Proof Techniques for Language Analysis

Lecture 3
ECS 240

Plan

- We'll study various flavors of induction
- mathematical induction
- well-founded induction
- structural induction

Induction

- Probably the single most important technique for the study of formal semantics of programming languages
- Of several kinds
- mathematical induction (the simplest)
- well-founded induction (the most general)
- structural induction (the most widely used in PL)

Mathematical Induction

- Goal: prove that $\forall n \in \mathbb{N} . P(n)$
- Strategy: (2 steps)

1. Base case: prove that $P(0)$
2. Inductive case:

- pick an arbitrary $n \in \mathbb{N}$
- assume that $P(n)$ holds
- prove that $P(n+1)$
- or, formally prove that $\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)$

Mathematical Induction. Notes.

- The inductive case looks similar to the overall goal $\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1) \quad$ vs. $\quad \forall n \in \mathbb{N} . P(n)$
- but it is simpler because of the assumption that $P(n)$ holds
- Why does mathematical induction work?
- The key property of \mathbb{N} is that there are no infinite descending chains of naturals. It has to stop somewhere.
- For each $n, P(n)$ can be obtained from the base case and n uses of the inductive case

Example of Mathematical Induction

- Recall the evaluation rules for IMP commands
- Prove that if $\sigma(x) \leq 6$ then <while $x \leq 5$ do $x:=x+1, \sigma\rangle \Downarrow \sigma[x:=6]$
- Reformulate the claim:
- Let $W=$ while $x \leq 5$ do $x:=x+1$
- Let $\sigma_{i}=\sigma[x:=6$ - $i]$
- Claim: $\left.\forall i \in \mathbb{N} .<W, \sigma_{i}\right\rangle \Downarrow \sigma_{0}$
- Now the claim looks provable by mathematical induction on i

Example of Mathematical Induction (Base Case)

- Base case: $\mathrm{i}=0$ or $\left\langle\mathrm{W}, \sigma_{0}\right\rangle \Downarrow \sigma_{0}$
- To prove an evaluation judgment, construct a derivation tree:

$$
\begin{aligned}
& \frac{\frac{\sigma_{0}}{}(x)=6}{\left\langle x, \sigma_{0}\right\rangle \Downarrow 6 \quad\left\langle 6 \leq 5, \sigma_{0}\right\rangle \Downarrow \text { false }} \\
& \frac{\left\langle x \leq 5, \sigma_{0}\right\rangle \Downarrow \text { false }}{\text { <while } \left.x \leq 5 \text { do } x:=x+1, \sigma_{0}\right\rangle \Downarrow \sigma_{0}}
\end{aligned}
$$

- This completes the base case

Example of Mathematical Induction (Inductive Case)

- Must prove $\forall i \in \mathbb{N} .\left\langle W, \sigma_{i}\right\rangle \Downarrow \sigma_{0} \Rightarrow\left\langle W, \sigma_{i+1}\right\rangle \Downarrow \sigma_{0}$
- The beginning of the proof is straightforward
- Pick an arbitrary $i \in \mathbb{N}$
- Assume that $\left\langle\mathrm{W}, \sigma_{i}\right\rangle \Downarrow \sigma_{0}$
- Now prove that $\left\langle W, \sigma_{i+1}\right\rangle \Downarrow \sigma_{0}$
- Must construct a derivation tree:

$<$ while $x \leq 5$ do $x:=x+1, \sigma_{i+1} \downarrow \Downarrow \sigma_{0}$

Discussion

- A proof is more powerful than running the code and observing the result. Why?
- The proof relied on a loop invariant
- $x \leq 6$ in all iterations
- ... and a loop variant
- $6-x$ is positive and decreasing
- Picking the loop invariant and variant is typically the hardest part of a proof

Discussion

- We proved termination and correctness. This is called total correctness
- Mathematical induction is good when we prove properties of natural numbers
- In PL analysis we most often prove properties of expressions, commands, programs, input data, etc.
- We need a more powerful induction principle

Well-Founded Induction

- A relation $\prec \subseteq A \times A$ is well-founded if there are no infinite descending chains in A
- Example: $\iota_{1}=\{(x, x+1) \mid x \in \mathbb{N}\}$
- the predecessor relation
- Example: $<=\{(x, y) \mid x, y \in \mathbb{N}$ and $x<y\}$
- Well-founded induction:
- To prove $\forall x \in A . P(x)$ it is enough to prove $\forall x \in A .(\forall y \prec x \Rightarrow P(y)) \Rightarrow P(x)$
- If \prec is $<_{1}$ then we obtain a special case of mathematical induction
- Why does it work? (see Winskel, Ch 3 for a proof)

Well-Founded Induction. Examples.

- Consider $\prec \subseteq \mathbb{N} \times \mathbb{N}$ with $x \prec y$ iff $x+2=y$ $\forall x \in \mathbb{N}$. $(\forall y \prec x \Rightarrow P(y)) \Rightarrow P(x)$ is equivalent to $P(0) \wedge P(1) \wedge \forall n \in \mathbb{N} .(P(n) \Rightarrow P(n+2))$
- Consider $\prec \subseteq Z \times Z$ with $x \prec y$ iff $(y<0$ and $y=x-1)$ or $(y>0$ and $y=x+1)$
- $P(0) \wedge \forall x \leq 0 . P(x) \Rightarrow P(x-1) \wedge \forall x \geq 0 . P(x) \Rightarrow P(x+1)$
- Consider $\prec \subseteq(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ and $\left(x_{1}, y_{1}\right) \prec\left(x_{2}, y_{2}\right)$ iff

$$
x_{2}=x_{1}+1 \vee\left(x_{1}=x_{2} \wedge y_{2}=y_{1}+1\right)
$$

- This leads to the induction principle

$$
P(0,0) \wedge \forall x, y, y^{\prime} .\left(P(x, y) \Rightarrow P\left(x+1, y^{\prime}\right) \wedge P(x, y+1)\right)
$$

- This is sometimes called lexicographic induction

Structural Induction

- Recall Aexp: $e::=n\left|e_{1}+e_{2}\right| e_{1}^{*} e_{2} \mid x$
- Define $\prec \subseteq$ Aexp \times Aexp such that

$$
\begin{aligned}
& e_{1} \prec e_{1}+e_{2} \\
& e_{2} \prec e_{1}+e_{2} \\
& e_{1} \prec e_{1} * e_{2} \\
& e_{2} \prec e_{1} * e_{2}
\end{aligned}
$$

- and no other elements of $A \exp \times A \exp$ are related by \prec
- To prove $\forall e \in A \exp . P(e)$

1. Prove $\forall n \in Z$. $P(n)$
2. Prove $\forall x \in$ Loc. $P(x)$
3. Prove $\forall e_{1}, e_{2} \in \operatorname{Aexp} . P\left(e_{1}\right) \wedge P\left(e_{2}\right) \Rightarrow P\left(e_{1}+e_{2}\right)$
4. Prove $\forall e_{1}, e_{2} \in \operatorname{Aexp} . P\left(e_{1}\right) \wedge P\left(e_{2}\right) \Rightarrow P\left(e_{1} * e_{2}\right)$

Structural Induction. Notes.

- Called structural induction because the proof is guided by the structure of the expression
- As many cases as there are expression forms
- Atomic expressions (with no subexpressions) are all base cases
- Composite expressions are the inductive cases
- This is the most useful form of induction in PL study

Example of Induction on Structure of Expressions

- Define
- L(e): the number of literals and variable occurrences in e
- O(e): the number of operators in e
- Prove that $\forall e \in A \exp . L(e)=O(e)+1$
- By induction on the structure of e
- Case $e=n . L(e)=1$ and $O(e)=0$
- Case $e=x . L(e)=1$ and $O(e)=0$
- Case $e=e_{1}+e_{2}$.
- $L(e)=L\left(e_{1}\right)+L\left(e_{2}\right)$ and $O(e)=O\left(e_{1}\right)+O\left(e_{2}\right)+1$
- By induction hypothesis $L\left(e_{1}\right)=O\left(e_{1}\right)+1$ and $L\left(e_{2}\right)=O\left(e_{2}\right)+1$
- Thus $L(e)=O(e)+1$
- Case $e=e_{1}^{*} e_{2}$. Same as the case for +

Other Proofs by Structural Induction on Expressions

- Most proofs for Aexp sublanguage of IMP
- Small-step and natural semantics

$$
\forall e \in \operatorname{Exp} . \forall n \in \mathbb{N} . e \rightarrow^{*} n \Leftrightarrow e \Downarrow n
$$

- Natural semantics and denotational semantics

$$
\forall e \in \operatorname{Exp} . \forall n \in \mathbb{N} . e \Downarrow n \Leftrightarrow[[e]]=n
$$

- Small-step and denotational semantics

$$
\begin{aligned}
& \forall e, e^{\prime} \in \text { Exp. } e \rightarrow e^{\prime} \Rightarrow[[e]]=\left[\left[e^{\prime}\right]\right] \\
& \forall e \in \operatorname{Exp} . \forall n \in \mathbb{N} . e \rightarrow^{\star} n \Rightarrow[[e]]=n
\end{aligned}
$$

- Structural induction on expressions works here because all of the semantics are syntax directed

Another Proof

- Prove that IMP is deterministic
$\forall e \in \operatorname{Aexp} . \forall \sigma \in \Sigma . \forall n, n^{\prime} \in \mathbb{N}$. $\langle e, \sigma\rangle \Downarrow n \wedge\langle e, \sigma\rangle \Downarrow n^{\prime} \Rightarrow n=n^{\prime}$
$\forall b \in \operatorname{Bexp} . \forall \sigma \in \Sigma . \forall t, t^{\prime} \in \mathbb{B} .\langle b, \sigma\rangle \Downarrow t \wedge\langle b, \sigma\rangle \Downarrow t^{\prime} \Rightarrow t=t^{\prime}$
$\forall c \in C o m . \forall \sigma, \sigma^{\prime}, \sigma^{\prime \prime} \in \Sigma .\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \wedge\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime} \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}$
- No immediate way to use mathematical induction
- For commands we cannot use induction on the structure of the command
- Consider the rule for while. Its evaluation does not depend only on the evaluation of its strict subexpressions
$\langle b, \sigma\rangle \Downarrow$ true $\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \quad\left\langle\right.$ while b do $\left.c, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}$
$<$ while b do $c, \sigma\rangle \Downarrow \sigma^{\prime \prime}$

Induction on the Structure of Derivations

- Key idea: The hypothesis does not assume just a $c \in$ Com but the existence of a derivation of $\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of subderivations:
$\frac{\left\langle x, \sigma_{i+1}\right\rangle \Downarrow 5-i \quad 5-i \leq 5}{\left\langle x \leq 5, \sigma_{i+1}\right\rangle \Downarrow \text { true }} \quad \frac{\left\langle x+1, \sigma_{i+1}\right\rangle \Downarrow 6-i}{\left\langle x:=x+1, \sigma_{i+1}\right\rangle \Downarrow \sigma_{i}}\left\langle\left\langle x:=x+1 ; W, \sigma_{i+1}\right\rangle \Downarrow \sigma_{0}\right.$
$\left\langle\right.$ while $x \leq 5$ do $\left.x:=x+1, \sigma_{i+1}\right\rangle \Downarrow \sigma_{0}$
- Adapt the structural induction principle to work on the structure of derivations

Induction on Derivations

- To prove that for all derivations D of a judgment, property P holds

1. For each derivation rule of the form
$\frac{H_{1} \ldots H_{n}}{C}$
2. Assume that P holds for derivations of $H_{i}(i=1, \ldots, n)$
3. Prove that the property holds for the derivation obtained from the derivations of H_{i} using the given rule

Example of Induction on Derivations (I)

- Prove that evaluation of commands is deterministic:

$$
\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \Rightarrow \forall \sigma^{\prime \prime} \in \Sigma .\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime} \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}
$$

- Pick arbitrary $c, \sigma, \sigma^{\prime}$ and $\left.D::<c, \sigma\right\rangle \Downarrow \sigma^{\prime}$
- To prove: $\forall \sigma^{\prime \prime} \in \Sigma .\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime} \Rightarrow \sigma^{\prime}=\sigma^{\prime \prime}$
- Proof by induction on the structure of the derivation D
- Case: last rule used in D was the one for skip
D ::

$$
\langle s k i p, \sigma\rangle \Downarrow \sigma
$$

- This means that $c=$ skip, and $\sigma^{\prime}=\sigma$
- By inversion $\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime}$ uses the rule for skip. Thus $\sigma^{\prime \prime}=\sigma$
- This is a base case in the induction

Example of Induction on Derivations (II)

- Case: the last rule used in D was the one for sequencing

$$
D:: \frac{D_{1}::\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma_{1} \quad D_{2}::\left\langle c_{2}, \sigma_{1}\right\rangle \Downarrow \sigma^{\prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}
$$

- Pick arbitrary $\sigma^{\prime \prime}$ such that $D^{\prime \prime}::\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime \prime}$.
- by inversion $D^{\prime \prime}$ uses the rule for sequencing
- and has subderivations $\left.D_{1}{ }_{1}::<c_{1}, \sigma\right\rangle \Downarrow \sigma_{1}$ and $D_{2}{ }_{2}::\left\langle c_{2}, \sigma^{\prime \prime}>\downarrow \sigma^{\prime \prime}\right.$
- By induction hypothesis on D_{1} (with $D_{1}^{\prime \prime}$): $\sigma_{1}=\sigma_{1}$
- Now $\left.D_{2}::<c_{2}, \sigma_{1}\right\rangle \Downarrow \sigma^{\prime \prime}$
- By induction hypothesis on D_{2} (with $D^{\prime \prime}{ }_{2}$): $\sigma^{\prime \prime}=\sigma^{\prime}$
- This is a simple inductive case

Example of Induction on Derivations (III)

- Case: the last rule used in D was the one for while true
$D:: \frac{\left.D_{1}::<b, \sigma>\Downarrow \text { true } \quad D_{2}::<c, \sigma\right\rangle \Downarrow \sigma_{1} \quad D_{3}::<\text { while } b \text { do } c, \sigma_{1}>\Downarrow \sigma^{\prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}$
- Pick arbitrary $\sigma^{\prime \prime}$ such that $D^{\prime \prime}::<w h i l e ~ b d o c, \sigma>\Downarrow \sigma^{\prime \prime}$
- by inversion and determinism of boolean expressions, $D^{\prime \prime}$ also uses the rule for while true
- and has subderivations $D_{2}{ }_{2}::\langle c, \sigma\rangle \Downarrow \sigma_{1}$ and $D_{3}{ }_{3}::\left\langle W, \sigma_{1}\right\rangle \Downarrow \sigma^{\prime \prime}$
- By induction hypothesis on $D_{2}\left(\right.$ with $\left.D^{\prime \prime}{ }_{2}\right): \sigma_{1}=\sigma_{1}$
- Now $D_{3}{ }_{3}::$ swhile b do c, $\sigma_{1}>\downarrow \sigma^{\prime \prime}$
- By induction hypothesis on $D_{3}\left(\right.$ with $\left.D^{\prime \prime}{ }_{3}\right): \sigma^{\prime \prime}=\sigma^{\prime}$

Induction on Derivation. Notes.

- If we have to prove $\forall x \in A . P(x) \Rightarrow Q(x)$
- With x inductively defined and $P(x)$ rule-defined
- we pick arbitrary $x \in A$ and $D:: P(x)$
- we could do induction on both facts
- $x \in A \quad$ leads to induction on the structure of x
- $D:: P(x)$ leads to induction on the structure of D
- Generally, the induction on the structure of the derivation is more powerful and a safer bet
- In many situations there are several choices for induction
- choosing the right one is a trial-and-error process
- a bit of practice can help a lot

Equivalence

- Two expressions (commands) are equivalent if they yield the same result from all states

$$
e_{1} \approx e_{2} \text { iff } \forall \sigma \in \Sigma . \forall n \in \mathbb{N} \text {. }\left\langle e_{1}, \sigma\right\rangle \Downarrow n \text { iff }\left\langle e_{2}, \sigma\right\rangle \Downarrow n
$$

and for commands

$$
c_{1} \approx c_{2} \text { iff } \forall \sigma, \sigma^{\prime} \in \Sigma .\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime} \text { iff }\left\langle c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}
$$

Notes on Equivalence

- Equivalence is like validity
- must hold in all states
- $2 \approx 1+1$ is like " $2=1+1$ is valid"
- $2 \approx 1+x$ might or might not hold.
- So, 2 is not equivalent to $1+x$
- Equivalence (for IMP) is undecidable
- If it were we could solve the halting problem. How?
- Equivalence justifies code transformations
- compiler optimizations
- code instrumentation
- abstract modeling
- Semantics is the basis for proving equivalence.

Equivalence Examples

- skip; $c \approx c$
- $\left(x:=e_{1} ; x:=e_{2}\right) \approx x:=e_{2}$. When is this true?
- while b do $c \approx$ if b then c; while b do c else skip
- If $e_{1} \approx e_{2}$ then $x:=e_{1} \approx x:=e_{2}$
- while true do skip \approx while true do $x:=x+1$
- If c is
while $x \neq y$ do
if $x \geq y$ then $x:=x-y$ else $y:=y-x$
then $(x:=221 ; y:=527 ; c) \approx(x:=17 ; y:=17)$

Proving An Equivalence

- Prove that "skip; $c \approx c$ " for all c
- Assume that $D::$ sskip; $c, \sigma\rangle \Downarrow \sigma^{\prime}$
- By inversion (twice) we have that

$$
D:: \frac{\langle s k i p, \sigma\rangle \Downarrow \sigma \quad D_{1}::\langle c, \sigma\rangle \Downarrow \sigma^{\prime}}{\langle s k i p ; c, \sigma\rangle \Downarrow \sigma^{\prime}}
$$

- Thus, we have $D_{1}::\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$
- The other direction is similar

Proving An Inequivalence

- Prove that $x:=y \not \approx x:=z$ when $y \neq z$
- It suffices to exhibit a state σ in which the two commands yield different results
- Let $\sigma(y)=0$ and $\sigma(z)=1$
- Then $\langle x:=y, \sigma\rangle \Downarrow \sigma[x:=0]$
- and $\langle x:=z, \sigma\rangle \Downarrow \sigma[x:=1]$

Summary of Operational Semantics

- Precise specification of dynamic semantics
- order of evaluation (or that it doesn' \dagger matter)
- error conditions (sometimes implicitly, by rule applicability)
- Simple and abstract (vs. implementations)
- no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for some proofs about the language
- Basis for some reasoning about programs
- Point of reference for other semantics

