Abstract Interpretation Non-Standard Semantics

Lecture 8-9
ECS 240

The Problem

- It is useful to predict program behavior statically (without running the program)
- For optimizing compilers
- For software engineering tools
- The semantics we studied so far give us the precise semantics
- However, precise static predictions are impossible
- The exact semantics is not computable
- We must settle for approximate, but correct static analysis (e.g. VC vs. WP)

The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications

A Tiny Language

- Consider the following language of arithmetic

$$
e::=n \mid e_{1}^{*} e_{2}
$$

- The denotational semantics of this language

$$
\begin{aligned}
& \llbracket n \rrbracket=n \\
& \llbracket e_{1}^{*} e_{2} \rrbracket=\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

- For this language the precise semantics is computable

An Abstraction

- Assume that we are interested not in the value of the expression, but only in its sign:
- positive (+), negative (-), or zero (0)
- We can define an abstract semantics that computes only the sign of the result

$$
\sigma: \operatorname{Exp} \rightarrow\{-, 0,+\}
$$

$$
\begin{aligned}
& \sigma(n)=\operatorname{sign}(n) \\
& \sigma\left(e_{1} * e_{2}\right)=\sigma\left(e_{1}\right) \otimes \sigma\left(e_{2}\right)
\end{aligned}
$$

$$
\begin{array}{|c|ccc|}
\hline \otimes & - & 0 & + \\
\hline- & + & 0 & - \\
0 & 0 & 0 & 0 \\
+ & - & 0 & + \\
\hline
\end{array}
$$

Correctness of Sign Abstraction

- We can show that the abstraction is correct in the sense that it correctly predicts the sign

$$
\begin{aligned}
& \llbracket e \rrbracket>0 \Leftrightarrow \sigma(e)=+ \\
& \llbracket e \rrbracket=0 \Leftrightarrow \sigma(e)=0 \\
& \llbracket e \rrbracket<0 \Leftrightarrow \sigma(e)=-
\end{aligned}
$$

- Our semantics is abstract but precise
- Proof is by structural induction on expression e
- Each case repeats similar reasoning

Another View of Soundness

- We associate with each concrete value an abstract value:

$$
\beta: \mathbb{Z} \rightarrow\{-, 0,+\}
$$

- This is called the abstraction function
- Conversely we can also define the concretization function:

$$
\begin{aligned}
& \gamma:\{-, 0,+\} \rightarrow \mathcal{P}(\mathbb{Z}) \\
& \gamma(+)=\{n \in \mathbb{Z} \mid n>0\} \\
& \gamma(0)=\{0\} \\
& \gamma(-)=\{n \in \mathbb{Z} \mid n<0\}
\end{aligned}
$$

Another View of Soundness (Cont.)

- Soundness can be stated succinctly

$$
\forall e \in \operatorname{Exp} . \llbracket e \rrbracket \in \gamma(\sigma(e))
$$

(the true value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the concrete domain (e.g. \mathbb{Z}) and A be the abstract domain (e.g. $\{-, 0,+\}$)

Another View of Soundness (Cont.)

- Consider the generic abstraction of an operator

$$
\sigma\left(e_{1} \text { op } e_{2}\right)=\sigma\left(e_{1}\right) \text { op } \sigma\left(e_{2}\right)
$$

- This is sound iff

$$
\forall a_{1} \forall a_{2} \cdot \gamma\left(a_{1} \text { op } a_{2}\right) \supseteq\left\{n_{1} \text { op } n_{2} \mid n_{1} \in \gamma\left(a_{1}\right), n_{2} \in \gamma\left(a_{2}\right)\right\}
$$

- E.g. $\gamma\left(a_{1} \otimes a_{2}\right) \supseteq\left\{n_{1}{ }^{*} n_{2} \mid n_{1} \in \gamma\left(a_{1}\right), n_{2} \in \gamma\left(a_{2}\right)\right\}$
- This reduces the proof of correctness to one proof for each operator

Abstract Interpretation

- This is our first example of an abstract interpretation.
- We carry out computation in an abstract domain
- The abstract semantics is a sound approximation of the standard semantics
- The concretization and abstraction functions establish the connection between the two domains

Adding Unary Minus and Addition

- We extend the language to $e::=n\left|e_{1}{ }^{*} e_{2}\right|-e$
- We define $\sigma(-e)=\ominus \sigma(e)$

- Now we add addition: $e::=n\left|e_{1}^{*} e_{2}\right|-e \mid e_{1}+e_{2}$
- We define $\sigma\left(e_{1}+e_{2}\right)=\sigma\left(e_{1}\right) \oplus \sigma\left(e_{2}\right)$

$$
\begin{array}{|c|ccc|}
\hline \oplus & - & 0 & + \\
\hline- & - & - & ? \\
0 & - & 0 & + \\
+ & ? & + & + \\
\hline
\end{array}
$$

Adding Addition

- The sign values are not closed under addition
- What should be the value of "+ \oplus-"?
- Start from the soundness condition:

$$
\gamma(+\oplus-) \supseteq\left\{n_{1}+n_{2} \mid n_{1}>0, n_{2}<0\right\}=\mathbb{Z}
$$

- We don' \dagger have an abstract value whose concretization includes \mathbb{Z}, so we add one: \top

\oplus	-	0	+	\top
-	-	-	\top	\top
0	-	0	+	\top
+	\top	+	+	\top
\top	\top	\top	\top	\top

ECS 240 Lecture 8-9

Examples

- Abstract computation might loose information

$$
\begin{aligned}
& \llbracket(1+2)+-3 \rrbracket=0 \\
& \sigma((1+2)+-3)=(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3)=(+\oplus+) \oplus-=\top
\end{aligned}
$$

- We loose some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable

Adding Division

- Fairly straightforward except for division by 0
- We say that there is no answer in that case
$-\gamma(+\oslash 0)=\left\{n \mid n=n_{1} / 0, n_{1}>0\right\}=\emptyset$
- We introduce \perp to be the abstraction of the \emptyset
- We also use the same abstraction for non-termination!

\oslash	-	0	+	\top	\perp
-	+	0	-	\top	\perp
0	\perp	\perp	\perp	\perp	\perp
+	-	0	+	\top	\perp
\top	\top	\top	\top	\top	\perp
\perp	\perp	\perp	\perp	\perp	\perp

The Abstract Domain

- Our abstract domain forms a lattice
- A partial order is induced by γ

$$
a_{1} \leq a_{2} \quad \text { iff } \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)
$$

- We say that a_{1} is more precise that a_{2} !
- Every finite subset has a least-upper bound (lub) and a greatest-lower bound (glb)

Lattice Facts

- A lattice is complete when all subsets have lub and glb
- Even infinite ones
- Every finite lattice is complete
- Every complete lattice is a CPO
- Since a chain is a subset
- Not every CPO is a complete lattice
- Might not even be a lattice

More Lattice Facts

- Early work in denotational semantics used lattices
- But it was latter seen that only chains need to have lub
- And there was no need for T and glb
- In abstract interpretation we' ll use T to denote "I don' \dagger know"
- Corresponds to all values in the concrete domain

More Definitions

- We can start with the abstraction function

$$
\beta: C \rightarrow A \text { (maps a concrete value to the best abstract value) }
$$

- A must be a lattice
- From here we can derive the concretization function

$$
\begin{aligned}
& \gamma: A \rightarrow \mathcal{P}(C) \\
& \gamma(a)=\{x \in C \mid \beta(x) \leq a\}
\end{aligned}
$$

- And the abstraction for sets

$$
\begin{aligned}
& \alpha: \mathcal{P}(C) \rightarrow A \\
& \alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\}
\end{aligned}
$$

Example

- Consider our sign lattice

$$
\left.\begin{array}{l}
\quad \beta(n)= \begin{cases}+ & \text { if } n>0 \\
0 & \text { if } n=0 \\
- & \text { if } n<0\end{cases} \\
\alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\} \\
- \text { Example: } \alpha(\{1,2\})=\operatorname{lub}\{+\}=+ \\
\\
\alpha(\{1,0\})=\operatorname{lub}\{+, 0\}=T \\
\alpha(\})=\operatorname{lub}\{ \}=\perp
\end{array}\right\} \begin{aligned}
\gamma(a)=\{n \mid \beta(n) \leq a\} \\
\text { - Example: } \gamma(+)=\{n \mid \beta(n) \leq+\}=\{n \mid \beta(n)=+\}=\{n \mid n>0\} \\
\gamma(T)=\{n \mid \beta(n) \leq T\}=\mathbb{Z} \\
\gamma(\perp)=\{n \mid \beta(n) \leq \perp\}=\emptyset
\end{aligned}
$$

Galois Connections

- We can show that
- γ and α are monotonic (with the \subseteq ordering on $\mathcal{P}(C)$)
- $\alpha(\gamma(a))=a$ for all $a \in A$
- $\quad \gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$
- Such a pair of functions is called a Galois connection
- Between lattices A and $\mathcal{P}(C)$

Correctness Condition

- In general, abstract interpretation satisfies the following diagram

Correctness Conditions

Conditions for correct abstract interpretations

1. α and γ are monotonic
2. α and γ form a Galois connection
3. Abstraction of operations is correct

$$
a_{1} \text { op } a_{2}=\alpha\left(\gamma\left(a_{1}\right) \text { op } \gamma\left(a_{2}\right)\right)
$$

So far

- Introduced abstract interpretation
- Two mappings form a Galois connection
- An abstraction mapping from concrete to abstract values
- A concretization mapping from abstract to concrete values
- Next look a bit more at Galois connections
- Then extend these ideas from expressions to programs

Why Galois Connections ?

- We have an abstract domain A
- An abstraction function $\beta: \mathbb{Z} \rightarrow A$
- Induces $\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow A$ and $\gamma: A \rightarrow \mathcal{P}(\mathbb{Z})$
- We argued that for correctness

$$
\gamma\left(a_{1} \text { op } a_{2}\right) \supseteq \gamma\left(a_{1}\right) \text { op } \gamma\left(a_{2}\right)
$$

- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction
- For each set $S \subseteq C$, define $\alpha(S)$ as follows:
- Pick S^{\prime} the smallest that includes S and is in the image of γ
- Define $\alpha(S)=\gamma^{-1}\left(S^{\prime}\right)$
- Then we define: a_{1} op $a_{2}=\alpha\left(\gamma\left(a_{1}\right)\right.$ op $\left.\gamma\left(a_{2}\right)\right)$
- Then α and γ form a Galois connection

Abstract Interpretation for Imperative Programs

- So far we abstracted the value of expressions
- We want now to abstract the state at each point in the program
- First we define the concrete semantics that we are abstracting
- We use a collecting semantics

The Collecting Semantics

- Recall
- A state $\sigma \in \Sigma=\operatorname{Var} \rightarrow \mathbb{Z}$
- States vary from program point to program point
- We introduce a set of program points: Labels
- We want to answer questions like:
- Is x always positive at label i?
- Is x always greater or equal to y at label j ?
- To answer these questions it helps to construct

$$
C \in \text { Contexts }=\text { Labels } \rightarrow \mathcal{P}(\Sigma)
$$

- For each label, all the states at that label
- This is called the collecting semantics of the program
- How can we define the collecting semantics?

Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
- We do it for a flowchart program
- It can be done for IMP with careful definition of program points
- Define a label on each edge in the flowchart
- For assignment

$$
C_{\mathrm{j}}=\left\{\sigma[x:=\mathrm{n}] \mid \sigma \in C_{\mathrm{i}} \wedge \llbracket e \rrbracket \sigma=n\right\}
$$

Defining the Collecting Semantics

- For conditionals

$$
\begin{aligned}
& C_{\mathrm{j}}=\left\{\sigma \mid \sigma \in C_{\mathrm{i}} \wedge \llbracket \mathrm{~b} \rrbracket \sigma=\text { false }\right\} \\
& C_{\mathrm{k}}=\left\{\sigma \mid \sigma \in C_{\mathrm{i}} \wedge \llbracket \mathrm{~b} \rrbracket \sigma=\text { true }\right\}
\end{aligned}
$$

Defining the Collecting Semantics

- For a join

- Verify that these relations are monotonic
- If we increase a C_{i} all other C_{j} can only increase

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

$$
\begin{aligned}
C_{1}= & \{\sigma \mid \sigma(x) \geq 0\} \\
C_{2} & =\left\{\sigma[y:=1] \mid \sigma \in C_{1}\right\} \\
& \cup\left\{\sigma[x:=\sigma(x)-1] \mid \sigma \in C_{4}\right\} \\
C_{3} & =C_{2} \cap\{\sigma \mid \sigma(x) \neq 0\} \\
C_{5} & =C_{2} \cap\{\sigma \mid \sigma(x)=0\} \\
C_{4}= & =\sigma\left[y:=\sigma(y)^{\star} \sigma(x) \mid \sigma \in C_{3}\right\}
\end{aligned}
$$

The Collecting Semantics

- We have an equation with the unknown C
- The equation is defined by a monotonic and continuous function on the domain Labels $\rightarrow \mathcal{P}(\Sigma)$
- We can use the least fixed-point theorem
- We start with $C^{0}=\lambda L . \emptyset$
- We apply the relations between C_{i} and C_{j} to construct C_{i}^{1} from $C^{0}{ }_{j}$
- We stop when $C^{k}=C^{k-1}$
- The problem is that we'll go on forever for most programs
- But we know the fixed point exists

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

Abstract Interpretation

- We pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
- Along with a monotonic abstraction $\alpha: \mathcal{P}(\Sigma) \rightarrow A$
- Alternatively, pick $\beta: \Sigma$-> A
- This uniquely defines its Galois connection γ
- We take the relations between C_{i} and move them to the abstract domain:

$$
a \in \text { Labels } \rightarrow A
$$

- Assignment

Concrete: $\quad C_{j}=\left\{\sigma[x:=n] \mid \sigma \in C_{i} \wedge \llbracket e \rrbracket \sigma=n\right\}$
Abstract: $\quad a_{j}=\alpha\left\{\sigma[x:=n] \mid \sigma \in \gamma\left(a_{i}\right) \wedge \llbracket e \rrbracket \sigma=n\right\}$

Abstract Interpretation

- Conditional

Concrete: $C_{j}=\left\{\sigma \mid \sigma \in C_{i} \wedge \llbracket \mathrm{~b} \rrbracket \sigma=\right.$ false $\}$ and

$$
C_{\mathrm{k}}=\left\{\sigma \mid \sigma \in C_{\mathrm{i}} \wedge \llbracket \mathrm{~b} \rrbracket \sigma=\text { true }\right\}
$$

Abstract: $a_{j}=\alpha\left\{\sigma \mid \sigma \in \gamma\left(a_{i}\right) \wedge \llbracket b \rrbracket \sigma=\right.$ false $\}$ and

$$
a_{k}=\alpha\left\{\sigma \mid \sigma \in \gamma\left(a_{i}\right) \wedge \llbracket b \rrbracket \sigma=\text { true }\right\}
$$

- Join

Concrete: $C_{k}=C_{i} \cup C_{j}$
Abstract: $a_{k}=\alpha\left(\gamma\left(a_{i}\right) \cup \gamma\left(a_{j}\right)\right)=\operatorname{lub}\left\{a_{i}, a_{j}\right\}$

Least Fixed-Points in the Abstract Domain

- Now we have a recursive equation with unknown " a "
- Defined by a monotonic and continuous function on the domain Labels \rightarrow A
- We can use the least fixed-point theorem:
- Start with $\mathrm{a}^{0}=\lambda \mathrm{L} . \perp$
- Apply the monotonic function to compute a^{k+1} from a^{k}
- Stop when $a^{k+1}=a^{k}$
- Exactly the same computation as for the collecting semantics
- What is new?

Least Fixed Point in Abstract Domain

- We have a hope of termination
- The classic setup is when A has only uninteresting chains (finite number of elements in each chain)
- We say that A has finite height (say h)
- In this case the computation takes at most $O(h$ * Labels ${ }^{2}$) steps
- At each step "a" makes progress on at least one label
- We can only make progress h times
- And each time we must compute |Labels| elements
- This is a quadratic analysis: good news

Abstract Interpretation: Example

- Consider the following program

The Abstract Domain for Sign Analysis

- Consider the complete lattice $S=\{\perp,-, 0,+, \top\}$
- From it construct the complete lattice $A=\{x, y\} \rightarrow S$
- With point-wise ordering as usual
- The abstract state consists of the sign for x and y
- We start with $a^{0}=\lambda L . \lambda v \in\{x, y\} . \perp$

Example

Label		Iterations \rightarrow									
1	x	+									+
	y	T									T
2	x	\perp	+			T					T
	y	\perp	+						T		T
3	x	\perp \perp		+			T				T
	y	\perp		+						T	T
4	x	\perp			+			T			T
	y	\perp			+			T			T
5	x	\perp					0				0
	y	\perp					+			T	T

ECS 240 Lecture 8-9

Notes

- We abstracted the state of each variable independently

$$
A=\{x, y\} \rightarrow\{\perp,-, 0,+, \top\}
$$

- We lost relationships between variables
- E.g., that at a point x and y are always of the same sign
- In the previous abstraction we get $\{x:=\top, y:=\top\}$ at 2
- We can also abstract the state as a whole

$$
A=\mathcal{P}(\{\perp,-, 0,+, \top\} \times\{\perp,-, 0,+, \top\})
$$

- For the previous example we now get the abstraction

$$
\{(0,+),(+,+)\} \text { at } 2
$$

Other Abstract Domains

- Range analysis
- Lattice of ranges: $R=\{\perp,[n . m],(-\infty, m],[n,+\infty), \top\}$
- It is a complete lattice
- $[n . m] \sqcup\left[n^{\prime} . . m^{\prime}\right]=\left[\min \left(n, n^{\prime}\right) . . \max \left(m, m^{\prime}\right)\right]$
- $[n . m] \sqcap\left[n^{\prime} . . m^{\prime}\right]=\left[\max \left(n, n^{\prime}\right) . . \min \left(m, m^{\prime}\right)\right]$
- With appropriate care in dealing with ∞
- $\beta: \mathbb{Z} \rightarrow \mathbf{R}$ such that $\beta(n)=[n . . n]$
$-\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow R$ such that $\alpha(S)=\operatorname{lub}\{\beta(n) \mid n \in S\}=$ [min(S).. $\max (S)]$
- $\gamma: R \rightarrow \mathcal{P}(Z)$ such that $\gamma(r)=\{n \mid n \in r\}$
- This lattice has infinite-height chains
- So the abstract interpretation might not terminate!

Example of Non-Termination

- Consider this (common) program fragment

Example of Non-Termination

- Consider the sequence of abstract states at point 2
- [0..0], [0.11], [0..2], ...
- The analysis never terminates
- Or terminates very late if the loop bound is known statically
- It is time to approximate even more: widening
- We redefine the join (lub) operator of the lattice to ensure that from [0..0] upon union with [1..1] the result is [0.. $+\infty$) and not [0..1]
- Now the sequence of states is
- [0.. 0], $[0,+\infty$), $[0,+\infty$) Done (no more infinite chains)

Other Abstract Domains

- Linear relationships between variables
- A convex polyhedron is a subset of \mathbb{Z}^{k} whose elements satisfy a number of inequalities: $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k} \geq c$
- This is a complete lattice. Use linear programming methods for computing lub
- Linear relationships with at most two variables
- Like convex polyhedra but with at most two variables per constraint
- Octagons: $x \pm y>=c$ have efficient algorithms
- Modulo constraints
- E.g. even and odd

Summary of Abstract Interpretation

- AI is a very powerful technique that underlies a large number of program analyses
- AI can also be applied to functional and logic programming languages
- There are a few success stories
- Strictness analysis for lazy functional languages
- PolySpace for linear constraints
- In most other cases however AI is still slow
- When the lattices have infinite height and widening heuristics are used the result becomes unpredictable

