Design and Analysis of Programming Languages

ECS 240

ECS 240 Lecture 1

Administrivia

Who am I?

Website:
- SmartSite & Piazza
- Will post there announcements, lectures, assignments, etc.

Office hours: Th 1-2 PM, 3011 Kemper (reserved for ECS 240)
- Also Tu/Th 2-3 PM if I'm not helping ECS 140A students

TA & TA office hours: Nima Johari
- Tu 11-12:30 PM (3016 Kemper)

- W 11-noon (3106 Kemper)

- F 1-2:30 PM (53 Kemper)

ECS 240 Lecture 1 2

Course Work

Lectures
Homework
- Concentrated in the first half of the course (3-4)
- Mostly theoretical in nature (tool introduction)
Project
- Concentrated in the second half of the course
- T will suggest some topics and you are free to propose your own
- You select a topic (best: connect with your current research)
- Project report and presentation (dates TBD)
- Take-home final (date TBD)

Grading (tentative):

- Class participation (~10%)
- Homework (~30%)

- Take-home final (~20%)
- Project (~40%)

ECS 240 Lecture 1

Prerequisites

Programming experience
- exposure to various language constructs and their meaning
- e.g., C, Java, C++, ML, Lisp, Prolog
- e.g., ECS 140A, 142 or equivalent

Mathematical maturity
- we'll use formal notation to describe the meaning of programs

- e.g., set theory, formal proofs, induction
» Chapter 1 in Winskel's book

If you don't have either, are an undergraduate, or are
from another department, please see me

ECS 240 Lecture 1 4

Contemporary Landscape

Programming languages is one of the oldest CS fields
And one of the most vibrant today!

» Current frends
- Type safety gaining acceptance as a viable security component

- Modern program analysis becoming a major component of
software engineering

- Renewed interest in language design and parallelism

- Programming synthesis for education and end-user
programming

ECS 240 Lecture 1 5

Course Goals

* Learn techniques for language/program analysis
- formal semantics (operational, axiomatic, denetational)
- reasoning about program behavior
- case studies of languages and features

- Discuss practical applications of these techniques
- software engineering
- security

ECS 240 Lecture 1

Course Readings

* Mostly classical and recent research papers

Other references:

- Glynn Winskel, “The Formal Semantics of Programming
Languages”

- John Mitchell, “Foundations for Programming Languages”
- Benjamin Pierce, “Types and Programming Languages”

ECS 240 Lecture 1

Topic I: Language Specification

Three pedigreed approaches:

- Operational semantics (how?)
- rules for execution on an abstract machine
» useful for implementing a compiler or interpreter

- Axiomatic semantics (why?)
* logical rules for reasoning about the behavior of a program
- useful for proving program correctness

- Denotational semantics (what?) [will skip this time]

* meaning described as a function from programs to elements of a
domain

+ Why isn't semantics used on a mass scale?

ECS 240 Lecture 1 8

Why Don't People Use Semantics?

Semantics is fairly heavyweight and not (yet) cost-
effective

- For everyday (and everyone's) use.

- Notation is sometimes dense

Semantics is general and explains:

- For all possible inputs x, the output is y and the state changes
so that ...

Most programmers are content to know:

- What is the output for the particular input I will test this
program on?

But who then definitely needs semantics?

ECS 240 Lecture 1 9

Who Needs Semantics

Those who want to describe unambiguously a language

feature or a program transformation:

Semantics is the basis for most formal arguments in PL
research

Semantics is a standard tool in PL research

Those who write programs that must work for all

inputs:

program transformation and instrumentation tools
program analyzers

software engineering tools

compilers and interpreters

critical software

ECS 240 Lecture 1 10

Topic II: Language Design

» Languages are adopted to fill a void
- Enable a previously difficult/impossible application
- Orthogonal to language design quality (almost)

* Programmer training is the dominant adoption cost
- Languages with many users are replaced rarely
- Popular languages become ossified
- But easy to start in a new niche . ..

ECS 240 Lecture 1 11

Why So Many Languages?

* Many languages were created for specific applications

Application domains have distinctive (and conflicting)
needs
- leading to a proliferation of languages
+ Examples:
- Artificial intelligence: symbolic computation (Lisp, Prolog)
- Scientific Computing: high performance (Fortran)
- Business: report generation (COBOL)
- Systems programming: low-level access (C)
- Customization: scripting (Perl, ML, Javascript, TCL)
- Distributed systems: mobile computation (Java)
- Special purpose languages: ...

ECS 240 Lecture 1 12

Language Paradigms

Imperative
- Fortran, Algol, Cobol, C, Pascal

Functional

- Lisp, Scheme, ML, Haskell

Object oriented

- Smalltalk, Eiffel, Self, C++, Java, Javascript
Logic

- Prolog, AProlog, Datalog
Concurrent

- Erlang, X10, Fortress

Special purpose

- TEX, SQL, PostScript, HTML

ECS 240 Lecture 1

13

What Makes a Good Language?

No universally accepted metrics for design

“A good language is one people use” ?

NO |
- Is COBOL the best language?

ECS 240 Lecture 1

14

Good Language Features

+ Simplicity (syntax and semantics)

» Readability

- Safety

» Support for programming in the large

+ Efficiency (of execution and compilation)
» Support for abstraction (high level)

ECS 240 Lecture 1

15

Good Languages

These goals almost always conflict
+ Examples:

- Safety checks cost something in either compilation or
execution time

- Safety and machine independence may exclude efficient low-
level operations

- Type systems restrict programming style in exchange for
strong guarantees

ECS 240 Lecture 1 16

Story: The Clash of Two Features

* Real story about bad programming language design
* Cast includes famous scientists

* ML ('82) functional language with polymorphism and
monomorphic references (i.e., pointers)

+ Standard ML ('85) innovates by adding polymorphic
references

» It took 10 years to fix the “innovation”

ECS 240 Lecture 1 17

Polymorphism (Informal)

Code that works uniformly on various types of data
Examples:

length : a list — int

hd alist =«

snd axp—9p

Type inference:

- generalize all elements of the input type that are not used by
the computation

- instantiation: if e : T thene : [t" /o]t (substitute v for o in 1)

ECS 240 Lecture 1 18

References in Standard ML

Like “updatable pointers™ in C
Type constructor: t * (this is not the real ML notation)

Expressions:

hew :t—t* (allocate a cell o store a 1)
¢ 1twhene:t (read through a pointer)
*e:ze' withe:t*ande’ : 1 (write through a pointer)

Works just as you might expect

ECS 240 Lecture 1 19

Polymorphic References: A Major Pain

Consider the following program fragment:

Code
fun id(x) = x
val ¢ = new id
fun inc(x) = x +1
*c:=inc
(*c) (true)

Type inference
id:a— « (for any a)
c:(ao—=a) * (foranya)
Inc : int — int
Ok, since c : (int — int) *
Ok, since ¢ : (bool — bool) *

ECS 240 Lecture 1 20

Reconciling Polymorphism and References

The type system fails to prevent a type error!

Solutions:

- e.g., weak type variables:
- polymorphic variables whose instantiation is restricted
- difficult to use, several failed proofs of soundness

- value restriction: generalize only the type of values!
- easy to use, simple proof of soundness

ECS 240 Lecture 1 21

Story: Java Bytecode Subroutines

- Java bytecode programs contain subroutines (jsr)
that run in the caller's stack frame

» jsr complicates the formal semantics of bytecode
- Several verifier bugs were in code implementing jsr
- 30% of typing rules, 50% of soundness proof due to jsr

- It is not worth it

- In 650K lines of Java code, 230 subroutines, saving 2427
bytes, or 0.02%

- 13 times more space could be saved by renaming the language
to Oak

ECS 240 Lecture 1 22

Language Design Lessons

* Good language design is hard
- Rarely, if ever, achieved by accident

Simplicity is rare in practice

Real languages are isolated points in a huge design
space

PL research considers tiny languages (e.g., A-calculus)
to separate and study core issues in isolation

» In practice, we must also pay attention to the
language as a whole

ECS 240 Lecture 1 23

Topic ITI: Applications of Semantic Tools

You might not end up doing research in semantics but
it is very likely that you will need to apply some of the
techniques in your research

We may discuss a few sample applications, e.g.
- Software model checking

- Vulnerability detection

- Verifying dimensional unit correctness

ECS 240 Lecture 1 24

Next time

+ IMP & operational semantics

ECS 240 Lecture 1

25

