
ECS 240 Lecture 1 1

Design and Analysis of Programming Languages

ECS 240

ECS 240 Lecture 1 2

Administrivia

•  Who am I?

•  Website: http://www.cs.ucdavis.edu/~su/teaching/ecs240-w17
–  SmartSite & Piazza
–  Will post there announcements, lectures, assignments, etc.

•  Office hours: Th 1-2 PM, 3011 Kemper (reserved for ECS 240)
–  Also Tu/Th 2-3 PM if I’m not helping ECS 140A students

•  TA & TA office hours: Nima Johari
–  Tu 11-12:30 PM (3016 Kemper)
–  W 11-noon (3106 Kemper)
–  F 1-2:30 PM (53 Kemper)

ECS 240 Lecture 1 3

Course Work

•  Lectures
•  Homework

–  Concentrated in the first half of the course (3-4)
–  Mostly theoretical in nature (tool introduction)

•  Project
–  Concentrated in the second half of the course
–  I will suggest some topics and you are free to propose your own
–  You select a topic (best: connect with your current research)
–  Project report and presentation (dates TBD)
–  Take-home final (date TBD)

•  Grading (tentative):
–  Class participation (~10%)
–  Homework (~30%)
–  Take-home final (~20%)
–  Project (~40%)

ECS 240 Lecture 1 4

Prerequisites

•  Programming experience
–  exposure to various language constructs and their meaning
–  e.g., C, Java, C++, ML, Lisp, Prolog
–  e.g., ECS 140A, 142 or equivalent

•  Mathematical maturity
–  we’ll use formal notation to describe the meaning of programs
–  e.g., set theory, formal proofs, induction

•  Chapter 1 in Winskel’s book

•  If you don’t have either, are an undergraduate, or are
from another department, please see me

ECS 240 Lecture 1 5

Contemporary Landscape

•  Programming languages is one of the oldest CS fields

•  And one of the most vibrant today!

•  Current trends
–  Type safety gaining acceptance as a viable security component
–  Modern program analysis becoming a major component of

software engineering
–  Renewed interest in language design and parallelism
–  Programming synthesis for education and end-user

programming

ECS 240 Lecture 1 6

Course Goals

•  Learn techniques for language/program analysis
–  formal semantics (operational, axiomatic, denotational)
–  reasoning about program behavior
–  case studies of languages and features

•  Discuss practical applications of these techniques
–  software engineering
–  security

ECS 240 Lecture 1 7

Course Readings

•  Mostly classical and recent research papers

•  Other references:
–  Glynn Winskel, “The Formal Semantics of Programming

Languages”
–  John Mitchell, “Foundations for Programming Languages”
–  Benjamin Pierce, “Types and Programming Languages”

ECS 240 Lecture 1 8

Topic I: Language Specification

•  Three pedigreed approaches:
–  Operational semantics (how?)

•  rules for execution on an abstract machine
•  useful for implementing a compiler or interpreter

–  Axiomatic semantics (why?)
•  logical rules for reasoning about the behavior of a program
•  useful for proving program correctness

–  Denotational semantics (what?) [will skip this time]
•  meaning described as a function from programs to elements of a

domain

•  Why isn’t semantics used on a mass scale?

ECS 240 Lecture 1 9

Why Don’t People Use Semantics?

•  Semantics is fairly heavyweight and not (yet) cost-
effective
–  For everyday (and everyone’s) use.
–  Notation is sometimes dense

•  Semantics is general and explains:
–  For all possible inputs x, the output is y and the state changes

so that ...
•  Most programmers are content to know:

–  What is the output for the particular input I will test this
program on?

•  But who then definitely needs semantics?

ECS 240 Lecture 1 10

Who Needs Semantics

•  Those who want to describe unambiguously a language
feature or a program transformation:
–  Semantics is the basis for most formal arguments in PL

research
–  Semantics is a standard tool in PL research

•  Those who write programs that must work for all
inputs:
–  program transformation and instrumentation tools
–  program analyzers
–  software engineering tools
–  compilers and interpreters
–  critical software

ECS 240 Lecture 1 11

Topic II: Language Design

•  Languages are adopted to fill a void
–  Enable a previously difficult/impossible application
–  Orthogonal to language design quality (almost)

•  Programmer training is the dominant adoption cost
–  Languages with many users are replaced rarely
–  Popular languages become ossified
–  But easy to start in a new niche . . .

ECS 240 Lecture 1 12

Why So Many Languages?

•  Many languages were created for specific applications
•  Application domains have distinctive (and conflicting)

needs
–  leading to a proliferation of languages

•  Examples:
–  Artificial intelligence: symbolic computation (Lisp, Prolog)
–  Scientific Computing: high performance (Fortran)
–  Business: report generation (COBOL)
–  Systems programming: low-level access (C)
–  Customization: scripting (Perl, ML, Javascript, TCL)
–  Distributed systems: mobile computation (Java)
–  Special purpose languages: …

ECS 240 Lecture 1 13

Language Paradigms

•  Imperative
–  Fortran, Algol, Cobol, C, Pascal

•  Functional
–  Lisp, Scheme, ML, Haskell

•  Object oriented
–  Smalltalk, Eiffel, Self, C++, Java, Javascript

•  Logic
–  Prolog, λProlog, Datalog

•  Concurrent
–  Erlang, X10, Fortress

•  Special purpose
–  TEX, SQL, PostScript, HTML

ECS 240 Lecture 1 14

What Makes a Good Language?

•  No universally accepted metrics for design

•  “A good language is one people use” ?

•  NO !
–  Is COBOL the best language?

ECS 240 Lecture 1 15

Good Language Features

•  Simplicity (syntax and semantics)

•  Readability

•  Safety

•  Support for programming in the large

•  Efficiency (of execution and compilation)

•  Support for abstraction (high level)

ECS 240 Lecture 1 16

Good Languages

•  These goals almost always conflict
•  Examples:

–  Safety checks cost something in either compilation or
execution time

–  Safety and machine independence may exclude efficient low-
level operations

–  Type systems restrict programming style in exchange for
strong guarantees

ECS 240 Lecture 1 17

Story: The Clash of Two Features

•  Real story about bad programming language design

•  Cast includes famous scientists

•  ML (‘82) functional language with polymorphism and
monomorphic references (i.e., pointers)

•  Standard ML (‘85) innovates by adding polymorphic
references

•  It took 10 years to fix the “innovation”

ECS 240 Lecture 1 18

Polymorphism (Informal)

•  Code that works uniformly on various types of data
•  Examples:

length : α list → int
hd : α list → α
snd : α × β → β

•  Type inference:
–  generalize all elements of the input type that are not used by

the computation
–  instantiation: if e : τ then e : [τ’/α]τ (substitute τ’ for α in τ)

ECS 240 Lecture 1 19

References in Standard ML

•  Like “updatable pointers” in C

•  Type constructor: τ * (this is not the real ML notation)

•  Expressions:
new : τ → τ * (allocate a cell to store a τ)
*e : τ when e : τ * (read through a pointer)
*e := e’ with e : τ * and e’ : τ (write through a pointer)

•  Works just as you might expect

ECS 240 Lecture 1 20

Polymorphic References: A Major Pain

Consider the following program fragment:

 Code Type inference
 fun id(x) = x id : α → α (for any α)
 val c = new id c : (α → α) * (for any α)
 fun inc(x) = x + 1 inc : int → int
 *c := inc Ok, since c : (int → int) *
 (*c) (true) Ok, since c : (bool → bool) *

ECS 240 Lecture 1 21

Reconciling Polymorphism and References

•  The type system fails to prevent a type error!

•  Solutions:
–  e.g., weak type variables:

•  polymorphic variables whose instantiation is restricted
•  difficult to use, several failed proofs of soundness

–  value restriction: generalize only the type of values!
•  easy to use, simple proof of soundness

ECS 240 Lecture 1 22

Story: Java Bytecode Subroutines

•  Java bytecode programs contain subroutines (jsr)
that run in the caller’s stack frame

•  jsr complicates the formal semantics of bytecode
–  Several verifier bugs were in code implementing jsr
–  30% of typing rules, 50% of soundness proof due to jsr

•  It is not worth it
–  In 650K lines of Java code, 230 subroutines, saving 2427

bytes, or 0.02%
–  13 times more space could be saved by renaming the language

to Oak

ECS 240 Lecture 1 23

Language Design Lessons

•  Good language design is hard
–  Rarely, if ever, achieved by accident

•  Simplicity is rare in practice
•  Real languages are isolated points in a huge design

space
•  PL research considers tiny languages (e.g., λ-calculus)

to separate and study core issues in isolation
•  In practice, we must also pay attention to the

language as a whole

ECS 240 Lecture 1 24

Topic III: Applications of Semantic Tools

•  You might not end up doing research in semantics but
it is very likely that you will need to apply some of the
techniques in your research

•  We may discuss a few sample applications, e.g.
–  Software model checking
–  Vulnerability detection
–  Verifying dimensional unit correctness

Next time

•  IMP & operational semantics

ECS 240 Lecture 1 25

