Explicit
In Sections 1.1 and 1.2, we argued that a natural, type-

based analysis can reason about size information at, but not
below, the top level of repetition. We define top-level repe-
tition for a given type to be types which are repeated (*’d)
and which have no repeated ancestors. We get the informa-
tion that we need for reasoning about sizes by answering:

1. Which for expressions produce top-level repetition in
the output type?

2. Which parts of the input type do those for expressions
iterate over?

3. How many elements are in those parts of the input
type?

Aside from conditional expressions, which Section 4.2 ad-
dressed, the for expression is the only expression which can
both produce output of unspecified length and have other
expressions nested in it. To answer the first question con-
servatively, we use the syntactic structure of the program.
A for expression may not produce top-level repetition if it
is nested in an expression e, where e is not a for or case

expression and e is nested in the body of a for expression.
Otherwise, the for expression will produce top-level repeti-
tion. We answer the second question similarly. Consider the
nested for and case expressions on lines 1–10 of the pro-
gram in Figure 10, for which τs in Figure 11 is the input type.
Collectively, these expressions iterate over the title ele-
ment, or more specifically the path /catalog/book/title,
in τs. We infer this path by checking for certain syntactic
structures (e.g., e1 is a children expression in all for ex-
pression, and each expression uses a variable bound by the
expression above it), and piecing together the patterns from
the case expressions. If the relevant syntactic structures do
not appear, we do not infer a path. We make paths explicit
for each group of for and case expressions that produce top-
level repetition by labeling the first expression with start and
the last expression with the path it iterates over.

To answer the third question, we first note that the num-
ber of elements represented by a path in the input type is the
same each time an expression iterates over that path. We
therefore give names to the numbers of elements along each
path of the input type. Figure 11 shows an example of this
naming. Starting from the root, sizes are given names. If
the number of child elements per parent element is constant
(e.g., 1 title per book), the child’s size is proportional to
the parent’s. These names get used as size variables when
an expression outputs the corresponding portion of the in-
put tree. The precise details on how size names are put on
the input type tree and how the transformation program is
annotated can be found in the companion technical report
(see Section 3.2.3 [24]).

Recursion, both in the input type and the program, is
another source of statically unknown output. In the case of
recursive types, we give a name to the total number elements
represented by each tag at the first “back-edge.” In a recur-
sive type, there is at least one pair of type elements or type
constructors where each can be reached from the other. We
say that a back-edge goes to the type element/constructor
that can be reached from the root of the type tree first.
A type element/constructor with an incoming first back-
edge has no anscestors with incoming back-edges. Figure 12
shows a recursive type first textually [10] then graphically.
The annotation at the choice type-constructor means, for
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type Part = Basic | Composite

type Basic = basic[ cost[ Integer ] ]

type Composite = composite[

assembly cost[ Integer ],

subparts[ Part+ ] ]

basic, cost: m

composite, assembly, subparts: n

Integer: m+n

&&MMMM

basic | composite
SSSS

cost assembly subparts

�� 23

54��

Integer Integer +

Figure 12: Annotation of a recursive type.

type Part2 = part[ total cost[ Integer ],

subparts[ Part2* ] ]

convert(p : Part<basic: m, composite: n>)

: Part2<part: m+n>

Figure 13: Annotation of a recursive function.

example, that the number of basic tags represented by this
recursive type is m. Recursive functions typically operate
on recursive types. We handle recursive functions by re-
quiring the user to annotate each recursive function with
a type signature and type checking the functions based on
those annotations. Figure 13 shows a second recursive type,
Part2. For each part the total cost includes any costs for
that part plus the sum of all costs of subparts. The func-
tion convert transforms a Part into a Part2. Due to space
limitations, we omit the function body. Since both basic
parts and composite parts are parts, the total number of
part’s should equal the sum of the numbers of basic’s and
composite’s. The user need not annotate the function with
the size of every type element—in Figure 13 only 3 have
annotations.

4.3.3 Auxiliary Rules for Size Types
We write auxiliary rules to make use of the size-related in-

formation discussed in Section 4.3.2. Basically, two groups
of auxiliary rules are needed: one group for those for expres-
sions that are not known to produce top-level repetitions,
and one group for those that are. The first group of auxil-
iary rules is similar to the rules discussed in Section 4.3.1—
they decompose the input type, find types for the body of
the for expression as though it were a let expression iter-
ating over a single unit type, and re-compose the inferred
types according to the structure of the input type. The aux-
iliary rules are enhanced only to carry size information with
them. Figure 14 shows the complete list of type rules for
the for expression; the auxiliary rules named [For#] are
the first group of rules. The “¬∃π. π ∈ C” hypothesis will
be explained in Section 4.3.4.

The second group of rules have a slightly different purpose
and function. They also decompose the structure of the
input type, and they find types for the for expression as
though it were a let expression iterating over a single unit
type. However, they do not re-compose the types according
to the structure of the input type.

The path annotation from Section 4.3.2 tells exactly which
of the unit types will cause the for expression to produce
a potentially non-empty list (i.e., produce output). In the
program in Figure 10, for example, the for expression start-
ing on line 4 will only produce output when x is bound to a
title element; all other types will result in (), the empty
sequence. Furthermore, the path annotation can be mapped
back to a size name, which could be a constant, in the input
type, so it tells exactly how many times the for expression
that iterates over that path will produce output. In the
program in Figure 10, the first half of the program will pro-
duce output “n” times, because “n” is the size name given
to “/catalog/book/title”.

Instead of re-composing the structure of the input type,
the second group of auxiliary rules first infers a type for the
unit type that causes the for expression to produce output.
The auxiliary rules then add a star (*) and the size name
(e.g., n) to the inferred type. In this way, the auxiliary
rules flatten the type structure and declare that the type is
repeated “n” times.

4.3.4 The Rules Themselves
The second group of auxiliary rules have names of the form

[ForΠ#]. In rules [ForΠ1]–[ForΠ5], τ can be instantiated
to (τ1,τ2), (τ1|τ2), or <τ1,τ2>. The rule [ForΠU] extracts
the path annotation and adds the path the constraint set.
It also adds a star to the inferred type. Hypotheses of the
form (¬)∃π. π ∈ C require that there must (not) be a path in
the constraint set. The rule [ForΠ] removes the path from
the constraint set, uses the “Γπ” function to map the path
back to a size name, and adds a constraint that multiplies
the number of elements from one iteration by the number of
iterations that produce output.

4.4 Type Soundness
We now state a type preservation theorem for our system.

Theorem 1 (Subject Reduction). If Γ ` e : τ, C

and E ` e ⇓ d then Γ ` d : τ, C.

The full proof of this theorem is given in the compan-
ion technical report [24]. It follows the style of Wright and
Felleisen [28]. The “d” refers to data, as defined in Figure 6.

5. SUBTYPING
XML type checking first requires inferring a type for the

transformation program, which Section 4 addressed. This
section addresses the second part of XML type checking—
checking whether the inferred type is a subtype of the target
type. A type denotes a set of documents. Our notion of sub-
typing is simply inclusion between the sets denoted by two
types. A restriction on the types that may be inferred makes
deciding subtyping possible: Based on observations in Sec-
tion 1.1, our type system does not infer size relationships for
nested repetitions. In other words, in a type tree a repeated
element b* will not have a size annotation that relates it
to other parts of the type tree if one of its ancestors is also
repeated (e.g., a[...]*n). This also implies that none of the
annotations of b’s descendants will relate their sizes to other
parts of the type tree.

Size annotations must be matched to establish a subtype
relationship. We use N to record how size annotations are
matched, and we define it as:

N ::= ∅ | N ∪ {n← m} | N ∪ {n← n1 + n2}
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Γ ` e1 : τ1, C1

Γ ] {for x : τ1} ` e2 : τ2, C2

for.label = ∅
Γ ` for x in e1 do e2 : τ2,

C1 ∪ C2

[For]

Γ ` e1 : τ1, C1

Γ ] {for x : τ1} ` e2 : (zm)*n, C2

for.label = start ∃π. π ∈ C2

Γ ` for x in e1 do e2 : (zm)*n,
C1 ∪ (C2 \ {π}) ∪ {n = m × Γπ(π)}

[ForΠ]

Γ ] {x : u1} ` e2 : τ, C x.label = ∅
Γ ] {for x : u1} ` e2 : τ, C

[ForU]
Γ ] {x : u1} ` e2 : zm, C x.label = π

Γ ] {for x : u1} ` e2 : (zm) ∗n′
, C ∪ {π}

[ForΠU]

Γ ] {for x : ()0} ` e2 : ()0, C
[ForN]

Γ ] {for x : ∅} ` e2 : ∅, C
[ForE]

Γ ] {for x : τ1} ` e2 : τ ′
1, C1

Γ ] {for x : τ2} ` e2 : τ ′
2, C2

τ ′
1 = zm11 τ ′

2 = zm22 ¬∃π. π ∈ C1,2

Γ ] {for x : (τ1, τ2)
n} ` e2 : (τ ′

1,τ
′
2)

n′
,

C1 ∪ C2 ∪ {n′ = m1 + m2}

[ForS]

Γ ] {for x : τ1} ` e2 : τ ′
1, C1

Γ ] {for x : τ2} ` e2 : τ ′
2, C2

¬∃π. π ∈ C1,2

Γ ] {for x : (τ1|τ2)n} ` e2 : (τ ′
1|τ ′

2)
n′
, C1 ∪ C2

[ForC]

Γ ] {for x : τ1} ` e2 : τ ′
1, C1

Γ ] {for x : τ2} ` e2 : τ ′
2, C2

τ ′
1 = zm11 τ ′

2 = zm22 ¬∃π. π ∈ C1,2

{n = p× r1 + notp× r2}

Γ ] {for x : <τ1, τ2>
n} ` e2 : <τ ′

1, τ
′
2>

n′
,

C1 ∪ C2 ∪ {n = p× r1 + notp× r2}
∪ {n′ = p× m1 + notp× m2}

[ForP]

Γ ] {for x : τ} ` e2 : τ ′, C

τ = zm τ ′ = zm
′

1 ¬∃π. π ∈ C

Γ ] {for x : τ∗n} ` e2 : τ ′ ∗n′
, C

[ForR]

Γ ] {for x : τ1} ` e2 : τ ′, C

Γ ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C

Γ ] {for x : τ} ` e2 : τ ′, C
[ForΠ1]

Γ ] {for x : τ1} ` e2 : τ ′, C

Γ ] {for x : τ2} ` e2 : ()0, C
′

∃π. π ∈ C τ ′ 6= ()0

Γ ] {for x : τ} ` e2 : τ ′, C
[ForΠ2]

Γ ] {for x : τ1} ` e2 : ()0, C
′

Γ ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C τ ′ 6= ()0

Γ ] {for x : τ} ` e2 : τ ′, C
[ForΠ3]

Γ ] {for x : τ1} ` e2 : τ ′, C

Γ ] {for x : τ2} ` e2 : ∅, C′

∃π. π ∈ C τ ′ 6= ∅
Γ ] {for x : τ} ` e2 : τ ′, C

[ForΠ4]

Γ ] {for x : τ1} ` e2 : ∅, C′

Γ ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C τ ′ 6= ∅
Γ ] {for x : τ} ` e2 : τ ′, C

[ForΠ5]

Γ ] {for x : τ} ` e2 : τ ′,C ∃π. π ∈ C

Γ ] {for x : (τ∗)n} ` e2 : τ ′, C
[ForΠR]

Figure 14: Type rules for the for expression: n′ is fresh in all rules it appears in.

The matching {n← m} means that m, a size annotation in
the subtype, is assigned to n, an annotation in the super-
type. The other matching records that the sum of two anno-
tations equals a third annotation, and it is used by an aux-
iliary function (introduced later in this section). We ensure
that subgoals in a subtyping goal match size annotations
consistently by means of a “3” operator: N13N2 means
that if n is matched in both N1 and N2, then N1(n) = N2(n)
(i.e., the matchings are consistent). A list as a subscript
(e.g., N1,23N3) abbreviates several consistency checks (e.g.,
N13N3, N23N3). A subtyping relationship, N : τ1 <: τ2,
is read τ1 is a subtype of τ2 with size annotations matched
according to N .

Our type inference algorithm generates constraints on size
annotations, and those constraints must be resolved before
subtyping. We only need to do a subtype check at function
calls and at the end of type inference. The type inference al-
gorithm guarantees that the constraint set will not include a
path (π) at either of these times. After constraint resolution,
size annotations which are bound to equivalent expressions
are renamed so that they are identical. Pair types can then

be changed into choice types. The algorithm then divides
type trees into two parts: the upper part (near the root)
which may have relational size annotations, and the lower
part which must not have relational size annotations. The
algorithm discovers the border between the two when it en-
counters type names or repeated (*’ed) types with unbound
size annotations—these mark the top of the lower part. For
example, in the un-annotated type tree in Figure 11, the
upper part ends at book*, and the lower part is everything
below book*.

In the absence of relational size annotations, our type lan-
guage describes regular expression types for XML, the same
type language as XDuce uses. XDuce also uses a set-based
notion of subtyping, and it has a sound and complete algo-
rithm for deciding subtyping [15]. To check subtyping algo-
rithm for the lower part of the type tree (e.g., ∅ : τ*1 <: τ),
we use XDuce’s subtyping algorithm. In the case of recur-
sive types, we match annotations at the top and use XDuce’s
subtyping for the types in the absence of annotations.

Because the upper part is free of recursion, we can split
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choice types and check each of the choices separately:

N1 : τ1 <: z N2 : τ2 <: z
N13N2 N1,23{n← m}

N1 ∪N2 ∪ {n← m} : (τ1|τ2)
m <: zn

[NChoice]

If an expected annotation is missing, an annotation can be
added. The annotation will be a constant if the size is con-
stant (e.g., 1). If the annotation is for a sequence type,
and the sizes of the sequence’s members equal the sizes of
another sequence, the annotation will be identical to the an-
notation on the other sequence. Otherwise, the annotation
will be fresh, which is equivalent to “unknown.” The rule
for sequences must check subtype relations such as:

(a|b),c <: (a,c)|(b,c)

We use two functions: rmc (remove choices) and tls (top-
level split). Both functions operate at the top level of types
by treating elements as atomic and ignoring their children.
This allows us to keep the upper and lower parts of the type
tree separate, but it means that the rule will reject some
true subtype relationships. The rmc function takes a type
tree τ as an argument and returns the set of all type trees
derived by selecting one or the other of the types from the
choice types in τ. For example:

rmc((a|b),c) = {a,c , b,c}

The tls function first calls rmc on its argument. For each
resulting type tree τ, tls returns the set of pairs of type trees
that, in sequence, describe τ. For example:

tls(a,b*n,c) =
{[() , a,b*n,c], [a,b*n1 , b*n2,c], [a,b*n,c , ()]}

In the example, the size annotated b*n was “split” in the
second pair, so its size annotation was split into n1 and n2.
The split is recorded in N with {n = n1 + n2}.

∀τ ′
1 ∈ rmc(τ1) ∀τ ′

2 ∈ rmc(τ2)
∃Np : τa, τb ∈ tls(z)

Na : τ ′
1 <: τa Nb : τ ′

2 <: τb

Na,b,p3Na,b,p Na,b,p3{n← m}⋃
Na,b,p ∪ {n← m} : (τ1,τ2)

m <: zn
[NSeq]

Our subtyping algorithm include nine other rules not shown
here. This subtyping algorithm is sound and it terminates.

6. RELATED WORK

6.1 Automata-based Techniques
Murata et al. classify six ways of representing XML types

(including XML Schema) in terms of expressiveness [21].
The types we work with here are regular expression tree
types with size annotations, which are at least as expressive
as the six surveyed.

One significant automata-based work on XML type check-
ing uses a generalization of traditional top-down regular tree
transducers called k-pebble tree transducers to demonstrate
the decidability of type checking for the broad range of que-
ries that can be expressed by these automata [20]. This tech-
nique was applied to a subset of XSLT for backward type
inference [26]. However, it is unclear how to support size
information in these formalisms. Adding sizes naively can
produce non-context-free languages and make type checking
undecidable.

6.2 Type System-based Techniques
Instead of using automata-based approaches, many XML

transformation languages use type systems to accomplish
XML type checking. The aspects of XQuery’s type system
relevant to this work were explained in Section 1.1. Other
languages, such as XDuce, have similar type systems [8, 14].
Fernandez et al.’s more precise type system was discussed
in Section 4.3 [10]. However, our type system to the best of
our knowledge is the first one to support size inference.

Other work on XML type checking aims at integrating
XML into general-purpose programming languages. One in-
tegrates XML into Java [18], and the work relies on JWIG [4],
an extension of Java. XOBE [17] is also an extension of Java
with a similar goal, but it differs in that XML trees in XOBE
can only be constructed bottom-up, as opposed to allowing
named gaps that can be filled in any order. Castor [13] and
JAXB [19] use Java to generate an object model of XML
documents from XML Schema in order to gain a higher level
of abstraction.

6.3 Size Analysis
We view size analysis as seeking to make claims about

the sizes of data structure and other closely-related aspects
of programs. The study of size analysis started with the
inference of linear constraints for imperative languages [5].
This abstract interpretation-based approach inferred linear
relationships among variables automatically. This topic has
significance to logic programming in the sense that inferring
bounds on argument sizes can ensure termination [23].

Type-based size analyses relate more closely to our work.
One such analysis uses dependent types [29, 30]. They use
parameterized types to infer lengths of lists. The parameters
can be constrained with linear equalities and inequalities to
determine size relationships. Unlike our type system, theirs
requires user annotations. Hughes, Pareto, and Sabry type
check recursive data structures with size information in the
context of a lazy functional language [16]. Chin and Khoo
build on this approach by inferring sizes for recursive func-
tions in the context of strict functional languages [3]. They
define the size of a function as both a relation between input
and output parameters, and invariants of input parameters
across recursive calls. They infer sizes in terms of array
lengths, tree heights, and integer values. All of these previ-
ous approaches only infer flat sizes; even when sizes for trees
are inferred, it is in terms of their one-dimensional height.
We infer sizes for the richer tree structure and take into
account the levels of the subtrees.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a type system for XML

transformations to infer size relationships within the output
type. Our approach also allows size annotations to be added
to the input type that would then be propagated through to
the inferred output type. In addition to helping program-
mers confirm properties of XML transformation programs,
size relations may provide efficiency improvements. Knowl-
edge of concrete sizes can benefit query optimization and
database storage, so we expect size relations to yield similar
benefits [12, 22].

Finally, our type system does not add significant complex-
ity to either type inference or document validation. Our type
inference algorithm only infers in the constraints simple and
usually small equations, which can be solved efficiently using
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simple symbolic algebra. XML Schema is designed so that
validation can be implemented by a top-down parser with
limited look ahead [21]. Adding size annotations requires
only the addition of counters to keep track the number of
elements, which does not increase the algorithmic complex-
ity of performing document validation.

There are a few possible directions for future work. In
this work we dealt with recursive functions by requiring the
user to provide a type signature and type checking to verify
the correctness of that signature. We may be able to infer
a type without being provided a type signature by using
XDuce’s type system to infer a type signature that does not
include size annotations and then adding size annotations
on a second pass. We may be able to avoid doing two passes
by using ideas from Chin and Khoo [3]. Finally, it would
be interesting to implement our inference procedure to gain
some practical experiences.
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