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Plan 

•  We’ll study various flavors of induction 

–  mathematical induction 
–  well-founded induction 
–  structural induction 

 



ECS 240 Lecture 3 3 

Induction 

•  Probably the single most important technique for the 
study of formal semantics of programming languages 

•  Of several kinds 
–  mathematical induction (the simplest) 
–  well-founded induction (the most general) 
–  structural induction (the most widely used in PL) 
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Mathematical Induction 

•  Goal: prove that ∀n ∈ N. P(n) 

•  Strategy: (2 steps) 
1.  Base case: prove that P(0) 
2.  Inductive case: 

–  pick an arbitrary n ∈ N 
–  assume that P(n) holds 
–  prove that P(n + 1) 
–  or, formally prove that ∀n ∈ N. P(n) ⇒ P(n+1) 
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Mathematical Induction. Notes. 

–  The inductive case looks similar to the overall goal 
   ∀n ∈ N. P(n) ⇒ P(n+1)        vs.       ∀n ∈ N. P(n)         
–  but it is simpler because of the assumption that P(n) holds 

–  Why does mathematical induction work? 
–  The key property of N is that there are no infinite 

descending chains of naturals. It has to stop somewhere. 

–  For each n,  P(n) can be obtained from the base case and n 
uses of the inductive case 



ECS 240 Lecture 3 6 

Example of Mathematical Induction 

•  Recall the evaluation rules for IMP commands 
•  Prove that if σ(x) ≤ 6 then 

    <while x ≤ 5 do x := x + 1, σ> ⇓ σ[x := 6] 
 

•  Reformulate the claim: 
–  Let W = while x ≤ 5 do x := x + 1 
–  Let σi = σ[x:= 6 - i] 
–  Claim: ∀i∈N. <W, σi> ⇓ σ0 

•  Now the claim looks provable by mathematical 
induction on i 
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Example of Mathematical Induction (Base Case) 

•  Base case: i = 0 or <W, σ0> ⇓ σ0 
–  To prove an evaluation judgment, construct a derivation tree: 

σ0(x) = 6 

<x, σ0> ⇓ 6        <6 ≤ 5, σ0> ⇓ false 

<x ≤ 5, σ0> ⇓ false 
<while x ≤ 5 do x := x + 1, σ0> ⇓ σ0 

•  This completes the base case 
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Example of Mathematical Induction (Inductive Case) 

•  Must prove ∀i ∈N. <W, σi> ⇓ σ0  ⇒ <W, σi+1> ⇓ σ0  
•  The beginning of the proof is straightforward 

–  Pick an arbitrary i ∈ N 
–  Assume that <W, σi> ⇓ σ0  
–  Now prove that <W, σi+1> ⇓ σ0  
–  Must construct a derivation tree: 

<x, σi+1> ⇓ 5 - i    5 - i ≤ 5 

<x ≤ 5, σi+1> ⇓ true                                 <x:=x+1; W, σi+1> ⇓ σ0  

<while x ≤ 5 do x := x + 1, σi+1> ⇓ σ0 

<x:=x+1, σi+1> ⇓ σi               <W, σi> ⇓ σ0  

<x + 1, σi+1> ⇓ 6 - i 
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Discussion 

•  A proof is more powerful than running the code and 
observing the result. Why? 

•  The proof relied on a loop invariant 
–  x ≤ 6 in all iterations 

•  … and a loop variant 
–  6 - x is positive and decreasing 

•  Picking the loop invariant and variant is typically the 
hardest part of a proof 
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Discussion 

•  We proved termination and correctness. This is called 
total correctness 

•  Mathematical induction is good when we prove 
properties of natural numbers 
–  In PL analysis we most often prove properties of expressions, 

commands, programs, input data, etc. 

–  We need a more powerful induction principle 
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Well-Founded Induction 

•  A relation  ⊆ A ✕ A is well-founded if there are no 
infinite descending chains in A 
–  Example: <1 = { (x, x +1) | x ∈ N } 

•  the predecessor relation 
–  Example: <  = { (x, y) | x, y ∈ N  and x < y } 

•  Well-founded induction: 
–  To prove ∀x ∈ A. P(x) it is enough to prove  
   ∀x ∈ A. (∀y  x ⇒ P(y))   ⇒   P(x) 

•  If  is <1 then we obtain a special case of 
mathematical induction 

•  Why does it work?  (see Winskel, Ch 3 for a proof) 
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Well-Founded Induction. Examples. 

•  Consider  ⊆ N × N with x  y  iff x + 2 = y 
  ∀x ∈ N. (∀y  x ⇒ P(y)) ⇒ P(x) is equivalent to 
P(0) ∧ P(1) ∧ ∀n ∈ N. (P(n) ⇒ P(n + 2))  

•  Consider  ⊆ Z × Z with x  y iff 
  (y < 0 and y = x - 1) or (y > 0 and y = x + 1) 
–  P(0) ∧   ∀x ≤ 0. P(x) ⇒ P(x - 1)   ∧   ∀x ≥ 0. P(x) ⇒ P(x + 1)  

•  Consider  ⊆ (N × N) × (N × N) and (x1, y1)  (x2, y2) iff  
       x2 = x1 + 1 ∨ (x1 = x2 ∧ y2 = y1 + 1)  

–  This leads to the induction principle 
   P(0,0) ∧ ∀ x,y,y’. (P(x,y) ⇒ P(x + 1, y’) ∧ P(x, y+1)) 
–  This is sometimes called lexicographic induction 
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Structural Induction 

•  Recall Aexp:      e ::= n | e1 + e2 | e1 * e2 | x 
•  Define  ⊆ Aexp ✕ Aexp such that 

e1  e1 + e2 
e2  e1 + e2 
e1  e1 * e2 
e2  e1 * e2 

–  and no other elements of Aexp ✕ Aexp are related by  
•  To prove ∀e ∈ Aexp. P(e) 

1.  Prove ∀n ∈ Z. P(n) 
2.  Prove ∀x ∈ Loc. P(x) 
3.  Prove ∀e1, e2 ∈ Aexp. P(e1) ∧ P(e2) ⇒ P(e1 + e2) 
4.  Prove ∀e1, e2 ∈ Aexp. P(e1) ∧ P(e2) ⇒ P(e1 * e2) 
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Structural Induction. Notes. 

•  Called structural induction because the proof is 
guided by the structure of the expression 

•  As many cases as there are expression forms 
–  Atomic expressions (with no subexpressions) are all base 

cases 
–  Composite expressions are the inductive cases 

•  This is the most useful form of induction in PL study 
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Example of Induction on Structure of Expressions 

•  Define 
–  L(e): the number of literals and variable occurrences in e 
–  O(e): the number of operators in e 

•  Prove that ∀e ∈ Aexp. L(e) = O(e) + 1 
•  By induction on the structure of e 

–  Case e = n.  L(e) = 1 and O(e) = 0 
–  Case e = x. L(e) = 1 and O(e) = 0 
–  Case e = e1 + e2.  

•  L(e) = L(e1) + L(e2)   and   O(e) = O(e1) + O(e2) + 1 
•  By induction hypothesis L(e1) = O(e1) + 1 and L(e2) = O(e2) + 1 
•  Thus L(e) = O(e) + 1 

–  Case e = e1 * e2. Same as the case for + 
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Other Proofs by Structural Induction on Expressions 

•  Most proofs for Aexp sublanguage of IMP 
•  Small-step and natural semantics 

   ∀e ∈ Exp. ∀n ∈ N. e →* n ⇔ e ⇓ n  
•  Natural semantics and denotational semantics 

   ∀e ∈ Exp. ∀n ∈ N. e ⇓ n   ⇔ [[e]] = n 
•  Small-step and denotational semantics 

   ∀e, e’ ∈ Exp. e → e’ ⇒ [[e]] = [[e’]] 
   ∀e ∈ Exp. ∀n ∈ N. e →* n ⇒ [[e]] = n 

•  Structural induction on expressions works here 
because all of the semantics are syntax directed 
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Another Proof 

•  Prove that IMP is deterministic 
∀e ∈ Aexp. ∀σ ∈ Σ. ∀n, n’ ∈ N.  <e, σ> ⇓ n  ∧  <e, σ> ⇓ n’ ⇒  n = n’ 
∀b ∈ Bexp. ∀σ ∈ Σ. ∀t, t’ ∈ B.  <b, σ> ⇓ t  ∧  <b, σ> ⇓ t’  ⇒   t = t’ 
∀c ∈ Com. ∀σ, σ’,σ’’ ∈ Σ.  <c, σ> ⇓ σ’  ∧  <c, σ> ⇓ σ’’   ⇒   σ’ = σ’’ 

•  No immediate way to use mathematical induction 
•  For commands we cannot use induction on the 

structure of the command 
–  Consider the rule for while. Its evaluation does not depend 

only on the evaluation of its strict subexpressions 

 
 

<while b do c, σ> ⇓ σ’’ 

<b, σ> ⇓ true     <c, σ> ⇓ σ’    <while b do c, σ’> ⇓ σ’’ 
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Induction on the Structure of Derivations 

•  Key idea: The hypothesis does not assume just a c ∈ 
Com but the existence of a derivation of <c, σ> ⇓ σ’ 

•  Derivation trees are also defined inductively, just like 
expression trees 

•  A derivation is built of subderivations: 

•  Adapt the structural induction principle to work on 
the structure of derivations 

<x, σi+1> ⇓ 5 - i    5 - i ≤ 5 

       <x ≤ 5, σi+1> ⇓ true                          <x:=x+1; W, σi+1> ⇓ σ0  

<while x ≤ 5 do x := x + 1, σi+1> ⇓ σ0 

<x:=x+1, σi+1> ⇓ σi               <W, σi> ⇓ σ0  

<x + 1, σi+1> ⇓ 6 - i 
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Induction on Derivations 

•  To prove that for all derivations D of a judgment, 
property P holds 

1.  For each derivation rule of the form 

2.  Assume that P holds for derivations of Hi (i = 1, .., n) 
3.  Prove that the property holds for the derivation 

obtained from the derivations of Hi using the given 
rule 

C  

H1  … Hn 
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Example of Induction on Derivations (I) 

•  Prove that evaluation of commands is deterministic: 
       <c, σ> ⇓ σ’ ⇒ ∀σ’’ ∈ Σ. <c, σ> ⇓ σ’’ ⇒ σ’ = σ’’ 

•  Pick arbitrary c, σ, σ’ and D :: <c, σ> ⇓ σ’ 
•  To prove: ∀σ’’ ∈ Σ. <c, σ> ⇓ σ’’ ⇒ σ’ = σ’’  
•  Proof by induction on the structure of the derivation D 
•  Case: last rule used in D was the one for skip 

–  This means that c = skip, and σ’ = σ	

–  By inversion <c, σ> ⇓ σ’’ uses the rule for skip.  Thus σ’’ = σ	

–  This is a base case in the induction 

<skip, σ> ⇓ σ 
D :: 
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Example of Induction on Derivations (II) 

•  Case: the last rule used in D was the one for sequencing 

•  Pick arbitrary σ’’ such that D’’ :: <c1; c2, σ> ⇓ σ’’.   
–  by inversion D’’ uses the rule for sequencing 
–  and has subderivations D’’1 :: <c1, σ> ⇓ σ’’1 and D’’2 :: <c2, σ’’1> ⇓ σ’’  

•  By induction hypothesis on D1 (with D’’1): σ1 = σ’’1 
–  Now D’’2 :: <c2, σ1> ⇓ σ’’ 

•  By induction hypothesis on D2 (with D’’2): σ’’ = σ’ 
•  This is a simple inductive case 

<c1; c2, σ> ⇓ σ’ 
D :: 

D1 :: <c1, σ> ⇓ σ1    D2 :: <c2, σ1> ⇓ σ’ 
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Example of Induction on Derivations (III) 

•  Case: the last rule used in D was the one for while true 

•  Pick arbitrary σ’’ such that D’’ :: <while b do c, σ> ⇓ σ’’ 
–  by inversion and determinism of boolean expressions, D’’ also 

uses the rule for while true 
–  and has subderivations D’’2 :: <c, σ> ⇓ σ’’1 and D’’3 :: <W, σ’’1> ⇓ σ’’  

•  By induction hypothesis on D2 (with D’’2): σ1 = σ’’1 
–  Now D’’3 :: <while b do c, σ1> ⇓ σ’’ 

•  By induction hypothesis on D3 (with D’’3): σ’’ = σ’ 

<while b do c, σ> ⇓ σ’ 
D :: 

D1 :: <b, σ> ⇓ true    D2 :: <c, σ> ⇓ σ1      D3 :: <while b do c, σ1> ⇓ σ’ 
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Induction on Derivation. Notes. 

•  If we have to prove ∀x ∈ A. P(x) ⇒ Q(x) 
–  With x inductively defined and P(x) rule-defined 
–  we pick arbitrary x ∈ A and D :: P(x) 
–  we could do induction on both facts 

•  x ∈ A            leads to induction on the structure of x 
•  D :: P(x)        leads to induction on the structure of D 

–  Generally, the induction on the structure of the derivation is 
more powerful and a safer bet 

•  In many situations there are several choices for 
induction 
–  choosing the right one is a trial-and-error process 
–  a bit of practice can help a lot 
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Equivalence 

•  Two expressions (commands) are equivalent if they 
yield the same result from all states 

    e1 ≈ e2 iff ∀σ ∈ Σ. ∀n ∈ N. <e1, σ> ⇓ n iff <e2, σ> ⇓ n 
 
and for commands 
 
  c1 ≈ c2 iff ∀σ, σ’ ∈ Σ. <c1, σ> ⇓ σ’ iff <c2, σ> ⇓ σ’ 
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Notes on Equivalence 

•  Equivalence is like validity  
–  must hold in all states 
–  2 ≈ 1 + 1 is like “2 = 1 + 1 is valid” 
–  2 ≈ 1 + x might or might not hold.  

•  So, 2 is not equivalent to 1 + x 

•  Equivalence (for IMP) is undecidable 
–  If it were we could solve the halting problem. How? 

•  Equivalence justifies code transformations 
–  compiler optimizations 
–  code instrumentation 
–  abstract modeling 

•  Semantics is the basis for proving equivalence.  
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Equivalence Examples 

•  skip; c ≈ c  
•  (x := e1; x := e2) ≈ x := e2. When is this true? 
•  while b do c ≈ if b then c; while b do c else skip 
•  If e1 ≈ e2 then x := e1 ≈ x := e2 
•  while true do skip ≈ while true do x := x + 1 
•  If c is  

while x ≠ y do 
     if x ≥ y then x := x  - y else y := y - x 

    then   (x := 221; y := 527; c) ≈ (x := 17; y := 17) 
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Proving An Equivalence 

•  Prove that “skip; c ≈ c” for all c 
•  Assume that D :: <skip; c, σ> ⇓ σ’ 
•  By inversion (twice) we have that 

•  Thus, we have D1 :: <c,σ> ⇓ σ’ 
•  The other direction is similar 

<skip; c, σ> ⇓ σ’ 
D :: 

   <skip, σ> ⇓ σ    D1 :: <c, σ> ⇓ σ’ 
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Proving An Inequivalence 

•  Prove that x := y    x := z when y ≠ z 
•  It suffices to exhibit a state σ in which the two 

commands yield different results 

•  Let σ(y) = 0 and σ(z) = 1 
•  Then <x := y, σ> ⇓ σ[x := 0] 
•  and <x := z, σ> ⇓ σ[x := 1] 

6⇡
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Summary of Operational Semantics 

•  Precise specification of dynamic semantics 
–  order of evaluation (or that it doesn’t matter) 
–  error conditions (sometimes implicitly, by rule applicability) 

•  Simple and abstract (vs. implementations) 
–  no low-level details such as stack and memory management, 

data layout, etc. 
•  Often not compositional (see while) 
•  Basis for some proofs about the language 
•  Basis for some reasoning about programs 
•  Point of reference for other semantics 


