IMP and Operational Semantics

Lecture 2
ECS 240

Plan

- We'll study a simple imperative language IMP
- Abstract syntax
- Operational semantics
- Denotational semantics
- Axiomatic semantics
... and relationships between various semantics (with proofs)
- Today: operational semantics (Ch. 2 of Winskel)

Syntax of IMP

- Concrete syntax
- The rules by which programs can be expressed as strings of characters
- Deals with issues like keywords, identifiers, statement separators (terminators), comments, indentation, etc.
- Concrete syntax is important in practice
- For readability, familiarity, parsing speed, effectiveness of error recovery, clarity of error messages
- Well understood principles
- Use finite automata and context-free grammars
- Automatic parser generators

Abstract Syntax

- We ignore parsing issues and study programs given as abstract syntax trees (AST)
- Abstract syntax tree is the parse tree of the program
- Ignores issues like comment conventions
- More convenient for formal and algorithmic manipulation
- Fairly independent of the concrete syntax

IMP Syntactic Entities

- Int
$n \in \mathbb{Z}$
- Bool
true, false
- Loc
x, y, \ldots
- Aexp
e
- Bexp
b
- Com
c
integer literals
Boolean values
locations (updateable variables)
arithmetic expressions
Boolean expressions
commands

Abstract Syntax (Aexp)

- Arithmetic expressions (Aexp)

$e::=$	n		for $n \in \mathbb{Z}$
	$\mid x$		for $x \in L$ oc
	$\mid e_{1}+e_{2}$	for $e_{1}, e_{2} \in A \exp$	
	$\mid e_{1}-e_{2}$	for $e_{1}, e_{2} \in A \exp$	
	$\mid e_{1}^{*} e_{2}$		for $e_{1}, e_{2} \in A \exp$

- Notes:
- Variables are not declared
- All variables have integer type
- No side-effects (in expressions)

Abstract Syntax (Bexp)

- Boolean expressions (Bexp)

$$
\begin{aligned}
\mathrm{b}::= & \text { true } \\
& \text { | false }
\end{aligned}
$$

$\mid e_{1}=e_{2}$	for $e_{1}, e_{2} \in \operatorname{Aexp}$
$\mid e_{1} \leq e_{2}$	for $e_{1}, e_{2} \in \operatorname{Aexp}$
$\mid \neg b$	for $b \in \operatorname{Bexp}$
$\mid b_{1} \wedge b_{2}$	for $b_{1}, b_{2} \in \operatorname{Bexp}$
$\mid b_{1} \vee b_{2}$	for $b_{1}, b_{2} \in \operatorname{Bexp}$

Abstract Syntax (Com)

- Commands (Com)
$c::=$ skip

$$
\begin{aligned}
& \mid x:=e \\
& \mid c_{1} ; c_{2} \\
& \mid \text { if } b \text { then } c_{1} e \\
& \text { | while } b \text { do } c
\end{aligned}
$$

for $x \in$ Loc and $e \in$ Aexp
for $c_{1}, c_{2} \in$ Com
for $c \in C o m$ and $b \in \operatorname{Bexp}$

$$
\text { | if } b \text { then } c_{1} \text { else } c_{2} \text { for } c_{1}, c_{2} \in C \text { om and } b \in \operatorname{Bexp}
$$

- Notes:
- The typing rules have been embedded in the syntax definition
- Other parts are not context-free and need to be checked separately (e.g., all variables are declared)
- Commands contain all the side-effects in the language
- Missing: pointers, function calls

Analysis of IMP

- Questions to answer:
- What is the "meaning" of a given IMP expression or command?
- How would we go about evaluating IMP expressions and commands?
- How are the evaluator and the meaning related?

An Operational Semantics

- Specifies the evaluation of expressions and commands
- Abstracts the execution of a concrete interpreter
- Depending on the form of the expression
- 0,1,2,... don' \dagger evaluate any further.
- They are normal forms or values.
- $e_{1}+e_{2}$ is evaluated by first evaluating e_{1} to n_{1}, then evaluating e_{2} to n_{2}.
- The result of the evaluation is the literal representing $n_{1}+n_{2}$.
- Similar for $e_{1}{ }^{*} e_{2}$

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables
- The value of variables at a given moment is abstracted as a function from Loc to Z (a state)
- The set of all states is: $\Sigma=\operatorname{Loc} \rightarrow Z$
- We use o to range over Σ

Judgment

- Use <e, o> $\Downarrow n$ to mean: e evaluates to n in state σ
- This is a judgment (a statement to relate e, σ, and n)
- We can view \Downarrow as a function with two arguments: e and σ
- This formulation is called natural operational semantics
- Or big-step operational semantics
- The judgment relates the expression and its "meaning"
- Next, we need to specify how \Downarrow is defined

Rules of Inference

- We express the evaluation as rules of inference for our judgment
- called the derivation rules for the judgment
- also called the evaluation rules (for operational semantics)
- In general, we have one rule for each language construct
- Example: $e_{1}+e_{2}$

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow n_{1}+n_{2}}
$$

Evaluation Rules (for Aexp)

$$
\langle n, \sigma\rangle \Downarrow n
$$

$\langle x, \sigma\rangle \Downarrow \sigma(x)$
$\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow n_{1}+n_{2}} \quad \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1}\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}-e_{2}, \sigma\right\rangle \Downarrow n_{1}-n_{2}}$

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}^{*} e_{2}, \sigma\right\rangle \Downarrow n_{1}^{*} n_{2}}
$$

- This is called structural operational semantics
- rules defined based on the structure of the expression
- These rules do not impose an order of evaluation

Evaluation Rules (for Bexp)

$$
\begin{array}{cc}
\overline{\text { <true, } \sigma\rangle \Downarrow \text { true }} & \text { <false, } \sigma\rangle \Downarrow \text { false } \\
\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2} \\
\hline\left\langle e_{1}=e_{2}, \sigma\right\rangle \Downarrow n_{1}=n_{2} & \left\langle e_{1, \sigma\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}^{\left\langle e_{1} \leq e_{2}, \sigma\right\rangle \Downarrow n_{1} \leq n_{2}}\right. \\
\frac{\left\langle b_{1}, \sigma\right\rangle \Downarrow \text { false }}{\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow \text { false }} & \frac{\left\langle b_{2}, \sigma\right\rangle \Downarrow \text { false }}{\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow \text { false }} \\
\frac{\left\langle b_{1}, \sigma\right\rangle \Downarrow \text { true }}{\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow \text { true }} \quad\left\langle b_{2}, \sigma\right\rangle \Downarrow \text { true }
\end{array}
$$

How to Read the Rules?

- Forward, as inference rules
- if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds
- e.g., if we know that $e_{1} \Downarrow 5$ and $e_{2} \Downarrow 7$, then we can infer that $e_{1}+e_{2} \Downarrow 12$

How to Read the Rules?

- Backward, as evaluation rules
- Suppose we want to evaluate $e_{1}+e_{2}$, i.e., find n s.t. $e_{1}+e_{2} \Downarrow n$ is derivable using the previous rules
- By inspection of the rules we notice that the last step in the derivation of $e_{1}+e_{2} \Downarrow n$ must be the addition rule
- the other rules have conclusions that would not match $e_{1}+e_{2} \Downarrow n$
- this is called reasoning by inversion on the derivation rules
- Thus we must find n_{1} and n_{2} such that $e_{1} \Downarrow n_{1}$ and $e_{2} \Downarrow n_{2}$ are derivable
- This is done recursively
- Since there is exactly one rule for each kind of expression we say that the rules are syntax-directed
- At each step at most one rule applies
- This allows a simple evaluation procedure as above

Evaluation of Commands

- Evaluation of Aexp/Bexp produces direct results (a number or a Boolean value), but has no side-effects
- Evaluation of Com has side-effects but no direct result
- The "result" of a Com is a new state: <c, σ > $\downarrow \sigma$ '
- The evaluation of Com may not terminate

Evaluation Rules (for Com)

$$
\frac{\langle e, \sigma\rangle \Downarrow n}{\langle x:=e, \sigma\rangle \Downarrow \sigma[x:=n]}
$$

$$
\begin{aligned}
\text { Def: } \sigma[x:=n](x) & =n \\
\sigma[x:=n](y) & =\sigma(y)
\end{aligned}
$$

$\langle s k i p, \sigma\rangle \Downarrow \sigma$

$$
\frac{\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime} \quad\left\langle c_{2}, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}
$$

$\langle b, \sigma\rangle \Downarrow$ true $\quad\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime} \quad\langle b, \sigma\rangle \Downarrow$ false $\quad\left\langle c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}$ <if b then c_{1} else $\left.c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime} \quad$ <if b then c_{1} else $\left.c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}$ $\frac{\langle b, \sigma\rangle \Downarrow \text { false }}{\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma} \frac{\langle b, \sigma\rangle \Downarrow \text { true }\langle c \text {; while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}$

Notes on Evaluation of Commands

- The order of evaluation is important
- c_{1} is evaluated before c_{2} in $c_{1} ; c_{2}$
- c_{2} is not evaluated in "if true then c_{1} else c_{2} "
- c is not evaluated in "while false do c "
- b is evaluated first in "if b then c_{1} else c_{2} "
- this is explicit in the evaluation rules
- The evaluation rules are not syntax-directed
- See the rule for while
- The evaluation might not terminate
- The evaluation rules suggest an interpreter
- Conditional constructs have multiple evaluation rules
- but only one can be applied at one time

Disadvantages of Natural-Style Operational Semantics

- Natural-style semantics has two disadvantages
- It is hard to talk about commands whose evaluation does not terminate
- There is no σ ' such that $\langle c, \sigma\rangle \Downarrow \sigma$ '
- But that is true also of ill-formed or erroneous commands !
- It does not give us a way to talk about intermediate states
- Thus we cannot say that on a parallel machine the execution of two commands is interleaved
- Small-step semantics overcomes these problems
- Execution is modeled as a (possible infinite) sequence of states

Contextual Semantics

- Contextual semantics is a small-step semantics where the atomic execution step is a rewrite of the program
- We will define a relation $\langle c, \sigma\rangle \rightarrow\left\langle c^{\prime}, \sigma^{\prime}\right\rangle$
- c^{\prime} is obtained from c through an atomic rewrite step
- Evaluation terminates when the program has been rewritten to a terminal program
- One from which we cannot make further progress
- For IMP the terminal command is "skip"
- As long as the command is not "skip" we can make further progress
- Some commands never reduce to skip (e.g., while true do skip)

What is an Atomic Reduction?

- We need to define
- What constitutes an atomic reduction step?
- Granularity is a choice of the semantics designer
- e.g., choice between an addition of arbitrary integers, or an addition of 32-bit integers
- How to select the next reduction step, when several are possible?
- This is the order of evaluation issue

Redexes

- A redex is a syntactic expression or command that can be reduced (transformed) in one atomic step
- Defined as a grammar:

$$
\begin{aligned}
r::= & x \\
& \mid n_{1}+n_{2} \\
& \mid x:=n \\
& \mid \text { skip; } c \\
& \mid \text { if true then } c_{1} \text { else } c_{2} \\
& \mid \text { if false then } c_{1} \text { else } c_{2} \\
& \mid \text { while } b \text { do } c
\end{aligned}
$$

- For brevity, we mix expression and command redexes
- Note that $(1+3)+2$ is not a redex, but $1+3$ is

Local Reduction Rules for IMP

- One for each redex: $\langle r, \sigma\rangle \rightarrow\langle e, \sigma$ ' \rangle
- means that in state σ, the redex r can be replaced in one step with the expression e
$\langle x, \sigma\rangle \rightarrow\langle\sigma(x), \sigma\rangle$
$\left\langle n_{1}+n_{2}, \sigma\right\rangle \rightarrow\langle n, \sigma\rangle$
where $n=n_{1}+n_{2}$
$\left\langle n_{1}=n_{2}, \sigma\right\rangle \rightarrow\langle$ true, $\sigma\rangle$
if $n_{1}=n_{2}$
$\langle x:=n, \sigma\rangle \rightarrow\langle s k i p, \sigma[x:=n]\rangle$
$\langle s k i p ; c, \sigma\rangle \rightarrow\langle c, \sigma\rangle$
<if true then c_{1} else $\left.c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}, \sigma\right\rangle$
<if false then c_{1} else $\left.c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{2}, \sigma\right\rangle$
<while b do $c, \sigma>\rightarrow$ sif b then (c; while b do c)
else skip, o>

The Global Reduction Rule

- General idea of the contextual semantics
- Decompose the current expression into the redex to reduce next and the remaining program
- The remaining program is called a context
- Reduce the redex "r" to some other expression "e"
- The resulting expression consists of " e " with the original context
- We use H to range over contexts
- We write $H[r]$ for the expression obtained by placing redex r in context H
- Now we can define a small step

If $\langle r, \sigma\rangle \rightarrow\left\langle e, \sigma^{\prime}\right\rangle$ then $\langle H[r], \sigma\rangle \rightarrow\left\langle H[e], \sigma^{\prime}\right\rangle$

Contexts

- A context is like an expression (or command) with a marker - in the place where the redex goes
- Context are also called expressions with a hole
- The marker is sometimes called a hole
- $\mathrm{H}[\mathrm{r}]$ is the expression obtained from H by replacing • with the redex r (like the substitution $[r / \bullet] H$)
- Contexts are defined by a grammar: $H::=\bullet|n+H| H+e|x:=H|$ if H then c_{1} else c_{2}
$\mid \mathrm{H} ; \mathrm{c}$

Contexts. Notes (I)

- A context has exactly one • marker
- A redex is never a value
- Contexts specify precisely how to find the next redex
- Consider $e_{1}+e_{2}$ and its decomposition as $\mathrm{H}[r]$
- If e_{1} is n_{1} and e_{2} is n_{2} then $H=\cdot$ and $r=n_{1}+n_{2}$
- If e_{1} is n_{1} and e_{2} is not n_{2} then $H=n_{1}+H_{2}$ and $e_{2}=H_{2}[r]$
- If e_{1} is not n_{1} then $H=H_{1}+e_{2}$ and $e_{1}=H_{1}$ [r]
- In the last two cases the decomposition is done recursively
- Check that in each case the solution is unique

Contextual Semantics. Notes (II).

- E.g. $c=c_{1} ; c_{2}$
- either $c_{1}=$ skip and then $c=H\left[s k i p ; c_{2}\right]$ with $H=\cdot$
- or $c_{1} \neq$ skip and then $c_{1}=H[r]$; so $c=H^{\prime}[r]$ with $H^{\prime}=H ; c_{2}$
- E.g. $c=$ if b then c_{1} else c_{2}
- either $b=$ true or $b=$ false and then $c=H[r]$ with $H=$ -
- or b is not a value and $b=H[r]$; so $c=H^{\prime}[r]$ with $H^{\prime}=$ if H then c_{1} else c_{2}
- Decomposition theorem:

If c is not "skip" then there exist unique H and r such that c is $\mathrm{H}[\mathrm{r}]$

- "Exist" means progress
- "Unique" means determinism

Contextual Semantics. Example.

- Consider the small-step evaluation of

$$
x:=1 ; x:=x+1 \text { in the initial state }[x:=0]
$$

State	Context	Redex
<x:= 1; x := $x+1,[x:=0]>$	- x : $=x+1$	$x:=1$
<skip; $x:=x+1,[x:=1]>$	-	skip; x : $=x+1$
<x: $=x+1,[x:=1]>$	$x:=\bullet+1$	x
< $x:=1+1,[x:=1]>$	x : •	$1+1$
$\langle x:=2,[x:=1]>$	-	$x:=2$
<skip, [x:= 2]>		

Contextual Semantics. Notes.

- What if we want to express short-circuit evaluation of \wedge ?
- Define the following contexts, redexes and local reduction rules

$$
\begin{aligned}
& H::=\ldots \mid H \wedge b_{2} \\
& r::=\ldots|t r u e \wedge b| \text { false } \wedge b \\
& \langle\text { true } \wedge b, \sigma\rangle \rightarrow\langle b, \sigma\rangle \\
& \langle\text { false } \wedge b, \sigma\rangle \rightarrow\langle\text { false, } \sigma\rangle
\end{aligned}
$$

- the local reduction kicks in before b_{2} is evaluated

Contextual Semantics. Notes.

- One can think of the - as representing the program counter
- The advancement rules for - are non trivial
- At each step the entire command is decomposed
- This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics is that it allows a mix of local and global reduction rules
- For IMP we have only local reduction rules: only the redex is reduced
- Sometimes it is useful to work on the context too

