Proof Techniques for Language Analysis

Lecture 3
ECS 240

ECS 240 Lecture 3

Plan

+ We'll study various flavors of induction
- mathematical induction

- well-founded induction
- structural induction

ECS 240 Lecture 3

Induction

Probably the single most important technique for the
study of formal semantics of programming languages

Of several kinds

- mathematical induction (the simplest)

- well-founded induction (the most general)

- structural induction (the most widely used in PL)

ECS 240 Lecture 3 3

Mathematical Induction

Goal: prove that ¥n € N. P(n)

Strategy: (2 steps)
1. Base case: prove that P(0)
2. Inductive case:
- pick an arbitrary n € N
- assume that P(n) holds
- prove that P(n + 1)
- or, formally prove that ¥n € N. P(n) = P(n+1)

ECS 240 Lecture 3

Mathematical Induction. Notes.

- The inductive case looks similar to the overall goal
Vn € N. P(n) = P(n+1) vs. VYné&N.P(n)
- but it is simpler because of the assumption that P(n) holds

- Why does mathematical induction work?

- The key property of N is that there are no infinite
descending chains of naturals. It has to stop somewhere.

- For each n, P(n) can be obtained from the base case and n
uses of the inductive case

ECS 240 Lecture 3 5

Example of Mathematical Induction

Recall the evaluation rules for IMP commands

Prove that if o(x) < 6 then
<whilex<5dox:=x+1,0>| o[x := 6]

Reformulate the claim:

- Let W=whilex=5dox:=x+1
- Let o, = o[xi= 6 -]

- Claim: YieN. <W, o> | o

Now the claim looks provable by mathematical
induction on i

ECS 240 Lecture 3

Example of Mathematical Induction (Base Case)

* Base case: i=0or<W, oy | oy
- To prove an evaluation judgment, construct a derivation tree:

Op(x) = 6

<X, 09> || 6 <6 <5, 0y || false

<X = 5, (015% U fCllse

<while x <5 dox:=x+1,0p | 0

* This completes the base case

ECS 240 Lecture 3 7

Example of Mathematical Induction (Inductive Case)

* Must prove Vi EN. <W, 0> | 0y = <W, 0,> | 0p

The beginning of the proof is straightforward
- Pick an arbitrary i EN

- Assume that <W, o || oy
- Now prove that <W, o,,> | 0

- Must construct a derivation free:

<X+1,O'i+1>U6-i

<X,0,>D5-1 H5-i<bH <x:=x+1, 0,,> | ©; <W, o> || o

<X <9,0,2 | frue «x:=x+1; W, 0, | oy

<while x <5 dox:i=x+1, 0,9 | 0

ECS 240 Lecture 3 8

Discussion

A proof is more powerful than running the code and
observing the result. Why?

The proof relied on a loop invariant
- X =<6 inall iterations

.. and a loop variant
- 6 - x is positive and decreasing

Picking the loop invariant and variant is typically the
hardest part of a proof

ECS 240 Lecture 3 9

Discussion

+ We proved termination and correctness. This is called
total correctness

* Mathematical induction is good when we prove
properties of natural numbers

- InPL analysis we most often prove properties of expressions,
commands, programs, input data, etc.

- We need a more powerful induction principle

ECS 240 Lecture 3 10

Well-Founded Induction

A relation < C A x A is well-founded if there are no
infinite descending chains in A
- Example: <;={(x,x+1) | xEN}
* the predecessor relation
- Example: < ={(x,y) | x,y EN and x <y}

Well-founded induction:

- To prove Vx € A. P(x) it is enough to prove
Vx e A (Vy<x=P(y)) = PX)

+ If < is <; then we obtain a special case of
mathematical induction

Why does it work? (see Winskel, Ch 3 for a proof)

ECS 240 Lecture 3 11

Well-Founded Induction. Examples.

Consider <C N x Nwithx <y iffx+2=y
Vx € N. (Vy < x = P(y)) = P(x) is equivalent to
P(O) A P(1) A VnE N. (P(n) = P(n + 2))

Consider < C Z x Z with x <y iff
(y<Oandy=x-1)or(y>0andy = x + 1)
- PO)A ¥Vx=<O0.P(x)=P(x-1) A V¥x=0.P(x)=P(x+1)

Consider < C (N x N) x (N x N) and (x4, y;) < (X, Y,) iff
X2=X1+1V(X1=X2/\y2=y1+1)
- This leads to the induction principle
P(0,0) A ¥V x,y Y. (P(x)y) = P(x +1,¥') A P(x, y+1))

- This is sometimes called lexicographic induction
ECS 240 Lecture 3 12

Structural Induction

- Recall Aexp: e:i=nle/+e,| e *e, | x
Define < C Aexp x Aexp such that

e, <e +e,

e, <e +e,

e;<e re,

e,<e *e,
and no other elements of Aexp X Aexp are related by <

To prove Ve € Aexp. P(e)

1

2.
3.
4,

Prove Yn € Z. P(n)

Prove Vx & Loc. P(x)

Prove Ve, e, € Aexp. P(e;) A P(e,) = P(e; + e,)
Prove Ve, e, € Aexp. P(e;) A P(e,) = P(e; * e,)

ECS 240 Lecture 3 13

Structural Induction. Notes.

* Called structural induction because the proof is
guided by the structure of the expression

»+ As many cases as there are expression forms

- Atomic expressions (with no subexpressions) are all base
cases

- Composite expressions are the inductive cases

» This is the most useful form of induction in PL study

ECS 240 Lecture 3 14

Example of Induction on Structure of Expressions

Define

- L(e): the number of literals and variable occurrences in e
- O(e): the number of operatorsine

Prove that Ve € Aexp. L(e) = O(e) + 1

By induction on the structure of e

- Casee=n. L(e)=1and O(e)=0

- Casee=x.L(e)=1and O(e)=0

- Casee=¢e;+e,.
* L(e) = L(ey) + L(ez) and O(e) = O(ey) + O(e,) +1
» By induction hypothesis L(e;) = O(e;) + 1 and L(e,) = O(e,) + 1
* Thus L(e) = O(e) +1

- Case e =e; * e,. Same as the case for +

ECS 240 Lecture 3 15

Other Proofs by Structural Induction on Expressions

Most proofs for Aexp sublanguage of IMP

Small-step and natural semantics
VecExp.VnEN.e—="n<e|n

Natural semantics and denotational semantics
VecExp.VnEN.e|n < [[e]l=n

Small-step and denotational semantics
Ve,e' € Exp.e — e = [[e]] = [[e']]
Vec Exp.VnEN.e =" n=[[e]]=n

Structural induction on expressions works here
because all of the semantics are syntax directed

ECS 240 Lecture 3 16

Another Proof

* Prove that IMP is deterministic
Ve € Aexp. Vo EZ. Vn, N EN. <e,0> | nh A <e,0>|NnN= n=n
VbE Bexp. VoeX. Vi, t'€EB. <b,> |t A b, |t = =7
VceCom.Vo,00' €2 <c,0o |0 A <«c,oo| 0" = o0=0"

* No immediate way to use mathematical induction

* For commands we cannot use induction on the
structure of the command

- Consider the rule for while. Its evaluation does not depend
only on the evaluation of its strict subexpressions

<b, 0> || true <«c,o> | o <«whilebdoc, o> | o"

<whilebdo ¢, 0> | 0"

ECS 240 Lecture 3 17

Induction on the Structure of Derivations

Key idea: The hypothesis does not assume just a c €
Com but the existence of a derivation of <c, o> | o

Derivation trees are also defined inductively, just like
expression trees

A derivation is built of subderivations:

<X+1,O’i+1>U6-i

<X,0,>9-i D-i<b <x:=x+1, 09> | o W, 02 || o9

<X <bH, 0, | true «x:=x+1; W, o0,,> | og

<whilex<b5dox:i=x+1,0,2 | o

Adapt the structural induction principle to work on

the structure of derivations
ECS 240 Lecture 3 18

Induction on Derivations

To prove that for all derivations D of a judgment,
property P holds

1. For each derivation rule of the form
H, .. H,

C

2. Assume that P holds for derivations of H. (i = 1, .., n)

3. Prove that the property holds for the derivation
obtained from the derivations of H; using the given

rule

ECS 240 Lecture 3 19

Example of Induction on Derivations (I)

Prove that evaluation of commands is deterministic:
<c, o> | o =Vo'eX.«c,oo | 0" =0 =0"

Pick arbitrary ¢, 0, 0'and D i <c, 0> | ©

To prove: Vo' €32.<¢c, 0> | 0" =0 = 0"

Proof by induction on the structure of the derivation D
Case: last rule used in D was the one for skip

D ::

<skip, 0> | ©
- This means that ¢ = skip,and o' = o
- By_inversion <c, 0> | ¢" uses the rule for skip. Thuso" =0
- This is a base case in the induction

ECS 240 Lecture 3 20

Example of Induction on Derivations (IT)

Case: the last rule used in D was the one for sequencing

D;ii<c, 00 0y Djii<cy 0| 0

D ::

<C1; CZ! o> ‘U’ OJ

Pick arbitrary o" such that D" :: <¢cy; ¢,, 0> | O

- by inversion D" uses the rule for sequencing

- and has subderivations D", :: <¢;, 0> | 6"y and D", i1 <c,, 0" | O
By induction hypothesis on D; (with D")): o, = o'

- Now D", i <¢c,, 0> | O

By induction hypothesis on D, (with D",): 0" = ¢
This is a simple inductive case

ECS 240 Lecture 3 21

Example of Induction on Derivations (III)

Case: the last rule used in D was the one for while true

- D;:i<b,0> | true D,:i<c,0> | o; D3:<whilebdoc,op | o

<whilebdo ¢, o> || &

Pick arbitrary ¢ such that D" :: <while bdo ¢, o> || &"

- by inversion and determinism of boolean expressions, D" also
uses the rule for while true

- and has subderivations D, i <c, 0> | ¢";and D" . <W, 0" | o
By induction hypothesis on D, (with D",): o; = 0
- Now D“; :: <while bdo ¢, o> | ©"

By induction hypothesis on D; (with D"3): 6" = &

ECS 240 Lecture 3 22

Induction on Derivation. Notes.

+ If we have to prove Vx € A. P(x) = Q(x)
- With x inductively defined and P(x) rule-defined
- we pick arbitrary x € A and D :: P(x)
- we could do induction on both facts

- XEA leads to induction on the structure of x
« D P(x) leads to induction on the structure of D

- Generally, the induction on the structure of the derivation is
more powerful and a safer bet

* In many situations there are several choices for
induction
- choosing the right one is a trial-and-error process
- a bit of practice can help a lot

ECS 240 Lecture 3 23

Equivalence

*+ Two expressions (commands) are equivalent if they
yield the same result from all states

e,~e,iff VoEZ. VnEN.<e;, 0> | niff<e,, 0> | n
and for commands

ci=C,iff Vo,0 €X.<¢, 00 | o iff <c,, 05 | O

ECS 240 Lecture 3 24

Notes on Equivalence

Equivalence is like validity
- must hold in all states
- 2=1+1islike “2=1+1is valid”
- 2 =1+ x might or might not hold.
*+ So, 2 is not equivalent to 1 + x
Equivalence (for IMP) is undecidable
- If it were we could solve the halting problem. How?
Equivalence justifies code transformations
- compiler optimizations
- code instrumentation
- abstract modeling

Semantics is the basis for proving equivalence.

ECS 240 Lecture 3

25

Equivalence Examples

+ skip; c=c
+ (xize; x:i=e,)=x:=e,. When is this true?
* while b do ¢ = if b then c; while b do c else skip
+ Ife;~e,thenxize;=x:ize,
* while true do skip = while true do x := x + 1
- Ifcis

while x =y do

if x=ythenx:i=x -yelsey:izy-x

then (x:=221;y:=527;c)=(x:=17;y = 17)

ECS 240 Lecture 3 26

Proving An Equivalence

» Prove that “skip; c = ¢” forall c
Assume that D :: <skip: ¢, o> | ©
By inversion (twice) we have that

5 <skip,o> | o Dji<c,o> | O

<skip; ¢, 0> | o
+ Thus, we have Dy i <c,0> | ©
» The other direction is similar

ECS 240 Lecture 3

27

Proving An Inequivalence

* Prove that x =y #x :=zwheny = z

- It suffices to exhibit a state o in which the two
commands yield different results

* Leto(y)=0and o(z) = 1
+ Then<x =y, 0> | o[x := 0]
« and<x =z, 0> || o[x :=1]

ECS 240 Lecture 3

28

Summary of Operational Semantics

* Precise specification of dynamic semantics
- order of evaluation (or that it doesn’ t matter)
- error conditions (sometimes implicitly, by rule applicability)

+ Simple and abstract (vs. implementations)

- no low-level details such as stack and memory management,
data layout, efc.

Often not compositional (see while)

Basis for some proofs about the language
Basis for some reasoning about programs
Point of reference for other semantics

ECS 240 Lecture 3 29

