
ECS 240 Lecture 2 1

IMP and Operational Semantics

Lecture 2
ECS 240

ECS 240 Lecture 2 2

Plan

•  We’ll study a simple imperative language IMP

–  Abstract syntax
–  Operational semantics
–  Denotational semantics
–  Axiomatic semantics

 … and relationships between various semantics (with proofs)

•  Today: operational semantics (Ch. 2 of Winskel)

ECS 240 Lecture 2 3

Syntax of IMP

•  Concrete syntax
–  The rules by which programs can be expressed as strings of

characters
–  Deals with issues like keywords, identifiers, statement

separators (terminators), comments, indentation, etc.

•  Concrete syntax is important in practice
–  For readability, familiarity, parsing speed, effectiveness of

error recovery, clarity of error messages

•  Well understood principles
–  Use finite automata and context-free grammars
–  Automatic parser generators

ECS 240 Lecture 2 4

Abstract Syntax

•  We ignore parsing issues and study programs given as
abstract syntax trees (AST)

•  Abstract syntax tree is the parse tree of the
program
–  Ignores issues like comment conventions
–  More convenient for formal and algorithmic manipulation
–  Fairly independent of the concrete syntax

ECS 240 Lecture 2 5

IMP Syntactic Entities

•  Int integer literals
 n ∈ Z

•  Bool Boolean values
 true, false

•  Loc locations (updateable variables)
 x, y, …

•  Aexp arithmetic expressions
 e

•  Bexp Boolean expressions
 b

•  Com commands
 c

ECS 240 Lecture 2 6

Abstract Syntax (Aexp)

•  Arithmetic expressions (Aexp)
 e ::= n for n ∈ Z
 | x for x ∈ Loc
 | e1 + e2 for e1, e2 ∈ Aexp
 | e1 - e2 for e1, e2 ∈ Aexp
 | e1 * e2 for e1, e2 ∈ Aexp
•  Notes:

–  Variables are not declared
–  All variables have integer type
–  No side-effects (in expressions)

ECS 240 Lecture 2 7

Abstract Syntax (Bexp)

•  Boolean expressions (Bexp)
 b ::= true
 | false
 | e1 = e2 for e1, e2 ∈ Aexp
 | e1 ≤ e2 for e1, e2 ∈ Aexp
 | ¬ b for b ∈ Bexp
 | b1 ∧ b2 for b1, b2 ∈ Bexp
 | b1 ∨ b2 for b1, b2 ∈ Bexp

ECS 240 Lecture 2 8

Abstract Syntax (Com)

•  Commands (Com)
 c ::= skip
 | x := e for x ∈ Loc and e ∈ Aexp
 | c1 ; c2 for c1, c2 ∈ Com
 | if b then c1 else c2 for c1,c2 ∈ Com and b ∈ Bexp
 | while b do c for c ∈ Com and b ∈ Bexp
•  Notes:

–  The typing rules have been embedded in the syntax definition
–  Other parts are not context-free and need to be checked

separately (e.g., all variables are declared)
–  Commands contain all the side-effects in the language
–  Missing: pointers, function calls

ECS 240 Lecture 2 9

Analysis of IMP

•  Questions to answer:
–  What is the “meaning” of a given IMP expression or

command?

–  How would we go about evaluating IMP expressions and

commands?

–  How are the evaluator and the meaning related?

ECS 240 Lecture 2 10

An Operational Semantics

•  Specifies the evaluation of expressions and commands

•  Abstracts the execution of a concrete interpreter

•  Depending on the form of the expression
–  0, 1, 2, . . . don’t evaluate any further.

•  They are normal forms or values.
–  e1 + e2 is evaluated by first evaluating e1 to n1 , then

evaluating e2 to n2 .
•  The result of the evaluation is the literal representing n1 + n2.

–  Similar for e1 * e2

ECS 240 Lecture 2 11

Semantics of IMP

•  The meaning of IMP expressions depends on the
values of variables

•  The value of variables at a given moment is abstracted
as a function from Loc to Z (a state)

•  The set of all states is: Σ = Loc → Z

•  We use σ to range over Σ

ECS 240 Lecture 2 12

Judgment

•  Use <e, σ> ⇓ n to mean: e evaluates to n in state σ
–  This is a judgment (a statement to relate e, σ, and n)
–  We can view ⇓ as a function with two arguments: e and σ

•  This formulation is called natural operational
semantics
–  Or big-step operational semantics
–  The judgment relates the expression and its “meaning”

•  Next, we need to specify how ⇓ is defined

ECS 240 Lecture 2 13

Rules of Inference

•  We express the evaluation as rules of inference for
our judgment
–  called the derivation rules for the judgment
–  also called the evaluation rules (for operational semantics)

•  In general, we have one rule for each language
construct

•  Example: e1 + e2

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

ECS 240 Lecture 2 14

Evaluation Rules (for Aexp)

<n, σ> ⇓ n <x, σ> ⇓ σ(x)

<e1 + e2, σ> ⇓ n1 + n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 - e2, σ> ⇓ n1 - n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 * e2, σ> ⇓ n1 * n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

•  This is called structural operational semantics
–  rules defined based on the structure of the expression

•  These rules do not impose an order of evaluation

ECS 240 Lecture 2 15

Evaluation Rules (for Bexp)

<true, σ> ⇓ true <false, σ> ⇓ false

<e1 = e2, σ> ⇓ n1 = n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<e1 ≤ e2, σ> ⇓ n1 ≤ n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<b1 ∧ b2, σ> ⇓ true

<b1, σ> ⇓ true <b2, σ> ⇓ true

<b1 ∧ b2, σ> ⇓ false

<b1, σ> ⇓ false

<b1 ∧ b2, σ> ⇓ false

<b2, σ> ⇓ false

ECS 240 Lecture 2 16

How to Read the Rules?

•  Forward, as inference rules
–  if we know that the hypothesis judgments hold then we can

infer that the conclusion judgment also holds
–  e.g., if we know that e1 ⇓ 5 and e2 ⇓ 7, then we can infer that

e1 + e2 ⇓ 12

ECS 240 Lecture 2 17

How to Read the Rules?

•  Backward, as evaluation rules
–  Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n

is derivable using the previous rules
–  By inspection of the rules we notice that the last step in the

derivation of e1 + e2 ⇓ n must be the addition rule
•  the other rules have conclusions that would not match e1 + e2 ⇓ n
•  this is called reasoning by inversion on the derivation rules

–  Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are
derivable

•  This is done recursively

•  Since there is exactly one rule for each kind of
expression we say that the rules are syntax-directed
–  At each step at most one rule applies
–  This allows a simple evaluation procedure as above

ECS 240 Lecture 2 18

Evaluation of Commands

•  Evaluation of Aexp/Bexp produces direct results (a
number or a Boolean value), but has no side-effects

•  Evaluation of Com has side-effects but no direct result
–  The “result” of a Com is a new state: <c, σ> ⇓ σ’
–  The evaluation of Com may not terminate

ECS 240 Lecture 2 19

Evaluation Rules (for Com)

<skip, σ> ⇓ σ <c1 ; c2, σ> ⇓ σ’’

<c1, σ> ⇓ σ’ <c2, σ’> ⇓ σ’’

<if b then c1 else c2, σ> ⇓ σ’

<b, σ> ⇓ true <c1, σ> ⇓ σ’

<if b then c1 else c2, σ> ⇓ σ’

<b, σ> ⇓ false <c2, σ> ⇓ σ’

<while b do c, σ> ⇓ σ

<b, σ> ⇓ false

Def: σ[x:= n](x) = n
 σ[x:= n](y) = σ(y)

<e, σ> ⇓ n
<x := e, σ> ⇓ σ[x := n]

<b, σ> ⇓ true <c; while b do c, σ> ⇓ σ’
<while b do c, σ > ⇓ σ’

ECS 240 Lecture 2 20

Notes on Evaluation of Commands

•  The order of evaluation is important
–  c1 is evaluated before c2 in c1; c2
–  c2 is not evaluated in “if true then c1 else c2”
–  c is not evaluated in “while false do c”
–  b is evaluated first in “if b then c1 else c2”
–  this is explicit in the evaluation rules

•  The evaluation rules are not syntax-directed
–  See the rule for while
–  The evaluation might not terminate

•  The evaluation rules suggest an interpreter
•  Conditional constructs have multiple evaluation rules

–  but only one can be applied at one time

ECS 240 Lecture 2 21

Disadvantages of Natural-Style Operational
Semantics

•  Natural-style semantics has two disadvantages
–  It is hard to talk about commands whose evaluation does not

terminate
•  There is no σ’ such that <c, σ> ⇓ σ’
•  But that is true also of ill-formed or erroneous commands !

–  It does not give us a way to talk about intermediate states
•  Thus we cannot say that on a parallel machine the execution of

two commands is interleaved

•  Small-step semantics overcomes these problems
–  Execution is modeled as a (possible infinite) sequence of

states

ECS 240 Lecture 2 22

Contextual Semantics

•  Contextual semantics is a small-step semantics where
the atomic execution step is a rewrite of the program

•  We will define a relation <c, σ> → <c’, σ’>
–  c’ is obtained from c through an atomic rewrite step
–  Evaluation terminates when the program has been rewritten

to a terminal program
•  One from which we cannot make further progress

–  For IMP the terminal command is “skip”
–  As long as the command is not “skip” we can make further

progress
•  Some commands never reduce to skip (e.g., while true do skip)

ECS 240 Lecture 2 23

What is an Atomic Reduction?

•  We need to define
–  What constitutes an atomic reduction step?

•  Granularity is a choice of the semantics designer
•  e.g., choice between an addition of arbitrary integers, or an

addition of 32-bit integers

–  How to select the next reduction step, when several are
possible?

•  This is the order of evaluation issue

ECS 240 Lecture 2 24

Redexes

•  A redex is a syntactic expression or command that
can be reduced (transformed) in one atomic step

•  Defined as a grammar:
r ::= x
 | n1 + n2
 | x := n
 | skip; c
 | if true then c1 else c2
 | if false then c1 else c2
 | while b do c

•  For brevity, we mix expression and command redexes
•  Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

ECS 240 Lecture 2 25

Local Reduction Rules for IMP

•  One for each redex: <r, σ> → <e, σ’>
–  means that in state σ, the redex r can be replaced in one step

with the expression e
<x, σ> → <σ(x), σ>
<n1 + n2, σ> → <n, σ> where n = n1 + n2
<n1 = n2, σ> → <true, σ> if n1 = n2
<x := n, σ> → <skip, σ[x := n]>
<skip; c, σ> → <c, σ>
<if true then c1 else c2, σ> → <c1, σ>
<if false then c1 else c2, σ> → <c2, σ>
<while b do c, σ> → <if b then (c; while b do c)
 else skip, σ>

ECS 240 Lecture 2 26

The Global Reduction Rule

•  General idea of the contextual semantics
–  Decompose the current expression into the redex to reduce

next and the remaining program
•  The remaining program is called a context

–  Reduce the redex “r” to some other expression “e”
–  The resulting expression consists of “e” with the original

context
•  We use H to range over contexts
•  We write H[r] for the expression obtained by placing

redex r in context H
•  Now we can define a small step
 If <r, σ> → <e, σ’> then <H[r], σ> → <H[e], σ’>

ECS 240 Lecture 2 27

Contexts

•  A context is like an expression (or command) with a
marker • in the place where the redex goes
–  Context are also called expressions with a hole
–  The marker is sometimes called a hole
–  H[r] is the expression obtained from H by replacing • with

the redex r (like the substitution [r/•]H)

•  Contexts are defined by a grammar:
 H ::= • | n + H | H + e | x := H | if H then c1 else c2
 | H; c

ECS 240 Lecture 2 28

Contexts. Notes (I)

•  A context has exactly one • marker
•  A redex is never a value
•  Contexts specify precisely how to find the next redex

–  Consider e1 + e2 and its decomposition as H[r]
–  If e1 is n1 and e2 is n2 then H = • and r = n1 + n2
–  If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2 = H2[r]
–  If e1 is not n1 then H = H1 + e2 and e1 = H1[r]
–  In the last two cases the decomposition is done recursively
–  Check that in each case the solution is unique

ECS 240 Lecture 2 29

Contextual Semantics. Notes (II).

•  E.g. c = c1; c2
–  either c1 = skip and then c = H[skip; c2] with H = •
–  or c1 ≠ skip and then c1 = H[r]; so c = H’[r] with H’ = H; c2

•  E.g. c = if b then c1 else c2
–  either b = true or b = false and then c = H[r] with H = •
–  or b is not a value and b = H[r]; so c = H’[r] with H’ = if H

then c1 else c2

•  Decomposition theorem:
 If c is not “skip” then there exist unique H and r

such that c is H[r]
–  “Exist” means progress
–  “Unique” means determinism

ECS 240 Lecture 2 30

Contextual Semantics. Example.

•  Consider the small-step evaluation of
 x := 1; x := x + 1 in the initial state [x := 0]

State Context Redex
<x := 1; x := x + 1, [x := 0]> •; x := x + 1 x := 1
<skip; x := x + 1, [x := 1]> • skip; x := x + 1
<x := x + 1, [x := 1]> x := • + 1 x
<x := 1 + 1, [x := 1]> x := • 1 + 1
<x := 2, [x := 1]> • x := 2
<skip, [x := 2]>

ECS 240 Lecture 2 31

Contextual Semantics. Notes.

•  What if we want to express short-circuit evaluation

of ∧ ?
–  Define the following contexts, redexes and local reduction

rules
 H ::= ... | H ∧ b2
 r ::= ... | true ∧ b | false ∧ b
 <true ∧ b, σ> → <b, σ>
 <false ∧ b, σ> → <false, σ>
–  the local reduction kicks in before b2 is evaluated

ECS 240 Lecture 2 32

Contextual Semantics. Notes.

•  One can think of the • as representing the program
counter

•  The advancement rules for • are non trivial
–  At each step the entire command is decomposed
–  This makes contextual semantics inefficient to implement

directly

•  The major advantage of contextual semantics is that
it allows a mix of local and global reduction rules
–  For IMP we have only local reduction rules: only the redex is

reduced
–  Sometimes it is useful to work on the context too

