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Plan 

•  We’ll study a simple imperative language IMP 

–  Abstract syntax 
–  Operational semantics 
–  Denotational semantics 
–  Axiomatic semantics 

   … and relationships between various semantics (with proofs) 
 

•  Today: operational semantics (Ch. 2 of Winskel) 
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Syntax of IMP 

•  Concrete syntax 
–  The rules by which programs can be expressed as strings of 

characters 
–  Deals with issues like keywords, identifiers, statement 

separators (terminators), comments, indentation, etc. 

•  Concrete syntax is important in practice 
–  For readability, familiarity, parsing speed, effectiveness of 

error recovery, clarity of error messages 

•  Well understood principles 
–  Use finite automata and context-free grammars 
–  Automatic parser generators 
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Abstract Syntax 

•  We ignore parsing issues and study programs given as 
abstract syntax trees (AST) 

•  Abstract syntax tree is the parse tree of the 
program 
–  Ignores issues like comment conventions 
–  More convenient for formal and algorithmic manipulation 
–  Fairly independent of the concrete syntax 
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IMP Syntactic Entities 

•  Int                  integer literals 
 n ∈ Z 

•  Bool                 Boolean values 
 true, false 

•  Loc                      locations (updateable variables) 
 x, y, … 

•  Aexp                arithmetic expressions 
 e 

•  Bexp                Boolean expressions 
 b 

•  Com                  commands 
 c 
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Abstract Syntax (Aexp) 

•  Arithmetic expressions (Aexp) 
     e ::=    n                 for n ∈ Z 
             | x                 for x ∈ Loc 
             | e1 + e2         for e1, e2 ∈ Aexp 
             | e1 - e2         for e1, e2 ∈ Aexp 
             | e1 * e2         for e1, e2 ∈ Aexp 
•  Notes: 

–  Variables are not declared 
–  All variables have integer type 
–  No side-effects (in expressions) 
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Abstract Syntax (Bexp) 

•  Boolean expressions (Bexp) 
     b ::=    true   
             | false  
             | e1 = e2         for e1, e2 ∈ Aexp 
             | e1 ≤ e2         for e1, e2 ∈ Aexp 
             | ¬ b              for b ∈ Bexp 
             | b1 ∧ b2         for b1, b2 ∈ Bexp 
             | b1 ∨ b2         for b1, b2 ∈ Bexp 
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Abstract Syntax (Com) 

•  Commands (Com) 
     c ::=    skip 
             | x := e                        for x ∈ Loc and e ∈ Aexp  
             | c1 ; c2                        for c1, c2 ∈ Com 
             | if b then c1 else c2    for c1,c2 ∈ Com and b ∈ Bexp 
             | while b do c               for c ∈ Com and b ∈ Bexp 
•  Notes: 

–  The typing rules have been embedded in the syntax definition 
–  Other parts are not context-free and need to be checked 

separately (e.g., all variables are declared) 
–  Commands contain all the side-effects in the language 
–  Missing: pointers, function calls 
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Analysis of IMP 

•  Questions to answer: 
–  What is the “meaning” of a given IMP expression or 

command? 

–  How would we go about evaluating IMP expressions and 

commands? 

–  How are the evaluator and the meaning related? 
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An Operational Semantics 

•  Specifies the evaluation of expressions and commands  

•  Abstracts the execution of a concrete interpreter 

•  Depending on the form of the expression 
–  0, 1, 2, . . . don’t evaluate any further. 

•  They are normal forms or values. 
–  e1 + e2 is evaluated by first evaluating e1 to n1 , then 

evaluating e2 to n2 . 
•  The result of the evaluation is the literal representing n1 + n2. 

–  Similar for e1 * e2 
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Semantics of IMP 

•  The meaning of IMP expressions depends on the 
values of variables 

•  The value of variables at a given moment is abstracted 
as a function from Loc to Z (a state) 

•  The set of all states is:  Σ = Loc → Z  

•  We use σ to range over Σ 
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Judgment 

•  Use <e, σ> ⇓ n to mean: e evaluates to n in state σ 
–  This is a judgment (a statement to relate e, σ, and n) 
–  We can view ⇓ as a function with two arguments: e and σ 

•  This formulation is called natural operational 
semantics 
–  Or big-step operational semantics 
–  The judgment relates the expression and its “meaning” 

•  Next, we need to specify how ⇓ is defined 
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Rules of Inference 

•  We express the evaluation as rules of inference for 
our judgment 
–  called the derivation rules for the judgment 
–  also called the evaluation rules (for operational semantics) 

•  In general, we have one rule for each language 
construct 

•  Example: e1 + e2 

<e1 + e2, σ> ⇓ n1 + n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 
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Evaluation Rules (for Aexp) 

<n, σ> ⇓ n <x, σ> ⇓ σ(x) 

<e1 + e2, σ> ⇓ n1 + n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 

<e1 - e2, σ> ⇓ n1 - n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 

<e1 * e2, σ> ⇓ n1 * n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 

•  This is called structural operational semantics 
–  rules defined based on the structure of the expression 

•  These rules do not impose an order of evaluation 
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Evaluation Rules (for Bexp) 

<true, σ> ⇓ true <false, σ> ⇓ false 

<e1 = e2, σ> ⇓ n1 = n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 

<e1 ≤ e2, σ> ⇓ n1 ≤ n2 

<e1, σ> ⇓ n1     <e2, σ> ⇓ n2 

<b1 ∧ b2, σ> ⇓ true 

<b1, σ> ⇓ true     <b2, σ> ⇓ true 

<b1 ∧ b2, σ> ⇓ false 

<b1, σ> ⇓ false 

<b1 ∧ b2, σ> ⇓ false 

<b2, σ> ⇓ false 
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How to Read the Rules? 

•  Forward, as inference rules 
–  if we know that the hypothesis judgments hold then we can 

infer that the conclusion judgment also holds 
–  e.g., if we know that e1 ⇓ 5 and e2 ⇓ 7, then we can infer that 

e1 + e2 ⇓ 12 
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How to Read the Rules? 

•  Backward, as evaluation rules 
–  Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n 

is derivable using the previous rules 
–  By inspection of the rules we notice that the last step in the 

derivation of e1 + e2 ⇓ n must be the addition rule 
•  the other rules have conclusions that would not match e1 + e2 ⇓ n  
•  this is called reasoning by inversion on the derivation rules 

–  Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are 
derivable 

•  This is done recursively 

•  Since there is exactly one rule for each kind of 
expression we say that the rules are syntax-directed 
–  At each step at most one rule applies 
–  This allows a simple evaluation procedure as above 
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Evaluation of Commands 

•  Evaluation of Aexp/Bexp produces direct results (a 
number or a Boolean value), but has no side-effects 

•  Evaluation of Com has side-effects but no direct result 
–  The “result” of a Com is a new state: <c, σ> ⇓ σ’ 
–  The evaluation of Com may not terminate 
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Evaluation Rules (for Com) 

<skip, σ> ⇓ σ <c1 ; c2, σ> ⇓ σ’’ 

<c1, σ> ⇓ σ’     <c2, σ’> ⇓ σ’’ 

<if b then c1 else c2, σ> ⇓ σ’ 

<b, σ> ⇓ true     <c1, σ> ⇓ σ’ 

<if b then c1 else c2, σ> ⇓ σ’ 

<b, σ> ⇓ false     <c2, σ> ⇓ σ’ 

<while b do c, σ> ⇓ σ 

<b, σ> ⇓ false 

Def: σ[x:= n](x) = n 
        σ[x:= n](y) = σ(y) 

<e, σ> ⇓ n 
<x := e, σ> ⇓ σ[x := n] 

<b, σ> ⇓ true   <c; while b do c, σ> ⇓ σ’ 
<while b do c, σ > ⇓ σ’ 
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Notes on Evaluation of Commands 

•  The order of evaluation is important 
–  c1 is evaluated before c2 in c1; c2 
–  c2 is not evaluated in “if true then c1 else c2” 
–  c is not evaluated in “while false do c” 
–  b is evaluated first in “if b then c1 else c2” 
–  this is explicit in the evaluation rules 

•  The evaluation rules are not syntax-directed 
–  See the rule for while 
–  The evaluation  might not terminate 

•  The evaluation rules suggest an interpreter 
•  Conditional constructs have multiple evaluation rules 

–  but only one can be applied at one time 
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Disadvantages of Natural-Style Operational 
Semantics 

•  Natural-style semantics has two disadvantages 
–  It is hard to talk about commands whose evaluation does not 

terminate 
•  There is no σ’ such that <c, σ> ⇓ σ’ 
•  But that is true also of ill-formed or erroneous commands ! 

–  It does not give us a way to talk about intermediate states 
•  Thus we cannot say that on a parallel machine the execution of 

two commands is interleaved 

•  Small-step semantics overcomes these problems 
–  Execution is modeled as a (possible infinite) sequence of 

states 



ECS 240  Lecture 2 22 

Contextual Semantics 

•  Contextual semantics is a small-step semantics where 
the atomic execution step is a rewrite of the program 

•  We will define a relation <c, σ> → <c’, σ’> 
–  c’ is obtained from c through an atomic rewrite step 
–  Evaluation terminates when the program has been rewritten 

to a terminal program 
•  One from which we cannot make further progress 

–  For IMP the terminal command is “skip” 
–  As long as the command is not “skip” we can make further 

progress 
•  Some commands never reduce to skip (e.g., while true do skip) 
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What is an Atomic Reduction? 

•  We need to define 
–  What constitutes an atomic reduction step? 

•  Granularity is a choice of the semantics designer 
•  e.g., choice between an addition of arbitrary integers, or an 

addition of 32-bit integers 

–  How to select the next reduction step, when several are 
possible? 

•  This is the order of evaluation issue 
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Redexes 

•  A redex is a syntactic expression or command that 
can be reduced (transformed) in one atomic step 

•  Defined as a grammar: 
r ::=   x 
       | n1 + n2 
       | x := n 
       | skip; c  
       | if true then c1 else c2 
       | if false then c1 else c2 
       | while b do c 

•  For brevity, we mix expression and command redexes 
•  Note that (1 + 3) + 2 is not a redex, but 1 + 3 is  
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Local Reduction Rules for IMP 

•  One for each redex: <r, σ> → <e, σ’> 
–  means that in state σ, the redex r can be replaced in one step 

with the expression e 
<x, σ> → <σ(x), σ> 
<n1 + n2, σ> → <n, σ>                        where n = n1 + n2 
<n1 = n2, σ> → <true, σ>                   if n1 = n2 
<x := n, σ> → <skip, σ[x := n]> 
<skip; c, σ> → <c, σ> 
<if true then c1 else c2, σ> → <c1, σ> 
<if false then c1 else c2, σ> → <c2, σ> 
<while b do c, σ> → <if b then (c; while b do c)  
                                       else skip, σ>  
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The Global Reduction Rule 

•  General idea of the contextual semantics 
–  Decompose the current expression into the redex to reduce 

next and the remaining program 
•  The remaining program is called a context 

–  Reduce the redex “r” to some other expression “e” 
–  The resulting expression consists of “e” with the original 

context 
•  We use H to range over contexts  
•  We write H[r] for the expression obtained by placing 

redex r in context H 
•  Now we can define a small step 
         If <r, σ> → <e, σ’> then <H[r], σ> → <H[e], σ’> 
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Contexts 

•  A context is like an expression (or command) with a 
marker • in the place where the redex goes 
–  Context are also called expressions with a hole 
–  The marker is sometimes called a hole 
–  H[r] is the expression obtained from H by replacing • with 

the redex r  (like the substitution [r/•]H) 

•  Contexts are defined by a grammar: 
    H ::= • | n + H | H + e | x := H | if H then c1 else c2  
               | H; c  
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Contexts. Notes (I) 

•  A context has exactly one • marker 
•  A redex is never a value 
•  Contexts specify precisely how to find the next redex 

–  Consider e1 + e2 and its decomposition as H[r] 
–  If e1 is n1 and e2 is n2 then H = • and r = n1 + n2 
–  If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2 = H2[r]  
–  If e1 is not n1 then H = H1 + e2 and e1 = H1[r] 
–  In the last two cases the decomposition is done recursively 
–  Check that in each case the solution is unique 
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Contextual Semantics. Notes (II). 

•  E.g. c = c1; c2  
–  either c1 = skip and then c = H[skip; c2] with H = • 
–  or c1 ≠ skip and then c1 = H[r]; so c = H’[r] with H’ = H; c2 

•  E.g. c = if b then c1 else c2 
–  either b = true or b = false and then c = H[r] with H = • 
–  or b is not a value and b = H[r]; so c = H’[r] with H’ = if H 

then c1 else c2 

•  Decomposition theorem: 
   If c is not “skip” then there exist unique H and r 

such that c is H[r] 
–  “Exist” means progress 
–  “Unique” means determinism 
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Contextual Semantics. Example. 

•  Consider the small-step evaluation of 
   x := 1; x := x + 1  in the initial state [x := 0] 
 

State                                      Context                 Redex 
<x := 1; x := x + 1, [x := 0]>        •; x := x + 1            x := 1 
<skip; x := x + 1, [x := 1]>           •                           skip; x := x + 1 
<x := x + 1, [x := 1]>                   x := • + 1                x 
<x := 1 + 1, [x := 1]>                   x := •                          1 + 1 
<x := 2, [x := 1]>                        •                            x := 2 
<skip, [x := 2]> 
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Contextual Semantics. Notes. 

 
•  What if we want to express short-circuit evaluation 

of ∧ ? 
–  Define the following contexts, redexes and local reduction 

rules   
                H ::= ... | H ∧ b2 
                r ::= ... | true ∧ b | false ∧ b 
                <true ∧ b, σ> → <b, σ> 
                <false ∧ b, σ> → <false, σ> 
–  the local reduction kicks in  before b2 is evaluated 
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Contextual Semantics. Notes. 

•  One can think of the • as representing the program 
counter 

•  The advancement rules for • are non trivial 
–  At each step the entire command is decomposed 
–  This makes contextual semantics inefficient to implement 

directly 

•  The major advantage of contextual semantics is that 
it allows a mix of local and global reduction rules 
–  For IMP we have only local reduction rules: only the redex is 

reduced 
–  Sometimes it is useful to work on the context too 


