
ECS 240 Lecture 4 1

Introduction to Lambda Calculus

Lecture 4
ECS 240

ECS 240 Lecture 4 2

Plan

•  Introduce lambda calculus
–  Syntax and operational semantics
–  Properties

•  Relationship to programming languages (later)

•  Study of types and type systems (even later)

ECS 240 Lecture 4 3

Background

•  Developed in 1930’s by Alonzo Church
•  Subsequently studied by many people
•  “Testbed” for procedural and functional languages

–  Simple
–  Powerful
–  Easy to extend with features of interest
–  Plays similar role for PL research as Turing machines for

computability

 “Whatever the next 700 languages turn out to be,
they will surely be variants of lambda calculus.”

 (Landin ’ 66)

ECS 240 Lecture 4 4

Syntax

•  The λ-calculus has three kinds of expressions (terms)
 e ::= x Variables
 | λx.e Functions (abstraction)
 | e1 e2 Application

•  λx.e is a one-argument function with body e

•  e1 e2 is a function application

•  Application associates to the left
 x y z means (x y) z

•  Abstraction extends to the right as far as possible
 λx.xλy.x y z means λx.(x (λy. ((x y) z)))

ECS 240 Lecture 4 5

Examples of Lambda Expressions

•  The identity function:
   I =def λx. x

•  A function that given an argument y discards it and
yields the identity function:
   λy. (λx. x)

•  A function that given a function f invokes it on the
identity function
 λf. f (λx. x)

ECS 240 Lecture 4 6

Scope of Variables

•  As in all languages with variables it is important to
discuss the notion of scope
–  Recall: the scope of an identifier is the portion of a program

where the identifier is accessible

•  An abstraction λx. E binds variable x in E
–  x is the newly introduced variable
–  E is the scope of x
–  We say x is bound in λx. E
–  Just like formal function arguments are bound in the function

body

ECS 240 Lecture 4 7

Free and Bound Variables

•  A variable is said to be free in E if it has occurrences
that are not bound in E

•  We can define the free variables of an expression E
recursively as follows:
 Free(x) = { x}
 Free(E1 E2) = Free(E1) ∪ Free(E2)
 Free(λx. E) = Free(E) - { x }

•  Example: Free(λx. x (λy. x y z)) = { z }

•  Free variables are (implicitly or explicitly) declared
outside the term

ECS 240 Lecture 4 8

Free and Bound Variables (Cont.)

•  Like in any language with statically nested scoping, we
need to worry about variable shadowing (or capturing)
–  An occurrence of a variable might refer to different things in

different contexts

•  E.g., in IMP with locals: let x = E in x + (let x = E’ in x) + x

•  In λ-calculus: λx. x (λx. x) x

ECS 240 Lecture 4 9

Renaming Bound Variables

•  λ-terms that can be obtained from one another by
renaming of the bound variables are considered
identical. This is called α-equivalence.

•  Example: λx. x is identical to λy. y and to λz. z

•  Intuition:
–  By changing the name of a formal argument and of all its

occurrences in the function body, the behavior of the function
does not change

–  In λ-calculus such functions are considered identical

ECS 240 Lecture 4 10

Renaming Bound Variables (Cont.)

•  Convention: we will always try to rename bound
variables so that they are all unique
–  e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

•  This makes it easy to see the scope of bindings

•  And also prevents confusion !

ECS 240 Lecture 4 11

Substitution

•  The substitution of E’ for x in E (written [E’/x]E)
–  Step 1. Rename bound variables in E and E’ so they are unique
–  Step 2. Perform the textual substitution of E’ for x in E

•  Example: [y (λx. x) / x] λy. (λx. x) y x

–  After renaming: [y (λv. v)/x] λz. (λu. u) z x

–  After substitution: λz. (λu. u) z (y (λv. v))

•  If we are not careful with scopes might get:
 λy. (λx. x) y (y (λx. x))

ECS 240 Lecture 4 12

Informal Semantics

•  We consider only closed terms
•  The evaluation of
 (λx. e) e’

1.  Binds x to e’
2.  Evaluates e with the new binding
3.  Yields the result of this evaluation

•  Like a function call, or like “let x = e’ in e”

•  Example:
 (λf. f (f e)) g evaluates to g (g e)

ECS 240 Lecture 4 13

Operational Semantics

•  There exist many operational semantics for the λ-
calculus

•  All are based on the equation
 (λx. e) e’ =β [e’/x]e
 usually oriented from left to right
•  This is called the β-rule and the evaluation step a β-

reduction

•  The subterm (λx. e) e’ is a β-redex

•  e !β e’: e β-reduces to e’ in one step
•  e !β

* e’: e β-reduces to e’ in 0 or more steps

ECS 240 Lecture 4 14

Examples of Evaluation

•  The identity function:
 (λx. x) E → [E / x] x = E

•  Another example with the identity:
(λf. f (λx. x)) (λx. x) →
[λx. x / f] f (λx. x)) = [(λx. x) / f] f (λy. y)) =
(λx. x) (λy. y) →
[λy. y /x] x = λy. y

•  A non-terminating evaluation:
(λx. xx)(λy. yy) →
[λy. yy / x]xx = (λy. yy)(λy. yy) → …

ECS 240 Lecture 4 15

Evaluation and the Static Scope

•  The definition of substitution guarantees that
evaluation respects static scoping:
 (λ x. (λy. y x)) (y (λx. x)) →β λz. z (y (λv. v))

(y remains free, i.e., defined externally)

•  If we forget to rename the bound y:
(λ x. (λy. y x)) (y (λx. x)) →*

β λy. y (y (λv. v))

(y was free before but is bound now)

ECS 240 Lecture 4 16

Another View of Reduction

•  The application

•  becomes:

APP
λx.

x x x
e e’

e’ e’ e’

e

Terms can “grow”
substantially through
β-reduction !

ECS 240 Lecture 4 17

Normal Forms

•  A term without redexes is in normal form

•  A reduction sequence stops at a normal form

•  If e is in normal form, then e !*
β e’ implies e = e’

•  Examples
–  λx.λy. x (normal form)
–  (λx.λy. x) (λx. x) (not normal form)

ECS 240 Lecture 4 18

Nondeterministic Evaluation

•  Define a small-step reduction relation

•  Note
–  This is a non-deterministic semantics
–  We evaluate under λ

(λx. e) e’ ! [e’/x]e

e1 ! e1’
e1 e2 ! e1’ e2

e2 ! e2’
e1 e2 ! e1 e2’

e ! e’
λx. e ! λx. e’

ECS 240 Lecture 4 19

The Order of Evaluation

•  A λ-term can have more than one instances of (λx. E) E’
 (λy. (λx. x) y) E

–  A choice: reduce the inner or the outer λ
–  Which one should we pick?

(λy. (λx. x) y) E

(λy. [y/x] x) E = (λy. y) E [E/y] (λx. x) y =(λx. x) E

E

inner outer

ECS 240 Lecture 4 20

The Diamond Property

•  A relation R has the diamond property iff
–  e R e1 and e R e2 implies there exists e’ with e1 R e’ and e2 R e’

•  !β does not have the diamond property
•  !β

* has the diamond property
•  The simplest known proof is quite technical

e

e1 e2

e’

R R

R R

ECS 240 Lecture 4 21

The Diamond Property

•  Languages defined by non-deterministic sets of rules
are common
–  Logic programming languages
–  Expert systems
–  Constraint satisfaction systems

•  It is useful to know whether such systems have the
diamond property

ECS 240 Lecture 4 22

Equality

•  Let =β be the reflexive, transitive and symmetric
closure of !β

 =β is (!β [Ãβ)*

•  In another words, e1 =β e2 if e1 converts to e2 via a
sequence of forward and backward !β

e1 e2

•

•

•

ECS 240 Lecture 4 23

The Church-Rosser Theorem

•  If e1 =β e2 then there exists e’ such that e1 !β
* e’

and e2 !β
* e’

•  Proof (informal): apply the diamond property as many
times as necessary

e1 e2

•

•

•

• •

e’

ECS 240 Lecture 4 24

Corollaries

•  If e1 =β e2 and e1 and e2 are normal forms then e1 is
identical to e2
–  From CR we have 9e’. e1 !*

β e’ and e2 !*
β e’

–  Since e1 and e2 are normal forms they are identical to e’

•  If e !*
β e1 and e !*

β e2 and e1 and e2 are normal
forms then e1 is identical to e2
–  All terms have a unique normal form

ECS 240 Lecture 4 25

Evaluation Strategies

•  Church-Rosser theorem says that independent of the
reduction strategy we will not find more than one
normal form

•  But some reduction strategies might fail to find a
normal form
–  (λx. y) ((λy.y y) (λy.y y)) ! (λx. y) ((λy.y y) (λy.y y)) ! …
–  (λx. y) ((λy.y y) (λy.y y)) ! y

•  We will consider three strategies
–  normal order
–  call-by-name
–  call-by-value

ECS 240 Lecture 4 26

Normal-Order Reduction

•  A redex is outermost if it is not contained inside
another redex.

•  Use K = λx.λy.x
 S = λf.λg.λx.f x (g x)

•  Example: S (K x y) (K u v)
•  K x, K u and S (K x y) are all redexes
•  Both K u and S (K x y) are outermost
•  Normal order always reduces the leftmost outermost

redex first

•  Theorem: If e has a normal form e’ then normal order
reduction will reduce e to e’

ECS 240 Lecture 4 27

Why Not Normal Order ?

•  In most (all?) programming languages, functions are
considered values (fully evaluated)

•  Example
–  λx. D D = ? (with normal order)
–  where D = (λx. x x)

•  Thus, no reduction is done under lambda

•  No popular programming language uses normal order

ECS 240 Lecture 4 28

Call-by-Name

•  Don’t reduce under λ
•  Don’t evaluate the argument to a function call
•  A value is an abstraction

•  Call-by-name is demand-driven: an expression is not
evaluated unless needed

•  It is normalizing: converges whenever normal order
converges

•  Call-by-name does not necessarily evaluate to a normal
form. Example: D D = (λx. x x) (λx. x x)

e1 !n
* λx. e1’ [e2/x]e1’ !n

* e

e1 e2 !n
* e

λx. e!n
* λx. e

ECS 240 Lecture 4 29

Call by Name

•  Example:
(λy. (λx. x) y) ((λu. u) (λv. v)) →βn

(λx. x) ((λu. u) (λv. v)) →βn

(λu. u) (λv. v) →βn

λv. v

ECS 240 Lecture 4 30

Call-by-Value Evaluation

•  Don’t reduce under lambda
•  Do evaluate the arguments to a function call
•  A value is an abstraction

•  Most languages are primarily call-by-value
•  But CBV is not normalizing: (λx. I) (D D)
•  CBV diverges more often than normal order and CBN

e1 !v
* λx. e1’ e2 !v

* e2’ [e’2/x]e1’ !v
* e

e1 e2 !v
* e

λx. e!v
* λx. e

ECS 240 Lecture 4 31

Call by Value

•  Example:
(λy. (λx. x) y) ((λu. u) (λv. v)) →βv

(λy. (λx. x) y) (λv. v) →βv

(λx. x) (λv. v) →βv

λv. v

ECS 240 Lecture 4 32

Considerations

•  Call-by-value:
–  easy to implement
–  well-behaved (predictable) with respect to side-effects

•  Call-by-name:
–  More difficult to implement (must pass unevaluated

expressions)
–  The order of evaluation is harder to predict (e.g., difficulty

with side-effects)
–  Has a simpler theory than call-by-value
–  Allows the natural expression of infinite data structures (e.g.

streams)
–  Terminates more often than call-by-value

•  Various other (not as common) evaluation strategies

ECS 240 Lecture 4 33

Functional Programming

•  The λ-calculus is a prototypical functional language
with:
–  no side effects
–  several evaluation strategies
–  lots of functions
–  nothing but functions (pure λ-calculus does not have any other

data type)

•  How can we program with functions?
•  How can we program with only functions?

ECS 240 Lecture 4 34

Programming With Functions

•  Functional programming style is a programming style
that relies on lots of functions

•  A typical functional paradigm is using functions as
arguments or results of other functions
–  Higher-order programming

•  Some “impure” functional languages permit side-
effects (e.g., Lisp, ML)
–  references (pointers), in-place update, arrays, exceptions

ECS 240 Lecture 4 35

Variables in Functional Languages

•  We can introduce new variables:
 let x = e1 in e2
–  x is bound by let
–  x is statically scoped in e2

•  This is pretty much like (λx. e2) e1
•  In a functional language, variables are never updated

–  they are just names for expressions or values
–  E.g., x is a name for the value denoted by e1 in e2

•  This models the meaning of “let” in math

ECS 240 Lecture 4 36

Referential Transparency

•  In “pure” functional programs, we can reason
equationally, by substitution
 let x = e1 in e2 ´ [e1/x]e2

•  In an imperative language a “side-effect” in e1 might
invalidate the above equation

•  The behavior of a function in a “pure” functional
language depends only on the actual arguments
–  Just like a function in math
–  This makes it easier to understand and to reason about

functional programs

ECS 240 Lecture 4 37

Expressiveness of λ-Calculus

•  The λ-calculus is a minimal system but can express
–  data types (integers, booleans, lists, trees, etc.)
–  branching
–  recursion

•  This is enough to encode Turing machines

•  Corollary: e =β e’ is undecidable

•  Still, how do we encode all these constructs using only
functions?

•  Idea: encode the “behavior” of values and not their
structure

ECS 240 Lecture 4 38

Encoding Booleans in Lambda Calculus

•  What can we do with a boolean?
–  we can make a binary choice

•  A boolean is a function that given two choices selects
one of them
–  true =def λx. λy. x
–  false =def λx. λy. y
–  if E1 then E2 else E3 =def E1 E2 E3

•  Example: “if true then u else v” is
 (λx. λy. x) u v →β (λy. u) v →β u

ECS 240 Lecture 4 39

Encoding Pairs in Lambda Calculus

•  What can we do with a pair?
–  we can select one of its elements

•  A pair is a function that given a boolean returns the
left or the right element
mkpair x y =def λb. b x y
fst p =def p true
snd p =def p false

•  Example:
fst (mkpair x y) → (mkpair x y) true → true x y → x

ECS 240 Lecture 4 40

Encoding Natural Numbers in Lambda Calculus

•  What can we do with a natural number?
–  we can iterate a number of times over some function

•  A natural number is a function that given an operation
f and a starting value s, applies f a number of times to
s:
0 =def λf. λs. s
1 =def λf. λs. f s
2 =def λf. λs. f (f s)
and so on

•  These are numerals in unary representation
–  Also called Church numerals

ECS 240 Lecture 4 41

Computing with Natural Numbers

•  The successor function
 succ n =def λf. λs. f (n f s)
 or succ n = def λf.λs.n f (f s)

•  Addition
 add n1 n2 =def n1 succ n2

•  Multiplication
 mult n1 n2 =def n1 (add n2) 0

•  Testing equality with 0
 iszero n =def n (λb. false) true

ECS 240 Lecture 4 42

Computing with Natural Numbers. Example

mult 2 2 →
2 (add 2) 0 →
(add 2) ((add 2) 0) →
2 succ (add 2 0) →
2 succ (2 succ 0) →
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) →
succ (succ (succ (λf. λs. f s))) →
succ (succ (λg. λy. g ((λf. λs. f s) g y)))
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4

 succ n = λ f. λ s. f (n f s)
add n1 n2 = n1 succ n2
mult n1 n2 = n1 (add n2) 0

ECS 240 Lecture 4 43

Computing with Natural Numbers. Example

•  What is the result of the application add 0 ?
(λn1. λn2. n1 succ n2) 0 →β
λn2. 0 succ n2 =
λn2. (λf. λs. s) succ n2 →β
λn2. n2 =
λx. x

•  By computing with functions we can express some
optimizations
–  But we need to reduce under the lambda

ECS 240 Lecture 4 44

Encoding Recursion

•  Given a predicate P encode the function “find” such
that “find P n” is the smallest natural number which
is larger than n and satisfies P
–  with find we can encode all recursion

•  “find” satisfies the equation
 find p n = if p n then n else find p (succ n)

•  Define
 F = λf.λp.λn.(p n) n (f p (succ n))

•  We need a fixed point of F
 find = F find
or
 find p n = F find p n

ECS 240 Lecture 4 45

The Fixed-Point Combinator

•  Let Y = λF. (λy.F(y y)) (λx. F(x x))
–  This is called the fixed-point combinator
–  Verify that Y F is a fixed point of F
 Y F !β (λy.F (y y)) (λx. F (x x)) !β F (Y F)
–  Thus Y F =β F (Y F)

•  Given any function in λ-calculus we can compute its
fixed-point

•  Thus we can define “find” as the fixed-point of the
function from the previous slide

•  The essence of recursion is the self-application “y y”

ECS 240 Lecture 4 46

Expressiveness of Lambda Calculus

•  Encodings are fun

•  But programming in pure λ-calculus is painful

•  We will add constants (0, 1, 2, …, true, false, if-then-
else, etc.)

•  And we will add types (later!)

