IMP and Operational Semantics

Lecture 2 ECS 240

ECS 240 Lecture 2

Plan

- We'll study a simple imperative language IMP
 - Abstract syntax
 - Operational semantics
 - Denotational semantics
 - Axiomatic semantics

... and relationships between various semantics (with proofs)

Today: operational semantics (Ch. 2 of Winskel)

Syntax of IMP

- Concrete syntax
 - The rules by which programs can be expressed as strings of characters
 - Deals with issues like keywords, identifiers, statement separators (terminators), comments, indentation, etc.
- Concrete syntax is important in practice
 - For readability, familiarity, parsing speed, effectiveness of error recovery, clarity of error messages
- Well understood principles
 - Use finite automata and context-free grammars
 - Automatic parser generators

Abstract Syntax

- We ignore parsing issues and study programs given as abstract syntax trees (AST)
- Abstract syntax tree is the parse tree of the program
 - Ignores issues like comment conventions
 - More convenient for formal and algorithmic manipulation
 - Fairly independent of the concrete syntax

IMP Syntactic Entities

- Int $n \in \mathbb{Z}$
- Bool true, false
- Loc
 - х, у, ...
- Aexp
- Bexp
- Com
 - С

- integer literals
- **Boolean values**
- locations (updateable variables)
- arithmetic expressions
- **Boolean expressions**
- commands

Arithmetic expressions (Aexp)

n	for $n \in \mathbb{Z}$
x	for $x \in Loc$
$ e_1 + e_2$	for $e_1, e_2 \in Aexp$
e ₁ - e ₂	for $e_1, e_2 \in Aexp$
$ e_1 * e_2$	for $e_1, e_2 \in Aexp$
	n x $e_1 + e_2$ $e_1 - e_2$ $e_1 * e_2$

- Notes:
 - Variables are not declared
 - All variables have integer type
 - No side-effects (in expressions)

Abstract Syntax (Bexp)

Boolean expressions (Bexp)

b ::=	true	
	false	
	$ e_1 = e_2$	for $e_1, e_2 \in Aexp$
	$ e_1 \leq e_2$	for $e_1, e_2 \in Aexp$
	¬ b	for b \in Bexp
	b ₁ ^ b ₂	for $b_1, b_2 \in Bexp$
	b ₁ v b ₂	for $b_1, b_2 \in Bexp$

Abstract Syntax (Com)

- Commands (Com)
 - c ∷= skip | x := e $| c_1; c_2$ | while b do c

for $x \in Loc$ and $e \in Aexp$ for $c_1, c_2 \in Com$ | if b then c_1 else c_2 for $c_1, c_2 \in Com$ and $b \in Bexp$ for $c \in Com$ and $b \in Bexp$

- Notes:
 - The typing rules have been embedded in the syntax definition
 - Other parts are not context-free and need to be checked separately (e.g., all variables are declared)
 - Commands contain all the side-effects in the language
 - Missing: pointers, function calls

- Questions to answer:
 - What is the "meaning" of a given IMP expression or command?
 - How would we go about evaluating IMP expressions and commands?
 - How are the evaluator and the meaning related?

- Specifies the evaluation of expressions and commands
- Abstracts the execution of a concrete interpreter
- Depending on the form of the expression
 - 0, 1, 2, ... don't evaluate any further.
 - They are <u>normal forms</u> or <u>values</u>.
 - $e_1 + e_2$ is evaluated by first evaluating e_1 to n_1 , then evaluating e_2 to n_2 .
 - The result of the evaluation is the literal representing $n_1 + n_2$.
 - Similar for $e_1 * e_2$

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables
- The value of variables at a given moment is abstracted as a function from Loc to Z (a *state*)
- The set of all states is: $\Sigma = Loc \rightarrow Z$
- We use σ to range over Σ

Judgment

- Use <e, σ > \Downarrow n to mean: e evaluates to n in state σ
 - This is a *judgment* (a statement to relate e, σ , and n)
 - We can view \Downarrow as a function with two arguments: e and σ
- This formulation is called *natural operational* semantics
 - Or big-step operational semantics
 - The judgment relates the expression and its "meaning"
- Next, we need to specify how \Downarrow is defined

Rules of Inference

- We express the evaluation as rules of inference for our judgment
 - called the *derivation rules* for the judgment
 - also called the *evaluation rules* (for operational semantics)
- In general, we have one rule for each language construct

Example:
$$e_1 + e_2$$

 $\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2$
 $\langle e_1 + e_2, \sigma \rangle \Downarrow n_1 + n_2$

ECS 240 Lecture 2

Evaluation Rules (for Aexp)

<n, σ=""> ↓ n</n,>	<x, σ=""> ↓ σ(x)</x,>		
$\langle \mathbf{e}_1, \sigma \rangle \Downarrow \mathbf{n}_1 \langle \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_2$	$\langle e_1, \sigma \rangle \Downarrow n_1 \langle e_2, \sigma \rangle \Downarrow n_2$		
$\langle \mathbf{e}_1 + \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_1 + \mathbf{n}_2$	$\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 - n_2$		
$\langle e_1, \sigma \rangle \Downarrow n_1$	<e₂, σ=""> ↓ n₂</e₂,>		
$\langle e_1 \ast e_2, \sigma \rangle \Downarrow n_1 \ast n_2$			

- This is called structural operational semantics
 rules defined based on the structure of the expression
- These rules do not impose an order of evaluation

Evaluation Rules (for Bexp)

<true, σ=""> ↓ true</true,>	<false, σ=""> ↓ false</false,>		
$ \begin{array}{c} \langle \mathbf{e}_1, \sigma \rangle \Downarrow \mathbf{n}_1 & \langle \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_2 \\ \\ \langle \mathbf{e}_1 = \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_1 = \mathbf{n}_2 \end{array} $	$ \begin{array}{c} \langle \mathbf{e}_1, \sigma \rangle \Downarrow \mathbf{n}_1 & \langle \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_2 \\ \\ \langle \mathbf{e}_1 \leq \mathbf{e}_2, \sigma \rangle \Downarrow \mathbf{n}_1 \leq \mathbf{n}_2 \end{array} $		
<b1, σ=""> ↓ false</b1,>	<b2, σ=""> ↓ false</b2,>		
$sb_1 \land b_2, \sigma sb$ false	$sb_1 \land b_2, \sigma sb_1 false$		
$\langle b_1, \sigma \rangle \Downarrow true$	$\langle b_2, \sigma \rangle \Downarrow $ true		
$\langle b_1 \land b_2, \sigma \rangle \Downarrow $ true			

ECS 240 Lecture 2

- Forward, as inference rules
 - if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds
 - e.g., if we know that $e_1 \Downarrow 5$ and $e_2 \Downarrow 7$, then we can infer that $e_1 + e_2 \Downarrow 12$

- Backward, as evaluation rules
 - Suppose we want to evaluate $e_1 + e_2$, i.e., find n s.t. $e_1 + e_2 \Downarrow n$ is derivable using the previous rules
 - By inspection of the rules we notice that the last step in the derivation of $e_1 + e_2 \Downarrow n$ must be the addition rule
 - the other rules have conclusions that would not match $e_1 + e_2 \Downarrow n$
 - $\boldsymbol{\cdot}$ this is called reasoning by $\underline{inversion}$ on the derivation rules
 - Thus we must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively
- Since there is exactly one rule for each kind of expression we say that the rules are <u>syntax-directed</u>
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above

- Evaluation of Aexp/Bexp produces direct results (a number or a Boolean value), but has no side-effects
- Evaluation of Com has side-effects but no direct result
 - The "result" of a Com is a new state: <c, σ > \Downarrow σ'
 - The evaluation of Com may not terminate

Evaluation Rules (for Com)

<e, σ=""> ↓ n <x :="e," σ=""> ↓ σ[x := n]</x></e,>	Def: σ[x:= n](x) = n σ[x:= n](y) = σ(y)	
	$\langle \mathbf{c}_1, \sigma \rangle \Downarrow \sigma' \langle \mathbf{c}_2, \sigma' \rangle \Downarrow \sigma''$	
$\langle SKIP, O \rangle \Downarrow O$	$< c_1; c_2, \sigma > \Downarrow \sigma''$	
$\frac{\langle \mathbf{D}, \mathbf{O} \rangle \Downarrow True}{\langle if b then c_1 else c_2, \sigma \rangle \Downarrow \sigma'}$	<pre> </br></br></pre>	
<b, σ="">↓ false <b, σ="">↓ t</b,></b,>	rue <c; b="" c,="" do="" while="" σ=""> ↓ σ'</c;>	
<pre><while <math="" b="" c,="" do="">\sigma > \Downarrow \sigma</while></pre>	<pre></pre>	

ECS 240 Lecture 2

Notes on Evaluation of Commands

- The order of evaluation is important
 - c_1 is evaluated before c_2 in c_1 ; c_2
 - c_2 is not evaluated in "if true then c_1 else c_2 "
 - c is not evaluated in "while false do c"
 - b is evaluated first in "if b then c_1 else c_2 "
 - this is explicit in the evaluation rules
- The evaluation rules are <u>not syntax-directed</u>
 - See the rule for while
 - The evaluation might not terminate
- The evaluation rules suggest an interpreter
- Conditional constructs have multiple evaluation rules
 - but only one can be applied at one time

Disadvantages of Natural-Style Operational Semantics

- Natural-style semantics has two disadvantages
 - It is hard to talk about commands whose evaluation does not terminate
 - There is no σ' such that <c, σ \Downarrow σ'
 - But that is true also of ill-formed or erroneous commands !
 - It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved
- *Small-step semantics* overcomes these problems
 - Execution is modeled as a (possible infinite) sequence of states

Contextual Semantics

- Contextual semantics is a small-step semantics where the atomic execution step is a rewrite of the program
- We will define a relation <c, σ > \rightarrow <c', σ '>
 - c' is obtained from c through an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a *terminal program*
 - One from which we cannot make further progress
 - For IMP the terminal command is "skip"
 - As long as the command is not "skip" we can make further progress
 - Some commands never reduce to skip (e.g., while true do skip)

What is an Atomic Reduction?

- We need to define
 - What constitutes an atomic reduction step?
 - Granularity is a choice of the semantics designer
 - e.g., choice between an addition of arbitrary integers, or an addition of 32-bit integers
 - How to select the next reduction step, when several are possible?
 - $\boldsymbol{\cdot}$ This is the order of evaluation issue

Redexes

- A *redex* is a syntactic expression or command that can be reduced (transformed) in one atomic step
- Defined as a grammar:

```
r ::= x
| n_1 + n_2
| x := n
| skip; c
| if true then c_1 else c_2
| if false then c_1 else c_2
| while b do c
```

- For brevity, we mix expression and command redexes
- Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

Local Reduction Rules for IMP

• One for each redex: $\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle$ - means that in state σ , the redex r can be replaced in one step with the expression e $\langle X, \sigma \rangle \rightarrow \langle \sigma(X), \sigma \rangle$ where $n = n_1 + n_2$ $\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle$ if $n_1 = n_2$ $\langle n_1 = n_2, \sigma \rangle \rightarrow \langle \text{true}, \sigma \rangle$ $\langle x := n, \sigma \rangle \rightarrow \langle skip, \sigma[x := n] \rangle$ $\langle skip; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle$ $\langle if true then c_1 else c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle$ $\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle$ (while b do c, σ) \rightarrow (if b then (c; while b do c) else skip, σ >

- General idea of the contextual semantics
 - Decompose the current expression into the redex to reduce next and the remaining program
 - The remaining program is called a <u>context</u>
 - Reduce the redex "r" to some other expression "e"
 - The resulting expression consists of "e" with the original context
- We use H to range over contexts
- We write H[r] for the expression obtained by placing redex r in context H
- Now we can define a small step If <r, σ > \rightarrow <e, σ '> then <H[r], σ > \rightarrow <H[e], σ '>

Contexts

- A context is like an expression (or command) with a marker
 in the place where the redex goes
 - Context are also called expressions with a hole
 - The marker is sometimes called a hole
 - H[r] is the expression obtained from H by replacing with the redex r (like the substitution [r/•]H)
- Contexts are defined by a grammar:

H ::= • | n + H | H + e | x := H | if H then c_1 else c_2 | H; c

Contexts. Notes (I)

- A context has exactly one
 marker
- A redex is never a value
- Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as H[r]
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique

Contextual Semantics. Notes (II).

- E.g. $c = c_1; c_2$
 - either $c_1 = skip$ and then $c = H[skip; c_2]$ with $H = \bullet$
 - or $c_1 \neq$ skip and then $c_1 = H[r]$; so c = H'[r] with H' = H; c_2
- E.g. c = if b then c_1 else c_2
 - either b = true or b = false and then c = H[r] with $H = \bullet$
 - or b is not a value and b = H[r]; so c = H' [r] with H' = if H then c₁ else c₂
- Decomposition theorem:
 - If c is not "skip" then there <u>exist unique</u> H and r such that c is H[r]
 - "Exist" means progress
 - "Unique" means determinism

Contextual Semantics. Example.

Consider the small-step evaluation of
 x := 1; x := x + 1 in the initial state [x := 0]

<u>State</u>	Context	Redex
<x +="" 1,="" :="0]" [x="" x=""></x>	•; × := × + 1	× := 1
<skip; +="" 1,="" :="1]" [x="" x=""></skip;>	•	skip; x := x + 1
<x +="" 1,="" :="1]" [x=""></x>	× := • + 1	×
<x +="" 1,="" :="1]" [x=""></x>	× := •	1 + 1
<x :="1]" [x=""></x>	•	x := 2
<skip, :="2]" [x=""></skip,>		

- What if we want to express short-circuit evaluation of \wedge ?
 - Define the following contexts, redexes and local reduction rules

H ::= ... | H
$$\land$$
 b₂
r ::= ... | true \land b | false \land b
\land b, σ > \rightarrow \sigma>
\land b, σ > \rightarrow \sigma>

- the local reduction kicks in before b_2 is evaluated

Contextual Semantics. Notes.

- One can think of the as representing the program counter
- The advancement rules for are non trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics is that it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too