
ECS 240 Data Flow Analysis 1

Data Flow Analysis

Lecture 6
ECS 240

ECS 240 Data Flow Analysis 2

The Plan

•  Introduce a few example analyses

•  Generalize to see the underlying theory

•  Discuss some more advanced issues

ECS 240 Data Flow Analysis 3

Control-Flow Graphs

x := a + b;
y := a * b;
while y > a + b {

 a := a + 1;
 x := a + b;
}

if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b

Control-flow graphs are
state-transition systems.

ECS 240 Data Flow Analysis 4

Notation

s is a statement
succ(s) = { successor statements of s }
pred(s) = { predecessor statements of s }
write(s) = { variables written by s }
read(s) = { variables read by s }

Kill(s) = facts killed by statement s
Gen(s) = facts generated by statement s

ECS 240 Data Flow Analysis 5

Liveness Analysis

•  For each program point
p, which of the
variables defined at
that point are used on
some execution path?

if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b

•  Optimization: If a
variable is not live, no
need to keep it in a
register.

x is not
live here

ECS 240 Data Flow Analysis 6

Example

if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b
x,a,b

x,y,a,b

y,a,b

y,a,b x,y,a,b

a,b

x

ECS 240 Data Flow Analysis 7

Dataflow Equations

()

() (() ()) ()

if ()
() () otherwise

outin

out
in

s succ s

L s L s write s read s

succ s
L s L s

!∈

= − ∪

∅ = ∅& '
((

=) *!
((+ ,


ECS 240 Data Flow Analysis 8

Available Expressions

•  For each program point
p, which expressions
must have already been
computed, and not later
modified, on all paths to
p. if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b

•  Optimization: Where
available, expressions
need not be
recomputed.

a+b is
available
here

ECS 240 Data Flow Analysis 9

Example

if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b
a+b

a+b, a*b

a+b, a*b, y > a+b

a+b

a+b

a+b, y > a+b

ECS 240 Data Flow Analysis 10

Dataflow Equations

{ }
{ }

()

if ()
() () otherwise

() (() | () ())

|if () ()

in out
s pred s

out in

pred s
A s A s

A s A s a S write s V a

s write s read s

!∈

∅ = ∅$
%

= & !
%'

= − ∈ ∩ ≠ ∅

∪ ∩ = ∅



ECS 240 Data Flow Analysis 11

Available Expressions: Schematic

()

1 2

() ()

() ()

outin
s pred s

out in

A s A s

A s A s C C

!∈

!=

= − ∪



Must analysis: property holds on all paths
Forwards analysis: from inputs to outputs

Transfer function:

ECS 240 Data Flow Analysis 12

Live Variables Again

()

() (() ()) ()

if ()
() () otherwise

outin

out
in

s succ s

L s L s write s read s

succ s
L s L s

!∈

= − ∪

∅ = ∅& '
((

=) *!
((+ ,


ECS 240 Data Flow Analysis 13

Live Variables: Schematic

1 2

()

() ()

() ()

outin

out in
s succ s

L s L s C C

L s L s
!∈

= − ∪

!= 
May analysis: property holds on some path
Backwards analysis: from outputs to inputs

Transfer function:

ECS 240 Data Flow Analysis 14

Very Busy Expressions

•  An expression e is very busy at program point
p if every path from p must evaluate e before
any variable in e is redefined

•  Optimization: hoisting expressions

•  A must-analysis
•  A backwards analysis

ECS 240 Data Flow Analysis 15

Reaching Definitions

•  For a program point p, which assignments made
on paths reaching p have not been overwritten

•  Connects definitions with uses (use-def
chains)

•  A may-anlaysis
•  A forwards analysis

ECS 240 Data Flow Analysis 16

One Cut at the Dataflow Design Space

May Must

Forwards

Reaching
definitions

Available
expressions

 Backwards

Live variables

Very busy
expressions

ECS 240 Data Flow Analysis 17

The Literature

•  Vast literature of dataflow analyses

•  90+% can be described by
–  Forwards or backwards
–  May or must

•  Some oddballs, but not many
–  Bidirectional analyses

ECS 240 Data Flow Analysis 18

Another Cut at Dataflow Design

•  What theory are we dealing with?

•  Review our schemas:

()

1 2

() ()

() ()

outin
s pred s

out in

A s A s

A s A s C C

!∈

!=

= − ∪

 1 2

()

() ()

() ()

outin

out in
s succ s

L s L s C C

L s L s
!∈

= − ∪

!= 

ECS 240 Data Flow Analysis 19

Essential Features

•  Set variables Lin(s), Lout(S)
•  Set operations: union, intersection

–  Restricted complement (- constant)
•  Domain of atoms

–  E.g., variable names
•  Equations with single variable on lhs

ECS 240 Data Flow Analysis 20

Dataflow Problems

•  Many dataflow equations are described by the
grammar:

•  v is a variable
•  a is an atom
•  Note: More general than most problems . . .

; |
| | |

EQS v E EQS
E E E E E v a

ε→ =

→ ∩ ∪

ECS 240 Data Flow Analysis 21

Solving Dataflow Equations

•  Simple worklist algorithm:
–  Initially let S(v) = 0 for all v
–  Repeat until S(v) = S(E) for all equations

•  Pick any v = E such that S(v) ≠ S(E)
•  Set S := S[v/S(E)]

ECS 240 Data Flow Analysis 22

Termination

•  How do we know the algorithm terminates?

•  Because
–  operations are monotonic
–  the domain is finite

ECS 240 Data Flow Analysis 23

Monotonicity

•  Operation f is monotonic if
X · Y) f(x) · f(y)

•  We require that all operations be monotonic
–  Easy to check for the set operations
–  Easy to check for all transfer functions; recall:

 1 2() ()outinL s L s C C= − ∪

ECS 240 Data Flow Analysis 24

Termination again

•  To see the algorithm terminates
–  All variables start empty
–  Variables and rhs’s only increase with each update

•  By induction on # of updates, using monotonicity
–  Sets can only grow to a max finite size

•  Together, these imply termination

ECS 240 Data Flow Analysis 25

The Rest of the Lecture

•  Distributive Problems
•  Flow Sensitivity
•  Context Sensitivity

–  Or interprocedural analysis

•  What are the limits of dataflow analysis?

ECS 240 Data Flow Analysis 26

Distributive Dataflow Problems

•  Monotonicity implies for a transfer function f:

•  Distributive dataflow problems satisfy a
stronger property:

f(x [y) ¸ f(x) [f(y)

f(x [y) =f(x) [f(y)

ECS 240 Data Flow Analysis 27

Distributivity Example

h

g f

k

k(h(f(0) [g(0))) =
k(h(f(0)) [h(g(0))) =
k(h(f(0))) [k(h(g(0)))

The analysis of the graph
is equivalent to combining
the analysis of each path!

ECS 240 Data Flow Analysis 28

Meet Over All Paths

•  If a dataflow problem is distributive, then the
(least) solution of the dataflow equations is
equivalent to the analyzing every path
(including infinite ones) and combining the
results

•  Says joins cause no loss of information

ECS 240 Data Flow Analysis 29

Distributivity Again

•  Obtaining the meet over all paths solution is a
very powerful guarantee

•  Says that dataflow analysis is really as good as
you can do for a distributive problem.

•  Alternatively, can be viewed as saying
distributive problems are very easy indeed . . .

ECS 240 Data Flow Analysis 30

What Problems are Distributive?

•  Many analyses of program structure are
distributive
–  E.g., live variables, available expressions, reaching

definitions, very busy expressions
–  Properties of how the program computes

ECS 240 Data Flow Analysis 31

Liveness Example Revisited

if y > a + b

a := a + 1

x := a + b

y := a * b

x := a + b
x,a,b

x,y,a,b

y,a,b

y,a,b x,y,a,b

a,b

x

ECS 240 Data Flow Analysis 32

Constant Folding

•  Ordering i<> for any integer i
•  jt k= > if j ≠ k
•  Example transfer function:

•  Consider

1 2 1 2(:) [() ()]
if , constants

where
otherwise

C v e e v C e C e
a b a b

a b

σ σ σ σ= × = ← ⊗

×%
⊗ = &

' ú

ECS 240 Data Flow Analysis 33

What Problems are Not Distributive?

•  Analyses of what the program computes
–  The output is (a constant, positive, …)

ECS 240 Data Flow Analysis 34

Flow Sensitivity

•  Flow sensitive analyses
–  The order of statements matters
–  Need a control flow graph

•  Or transition system, ….

•  Flow insensitive analyses
–  The order of statements doesn’t matter
–  Analysis is the same regardless of statement order

ECS 240 Data Flow Analysis 35

Example Flow Insensitive Analysis

•  What variables does a program fragment
modify?

{ }

1 2 1 2

(:)
(;) () ()

G x e x
G s s G s G s

= =

= ∪

•  Note G(s1;s2) = G(s2;s1)

ECS 240 Data Flow Analysis 36

The Advantage

•  Flow-sensitive analyses require a model of
program state at each program point
–  E.g., liveness analysis, reaching definitions, …

•  Flow-insensitive analyses require only a single
global state
–  E.g., for G, the set of all variables modified

ECS 240 Data Flow Analysis 37

Notes on Flow Sensitivity

•  Flow insensitive analyses seem weak, but:

•  Flow sensitive analyses are hard to scale to
very large programs
–  Additional cost: state size X # of program points

•  Beyond 1000’s of lines of code, only flow
insensitive analyses have been shown to scale

ECS 240 Data Flow Analysis 38

Context-Sensitive Analysis

•  What about analyzing across procedure
boundaries?

 Def f(x){…}
Def g(y){…f(a)…}
Def h(z){…f(b)…}
 •  Goal: Specialize analysis of f to take

advantage of
•  f is called with a by g
•  f is called with b by h

ECS 240 Data Flow Analysis 39

Control-Flow Graphs Again

•  How do we extend control-flow graphs to
procedures?

•  Idea: Model procedure call f(a) by:
–  Edge from point before call to entry of f
–  Edge from exit(s) of f to point after call

ECS 240 Data Flow Analysis 40

Example

•  Edges from
–  before f(a) to entry of f
–  Exit of f to after f(a)
–  Before f(b) to entry of f
–  Exit of f to after f(b)

f(x){…}

g(y){…f(a)…} h(z){…f(b)…}

ECS 240 Data Flow Analysis 41

Example

•  Edges from
–  before f(a) to entry of f
–  Exit of f to after f(a)
–  Before f(b) to entry of f
–  Exit of f to after f(b)

•  Has the correct flows
for g

f(x){…}

g(y){…f(a)…} h(z){…f(b)…}

ECS 240 Data Flow Analysis 42

Example

•  Edges from
–  before f(a) to entry of f
–  Exit of f to after f(a)
–  Before f(b) to entry of f
–  Exit of f to after f(b)

•  Has the correct flows
for h

f(x){…}

g(y){…f(a)…} h(z){…f(b)…}

ECS 240 Data Flow Analysis 43

Example

•  But also has flows we
don’t want
–  One path captures a call

to g returning at h!

•  So-called “infeasible
paths”

f(x){…}

g(y){…f(a)…} h(z){…f(b)…}

ECS 240 Data Flow Analysis 44

What to do?

•  Must distinguish calls to f in different
contexts

•  Three techniques
–  Assumptions

•  later
–  Context-free reachability

•  Later
–  Call strings

•  Today

ECS 240 Data Flow Analysis 45

Call Strings

•  Observation:
–  At run time, different calls to f are distinguished

by the call stack
•  Problem:

–  The stack is unbounded
•  Idea:

–  Use the last k calls on the stack to distinguish
context

–  Represent a call by the name of the calling
procedure

ECS 240 Data Flow Analysis 46

Example Revisited

•  Use call strings of length 1
•  Context is name of calling

procedure

f(x){…}

g(y){…f(a)…} h(z){…f(b)…}

<

g

g h
h

Note: labels on edges are part of
the state: tag a call with “g” on call
of f() from g(), filter out all but that
portion of the state with call string
“g” on return from g() to f()

ECS 240 Data Flow Analysis 47

Experience with Call Strings

•  Very expensive
–  Multiplies # of abstract values by (# of

procedures ** length of call string)
–  Hard to contemplate call strings > 1

•  Fragile
–  Very sensitive to organization of procedures

•  Well-studied, but not much used in practice

ECS 240 Data Flow Analysis 48

Review of Terminology

•  Must vs. May
•  Forwards vs. Backwards
•  Flow-sensitive vs. Flow-insensitive
•  Context-sensitive vs. Context-insensitive
•  Distributive vs. non-Distributive

ECS 240 Data Flow Analysis 49

Where is Dataflow Analysis Useful?

•  Best for flow-sensitive, context-insensitive,
distributive problems on small pieces of code
–  E.g., the examples we’ve seen and many others

•  Extremely efficient algorithms are known
–  Use different representation than control-flow

graph, but not fundamentally different
–  More on this in a minute . . .

ECS 240 Data Flow Analysis 50

Where is Dataflow Analysis Weak?

•  Lots of places

ECS 240 Data Flow Analysis 51

Data Structures

•  Not good at analyzing data structures

•  Works well for atomic values
–  Labels, constants, variable names

•  Not easily extended to arrays, lists, trees,
etc.
–  Work on shape analysis

ECS 240 Data Flow Analysis 52

The Heap

•  Good at analyzing flow of values in local
variables

•  No notion of the heap in traditional dataflow
applications

•  In general, very hard to model anonymous
values accurately
–  Aliasing
–  The “strong update” problem

ECS 240 Data Flow Analysis 53

Context Sensitivity

•  Standard dataflow techniques for handling
context sensitivity don’t scale well

•  Brittle under common program edits

•  E.g., call strings

ECS 240 Data Flow Analysis 54

Flow Sensitivity (Beyond Procedures)

•  Flow sensitive analyses are standard for
analyzing single procedures

•  Not used (or not aware of uses) for whole
programs
–  Too expensive

ECS 240 Data Flow Analysis 55

The Call Graph

•  Dataflow analysis requires a call graph
–  Or something close

•  Inadequate for higher-order programs

–  First class functions
–  Object-oriented languages with dynamic dispatch

•  Call-graph hinders algorithmic efficiency
–  Desire to keep executable specification is limiting

ECS 240 Data Flow Analysis 56

Forwards vs. Backwards

•  Restriction to forwards/backwards
reachability
–  Very constraining
–  Many important problems not easy to fit into this

mold

