
ECS 240 Lecture 3 1

Proof Techniques for Language Analysis

Lecture 3
ECS 240

ECS 240 Lecture 3 2

Plan

•  We’ll study various flavors of induction

–  mathematical induction
–  well-founded induction
–  structural induction

ECS 240 Lecture 3 3

Induction

•  Probably the single most important technique for the
study of formal semantics of programming languages

•  Of several kinds
–  mathematical induction (the simplest)
–  well-founded induction (the most general)
–  structural induction (the most widely used in PL)

ECS 240 Lecture 3 4

Mathematical Induction

•  Goal: prove that ∀n ∈ N. P(n)

•  Strategy: (2 steps)
1.  Base case: prove that P(0)
2.  Inductive case:

–  pick an arbitrary n ∈ N
–  assume that P(n) holds
–  prove that P(n + 1)
–  or, formally prove that ∀n ∈ N. P(n) ⇒ P(n+1)

ECS 240 Lecture 3 5

Mathematical Induction. Notes.

–  The inductive case looks similar to the overall goal
 ∀n ∈ N. P(n) ⇒ P(n+1) vs. ∀n ∈ N. P(n)
–  but it is simpler because of the assumption that P(n) holds

–  Why does mathematical induction work?
–  The key property of N is that there are no infinite

descending chains of naturals. It has to stop somewhere.

–  For each n, P(n) can be obtained from the base case and n
uses of the inductive case

ECS 240 Lecture 3 6

Example of Mathematical Induction

•  Recall the evaluation rules for IMP commands
•  Prove that if σ(x) ≤ 6 then

 <while x ≤ 5 do x := x + 1, σ> ⇓ σ[x := 6]

•  Reformulate the claim:
–  Let W = while x ≤ 5 do x := x + 1
–  Let σi = σ[x:= 6 - i]
–  Claim: ∀i∈N. <W, σi> ⇓ σ0

•  Now the claim looks provable by mathematical
induction on i

ECS 240 Lecture 3 7

Example of Mathematical Induction (Base Case)

•  Base case: i = 0 or <W, σ0> ⇓ σ0
–  To prove an evaluation judgment, construct a derivation tree:

σ0(x) = 6

<x, σ0> ⇓ 6 <6 ≤ 5, σ0> ⇓ false

<x ≤ 5, σ0> ⇓ false
<while x ≤ 5 do x := x + 1, σ0> ⇓ σ0

•  This completes the base case

ECS 240 Lecture 3 8

Example of Mathematical Induction (Inductive Case)

•  Must prove ∀i ∈N. <W, σi> ⇓ σ0 ⇒ <W, σi+1> ⇓ σ0
•  The beginning of the proof is straightforward

–  Pick an arbitrary i ∈ N
–  Assume that <W, σi> ⇓ σ0
–  Now prove that <W, σi+1> ⇓ σ0
–  Must construct a derivation tree:

<x, σi+1> ⇓ 5 - i 5 - i ≤ 5

<x ≤ 5, σi+1> ⇓ true <x:=x+1; W, σi+1> ⇓ σ0

<while x ≤ 5 do x := x + 1, σi+1> ⇓ σ0

<x:=x+1, σi+1> ⇓ σi <W, σi> ⇓ σ0

<x + 1, σi+1> ⇓ 6 - i

ECS 240 Lecture 3 9

Discussion

•  A proof is more powerful than running the code and
observing the result. Why?

•  The proof relied on a loop invariant
–  x ≤ 6 in all iterations

•  … and a loop variant
–  6 - x is positive and decreasing

•  Picking the loop invariant and variant is typically the
hardest part of a proof

ECS 240 Lecture 3 10

Discussion

•  We proved termination and correctness. This is called
total correctness

•  Mathematical induction is good when we prove
properties of natural numbers
–  In PL analysis we most often prove properties of expressions,

commands, programs, input data, etc.

–  We need a more powerful induction principle

ECS 240 Lecture 3 11

Well-Founded Induction

•  A relation ⊆ A ✕ A is well-founded if there are no
infinite descending chains in A
–  Example: <1 = { (x, x +1) | x ∈ N }

•  the predecessor relation
–  Example: < = { (x, y) | x, y ∈ N and x < y }

•  Well-founded induction:
–  To prove ∀x ∈ A. P(x) it is enough to prove
   ∀x ∈ A. (∀y x ⇒ P(y)) ⇒ P(x)

•  If is <1 then we obtain a special case of
mathematical induction

•  Why does it work? (see Winskel, Ch 3 for a proof)

ECS 240 Lecture 3 12

Well-Founded Induction. Examples.

•  Consider ⊆ N × N with x y iff x + 2 = y
 ∀x ∈ N. (∀y x ⇒ P(y)) ⇒ P(x) is equivalent to
P(0) ∧ P(1) ∧ ∀n ∈ N. (P(n) ⇒ P(n + 2))

•  Consider ⊆ Z × Z with x y iff
 (y < 0 and y = x - 1) or (y > 0 and y = x + 1)
–  P(0) ∧ ∀x ≤ 0. P(x) ⇒ P(x - 1) ∧ ∀x ≥ 0. P(x) ⇒ P(x + 1)

•  Consider ⊆ (N × N) × (N × N) and (x1, y1) (x2, y2) iff
 x2 = x1 + 1 ∨ (x1 = x2 ∧ y2 = y1 + 1)

–  This leads to the induction principle
 P(0,0) ∧ ∀ x,y,y’. (P(x,y) ⇒ P(x + 1, y’) ∧ P(x, y+1))
–  This is sometimes called lexicographic induction

ECS 240 Lecture 3 13

Structural Induction

•  Recall Aexp: e ::= n | e1 + e2 | e1 * e2 | x
•  Define ⊆ Aexp ✕ Aexp such that

e1 e1 + e2
e2 e1 + e2
e1 e1 * e2
e2 e1 * e2

–  and no other elements of Aexp ✕ Aexp are related by
•  To prove ∀e ∈ Aexp. P(e)

1.  Prove ∀n ∈ Z. P(n)
2.  Prove ∀x ∈ Loc. P(x)
3.  Prove ∀e1, e2 ∈ Aexp. P(e1) ∧ P(e2) ⇒ P(e1 + e2)
4.  Prove ∀e1, e2 ∈ Aexp. P(e1) ∧ P(e2) ⇒ P(e1 * e2)

ECS 240 Lecture 3 14

Structural Induction. Notes.

•  Called structural induction because the proof is
guided by the structure of the expression

•  As many cases as there are expression forms
–  Atomic expressions (with no subexpressions) are all base

cases
–  Composite expressions are the inductive cases

•  This is the most useful form of induction in PL study

ECS 240 Lecture 3 15

Example of Induction on Structure of Expressions

•  Define
–  L(e): the number of literals and variable occurrences in e
–  O(e): the number of operators in e

•  Prove that ∀e ∈ Aexp. L(e) = O(e) + 1
•  By induction on the structure of e

–  Case e = n. L(e) = 1 and O(e) = 0
–  Case e = x. L(e) = 1 and O(e) = 0
–  Case e = e1 + e2.

•  L(e) = L(e1) + L(e2) and O(e) = O(e1) + O(e2) + 1
•  By induction hypothesis L(e1) = O(e1) + 1 and L(e2) = O(e2) + 1
•  Thus L(e) = O(e) + 1

–  Case e = e1 * e2. Same as the case for +

ECS 240 Lecture 3 16

Other Proofs by Structural Induction on Expressions

•  Most proofs for Aexp sublanguage of IMP
•  Small-step and natural semantics

 ∀e ∈ Exp. ∀n ∈ N. e →* n ⇔ e ⇓ n
•  Natural semantics and denotational semantics

 ∀e ∈ Exp. ∀n ∈ N. e ⇓ n ⇔ [[e]] = n
•  Small-step and denotational semantics

 ∀e, e’ ∈ Exp. e → e’ ⇒ [[e]] = [[e’]]
   ∀e ∈ Exp. ∀n ∈ N. e →* n ⇒ [[e]] = n

•  Structural induction on expressions works here
because all of the semantics are syntax directed

ECS 240 Lecture 3 17

Another Proof

•  Prove that IMP is deterministic
∀e ∈ Aexp. ∀σ ∈ Σ. ∀n, n’ ∈ N. <e, σ> ⇓ n ∧ <e, σ> ⇓ n’ ⇒ n = n’
∀b ∈ Bexp. ∀σ ∈ Σ. ∀t, t’ ∈ B. <b, σ> ⇓ t ∧ <b, σ> ⇓ t’ ⇒ t = t’
∀c ∈ Com. ∀σ, σ’,σ’’ ∈ Σ. <c, σ> ⇓ σ’ ∧ <c, σ> ⇓ σ’’ ⇒ σ’ = σ’’

•  No immediate way to use mathematical induction
•  For commands we cannot use induction on the

structure of the command
–  Consider the rule for while. Its evaluation does not depend

only on the evaluation of its strict subexpressions

<while b do c, σ> ⇓ σ’’

<b, σ> ⇓ true <c, σ> ⇓ σ’ <while b do c, σ’> ⇓ σ’’

ECS 240 Lecture 3 18

Induction on the Structure of Derivations

•  Key idea: The hypothesis does not assume just a c ∈
Com but the existence of a derivation of <c, σ> ⇓ σ’

•  Derivation trees are also defined inductively, just like
expression trees

•  A derivation is built of subderivations:

•  Adapt the structural induction principle to work on
the structure of derivations

<x, σi+1> ⇓ 5 - i 5 - i ≤ 5

 <x ≤ 5, σi+1> ⇓ true <x:=x+1; W, σi+1> ⇓ σ0

<while x ≤ 5 do x := x + 1, σi+1> ⇓ σ0

<x:=x+1, σi+1> ⇓ σi <W, σi> ⇓ σ0

<x + 1, σi+1> ⇓ 6 - i

ECS 240 Lecture 3 19

Induction on Derivations

•  To prove that for all derivations D of a judgment,
property P holds

1.  For each derivation rule of the form

2.  Assume that P holds for derivations of Hi (i = 1, .., n)
3.  Prove that the property holds for the derivation

obtained from the derivations of Hi using the given
rule

C

H1 … Hn

ECS 240 Lecture 3 20

Example of Induction on Derivations (I)

•  Prove that evaluation of commands is deterministic:
 <c, σ> ⇓ σ’ ⇒ ∀σ’’ ∈ Σ. <c, σ> ⇓ σ’’ ⇒ σ’ = σ’’

•  Pick arbitrary c, σ, σ’ and D :: <c, σ> ⇓ σ’
•  To prove: ∀σ’’ ∈ Σ. <c, σ> ⇓ σ’’ ⇒ σ’ = σ’’
•  Proof by induction on the structure of the derivation D
•  Case: last rule used in D was the one for skip

–  This means that c = skip, and σ’ = σ	

–  By inversion <c, σ> ⇓ σ’’ uses the rule for skip. Thus σ’’ = σ	

–  This is a base case in the induction

<skip, σ> ⇓ σ
D ::

ECS 240 Lecture 3 21

Example of Induction on Derivations (II)

•  Case: the last rule used in D was the one for sequencing

•  Pick arbitrary σ’’ such that D’’ :: <c1; c2, σ> ⇓ σ’’.
–  by inversion D’’ uses the rule for sequencing
–  and has subderivations D’’1 :: <c1, σ> ⇓ σ’’1 and D’’2 :: <c2, σ’’1> ⇓ σ’’

•  By induction hypothesis on D1 (with D’’1): σ1 = σ’’1
–  Now D’’2 :: <c2, σ1> ⇓ σ’’

•  By induction hypothesis on D2 (with D’’2): σ’’ = σ’
•  This is a simple inductive case

<c1; c2, σ> ⇓ σ’
D ::

D1 :: <c1, σ> ⇓ σ1 D2 :: <c2, σ1> ⇓ σ’

ECS 240 Lecture 3 22

Example of Induction on Derivations (III)

•  Case: the last rule used in D was the one for while true

•  Pick arbitrary σ’’ such that D’’ :: <while b do c, σ> ⇓ σ’’
–  by inversion and determinism of boolean expressions, D’’ also

uses the rule for while true
–  and has subderivations D’’2 :: <c, σ> ⇓ σ’’1 and D’’3 :: <W, σ’’1> ⇓ σ’’

•  By induction hypothesis on D2 (with D’’2): σ1 = σ’’1
–  Now D’’3 :: <while b do c, σ1> ⇓ σ’’

•  By induction hypothesis on D3 (with D’’3): σ’’ = σ’

<while b do c, σ> ⇓ σ’
D ::

D1 :: <b, σ> ⇓ true D2 :: <c, σ> ⇓ σ1 D3 :: <while b do c, σ1> ⇓ σ’

ECS 240 Lecture 3 23

Induction on Derivation. Notes.

•  If we have to prove ∀x ∈ A. P(x) ⇒ Q(x)
–  With x inductively defined and P(x) rule-defined
–  we pick arbitrary x ∈ A and D :: P(x)
–  we could do induction on both facts

•  x ∈ A leads to induction on the structure of x
•  D :: P(x) leads to induction on the structure of D

–  Generally, the induction on the structure of the derivation is
more powerful and a safer bet

•  In many situations there are several choices for
induction
–  choosing the right one is a trial-and-error process
–  a bit of practice can help a lot

ECS 240 Lecture 3 24

Equivalence

•  Two expressions (commands) are equivalent if they
yield the same result from all states

 e1 ≈ e2 iff ∀σ ∈ Σ. ∀n ∈ N. <e1, σ> ⇓ n iff <e2, σ> ⇓ n

and for commands

 c1 ≈ c2 iff ∀σ, σ’ ∈ Σ. <c1, σ> ⇓ σ’ iff <c2, σ> ⇓ σ’

ECS 240 Lecture 3 25

Notes on Equivalence

•  Equivalence is like validity
–  must hold in all states
–  2 ≈ 1 + 1 is like “2 = 1 + 1 is valid”
–  2 ≈ 1 + x might or might not hold.

•  So, 2 is not equivalent to 1 + x

•  Equivalence (for IMP) is undecidable
–  If it were we could solve the halting problem. How?

•  Equivalence justifies code transformations
–  compiler optimizations
–  code instrumentation
–  abstract modeling

•  Semantics is the basis for proving equivalence.

ECS 240 Lecture 3 26

Equivalence Examples

•  skip; c ≈ c
•  (x := e1; x := e2) ≈ x := e2. When is this true?
•  while b do c ≈ if b then c; while b do c else skip
•  If e1 ≈ e2 then x := e1 ≈ x := e2
•  while true do skip ≈ while true do x := x + 1
•  If c is

while x ≠ y do
 if x ≥ y then x := x - y else y := y - x

 then (x := 221; y := 527; c) ≈ (x := 17; y := 17)

ECS 240 Lecture 3 27

Proving An Equivalence

•  Prove that “skip; c ≈ c” for all c
•  Assume that D :: <skip; c, σ> ⇓ σ’
•  By inversion (twice) we have that

•  Thus, we have D1 :: <c,σ> ⇓ σ’
•  The other direction is similar

<skip; c, σ> ⇓ σ’
D ::

 <skip, σ> ⇓ σ D1 :: <c, σ> ⇓ σ’

ECS 240 Lecture 3 28

Proving An Inequivalence

•  Prove that x := y x := z when y ≠ z
•  It suffices to exhibit a state σ in which the two

commands yield different results

•  Let σ(y) = 0 and σ(z) = 1
•  Then <x := y, σ> ⇓ σ[x := 0]
•  and <x := z, σ> ⇓ σ[x := 1]

6⇡

ECS 240 Lecture 3 29

Summary of Operational Semantics

•  Precise specification of dynamic semantics
–  order of evaluation (or that it doesn’t matter)
–  error conditions (sometimes implicitly, by rule applicability)

•  Simple and abstract (vs. implementations)
–  no low-level details such as stack and memory management,

data layout, etc.
•  Often not compositional (see while)
•  Basis for some proofs about the language
•  Basis for some reasoning about programs
•  Point of reference for other semantics

