IMP and Operational Semantics

Lecture 2
ECS 240

ECS 240 Lecture 2

Plan

We'll study a simple imperative language TMP

- Abstract syntax
- Operational semantics
o onal .

- Axiomatic semantics

.. and relationships between various semantics (with proofs)

» Today: operational semantics (Ch. 2 of Winskel)

ECS 240 Lecture 2 2

Syntax of IMP

- Concrete syntax
- The rules by which programs can be expressed as strings of
characters
- Deals with issues like keywords, identifiers, statement
separators (terminators), comments, indentation, etc.

»+ Concrete syntax is important in practice

- For readability, familiarity, parsing speed, effectiveness of
error recovery, clarity of error messages

»+ Well understood principles
- Use finite automata and context-free grammars
- Automatic parser generators

ECS 240 Lecture 2 3

Abstract Syntax

- We ignore parsing issues and study programs given as
abstract syntax trees (AST)

+ Abstract syntax tree is the parse tree of the
program
- Ignores issues like comment conventions
- More convenient for formal and algorithmic manipulation
- Fairly independent of the concrete syntax

ECS 240 Lecture 2 4

IMP Syntactic Entities

Int integer literals
nEZ
Bool Boolean values
true, false
Loc locations (updateable variables)
X, Y, ..
Aexp arithmetic expressions
e
Bexp Boolean expressions
b

Com commands
C

ECS 240 Lecture 2

Abstract Syntax (Aexp)

* Arithmetic expressions (Aexp)

ez n forneZ
X for x € Loc
e +e, for e;, e, € Aexp
e - e, for e;, e, € Aexp
e;*e, for e, e, € Aexp
Notes:

- Variables are not declared
- All variables have integer type
- No side-effects (in expressions)

ECS 240 Lecture 2

Abstract Syntax (Bexp)

* Boolean expressions (Bexp)
b= true

false

e; = e, for e;, e, € Aexp
e <e, for e, e, € Aexp
- b for b € Bexp

b, A b, for by, b, € Bexp
b, vb, for by, b, € Bexp

ECS 240 Lecture 2

Abstract Syntax (Com)

+ Commands (Com)

c = skip
X:=e for x € Loc and e € Aexp
C1. Cy for ¢;, ¢, € Com
if b then c,else c, for cy,c, € Comand b € Bexp
while b do ¢ for c € Com and b € Bexp
Notes:

- The typing rules have been embedded in the syntax definition

- Ofther parts are not context-free and need to be checked
separately (e.g., all variables are declared)

- Commands contain all the side-effects in the language
- Missing: pointers, function calls

ECS 240 Lecture 2 8

Analysis of IMP

- Questions to answer:
- What is the “meaning” of a given IMP expression or
command?
- How would we go about evaluating IMP expressions and
commands?

- How are the evaluator and the meaning related?

ECS 240 Lecture 2

An Operational Semantics

+ Specifies the evaluation of expressions and commands
- Abstracts the execution of a concrete interpreter

» Depending on the form of the expression
- 0,1,2,...don t evaluate any further.
» They are normal forms or values.

- ey + e, is evaluated by first evaluating e; to n, , then
evaluating e, to n, .

* The result of the evaluation is the literal representing n; + n..
- Slmllar‘ fOf‘ 61 * 62

ECS 240 Lecture 2 10

Semantics of IMP

The meaning of IMP expressions depends on the
values of variables

The value of variables at a given moment is abstracted
as a function from Loc to Z (a state)

The set of all states is: X=Loc = Z

We use o to range over X

ECS 240 Lecture 2 11

Judgment

+ Use <e, 0> | n to mean: e evaluates to n in state o
- This is a judgment (a statement to relate e, o, and n)
- We can view | as a function with two arguments: e and o

» This formulation is called natural operational
semantics
- Or big-step operational semantics
- The judgment relates the expression and its “meaning”

* Next, we need to specify how | is defined

ECS 240 Lecture 2

12

Rules of Inference

+ We express the evaluation as rules of inference for
our judgment
- called the derivation rules for the judgment
- also called the evaluation rules (for operational semantics)

* In general, we have one rule for each language
construct

+ Example: e; + e,
e, <e, o ln,

<ert+ ey 0> n+n;

ECS 240 Lecture 2 13

Evaluation Rules (for Aexp)

<n, o> | n <X, 0> || o(x)
ey, 02 ‘U‘ N <€,, 02 ‘U’ n; ey, 02 ‘U‘ N <€,, 02 ‘U’ n;
<e;+e,, 0> | np+n, <e;-e,,0>| h-n,

€, 0> Ny < 0> | N

<e;*e,, 00| n*n,

» This is called structural operational semantics
- rules defined based on the structure of the expression

* These rules do not impose an order of evaluation

ECS 240 Lecture 2 14

Evaluation Rules (for Bexp)

<true, o> | true

e, 00l <ep 0|

<e;=ep, 0> np=n

<b;, 0> | false

<b; A b,, 0> || false

<b;, 0> || true

<false, o> | false

e, 00 ln <ep 0|

<ej<e,, 0> hy=nh,

<b,, 0> | false

<b; A b,, 0> || false

<b,, 0> || true

<b1 A\ bz, (@24 U true

ECS 240 Lecture 2 15

How to Read the Rules?

- Forward, as inference rules

- if we know that the hypothesis judgments hold then we can
infer that the conclusion judgment also holds

- e.g., if we know that e; | 5 and e, | 7, then we can infer that
e, +e, | 12

ECS 240 Lecture 2 16

How to Read the Rules?

- Backward, as evaluation rules

- Suppose we want to evaluate e; + e,, i.e., findns.t.e;+e, | n
is derivable using the previous rules

- By inspection of the rules we notice that the last step in the
derivation of e, + e, | n must be the addition rule

* the other rules have conclusions that would not matche; +e, | n
- this is called reasoning by inversion on the derivation rules

- Thus we must find n; and n, such that e; | n,and e, || n, are
derivable

» This is done recursively
+ Since there is exactly one rule for each kind of
expression we say that the rules are syntax-directed
- At each step at most one rule applies

- This allows a simple evaluation procedure as above
ECS 240 Lecture 2 17

Evaluation of Commands

» Evaluation of Aexp/Bexp produces direct results (a
number or a Boolean value), but has no side-effects

- Evaluation of Com has side-effects but no direct result
- The “result” of a Com is a new state: <¢c, o> | o
- The evaluation of Com may not terminate

ECS 240 Lecture 2 18

Evaluation Rules (for Com)

<e,o0> | n Def: o[x:= n](x) = n
<x:=e, o> | o[x:=n] o[x:= n](y) = o(y)

<cj, 0> 0 <, 0>)0"

«skip, 0> | o <C;.Cp,0> |0

<b,0> | frue <c, 0o o <b,o> || false <c,, 0> | 0

<if bthenc elsec,, 0> | o <ifbthenc,elsec,, o>| o

<b, 0> || false <b, 0> || frue <c; whilebdoc,o> | o

<whilebdoc,o> | o <whilebdoc,o> | o

ECS 240 Lecture 2 19

Notes on Evaluation of Commands

The order of evaluation is important

¢, is evaluated before ¢, in ¢;. ¢,

C, is not evaluated in “if true then ¢, else ¢,”
c is not evaluated in “while false do ¢”

b is evaluated first in “if b then ¢, else ¢,”
this is explicit in the evaluation rules

The evaluation rules are not syntax-directed

See the rule for while
The evaluation might not terminate

The evaluation rules suggest an interpreter
Conditional constructs have multiple evaluation rules

but only one can be applied at one time

ECS 240 Lecture 2 20

Disadvantages of Natural-Style Operational
Semantics

Natural-style semantics has two disadvantages
- It is hard to talk about commands whose evaluation does not
terminate
* There is no ¢’ such that <c, o> | o
+ But that is true also of ill-formed or erroneous commands !
- It does not give us a way to talk about intermediate states

» Thus we cannot say that on a parallel machine the execution of
two commands is interleaved

Small-step semantics overcomes these problems

- Execution is modeled as a (possible infinite) sequence of
states

ECS 240 Lecture 2 21

Contextual Semantics

» Contextual semantics is a small-step semantics where
the atomic execution step is a rewrite of the program

- We will define a relation <c, o> = <c’, o’ >
- ¢ is obtained from c through an atomic rewrite step

- Evaluation terminates when the program has been rewritten
to a terminal program

* One from which we cannot make further progress
- For IMP the terminal command is “skip”

- As long as the command is not “skip” we can make further
progress

- Some commands never reduce to skip (e.g., while true do skip)

ECS 240 Lecture 2 22

What is an Atomic Reduction?

We need to define

- What constitutes an atomic reduction step?
» Granularity is a choice of the semantics designer

* e.g., choice between an addition of arbitrary integers, or an
addition of 32-bit integers

- How to select the next reduction step, when several are
possible?
» This is the order of evaluation issue

ECS 240 Lecture 2 23

Redexes

A redex is a syntactic expression or command that
can be reduced (transformed) in one atomic step

Defined as a grammar:
ris X

n, + N,

X :i=n

skip; ¢

if true then c, else c,

if false then ¢, else ¢,
while b do ¢

For brevity, we mix expression and command redexes
Note that (1 + 3) + 2 is not a redex, but 1+ 3 is

ECS 240 Lecture 2 24

Local Reduction Rules for IMP

- One for each redex: <r, o> = <e, o’ >

- means that in state o, the redex r can be replaced in one step
with the expression e

<X, 0> — <0o(x), o>
<n; + h,, 0> — <N, o> where n = n; + n,
<n; = n,, o> — <true, o> if n;=n,
<X := n, o> — <skip, o[x := n)>
<skip; ¢, o> — <c, o>
<if true then ¢, else c,, 0> — <c{, o>
<if false then ¢, else ¢,, 0> — <c,, o>
<while b do ¢, 0> — <if b then (c; while b do ¢)
else skip, o>

ECS 240 Lecture 2 25

The Global Reduction Rule

General idea of the contextual semantics

- Decompose the current expression into the redex to reduce
next and the remaining program

- The remaining program is called a context
- Reduce the redex “r” to some other expression “e”

- The resulting expression consists of “e” with the original
context

We use H to range over contexts

We write H[r] for the expression obtained by placing
redex r in context H

Now we can define a small step
If<r, 0> —<e, 0 >then<H[r], o> — <H[e], o' >

ECS 240 Lecture 2 26

Contexts

A context is like an expression (or command) with a
marker ¢ in the place where the redex goes

- Context are also called expressions with a hole

- The marker is sometimes called a hole

- HIr]is the expression obtained from H by replacing ¢ with
the redex r (like the substitution [r/*]H)

Contexts are defined by a grammar:
Hi=e¢|n+H|H+e|x:=H|if Hthenc,elsec,
| H; c

ECS 240 Lecture 2 27

Contexts. Notes (I)

* A context has exactly one * marker
* A redex is never a value
+ Contexts specify precisely how to find the next redex

Consider e, + e, and its decomposition as H[r]

If e;isn;ande,isn, thenH=*andr =n; +n,

If e;is nyand e, is not n, then H=n; + H, and e, = H,[r]

If e;is not nythenH=H; +e, and e; = H{[r]

In the last two cases the decomposition is done recursively
Check that in each case the solution is unique

ECS 240 Lecture 2 28

Contextual Semantics. Notes (II).

Eg.c=cy ¢,

- either ¢, = skip and then c = H[skip; c,] with H = »

- or ¢, = skip and then ¢c; = H[r]. soc=H' [r]with H = H:; c,
E.g.c=if bthenc, else ¢,

- either b = true or b = false and then c = H[r] with H =

- orbisnotavalueand b=H[r];soc=H [r]JwithH =if H
then ¢, else ¢,

Decomposition theorem:

If cis not “skip” then there exist unique H and r
such that c is H[r]

- “Exist” means progress
- “Unique” means determinism

ECS 240 Lecture 2 29

Contextual Semantics. Example.

+ Consider the small-step evaluation of
x:=1; x:=x+1 intheinitial state [x := 0]

State Context Redex

<x: =1, x:=x+1,[x:=0p o, X = x+1 x =1

<skip; x = x+1,[x:=1] . skip; x = x +1
«xi=x+1, [x:=1p Xi=e+1] X

<x:=1+1, [x:=1) X iz e 1+1
«<x:1=2,[x:=1] . X:i=2

<skip, [x := 2]

ECS 240 Lecture 2

30

Contextual Semantics. Notes.

* What if we want to express short-circuit evaluation
of A?

- Define the following contexts, redexes and local reduction
rules

Hu= .. |HAD,
r:=..|true A b | false A b
<true A b, 0> — <b, o»
<false A b, 0> — <false, o>
- the local reduction kicks in before b, is evaluated

ECS 240 Lecture 2 31

Contextual Semantics. Notes.

* One can think of the ¢ as representing the program
counter

- The advancement rules for * are non trivial

- At each step the entire command is decomposed

- This makes contextual semantics inefficient to implement
directly

+ The major advantage of contextual semantics is that
it allows a mix of local and global reduction rules

- For IMP we have only local reduction rules: only the redex is
reduced

- Sometimes it is useful to work on the context too

ECS 240 Lecture 2 32

