Introduction to Lambda Calculus

Lecture 4
ECS 240

Plan

- Introduce lambda calculus
- Syntax and operational semantics
- Properties
- Relationship to programming languages (later)
- Study of types and type systems (even later)

Background

- Developed in 1930's by Alonzo Church
- Subsequently studied by many people
- "Testbed" for procedural and functional languages
- Simple
- Powerful
- Easy to extend with features of interest
- Plays similar role for PL research as Turing machines for computability
"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."
(Landin ' 66)

Syntax

- The λ-calculus has three kinds of expressions (terms)
e ::=x Variables
$\mid \lambda \times . e \quad$ Functions (abstraction)
$\mid e_{1} e_{2}$ Application
- $\lambda x . e$ is a one-argument function with body e
- $e_{1} e_{2}$ is a function application
- Application associates to the left $x y z$ means ($x y$) z
- Abstraction extends to the right as far as possible $\lambda x . x \lambda y . x y z$ means $\lambda x .(x(\lambda y .((x y) z)))$

Examples of Lambda Expressions

- The identity function:

$$
I={ }_{\operatorname{def}} \lambda x . x
$$

- A function that given an argument y discards it and yields the identity function:

$$
\lambda y \cdot(\lambda x \cdot x)
$$

- A function that given a function f invokes it on the identity function

$$
\lambda f . f(\lambda x . x)
$$

Scope of Variables

- As in all languages with variables it is important to discuss the notion of scope
- Recall: the scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx. E binds variable x in E
- x is the newly introduced variable
- E is the scope of x
- We say x is bound in λx. E
- Just like formal function arguments are bound in the function body

Free and Bound Variables

- A variable is said to be free in E if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows:

$$
\begin{aligned}
& \operatorname{Free}(x)=\{x\} \\
& \operatorname{Free}\left(E_{1} E_{2}\right)=\operatorname{Free}\left(E_{1}\right) \cup \operatorname{Free}\left(E_{2}\right) \\
& \operatorname{Free}(\lambda x . \operatorname{Eree}(E)-\{x\}
\end{aligned}
$$

- Example: $\operatorname{Free}(\lambda x . x(\lambda y, x y z))=\{z\}$
- Free variables are (implicitly or explicitly) declared outside the term

Free and Bound Variables (Cont.)

- Like in any language with statically nested scoping, we need to worry about variable shadowing (or capturing)
- An occurrence of a variable might refer to different things in different contexts
- E.g., in IMP with locals: let $x=E$ in $x+\left(\operatorname{let} x=E^{\prime}\right.$ in $\left.x\right)+x$

- In λ-calculus: $\lambda x . \times(\lambda \times . x) \times$

Renaming Bound Variables

- λ-terms that can be obtained from one another by renaming of the bound variables are considered identical. This is called α-equivalence.
- Example: $\lambda x . x$ is identical to $\lambda y . y$ and to $\lambda z . z$
- Intuition:
- By changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change
- In λ-calculus such functions are considered identical

Renaming Bound Variables (Cont.)

- Convention: we will always try to rename bound variables so that they are all unique
- e.g., write $\lambda x . x(\lambda y . y) \times$ instead of $\lambda x . x(\lambda x . x) \times$
- This makes it easy to see the scope of bindings
- And also prevents confusion !

Substitution

- The substitution of E^{\prime} for x in E (written $\left[E^{\prime} / x\right] E$)
- Step 1. Rename bound variables in E and E^{\prime} so they are unique
- Step 2. Perform the textual substitution of E^{\prime} for x in E
- Example: $[y(\lambda x . x) / x] \lambda y .(\lambda x . x) y x$
- After renaming: $[y(\lambda v, v) / x] \lambda z .(\lambda u, u) z x$
- After substitution: $\lambda z .(\lambda u . u) z(y(\lambda v . v))$
- If we are not careful with scopes might get:

$$
\lambda y .(\lambda x . x) y(y(\lambda x . x))
$$

Informal Semantics

- We consider only closed terms
- The evaluation of

$$
(\lambda x . e) e^{\prime}
$$

1. Binds x to e
2. Evaluates e with the new binding
3. Yields the result of this evaluation

- Like a function call, or like "let $x=e$ ' in e "
- Example:

$$
(\lambda f . f(f e)) g \text { evaluates to } g(g e)
$$

Operational Semantics

- There exist many operational semantics for the λ calculus
- All are based on the equation

$$
(\lambda x . e) e^{\prime}={ }_{\beta}\left[e^{\prime} / x\right] e
$$

usually oriented from left to right

- This is called the β-rule and the evaluation step a β reduction
- The subterm ($\lambda x . e) e^{\prime}$ is a β-redex
- $e \rightarrow_{\beta} e^{\prime}:$ e β-reduces to e^{\prime} in one step
- $e \rightarrow_{\beta}{ }^{*} e^{\prime}: ~ e ~ \beta$-reduces to e^{\prime} in 0 or more steps

Examples of Evaluation

- The identity function:

$$
(\lambda x . x) E \rightarrow[E / x] x=E
$$

- Another example with the identity:
$(\lambda f . f(\lambda x . x))(\lambda x . x) \rightarrow$
$[\lambda x . x / f] f(\lambda x, x))=[(\lambda x . x) / f] f(\lambda y . y))=$
$(\lambda x . x)(\lambda y . y) \rightarrow$
$[\lambda y \cdot y / x] x=\lambda y \cdot y$
- A non-terminating evaluation:
$(\lambda x . x x)(\lambda y . y y) \rightarrow$
$[\lambda y \cdot y y / x] x x=(\lambda y, y y)(\lambda y . y y) \rightarrow \ldots$

Evaluation and the Static Scope

- The definition of substitution guarantees that evaluation respects static scoping:

(y remains free, i.e., defined externally)
- If we forget to rename the bound y :

(y was free before but is bound now)

Another View of Reduction

- The application

- becomes:

ECS 240 Lecture 4

Normal Forms

- A term without redexes is in normal form
- A reduction sequence stops at a normal form
- If e is in normal form, then $e \rightarrow^{*}{ }_{\beta} e^{\prime}$ implies $e=e^{\prime}$
- Examples
- $\lambda x . \lambda y . x$ (normal form)
- ($\lambda x . \lambda y . x)(\lambda x . x)$ (not normal form)

Nondeterministic Evaluation

- Define a small-step reduction relation

$$
\begin{gathered}
\overline{(\lambda x . e) e^{\prime} \rightarrow\left[e^{\prime} / x\right] e} \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}} \\
\frac{e \rightarrow e^{\prime}}{\lambda x \cdot e \rightarrow \lambda x \cdot e^{\prime}}
\end{gathered}
$$

- Note
- This is a non-deterministic semantics
- We evaluate under λ

The Order of Evaluation

- A λ-term can have more than one instances of $(\lambda x . E) E^{\prime}$ ($\lambda y .(\lambda x . x) y) E$
- A choice: reduce the inner or the outer λ
- Which one should we pick?

The Diamond Property

- A relation R has the diamond property iff
- $e R e_{1}$ and $e R e_{2}$ implies there exists e' with $e_{1} R e$ and $e_{2} R e^{\prime}$

- \rightarrow_{β} does not have the diamond property
- $\rightarrow_{\beta}{ }^{*}$ has the diamond property
- The simplest known proof is quite technical

The Diamond Property

- Languages defined by non-deterministic sets of rules are common
- Logic programming languages
- Expert systems
- Constraint satisfaction systems
- It is useful to know whether such systems have the diamond property

Equality

- Let ${ }_{\beta}$ be the reflexive, transitive and symmetric closure of \rightarrow_{β}

$$
={ }_{\beta} \text { is }\left(\rightarrow_{\beta} \cup \leftarrow_{\beta}\right)^{\star}
$$

- In another words, $e_{1}={ }_{\beta} e_{2}$ if e_{1} converts to e_{2} via a sequence of forward and backward \rightarrow_{β}

The Church-Rosser Theorem

- If $e_{1}={ }_{\beta} e_{2}$ then there exists e^{\prime} such that $e_{1} \rightarrow_{\beta}{ }^{*} e^{\prime}$ and $e_{2} \rightarrow_{\beta}^{*} e^{\prime}$

- Proof (informal): apply the diamond property as many times as necessary

Corollaries

- If $e_{1}=_{\beta} e_{2}$ and e_{1} and e_{2} are normal forms then e_{1} is identical to e_{2}
- From CR we have $\exists e^{\prime} . e_{1} \rightarrow^{*}{ }_{\beta} e^{\prime}$ and $e_{2} \rightarrow^{*}{ }_{\beta} e^{\prime}$
- Since e_{1} and e_{2} are normal forms they are identical to e^{\prime}
- If $e \rightarrow^{*}{ }_{\beta} e_{1}$ and $e \rightarrow_{\beta}^{*} e_{2}$ and e_{1} and e_{2} are normal forms then e_{1} is identical to e_{2}
- All terms have a unique normal form

Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will not find more than one normal form
- But some reduction strategies might fail to find a normal form
- $(\lambda x . y)((\lambda y . y y)(\lambda y . y y)) \rightarrow(\lambda x . y)((\lambda y \cdot y y)(\lambda y \cdot y y)) \rightarrow \ldots$
- $(\lambda x . y)((\lambda y . y y)(\lambda y . y y)) \rightarrow y$
- We will consider three strategies
- normal order
- call-by-name
- call-by-value

Normal-Order Reduction

- A redex is outermost if it is not contained inside another redex.
- Use $K=\lambda x . \lambda y . x$

$$
S=\lambda f . \lambda g . \lambda x . f \times(g x)
$$

- Example: S $(K x y)(K u v)$
- $K x, K u$ and $S(K \times y)$ are all redexes
- Both Ku and S (Kxy) are outermost
- Normal order always reduces the leftmost outermost redex first
- Theorem: If e has a normal form e' then normal order reduction will reduce e to e '

Why Not Normal Order ?

- In most (all?) programming languages, functions are considered values (fully evaluated)
- Example
- $\lambda x . D D=\perp \quad$ (with normal order)
- where $D=(\lambda \times . \times x)$
- Thus, no reduction is done under lambda
- No popular programming language uses normal order

Call-by-Name

- Don't reduce under λ
- Don't evaluate the argument to a function call
- A value is an abstraction

$$
\lambda x \cdot e \rightarrow_{n}{ }^{*} \lambda x \cdot e
$$

$$
e_{1} \rightarrow_{n}^{*} \lambda x \cdot e_{1}^{\prime} \quad\left[e_{2} / x\right] e_{1}^{\prime} \rightarrow_{n}^{*} e
$$

$$
e_{1} e_{2} \rightarrow_{n}{ }^{*} e
$$

- Call-by-name is demand-driven: an expression is not evaluated unless needed
- It is normalizing: converges whenever normal order converges
- Call-by-name does not necessarily evaluate to a normal form. Example: $D D=(\lambda x . \times x)(\lambda x . \times x)$

Call by Name

- Example:
$(\lambda y .(\lambda x . x) y)((\lambda u . u)(\lambda v, v)) \rightarrow_{\beta n}$
$(\lambda x . x)((\lambda u . u)(\lambda v . v)) \rightarrow_{\beta n}$
$(\lambda u, u)(\lambda v, v) \rightarrow_{\beta n}$
$\lambda v . v$

Call-by-Value Evaluation

- Don't reduce under lambda
- Do evaluate the arguments to a function call
- A value is an abstraction

$$
\lambda x \cdot e \rightarrow_{v}{ }^{*} \lambda x \cdot e
$$

$$
e_{1} \rightarrow_{v}^{*} \lambda x \cdot e_{1}^{\prime} \quad e_{2} \rightarrow_{v}^{*} e_{2}^{\prime} \quad\left[e^{\prime}{ }_{2} / x\right] e_{1}^{\prime} \rightarrow_{v}^{*} e
$$

- Most languages are primarily call-by-value
- But CBV is not normalizing: (λx. I) (D D)
- CBV diverges more often than normal order and CBN

Call by Value

- Example:
$(\lambda y .(\lambda x, x) y)((\lambda u . u)(\lambda v, v)) \rightarrow_{\beta v}$
$(\lambda y .(\lambda x, x) y)(\lambda v, v) \rightarrow_{\beta v}$
$(\lambda x . x)(\lambda v, v) \rightarrow_{\beta v}$
$\lambda v . v$

Considerations

- Call-by-value:
- easy to implement
- well-behaved (predictable) with respect to side-effects
- Call-by-name:
- More difficult to implement (must pass unevaluated expressions)
- The order of evaluation is harder to predict (e.g., difficulty with side-effects)
- Has a simpler theory than call-by-value
- Allows the natural expression of infinite data structures (e.g. streams)
- Terminates more often than call-by-value
- Various other (not as common) evaluation strategies

Functional Programming

- The λ-calculus is a prototypical functional language with:
- no side effects
- several evaluation strategies
- lots of functions
- nothing but functions (pure λ-calculus does not have any other data type)
- How can we program with functions?
- How can we program with only functions?

Programming With Functions

- Functional programming style is a programming style that relies on lots of functions
- A typical functional paradigm is using functions as arguments or results of other functions
- Higher-order programming
- Some "impure" functional languages permit sideeffects (e.g., Lisp, ML)
- references (pointers), in-place update, arrays, exceptions

Variables in Functional Languages

- We can introduce new variables:

$$
\text { let } x=e_{1} \text { in } e_{2}
$$

- x is bound by le t
- x is statically scoped in e_{2}
- This is pretty much like ($\left.\lambda x . e_{2}\right) e_{1}$
- In a functional language, variables are never updated
- they are just names for expressions or values
- E.g., x is a name for the value denoted by e_{1} in e_{2}
- This models the meaning of "let" in math

Referential Transparency

- In "pure" functional programs, we can reason equationally, by substitution

$$
\text { let } x=e_{1} \text { in } e_{2} \equiv\left[e_{1} / x\right] e_{2}
$$

- In an imperative language a "side-effect" in e_{1} might invalidate the above equation
- The behavior of a function in a "pure" functional language depends only on the actual arguments
- Just like a function in math
- This makes it easier to understand and to reason about functional programs

Expressiveness of λ-Calculus

- The λ-calculus is a minimal system but can express
- data types (integers, booleans, lists, trees, etc.)
- branching
- recursion
- This is enough to encode Turing machines
- Corollary: $e=_{\beta} e^{\prime}$ is undecidable
- Still, how do we encode all these constructs using only functions?
- Idea: encode the "behavior" of values and not their structure

Encoding Booleans in Lambda Calculus

- What can we do with a boolean?
- we can make a binary choice
- A boolean is a function that given two choices selects one of them
- true $=_{\text {def }} \lambda x . \lambda y . x$
- false $=_{\text {def }} \lambda x . \lambda y . y$
- if E_{1} then E_{2} else $E_{3}={ }_{\text {def }} E_{1} E_{2} E_{3}$
- Example: "if true then u else v " is
$(\lambda x, \lambda y, x) u v \rightarrow_{\beta}(\lambda y, u) v \rightarrow_{\beta} u$

Encoding Pairs in Lambda Calculus

- What can we do with a pair?
- we can select one of its elements
- A pair is a function that given a boolean returns the left or the right element
mkpair $x y==_{\operatorname{def}} \lambda b . b \times y$
fst $p \quad=_{\text {def }} p$ true
snd $p \quad=_{\text {def }} p$ false
- Example:
fst (mkpair $x y$) \rightarrow (mkpair $x y$) true \rightarrow true $x y \rightarrow x$

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
- we can iterate a number of times over some function
- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:
$0={ }_{\text {def }} \lambda f . \lambda s . s$
$1={ }_{\text {def }} \lambda f . \lambda s . f s$
$2={ }_{\text {def }} \lambda f . \lambda s . f(f s)$
and so on
- These are numerals in unary representation
- Also called Church numerals

Computing with Natural Numbers

- The successor function

$$
\begin{aligned}
\text { succ } n & =\operatorname{def} \lambda f . \lambda s . f(n f s) \\
\text { or } \operatorname{succ} n & ={ }_{\operatorname{def}} \lambda f . \lambda s . n f(f s)
\end{aligned}
$$

- Addition

$$
\text { add } n_{1} n_{2}==_{\text {def }} n_{1} \text { succ } n_{2}
$$

- Multiplication

$$
\text { mult } n_{1} n_{2}={ }_{\text {def }} n_{1}\left(\text { add } n_{2}\right) 0
$$

- Testing equality with 0 iszero $n=_{\text {def }} n(\lambda b$. false) true

Computing with Natural Numbers. Example

```
mult 2 2 }
2(add 2)0->
```

```
succ n=\lambdaf.\lambdas.f(nfs)
```

add n1 n2 = n1 succ n2

```
add n1 n2 = n1 succ n2
mult n1 n2 = n1 (add n2) 0
mult n1 n2 = n1 (add n2) 0
(add 2) ((add 2) 0) }
2 succ (add 2 0) }
2 succ (2 succ 0) }
succ (succ (succ (succ 0))) }
succ (succ (succ (\lambdaf. \lambdas.f(0fs))))}
succ (succ (succ (\lambdaf. \lambdas.f s))) }
succ (succ (\lambdag. \lambday.g((\lambdaf. \lambdas.fs)gy)))
```


Computing with Natural Numbers. Example

- What is the result of the application add 0 ? $\left(\lambda n_{1} . \lambda n_{2} . n_{1}\right.$ succ $\left.n_{2}\right) 0 \rightarrow_{\beta}$
$\lambda n_{2} .0$ succ $n_{2}=$
λn_{2}. (λf. λs s.s) succ $n_{2} \rightarrow_{\beta}$
$\lambda n_{2} \cdot n_{2}=$
λx. x
- By computing with functions we can express some optimizations
- But we need to reduce under the lambda

Encoding Recursion

- Given a predicate P encode the function "find" such that "find $P n$ " is the smallest natural number which is larger than n and satisfies P
- with find we can encode all recursion
- "find" satisfies the equation

$$
\text { find } p n=\text { if } p n \text { then } n \text { else find } p(s u c c n \text {) }
$$

- Define

$$
F=\lambda f . \lambda p . \lambda n .(p n) n(f p(s u c c n))
$$

- We need a fixed point of F

$$
\text { find }=F \text { find }
$$

or

$$
\text { find } p n=F \text { find } p n
$$

The Fixed-Point Combinator

- Let $Y=\lambda F .(\lambda y \cdot F(y y))(\lambda x . F(x x))$
- This is called the fixed-point combinator
- Verify that $Y F$ is a fixed point of F

$$
y F \rightarrow_{\beta}(\lambda y \cdot F(y y))(\lambda x . F(x x)) \rightarrow_{\beta} F(y F)
$$

- Thus $Y F={ }_{\beta} F(Y F)$
- Given any function in λ-calculus we can compute its fixed-point
- Thus we can define "find" as the fixed-point of the function from the previous slide
- The essence of recursion is the self-application " y "

Expressiveness of Lambda Calculus

- Encodings are fun
- But programming in pure λ-calculus is painful
- We will add constants (0, 1, 2, ..., true, false, if-thenelse, etc.)
- And we will add types (later!)

