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The Plan 

•  Introduce a few example analyses 

•  Generalize to see the underlying theory 

•  Discuss some more advanced issues 
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Control-Flow Graphs 

x := a + b; 
y := a * b; 
while y > a + b { 

 a := a + 1; 
    x := a + b; 
} 

if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  

Control-flow graphs are 
state-transition systems. 
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Notation 

s is a statement  
succ(s)  =    { successor statements of s } 
pred(s)  =    { predecessor statements of s } 
write(s) =    { variables written by s } 
read(s)  =    { variables read by s } 
 
Kill(s) = facts killed by statement s 
Gen(s) = facts generated by statement s 



ECS 240  Data Flow Analysis 5 

Liveness Analysis 

•  For each program point 
p, which of the 
variables defined at 
that point are used on 
some execution path? 

if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  

•  Optimization: If a 
variable is not live, no 
need to keep it in a 
register. 

x is not 
live here 
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Example 

if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  
x,a,b 

x,y,a,b 

y,a,b 

y,a,b x,y,a,b 

a,b 

x 
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Dataflow Equations 
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Available Expressions 

•  For each program point 
p, which expressions 
must have already been 
computed, and not later 
modified, on all paths to 
p. if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  

•  Optimization: Where 
available, expressions 
need not be 
recomputed. 

a+b is 
available 
here 
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Example 

if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  
a+b 

a+b, a*b 

a+b, a*b, y > a+b 

a+b 

a+b 

a+b, y > a+b 
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Dataflow Equations 
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Available Expressions: Schematic 
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Must analysis: property holds on all paths 
Forwards analysis: from inputs to outputs 

Transfer function: 
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Live Variables Again 
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Live Variables: Schematic 

1 2

( )

( ) ( )

( ) ( )

outin

out in
s succ s

L s L s C C

L s L s
!∈

= − ∪

!= 
May analysis: property holds on some path 
Backwards analysis: from outputs to inputs 

Transfer function: 
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Very Busy Expressions 

•  An expression e is very busy at program point 
p if every path from p must evaluate e before 
any variable in e is redefined 

•  Optimization: hoisting expressions 

•  A must-analysis 
•  A backwards analysis 
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Reaching Definitions 

•  For a program point p, which assignments made 
on paths reaching p have not been overwritten 

•  Connects definitions with uses (use-def 
chains) 

•  A may-anlaysis 
•  A forwards analysis 
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One Cut at the Dataflow Design Space 

May Must 

 
Forwards 

 
Reaching 
definitions 

 
Available 
expressions 

 
 Backwards 

 
Live variables 

 
Very busy 
expressions 
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The Literature 

•  Vast literature of dataflow analyses 

•  90+% can be described by 
–  Forwards or backwards 
–  May or must 

•  Some oddballs, but not many 
–  Bidirectional analyses 
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Another Cut at Dataflow Design 

•  What theory are we dealing with? 

•  Review our schemas: 
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Essential Features 

•  Set variables    Lin(s), Lout(S) 
•  Set operations:  union, intersection 

–  Restricted complement (- constant) 
•  Domain of atoms 

–  E.g., variable names 
•  Equations with single variable on lhs   
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Dataflow Problems 

•  Many dataflow equations are described by the 
grammar: 

•  v is a variable 
•  a is an atom 
•  Note: More general than most problems . . . 

; |
| | |

EQS v E EQS
E E E E E v a

ε→ =

→ ∩ ∪
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Solving Dataflow Equations 

•  Simple worklist algorithm: 
–  Initially let S(v) = 0 for all v 
–  Repeat until S(v) = S(E) for all equations 

•  Pick any v = E such that S(v) ≠ S(E) 
•  Set S := S[v/S(E)] 
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Termination 

•  How do we know the algorithm terminates? 

•  Because 
–  operations are monotonic 
–  the domain is finite 
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Monotonicity 

•  Operation f is monotonic if 
X · Y ) f(x) · f(y) 

•  We require that all operations be monotonic 
–  Easy to check for the set operations  
–  Easy to check for all transfer functions; recall: 

 1 2( ) ( )outinL s L s C C= − ∪
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Termination again 

•  To see the algorithm terminates 
–  All variables start empty 
–  Variables and rhs’s only increase with each update  

•  By induction on # of updates, using monotonicity 
–  Sets can only grow to a max finite size 

•  Together, these imply termination 
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The Rest of the Lecture 

•  Distributive Problems 
•  Flow Sensitivity 
•  Context Sensitivity 

–  Or interprocedural analysis 

•  What are the limits of dataflow analysis? 
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Distributive Dataflow Problems 

•  Monotonicity implies for a transfer function f: 

•  Distributive dataflow problems satisfy a 
stronger property: 

f(x [ y) ¸ f(x) [ f(y) 

f(x [ y) =f(x) [ f(y) 
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Distributivity Example 

h 

g f 

k 

k(h(f(0) [ g(0))) = 
k(h(f(0)) [ h(g(0))) = 
k(h(f(0))) [ k(h(g(0))) 
 
 

The analysis of the graph 
is equivalent to combining 
the analysis of each path! 
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Meet Over All Paths 

•  If a dataflow problem is distributive, then the 
(least) solution of the dataflow equations is 
equivalent to the analyzing every path 
(including infinite ones) and combining the 
results 

•  Says joins cause no loss of information 
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Distributivity Again 

•  Obtaining the meet over all paths solution is a 
very powerful guarantee 

•  Says that dataflow analysis is really as good as 
you can do for a distributive problem. 

•  Alternatively, can be viewed as saying 
distributive problems are very easy indeed . . . 
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What Problems are Distributive? 

•  Many analyses of program structure are 
distributive 
–  E.g., live variables, available expressions, reaching 

definitions, very busy expressions 
–  Properties of how the program computes 



ECS 240  Data Flow Analysis 31 

Liveness Example Revisited 

if y > a + b 

a := a + 1 

x := a + b 

y := a * b  

x := a + b  
x,a,b 

x,y,a,b 

y,a,b 

y,a,b x,y,a,b 

a,b 

x 
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Constant Folding 

•  Ordering i<> for any integer i 
•  jt k= > if j ≠ k 
•  Example transfer function: 

•  Consider  

1 2 1 2( : ) [ ( ) ( ) ]
if ,  constants

where 
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What Problems are Not Distributive? 

•  Analyses of what the program computes 
–  The output is (a constant, positive, …) 
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Flow Sensitivity 

•  Flow sensitive analyses 
–  The order of statements matters 
–  Need a control flow graph 

•  Or transition system, …. 
 

•  Flow insensitive analyses 
–  The order of statements doesn’t matter 
–  Analysis is the same regardless of statement order 
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Example Flow Insensitive Analysis 

•  What variables does a program fragment 
modify? 

{ }

1 2 1 2

( : )
( ; ) ( ) ( )

G x e x
G s s G s G s

= =
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•  Note G(s1;s2) = G(s2;s1)  
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The Advantage 

•  Flow-sensitive analyses require a model of 
program state at each program point 
–  E.g., liveness analysis, reaching definitions, … 

•  Flow-insensitive analyses require only a single 
global state 
–  E.g., for G, the set of all variables modified 
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Notes on Flow Sensitivity 

•  Flow insensitive analyses seem weak, but: 

•  Flow sensitive analyses are hard to scale to 
very large programs 
–  Additional cost: state size X # of program points 

•  Beyond 1000’s of lines of code, only flow 
insensitive analyses have been shown to scale 
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Context-Sensitive Analysis 

•  What about analyzing across procedure 
boundaries? 

 Def f(x){…} 
Def g(y){…f(a)…} 
Def h(z){…f(b)…} 
 •  Goal: Specialize analysis of f to take 

advantage of 
•  f is called with a by g 
•  f is called with b by h 
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Control-Flow Graphs Again 

•  How do we extend control-flow graphs to 
procedures? 

•  Idea: Model procedure call f(a) by: 
–  Edge from point before call to entry of f 
–  Edge from exit(s) of f to point after call 
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Example 

•  Edges from  
–  before f(a) to entry of f 
–  Exit of f to after f(a) 
–  Before f(b) to entry of f 
–  Exit of f to after f(b) 

f(x){…} 

g(y){…f(a)…} h(z){…f(b)…} 
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Example 

•  Edges from  
–  before f(a) to entry of f 
–  Exit of f to after f(a) 
–  Before f(b) to entry of f 
–  Exit of f to after f(b) 

•  Has the correct flows 
for g  

f(x){…} 

g(y){…f(a)…} h(z){…f(b)…} 
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Example 

•  Edges from  
–  before f(a) to entry of f 
–  Exit of f to after f(a) 
–  Before f(b) to entry of f 
–  Exit of f to after f(b) 

•  Has the correct flows 
for h  

f(x){…} 

g(y){…f(a)…} h(z){…f(b)…} 
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Example 

•  But also has flows we 
don’t want 
–  One path captures a call 

to g returning at h! 

•  So-called “infeasible 
paths” 

f(x){…} 

g(y){…f(a)…} h(z){…f(b)…} 
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What to do? 

•  Must distinguish calls to f in different 
contexts 

•  Three techniques 
–  Assumptions 

•  later 
–  Context-free reachability 

•  Later 
–  Call strings 

•  Today 
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Call Strings 

•  Observation:  
–  At run time, different calls to f are distinguished 

by the call stack 
•  Problem:  

–  The stack is unbounded 
•  Idea: 

–  Use the last k calls on the stack to distinguish 
context 

–  Represent a call by the name of the calling 
procedure 
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Example Revisited 

•  Use call strings of length 1 
•  Context is name of calling 

procedure 

f(x){…} 

g(y){…f(a)…} h(z){…f(b)…} 

<

g 

g h 
h 

Note: labels on edges are part of 
the state: tag a call with “g” on call 
of f() from g(), filter out all but that 
portion of the state with call string 
“g” on return from g() to f() 
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Experience with Call Strings 

•  Very expensive 
–  Multiplies # of abstract values by (# of 

procedures ** length of call string) 
–  Hard to contemplate call strings > 1 

•  Fragile 
–  Very sensitive to organization of procedures 

•  Well-studied, but not much used in practice 
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Review of Terminology 

•  Must vs. May 
•  Forwards vs. Backwards 
•  Flow-sensitive vs. Flow-insensitive 
•  Context-sensitive vs. Context-insensitive 
•  Distributive vs. non-Distributive 
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Where is Dataflow Analysis Useful? 

•  Best for flow-sensitive, context-insensitive, 
distributive problems on small pieces of code 
–  E.g., the examples we’ve seen and many others 

•  Extremely efficient algorithms are known 
–  Use different representation than control-flow 

graph, but not fundamentally different 
–  More on this in a minute . . . 
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Where is Dataflow Analysis Weak? 

•  Lots of places 
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Data Structures 

•  Not good at analyzing data structures 

•  Works well for atomic values 
–  Labels, constants, variable names 

•  Not easily extended to arrays, lists, trees, 
etc. 
–  Work on shape analysis 
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The Heap 

•  Good at analyzing flow of values in local 
variables 

•  No notion of the heap in traditional dataflow 
applications 

•  In general, very hard to model anonymous 
values accurately 
–  Aliasing 
–  The “strong update” problem 
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Context Sensitivity 

•  Standard dataflow techniques for handling 
context sensitivity don’t scale well 

•  Brittle under common program edits 

•  E.g., call strings 
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Flow Sensitivity (Beyond Procedures) 

•  Flow sensitive analyses are standard for 
analyzing single procedures 

•  Not used (or not aware of uses) for whole 
programs 
–  Too expensive 
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The Call Graph 

•  Dataflow analysis requires a call graph 
–  Or something close 

 
•  Inadequate for higher-order programs 

–  First class functions 
–  Object-oriented languages with dynamic dispatch 

•  Call-graph hinders algorithmic efficiency 
–  Desire to keep executable specification is limiting 
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Forwards vs. Backwards 

•  Restriction to forwards/backwards 
reachability 
–  Very constraining 
–  Many important problems not easy to fit into this 

mold 


