Proof Techniques for Language Analysis

Lecture 3 ECS 240

ECS 240 Lecture 3

Plan

- We'll study various flavors of induction
 - mathematical induction
 - well-founded induction
 - structural induction

Induction

- Probably the single most important technique for the study of formal semantics of programming languages
- Of several kinds
 - mathematical induction (the simplest)
 - well-founded induction (the most general)
 - structural induction (the most widely used in PL)

Mathematical Induction

- Goal: prove that $\forall n \in \mathbb{N}$. P(n)
- Strategy: (2 steps)
 - 1. Base case: prove that P(0)
 - 2. Inductive case:
 - pick an arbitrary $n \in \mathbb{N}$
 - assume that P(n) holds
 - prove that P(n + 1)
 - or, formally prove that $\forall n \in \mathbb{N}$. $P(n) \Rightarrow P(n+1)$

Mathematical Induction. Notes.

- The inductive case looks similar to the overall goal $\forall n \in \mathbb{N}$. P(n) \Rightarrow P(n+1) vs. $\forall n \in \mathbb{N}$. P(n)
 - but it is simpler because of the assumption that P(n) holds
- Why does mathematical induction work?
 - The key property of $\mathbb N$ is that there are no infinite descending chains of naturals. It has to stop somewhere.
 - For each n, P(n) can be obtained from the base case and n uses of the inductive case

Example of Mathematical Induction

- Recall the evaluation rules for IMP commands
- Prove that if $\sigma(x) \le 6$ then (while $x \le 5$ do x := x + 1, $\sigma > \Downarrow \sigma[x := 6]$
- Reformulate the claim:
 - Let W = while $x \le 5$ do x := x + 1
 - Let $\sigma_i = \sigma[x := 6 i]$
 - Claim: $\forall i \in \mathbb{N}$. $\langle W, \sigma_i \rangle \Downarrow \sigma_0$
- Now the claim looks provable by mathematical induction on i

Example of Mathematical Induction (Base Case)

- Base case: i = 0 or $\langle W, \sigma_0 \rangle \Downarrow \sigma_0$
 - To prove an evaluation judgment, construct a derivation tree:

• This completes the base case

Example of Mathematical Induction (Inductive Case)

- Must prove $\forall i \in \mathbb{N}$. $\langle W, \sigma_i \rangle \Downarrow \sigma_0 \Rightarrow \langle W, \sigma_{i+1} \rangle \Downarrow \sigma_0$
- The beginning of the proof is straightforward
 - Pick an arbitrary $i \in \mathbb{N}$
 - Assume that < W, σ_i > $\Downarrow \sigma_0$
 - Now prove that <W, σ_{i+1} > $\Downarrow \sigma_0$
 - Must construct a derivation tree:

<x:=x+1, σ_{i+1}> ↓ σ_i

<**x**, σ_{i+1}> ↓ 5 - i 5 - i ≤ 5

 $x \le 5, \sigma_{i+1}$ true

<**x:=x+1;** W, σ_{i+1}> ↓ σ₀

while
$$x \le 5$$
 do $x := x + 1$, $\sigma_{i+1} > \Downarrow \sigma_0$

ECS 240 Lecture 3

<**W**, σ_i> ↓ σ₀

Discussion

- A proof is more powerful than running the code and observing the result. Why?
- The proof relied on a loop invariant
 - $x \le 6$ in all iterations
- ... and a loop variant
 - 6 x is positive and decreasing
- Picking the loop invariant and variant is typically the hardest part of a proof

Discussion

- We proved termination and correctness. This is called total correctness
- Mathematical induction is good when we prove properties of natural numbers
 - In PL analysis we most often prove properties of expressions, commands, programs, input data, etc.
 - We need a more powerful induction principle

- A relation ≺ ⊆ A × A is <u>well-founded</u> if there are no infinite descending chains in A
 - Example: $<_1 = \{ (x, x + 1) \mid x \in \mathbb{N} \}$
 - the predecessor relation
 - Example: $\langle = \{ (x, y) \mid x, y \in \mathbb{N} \text{ and } x < y \}$
- Well-founded induction:
 - To prove $\forall x \in A$. P(x) it is enough to prove $\forall x \in A$. ($\forall y \prec x \Rightarrow P(y)$) $\Rightarrow P(x)$
- If \prec is ${\boldsymbol{\mathsf{s}}}_1$ then we obtain a special case of mathematical induction
- Why does it work? (see Winskel, Ch 3 for a proof)

Well-Founded Induction. Examples.

- Consider $\prec \subseteq \mathbb{N} \times \mathbb{N}$ with $x \prec y$ iff x + 2 = y $\forall x \in \mathbb{N}$. $(\forall y \prec x \Rightarrow P(y)) \Rightarrow P(x)$ is equivalent to $P(0) \land P(1) \land \forall n \in \mathbb{N}$. $(P(n) \Rightarrow P(n + 2))$
- Consider $\prec \subseteq Z \times Z$ with $x \prec y$ iff (y < 0 and y = x - 1) or (y > 0 and y = x + 1)
 P(0) \land \forall x \le 0. P(x) \Rightarrow P(x - 1) \land \forall x \ge 0. P(x) \Rightarrow P(x + 1)
- Consider $\prec \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ and $(x_1, y_1) \prec (x_2, y_2)$ iff $x_2 = x_1 + 1 \lor (x_1 = x_2 \land y_2 = y_1 + 1)$
 - This leads to the induction principle P(0,0) $\land \forall x,y,y'$. (P(x,y) \Rightarrow P(x + 1, y') \land P(x, y+1))
 - This is sometimes called lexicographic induction ECS 240 Lecture 3

Structural Induction

- Recall Aexp: $e ::= n | e_1 + e_2 | e_1 * e_2 | x$
- Define $\prec \subseteq Aexp \times Aexp$ such that
 - $e_1 \prec e_1 + e_2$ $e_2 \prec e_1 + e_2$ $e_1 \prec e_1 * e_2$ $e_2 \prec e_1 * e_2$
 - and no other elements of Aexp \times Aexp are related by \prec
- To prove $\forall e \in Aexp. P(e)$
 - 1. Prove $\forall n \in Z$. P(n)
 - 2. Prove $\forall x \in Loc. P(x)$
 - 3. Prove $\forall e_1, e_2 \in Aexp. P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2)$
 - 4. Prove $\forall e_1, e_2 \in Aexp. P(e_1) \land P(e_2) \Rightarrow P(e_1 * e_2)$

Structural Induction. Notes.

- Called structural induction because the proof is guided by the structure of the expression
- As many cases as there are expression forms
 - Atomic expressions (with no subexpressions) are all base cases
 - Composite expressions are the inductive cases
- This is the most useful form of induction in PL study

Example of Induction on Structure of Expressions

- Define
 - L(e): the number of literals and variable occurrences in e
 - O(e): the number of operators in e
- Prove that $\forall e \in Aexp. L(e) = O(e) + 1$
- By induction on the structure of e
 - Case e = n. L(e) = 1 and O(e) = 0
 - Case e = x. L(e) = 1 and O(e) = 0
 - Case $e = e_1 + e_2$.
 - $L(e) = L(e_1) + L(e_2)$ and $O(e) = O(e_1) + O(e_2) + 1$
 - By induction hypothesis $L(e_1) = O(e_1) + 1$ and $L(e_2) = O(e_2) + 1$
 - Thus L(e) = O(e) + 1
 - Case $e = e_1 * e_2$. Same as the case for +

Other Proofs by Structural Induction on Expressions

- Most proofs for Aexp sublanguage of IMP
- Small-step and natural semantics $\forall e \in Exp. \ \forall n \in \mathbb{N}. \ e \rightarrow^* n \Leftrightarrow e \Downarrow n$
- Natural semantics and denotational semantics $\forall e \in Exp. \ \forall n \in \mathbb{N}. \ e \Downarrow n \iff [[e]] = n$
- Small-step and denotational semantics $\forall e, e' \in Exp. e \rightarrow e' \Rightarrow [[e]] = [[e']]$ $\forall e \in Exp. \forall n \in \mathbb{N}. e \rightarrow^* n \Rightarrow [[e]] = n$
- Structural induction on expressions works here because all of the semantics are syntax directed

Another Proof

• Prove that IMP is deterministic

 $\forall e \in Aexp. \ \forall \sigma \in \Sigma. \ \forall n, n' \in \mathbb{N}. \ \langle e, \sigma \rangle \Downarrow n \land \langle e, \sigma \rangle \Downarrow n' \Rightarrow n = n'$ $\forall b \in Bexp. \ \forall \sigma \in \Sigma. \ \forall t, t' \in \mathbb{B}. \ \langle b, \sigma \rangle \Downarrow t \land \langle b, \sigma \rangle \Downarrow t' \Rightarrow t = t'$ $\forall c \in Com. \ \forall \sigma, \sigma', \sigma'' \in \Sigma. \ \langle c, \sigma \rangle \Downarrow \sigma' \land \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''$

- No immediate way to use mathematical induction
- For commands we cannot use induction on the structure of the command
 - Consider the rule for while. Its evaluation does not depend only on the evaluation of its strict subexpressions

 σ
 \forall true <c, σ > \Downarrow σ'

 σ''

 \forall σ''

<while b do c, σ > $\Downarrow \sigma''$

ECS 240 Lecture 3

Induction on the Structure of Derivations

- Key idea: The hypothesis does not assume just a c \in Com but the existence of a derivation of <c, σ > \Downarrow σ'
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of subderivations:

<while x ≤ 5 do x := x + 1, σ_{i+1} > \Downarrow σ_0

 Adapt the structural induction principle to work on the structure of derivations

ECS 240 Lecture 3

Induction on Derivations

- To prove that for all derivations D of a judgment, property P holds
- 1. For each derivation rule of the form $\frac{H_1 \dots H_n}{C}$
- 2. Assume that P holds for derivations of H_i (i = 1, ..., n)
- 3. Prove that the property holds for the derivation obtained from the derivations of H_i using the given rule

Example of Induction on Derivations (I)

- Prove that evaluation of commands is deterministic: $\langle c, \sigma \rangle \Downarrow \sigma' \Rightarrow \forall \sigma'' \in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''$
- Pick arbitrary c, σ , σ' and D :: <c, σ > $\Downarrow \sigma'$
- To prove: $\forall \sigma'' \in \Sigma$. <c, σ > $\Downarrow \sigma'' \Rightarrow \sigma' = \sigma''$
- Proof by induction on the structure of the derivation D
- Case: last rule used in D was the one for skip

- This means that c = skip, and σ' = σ
- By inversion <c, σ > $\Downarrow \sigma''$ uses the rule for skip. Thus $\sigma'' = \sigma$
- This is a base case in the induction

Example of Induction on Derivations (II)

• Case: the last rule used in D was the one for sequencing

$$\mathsf{D} :: \qquad \frac{\mathsf{D}_1 :: \langle \mathsf{c}_1, \sigma \rangle \Downarrow \sigma_1 \quad \mathsf{D}_2 :: \langle \mathsf{c}_2, \sigma_1 \rangle \Downarrow \sigma'}{\langle \mathsf{c}_1; \mathsf{c}_2, \sigma \rangle \Downarrow \sigma'}$$

- Pick arbitrary σ'' such that $D'' :: \langle c_1; c_2, \sigma \rangle \Downarrow \sigma''$.
 - by inversion D" uses the rule for sequencing
- By induction hypothesis on D₁ (with D"₁): $\sigma_1 = \sigma_1$
 - Now $D''_2 :: \langle c_2, \sigma_1 \rangle \Downarrow \sigma''$
- By induction hypothesis on D_2 (with D''_2): $\sigma'' = \sigma'$
- This is a simple inductive case

Example of Induction on Derivations (III)

• Case: the last rule used in D was the one for while true

 $\mathsf{D}:: \begin{array}{ccc} & \underbrace{\mathsf{D}_1::\,\mathsf{< b},\,\sigma\!\!>\Downarrow\,\mathsf{true}}_2\,\, \mathbb{D}_2::\,\mathsf{< c},\,\sigma\!\!>\Downarrow\,\sigma_1 & \underbrace{\mathsf{D}_3::\,\mathsf{< while }b\,\,\mathsf{do}\,\,\mathsf{c},\,\sigma_1\!\!>\Downarrow\,\sigma'}_{\mathsf{< while }b\,\,\mathsf{do}\,\,\mathsf{c},\,\sigma\!\!>\Downarrow\,\sigma'} \end{array}$

- + Pick arbitrary σ'' such that D'' :: <while b do c, σ > \Downarrow σ''
 - by inversion and determinism of boolean expressions, D" also uses the rule for while true
 - and has subderivations $\mathsf{D"_2}::\mathsf{<c},\sigma\mathsf{>}\Downarrow\sigma"_1$ and $\mathsf{D"_3}::\mathsf{<W},\sigma"_1\mathsf{>}\Downarrow\sigma"$
- By induction hypothesis on D_2 (with D''_2): $\sigma_1 = \sigma''_1$
 - Now $D''_3 :: \mathsf{while} \mathsf{b} \mathsf{do} \mathsf{c}, \sigma_1 \mathsf{b} \Downarrow \sigma''$
- By induction hypothesis on D₃ (with D"₃): σ " = σ '

Induction on Derivation. Notes.

- If we have to prove $\forall x \in A$. $P(x) \Rightarrow Q(x)$
 - With x inductively defined and P(x) rule-defined
 - we pick arbitrary $x \in A$ and D :: P(x)
 - we could do induction on both facts
 - $x \in A$ leads to induction on the structure of x
 - D :: P(x) leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet
- In many situations there are several choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot

Equivalence

 Two expressions (commands) are equivalent if they yield the same result from all states

$$e_1 \approx e_2 \text{ iff } \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \langle e_1, \sigma \rangle \Downarrow n \text{ iff } \langle e_2, \sigma \rangle \Downarrow n$$

and for commands

$$\mathsf{c}_1 \approx \mathsf{c}_2 \text{ iff } \forall \sigma, \sigma' \in \Sigma. < \mathsf{c}_1, \sigma > \Downarrow \sigma' \text{ iff } < \mathsf{c}_2, \sigma > \Downarrow \sigma'$$

Notes on Equivalence

- Equivalence is like validity
 - must hold in all states
 - 2 ≈ 1 + 1 is like "2 = 1 + 1 is valid"
 - $2 \approx 1 + x$ might or might not hold.
 - So, 2 is not equivalent to 1 + x
- Equivalence (for IMP) is undecidable
 - If it were we could solve the halting problem. How?
- Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling
- Semantics is the basis for proving equivalence.

Equivalence Examples

- skip; c ≈ c
- $(x := e_1; x := e_2) \approx x := e_2$. When is this true?
- while b do c \approx if b then c; while b do c else skip
- If $e_1 \approx e_2$ then $x := e_1 \approx x := e_2$
- while true do skip \approx while true do x := x + 1

```
    If c is
while x ≠ y do
if x ≥ y then x := x - y else y := y - x
then (x := 221; y := 527; c) ≈ (x := 17; y := 17)
```

Proving An Equivalence

- Prove that "skip; $c \approx c$ " for all c
- Assume that D :: <skip; c, σ > $\Downarrow \sigma'$
- By inversion (twice) we have that

D::
$$(skip, \sigma) \Downarrow \sigma \quad D_1 :: \langle c, \sigma \rangle \Downarrow \sigma' \land (skip; c, \sigma) \Downarrow \sigma'$$

- Thus, we have $D_1 :: \langle c, \sigma \rangle \Downarrow \sigma'$
- The other direction is similar

Proving An Inequivalence

- Prove that $x := y \approx x := z$ when $y \neq z$
- It suffices to exhibit a state σ in which the two commands yield different results
- Let $\sigma(y) = 0$ and $\sigma(z) = 1$
- Then $\langle x := y, \sigma \rangle \Downarrow \sigma[x := 0]$
- and <x := z, σ > $\Downarrow \sigma$ [x := 1]

Summary of Operational Semantics

- Precise specification of dynamic semantics
 - order of evaluation (or that it doesn't matter)
 - error conditions (sometimes implicitly, by rule applicability)
- Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for some proofs about the language
- Basis for some reasoning about programs
- Point of reference for other semantics