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Plan 

•  Introduce lambda calculus 
–  Syntax and operational semantics 
–  Properties 

•  Relationship to programming languages (later) 

•  Study of types and type systems (even later) 
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Background 

•  Developed in 1930’s by Alonzo Church 
•  Subsequently studied by many people 
•  “Testbed” for procedural and functional languages 

–  Simple 
–  Powerful  
–  Easy to extend with features of interest 
–  Plays similar role for PL research as Turing machines for 

computability 

   “Whatever the next 700 languages turn out to be, 
they will surely be variants of lambda calculus.”  

 (Landin ’ 66) 
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Syntax 

•  The λ-calculus has three kinds of expressions (terms) 
             e ::= x             Variables 
                 |  λx.e         Functions (abstraction) 
                 |  e1 e2        Application 
 

•  λx.e is a one-argument function with body e     

•  e1 e2 is a function application 

•  Application associates to the left 
       x y z      means   (x y) z 
 

•  Abstraction extends to the right as far as possible 
      λx.xλy.x y z  means λx.(x (λy. ((x y) z)))    
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Examples of Lambda Expressions 

•  The identity function: 
                       I =def λx. x 

•  A function that given an argument y discards it and 
yields the identity function: 
                          λy. (λx. x) 

•  A function that given a function f invokes it on the 
identity function 
                           λf. f (λx. x) 
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Scope of Variables 

•  As in all languages with variables it is important to 
discuss the notion of scope 
–  Recall: the scope of an identifier is the portion of a program 

where the identifier is accessible 

•  An abstraction λx. E binds variable x in E 
–  x is the newly introduced variable 
–  E is the scope of x 
–  We say x is bound in λx. E 
–  Just like formal function arguments are bound in the function 

body 
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Free and Bound Variables 

•  A variable is said to be free in E if it has occurrences 
that are not bound in E 

•  We can define the free variables of an expression E 
recursively as follows: 
         Free(x) = { x}  
         Free(E1 E2) = Free(E1) ∪ Free(E2) 
         Free(λx. E) = Free(E) - { x } 
 

•  Example: Free(λx. x (λy. x y z)) = { z } 

•  Free variables are (implicitly or explicitly) declared 
outside the term  
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Free and Bound Variables (Cont.) 

•  Like in any language with statically nested scoping, we 
need to worry about variable shadowing (or capturing) 
–  An occurrence of a variable might refer to different things in 

different contexts 

•  E.g., in IMP with locals: let x = E in x + (let x = E’ in x) + x 

•  In λ-calculus: λx. x (λx. x) x 
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Renaming Bound Variables 

•   λ-terms that can be obtained from one another by 
renaming of the bound variables are considered 
identical. This is called α-equivalence.  

•  Example: λx. x is identical to λy. y and to λz. z 

•  Intuition:  
–  By changing the name of a formal argument and of all its 

occurrences in the function body, the behavior of the function 
does not change 

–  In λ-calculus such functions are considered identical 



ECS 240   Lecture 4 10 

Renaming Bound Variables (Cont.) 

•  Convention: we will always try to rename bound 
variables so that they are all unique 
–  e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x 

•  This makes it easy to see the scope of bindings 

•  And also prevents confusion ! 
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Substitution 

•  The substitution of E’ for x in E (written [E’/x]E ) 
–  Step 1. Rename bound variables in E and E’ so they are unique 
–  Step 2. Perform the textual substitution of E’ for x in E 

•  Example: [y (λx. x) / x] λy. (λx. x) y x 

–  After renaming: [y (λv. v)/x] λz. (λu. u) z x 

–  After substitution: λz. (λu. u) z (y (λv. v)) 

•  If we are not careful with scopes might get: 
                λy. (λx. x) y (y (λx. x)) 
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Informal Semantics 

•  We consider only closed terms 
•  The evaluation of  
                               (λx. e) e’ 

1.  Binds x to e’ 
2.  Evaluates e with the new binding 
3.  Yields the result of this evaluation 

•  Like a function call, or like “let x = e’ in e” 

•  Example:  
       (λf. f (f e)) g    evaluates to g (g e)    
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Operational Semantics 

•  There exist many operational semantics for the λ-
calculus 

•  All are based on the equation 
                       (λx. e) e’ =β [e’/x]e 
   usually oriented from left to right 
•  This is called the β-rule and the evaluation step a β-

reduction 

•  The subterm  (λx. e) e’ is a β-redex 

•  e !β e’:   e β-reduces to e’ in one step  
•  e !β

* e’:  e β-reduces to e’ in 0 or more steps 
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Examples of Evaluation 

•  The identity function:  
            (λx. x) E → [E / x] x = E 
 

•  Another example with the identity: 
(λf. f (λx. x)) (λx. x) →  
[λx. x / f] f (λx. x)) = [(λx. x) / f] f (λy. y)) =  
(λx. x) (λy. y) →  
[λy. y /x] x = λy. y 
 

•   A non-terminating evaluation: 
(λx. xx)(λy. yy) → 
[λy. yy / x]xx = (λy. yy)(λy. yy) → … 
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Evaluation and the Static Scope 

•  The definition of substitution guarantees that 
evaluation respects static scoping: 
      (λ x. (λy. y x)) (y (λx. x)) →β λz. z (y (λv. v)) 

 
(y remains free, i.e., defined externally) 
 

•  If we forget to rename the bound y: 
(λ x. (λy. y x)) (y (λx. x)) →*

β λy. y (y (λv. v)) 

 
(y was free before but is bound now) 
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Another View of Reduction 

•  The application 

•  becomes: 

APP 
λx. 

x   x   x 
e e’ 

e’ e’ e’ 

e 

Terms can “grow”  
substantially through 
β-reduction ! 
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Normal Forms 

•  A term without redexes is in normal form 

•  A reduction sequence stops at a normal form 

•  If e is in normal form, then e !*
β e’ implies e = e’   

•  Examples  
–  λx.λy. x  (normal form) 
–  (λx.λy. x) (λx. x) (not normal form) 
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Nondeterministic Evaluation 

•  Define a small-step reduction relation 

•  Note 
–  This is a non-deterministic semantics 
–  We evaluate under λ 

(λx. e) e’ ! [e’/x]e 

e1 ! e1’  
e1 e2 ! e1’ e2 

e2 ! e2’  
e1 e2 ! e1 e2’ 

e ! e’  
λx. e  ! λx. e’ 
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The Order of Evaluation 

•  A λ-term can have more than one instances of (λx. E) E’ 
   (λy. (λx. x) y) E 

 

–  A choice: reduce the inner or the outer λ 
–  Which one should we pick? 

(λy. (λx. x) y) E 

(λy. [y/x] x) E = (λy. y) E [E/y] (λx. x) y =(λx. x) E 

E 

inner outer 
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The Diamond Property 

•  A relation R has the diamond property iff 
–  e R e1 and e R e2 implies there exists e’ with e1 R e’ and e2 R e’ 

•   !β does not have the diamond property 
•   !β

* has the diamond property 
•  The simplest known proof is quite technical 

e 

e1 e2 

e’ 

R R 

R R 
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The Diamond Property 

•  Languages defined by non-deterministic sets of rules 
are common 
–  Logic programming languages 
–  Expert systems 
–  Constraint satisfaction systems 

•  It is useful to know whether such systems have the 
diamond property  



ECS 240   Lecture 4 22 

Equality 

•  Let =β be the reflexive, transitive and symmetric 
closure of !β 

                     =β  is  (!β [ Ãβ)* 

•  In another words, e1 =β e2 if e1 converts to e2 via a 
sequence of forward and backward !β 

e1 e2 

• 

• 

• 
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The Church-Rosser Theorem 

•  If e1 =β e2 then there exists e’ such that e1 !β
* e’ 

and e2 !β
* e’  

•  Proof (informal): apply the diamond property as many 
times as necessary 

e1 e2 

• 

• 

• 

• • 

e’ 



ECS 240   Lecture 4 24 

Corollaries 

•  If e1 =β e2 and e1 and e2 are normal forms then e1 is 
identical to e2 
–  From CR we have 9e’. e1 !*

β e’ and e2 !*
β e’  

–  Since e1 and e2 are normal forms they are identical to e’ 

•  If e !*
β e1 and e !*

β e2 and e1 and e2 are normal 
forms then e1 is identical to e2 
–  All terms have a unique normal form  
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Evaluation Strategies 

•  Church-Rosser theorem says that independent of the 
reduction strategy we will not find more than one 
normal form 

•  But some reduction strategies might fail to find a 
normal form 
–  (λx. y) ((λy.y y) (λy.y y)) ! (λx. y) ((λy.y y) (λy.y y)) ! … 
–  (λx. y) ((λy.y y) (λy.y y)) ! y 

•  We will consider three strategies 
–  normal order 
–  call-by-name 
–  call-by-value 
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Normal-Order Reduction 

•  A redex is outermost if it is not contained inside 
another redex. 

•  Use  K = λx.λy.x 
        S =  λf.λg.λx.f x (g x) 

•  Example: S (K x y) (K u v) 
•  K x, K u and S (K x y) are all redexes 
•  Both K u and S (K x y) are outermost 
•  Normal order always reduces the leftmost outermost 

redex first 

•  Theorem: If e has a normal form e’ then normal order 
reduction will reduce e to e’ 
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Why Not Normal Order ? 

•  In most (all?) programming languages, functions are 
considered values (fully evaluated) 

•  Example  
–  λx. D D = ?   (with normal order) 
–  where D = (λx. x x) 

•  Thus, no reduction is done under lambda 

•  No popular programming language uses normal order 
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Call-by-Name 

•  Don’t reduce under λ 
•  Don’t evaluate the argument to a function call 
•  A value is an abstraction 

•  Call-by-name is demand-driven: an expression is not 
evaluated unless needed 

•  It is normalizing: converges whenever normal  order 
converges 

•  Call-by-name does not necessarily evaluate to a normal 
form. Example: D D = (λx. x x) (λx. x x) 

e1 !n
* λx. e1’   [e2/x]e1’ !n

* e 

e1 e2 !n
* e 

λx. e!n
* λx. e 
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Call by Name 

•  Example: 
(λy. (λx. x) y) ((λu. u) (λv. v)) →βn 
 
(λx. x) ((λu. u) (λv. v)) →βn 
 
(λu. u) (λv. v) →βn 

λv. v 
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Call-by-Value Evaluation 

•  Don’t reduce under lambda 
•  Do evaluate the arguments to a function call 
•  A value is an abstraction  

•  Most languages are primarily call-by-value 
•  But CBV is not normalizing: (λx. I) (D D) 
•  CBV diverges more often than normal order and CBN 

e1 !v
* λx. e1’  e2 !v

* e2’  [e’2/x]e1’ !v
* e 

e1 e2 !v
* e 

λx. e!v
* λx. e 
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Call by Value 

•  Example: 
(λy. (λx. x) y) ((λu. u) (λv. v)) →βv 

 
(λy. (λx. x) y) (λv. v)  →βv 

 
(λx. x) (λv. v)  →βv 
 
λv. v 
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Considerations 

•  Call-by-value: 
–  easy to implement 
–  well-behaved (predictable) with respect to side-effects 

•  Call-by-name: 
–  More difficult to implement (must pass unevaluated 

expressions) 
–  The order of evaluation is harder to predict (e.g., difficulty 

with side-effects) 
–  Has a simpler theory than call-by-value 
–  Allows the natural expression of infinite data structures (e.g. 

streams) 
–  Terminates more often than call-by-value 

•  Various other (not as common) evaluation strategies  
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Functional Programming 

•  The λ-calculus is a prototypical functional language 
with: 
–  no side effects 
–  several evaluation strategies 
–  lots of functions                                     
–  nothing but functions (pure λ-calculus does not have any other 

data type) 

•  How can we program with functions? 
•  How can we program with only functions? 
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Programming With Functions 

•  Functional programming style is a programming style 
that relies on lots of functions 

•  A typical functional paradigm is using functions as 
arguments or results of other functions 
–  Higher-order programming 

•  Some “impure” functional languages permit side-
effects (e.g., Lisp, ML) 
–  references (pointers), in-place update, arrays, exceptions 
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Variables in Functional Languages 

•  We can introduce new variables: 
                          let x = e1 in e2 
–  x is bound by let 
–  x is statically scoped in e2 

•  This is pretty much like (λx. e2) e1 
•  In a functional language, variables are never updated 

–  they are just names for expressions or values 
–  E.g., x is a name for the value denoted by e1 in e2 

  
•  This models the meaning of “let” in math 
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Referential Transparency 

•  In “pure” functional programs, we can reason 
equationally, by substitution 
            let x = e1 in e2   ´ [e1/x]e2 

•  In an imperative language a “side-effect” in e1 might 
invalidate the above equation 

•  The behavior of a function in a “pure” functional 
language depends only on the actual arguments 
–  Just like a function in math 
–  This makes it easier to understand and to reason about 

functional programs 



ECS 240   Lecture 4 37 

Expressiveness of λ-Calculus 

•  The λ-calculus is a minimal system but can express 
–  data types (integers, booleans, lists, trees, etc.) 
–  branching 
–  recursion 

•  This is enough to encode Turing machines 

•  Corollary: e =β e’ is undecidable 

•  Still, how do we encode all these constructs using only 
functions? 

•  Idea: encode the “behavior” of values and not their 
structure 
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Encoding Booleans in Lambda Calculus 

•  What can we do with a boolean?  
–  we can make a binary choice 

•  A boolean is a function that given two choices selects 
one of them 
–  true =def λx. λy. x 
–  false =def λx. λy. y 
–  if E1 then E2 else E3 =def E1 E2 E3 

•  Example: “if true then u else v” is  
   (λx. λy. x) u v →β (λy. u) v →β u 
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Encoding Pairs in Lambda Calculus 

•  What can we do with a pair? 
–  we can select one of its elements 

•  A pair is a function that given a boolean returns the 
left or the right element 
mkpair x y  =def λb. b x y 
fst p          =def p true 
snd p          =def p false 

•  Example: 
fst (mkpair x y) → (mkpair x y) true → true x y → x 
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Encoding Natural Numbers in Lambda Calculus 

•  What can we do with a natural number? 
–  we can iterate a number of times over some function 

•  A natural number is a function that given an operation 
f and a starting value s, applies f a number of times to 
s: 
0 =def λf. λs. s 
1 =def λf. λs. f s 
2 =def λf. λs. f (f s) 
and so on 

•  These are numerals in unary representation 
–  Also called Church numerals 
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Computing with Natural Numbers 

•  The successor function 
                 succ n =def λf. λs. f (n f s) 
        or   succ n = def λf.λs.n f (f s) 
 

•  Addition 
                add n1 n2 =def n1 succ n2  
 

•  Multiplication 
                mult n1 n2 =def n1 (add n2) 0 
 

•  Testing equality with 0 
                iszero n =def n (λb. false) true 
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Computing with Natural Numbers. Example 

mult 2 2 →  
2 (add 2) 0 →  
(add 2) ((add 2) 0) →
2 succ (add 2 0) →  
2 succ (2 succ 0) →  
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) → 
succ (succ (succ (λf. λs. f s))) → 
succ (succ (λg. λy. g ((λf. λs. f s) g y))) 
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4 

                  succ n = λ f. λ s. f (n f s) 
add n1 n2 = n1 succ n2  
mult n1 n2 = n1 (add n2) 0 
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Computing with Natural Numbers. Example 

•  What is the result of the application add 0 ? 
(λn1. λn2. n1 succ n2) 0  →β 
λn2. 0 succ n2 = 
λn2. (λf. λs. s) succ n2 →β 
λn2. n2 = 
λx. x 

•  By computing with functions we can express some 
optimizations 
–  But we need to reduce under the lambda 
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Encoding Recursion 

•  Given a predicate P encode the function “find” such 
that “find P n” is the smallest natural number which 
is larger than n and satisfies P 
–  with find we can encode all recursion 

•  “find” satisfies the equation 
         find p n = if p n then n else find p (succ n) 

•  Define 
              F = λf.λp.λn.(p n) n (f p (succ n)) 

•  We need a fixed point of F 
                           find = F find 
or  
                       find p n = F find p n 
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The Fixed-Point Combinator 

•  Let Y = λF. (λy.F(y y)) (λx. F(x x)) 
–  This is called the fixed-point combinator 
–  Verify that Y F is a fixed point of F 
         Y F !β (λy.F (y y)) (λx. F (x x)) !β F (Y F) 
–  Thus Y F =β F (Y F) 

•  Given any function in λ-calculus we can compute its 
fixed-point 

•  Thus we can define  “find” as the fixed-point of the 
function from the previous slide 

•  The essence of recursion is the self-application “y y” 
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Expressiveness of Lambda Calculus 

•  Encodings are fun 

•  But programming in pure λ-calculus is painful 

•  We will add constants (0, 1, 2, …, true, false, if-then-
else, etc.) 

•  And we will add types (later!) 


