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The Problem 

•  It is useful to predict program behavior statically 
(without running the program) 
–  For optimizing compilers 
–  For software engineering tools 

•  The semantics we studied so far give us the precise 
semantics  

   

•  However, precise static predictions are impossible 
–  The exact semantics is not computable 

•  We must settle for approximate, but correct static 
analysis (e.g. VC vs. WP) 
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The Plan 

•  We will introduce abstract interpretation by example 

•  Starting with a miniscule language we will build up to a 
fairly realistic application 

•  Along the way we will see most of the ideas and 
difficulties that arise in a big class of applications 
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A Tiny Language 

•  Consider the following language of arithmetic 
                   e ::= n | e1 * e2 
 
•  The denotational semantics of this language 
                   «n¬ = n 
                   «e1 * e2¬ = «e1¬ £ «e2¬ 

•  For this language the precise semantics is computable  
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An Abstraction 

•  Assume that we are interested not in the value of the 
expression, but only in its sign:  
–  positive (+), negative (-), or zero (0) 

•  We can define an abstract semantics that computes 
only the sign of the result 
                σ: Exp ! {-, 0, +} 
 
 σ(n) = sign(n) 
 σ(e1 * e2) = σ(e1)  σ(e2) 

 - 0 + 
- + 0 - 
0 0 0 0 
+ - 0 + 
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Correctness of Sign Abstraction 

•  We can show that the abstraction is correct in the 
sense that it correctly predicts the sign 
               «e¬ > 0  , σ(e) = + 
                «e¬ = 0  , σ(e) = 0 
               «e¬ < 0  , σ(e) = - 
 

•  Our semantics is abstract but precise 

•  Proof is by structural induction on expression e 
–  Each case repeats similar reasoning 
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Another View of Soundness 

•  We associate with each concrete value an abstract 
value: 

                       β : Z ! { -, 0, + } 
•  This is called the abstraction function 
•  Conversely we can also define the concretization 

function:  
                  γ : {-, 0, +} ! P(Z) 
 
                  γ(+) = { n 2 Z | n > 0 } 
                  γ(0) = { 0 }  
                  γ(-) = { n 2 Z | n < 0 } 
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Another View of Soundness (Cont.) 

•  Soundness can be stated succinctly 
                  8e 2 Exp. «e¬ 2 γ(σ(e))  
   (the true value of the expression is among the concrete values 

represented by the abstract value of the expression) 
•  Let C be the concrete domain (e.g. Z) and A be the 

abstract domain (e.g. {-, 0, +}) 

P(C) 

Exp A 

C 
2 

γ 

σ 

«·¬ 
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Another View of Soundness (Cont.) 

•  Consider the generic abstraction of an operator 
                  σ(e1 op e2) = σ(e1) op σ (e2) 

•  This is sound iff 
       8a18a2. γ(a1 op a2) ¶ {n1 op n2 | n1 2 γ(a1), n2 2 γ(a2)} 

•  E.g. γ(a1  a2) ¶ { n1 * n2 | n1 2 γ(a1), n2 2 γ(a2) } 

•  This reduces the proof of correctness to one proof 
for each operator 
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Abstract Interpretation 

•  This is our first example of an abstract 
interpretation. 

•  We carry out computation in an abstract domain 

•  The abstract semantics is a sound approximation of 
the standard semantics 

•  The concretization and abstraction functions 
establish the connection between the two domains 
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Adding Unary Minus and Addition 

•  We extend the language to e ::= n | e1 * e2 | - e 
•  We define σ(- e) = ª σ(e) 

•  Now we add addition: e ::= n | e1 * e2 | - e | e1 + e2  
•  We define σ(e1 + e2) = σ(e1) © σ(e2) 

- 0 + 
ª + 0 - 

© - 0 + 
- - - ? 
0 - 0 + 
+ ? + + 
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Adding Addition 

•  The sign values are not closed under addition 
•  What should be the value of “+ © –”? 
•  Start from the soundness condition: 
            γ(+ © –) ¶ { n1 + n2 | n1 > 0, n2 < 0} = Z 
•  We don’t have an abstract value whose concretization 

includes Z, so we add one: > 

© - 0 + > 
- - - > > 
0 - 0 + > 
+ > + + > 
> > > > > 
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Examples 

•  Abstract computation might loose information 

       «(1 + 2) + -3¬ = 0 
      σ((1+2) + -3) = (σ(1) © σ(2)) © σ(-3) = (+ © +) © - = > 

•  We loose some precision 
•  But this will simplify the computation of the abstract 

answer in cases when the precise answer is not 
computable 
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Adding Division 

•  Fairly straightforward except for division by 0 
–  We say that there is no answer in that case 
–   γ(+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ; 

•  We introduce ? to be the abstraction of the ; 
–  We also use the same abstraction for non-termination ! 

® - 0 + > ? 
- + 0 - > ? 
0 ? ? ? ? ? 
+ - 0 + > ? 
> > > > > ? 
? ? ? ? ? ? 
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The Abstract Domain 

•  Our abstract domain forms a lattice 
–  A partial order is induced by γ 
                  a1 · a2   iff γ(a1) µ γ(a2) 

•  We say that a1 is more precise that a2 ! 
–  Every finite subset has a least-upper bound (lub) and a 

greatest-lower bound (glb) 

> 

? 

- 0 + 
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Lattice Facts 

•  A lattice is complete when all subsets have lub and glb 
–  Even infinite ones 

•  Every finite lattice is complete 

•  Every complete lattice is a CPO 
–  Since a chain is a subset 

•  Not every CPO is a complete lattice 
–  Might not even be a lattice 
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More Lattice Facts 

•  Early work in denotational semantics used lattices 
–  But it was latter seen that only chains need to have lub 
–  And there was no need for > and glb 

•  In abstract interpretation we’ll use > to denote “I 
don’t know” 
–  Corresponds to all values in the concrete domain 
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More Definitions 

•  We can start with the abstraction function 
    β : C ! A  (maps a concrete value to the best abstract value) 
–  A must be a lattice 

•  From here we can derive the concretization function 
    γ : A ! P(C) 
    γ(a) = { x 2 C | β(x) · a } 

•  And the abstraction for sets 
    α : P(C) ! A  
    α(S) = lub { β(x) | x 2 S } 
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Example 

•  Consider our sign lattice 
             +            if n > 0 
 β(n) =   0            if n = 0 
             -            if n < 0  

•   α(S) = lub { β(x) | x 2 S}  
–  Example: α ({1, 2}) = lub { + } = + 
                   α ({1, 0}) = lub { +, 0} = > 
                   α ({}) = lub {} = ? 

•   γ(a) = { n | β(n) · a }  
–  Example: γ (+) = { n | β(n) · + } ={ n | β(n) = +} =  { n | n > 0 } 
                   γ (>) = { n | β(n) · > } = Z 
                   γ (?) = { n | β(n) · ?} = ;  
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Galois Connections 

•  We can show that 
–   γ and α are monotonic (with the µ ordering on P(C))    
–   α (γ (a)) = a  for all a 2 A 
–   γ (α(S)) ¶ S  for all S 2 P(C) 

•  Such a pair of functions is called a Galois connection 
–  Between lattices A and P(C)  

S C 

γ ± α 
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Correctness Condition 

•  In general, abstract interpretation satisfies the 
following diagram 

P(C) 

Exp A 

C 
2 

γ 

σ 

«·¬ α (·) 
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Correctness Conditions 

Conditions for correct abstract interpretations 

1.   α and γ are monotonic 

2.   α and γ form a Galois connection 

3.  Abstraction of operations is correct 
          a1 op a2 = α(γ(a1) op γ(a2))  
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So far 

•  Introduced abstract interpretation 

•  Two mappings form a Galois connection  
–  An abstraction mapping from concrete to abstract values 
–  A concretization mapping from abstract to concrete values  

•  Next look a bit more at Galois connections 

•  Then extend these ideas from expressions to 
programs 
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Why Galois Connections ? 

•  We have an abstract domain A 
–  An abstraction function β : Z ! A 
–  Induces α : P(Z) ! A and γ : A ! P(Z) 

•  We argued that for correctness 
              γ(a1 op a2) ¶ γ(a1) op γ(a2) 
–  We wish for the set on the left to be as small as possible 
–  To reduce the loss of information through abstraction 

•  For each set S µ C, define α(S) as follows: 
–  Pick S’ the smallest that includes S and is in the image of γ 
–  Define α(S) = γ-1(S’) 
–  Then we define: a1 op a2 = α(γ(a1) op γ(a2)) 

•  Then α and γ form a Galois connection 
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Abstract Interpretation for Imperative Programs 

•  So far we abstracted the value of expressions 

•  We want now to abstract the state at each point in 
the program 

•  First we define the concrete semantics that we are 
abstracting 
–  We use a collecting semantics 
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The Collecting Semantics 

•  Recall 
–  A state σ 2 Σ = Var ! Z 
–  States vary from program point to program point 

•  We introduce a set of program points: Labels 
•  We want to answer questions like: 

–  Is x always positive at label i ? 
–  Is x always greater or equal to y at label j ? 

•  To answer these questions it helps to construct 
             C 2 Contexts = Labels ! P(Σ) 

–  For each label, all the states at that label 
–  This is called the collecting semantics of the program 

•  How can we define the collecting semantics ? 
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Defining the Collecting Semantics 

•  We first define relations between the collecting 
semantics at different labels 
–  We do it for a flowchart program  
–  It can be done for IMP with careful definition of program 

points 
•  Define a label on each edge in the flowchart 
•  For assignment 

                                     Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n} x := e 
i 

j 
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Defining the Collecting Semantics 

•  For conditionals 

           Cj = { σ | σ 2 Ci Æ «b¬σ = false} 
           Ck = { σ | σ 2 Ci Æ «b¬σ = true} 
 

i 

b 
true false 

j k 
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Defining the Collecting Semantics 

•  For a join 

                              Ck = Ci [ Cj 

•  Verify that these relations are monotonic 
–  If we increase a Ci all other Cj can only increase 

i 

k 

j 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
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The Collecting Semantics 

•  We have an equation with the unknown C 
–  The equation is defined by a monotonic and continuous 

function on the domain Labels ! P(Σ) 

•  We can use the least fixed-point theorem  
–  We start with C0 = λL.; 
–  We apply the relations between Ci and Cj to construct C1

i from 
C0

j 
–  We stop when Ck = Ck-1

 

–  The problem is that we’ll go on forever for most programs 
–  But we know the fixed point exists 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

; 

; 

; 

; 

; 

; 



ECS 240   Lecture 8-9 33 

Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

; 

; 

; 

; 

; 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

{x ¸ 0, y = 1}  

; 

; 

; 

; 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

{x ¸ 0, y = 1}  

{x=0,y=1} 

; 

; 

{x>0,y=1} 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

{x ¸ 0, y = 1}  

{x=0,y=1} 

{x>0,y=x} 

; 

{x>0,y=1} 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

{x ¸ 0, y = 1}  

{x=0,y=1} 

{x>0,y=x} 

{x¸ 0, y=x+1} 

{x>0,y=1} 
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Collecting Semantics: Example 

•  Consider the following program (assume x ¸ 0 initially) 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 
F T 

C1 = {σ | σ(x) ¸ 0} 
C2 =    { σ[y:=1] | σ 2 C1} 
       [ {σ[x:=σ(x)-1] | σ 2 C4} 
C3 = C2 Å {σ | σ(x) ≠ 0} 
C5 = C2 Å {σ | σ(x) = 0} 
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3} 
 

{ x ¸ 0 } 

{x ¸ 0, y = 1 Ç y = x + 1}  

{x=0,y=1} 

{x>0,y=x} 

{x¸ 0, y=x+1} 

{x>0,y=1} 
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Abstract Interpretation  

•  We pick a complete lattice A (abstractions for P(Σ) ) 
–  Along with a monotonic abstraction α : P(Σ) ! A 
–  Alternatively, pick β : Σ -> A 
–  This uniquely defines its Galois connection γ 

•  We take the relations between Ci and move them to 
the abstract domain: 

                         a 2 Labels ! A 

•  Assignment 
      Concrete:    Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n} 
      Abstract:    aj = α {σ[x := n] | σ 2 γ(ai) Æ «e¬σ = n} 
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Abstract Interpretation 

•  Conditional 
       Concrete: Cj = { σ | σ 2 Ci Æ «b¬σ = false} and   
                       Ck = { σ | σ 2 Ci Æ «b¬σ = true} 
       Abstract: aj = α { σ | σ 2 γ(ai) Æ «b¬σ = false} and   
                       ak = α { σ | σ 2 γ(ai) Æ «b¬σ = true} 

•  Join 
      Concrete: Ck = Ci [ Cj 
      Abstract: ak = α (γ(ai) [ γ(aj)) = lub {ai, aj} 
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Least Fixed-Points in the Abstract Domain 

•  Now we have a recursive equation with unknown “a” 
–  Defined by a monotonic and continuous function on the domain 

Labels ! A 

•  We can use the least fixed-point theorem: 
–  Start with a0 = λL.? 
–  Apply the monotonic function to compute ak+1 from ak 
–  Stop when ak+1 = ak

 

•  Exactly the same computation as for the collecting 
semantics 
–  What is new ? 
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Least Fixed Point in Abstract Domain 

•  We have a hope of termination 

•  The classic setup is when A has only uninteresting 
chains (finite number of elements in each chain) 
–  We say that A has finite height (say h) 

•  In this case the computation takes at most O(h * |
Labels|2) steps 
–  At each step “a” makes progress on at least one label 
–  We can only make progress h times  
–  And each time we must compute |Labels| elements 

•  This is a quadratic analysis: good news 
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Abstract Interpretation: Example 

•  Consider the following program 

y := 1 

x == 0 

y := y * x 

x := x - 1 

1 

2 

3 

4 

5 F T 

We want to do  
sign analysis on it 
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The Abstract Domain for Sign Analysis 

•  Consider the complete lattice S = { ?, -, 0, +, > } 

•  From it construct the complete lattice A = {x, y} ! S 
–  With point-wise ordering as usual 
–  The abstract state consists of the sign for x and y 
 

•  We start with a0 = λL.λv2{x,y}.? 
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Example 

Label Iterations ! 
1 x + + 

y > > 
2 x ? + > > 

y ? + > > 
3 x ? + > > 

y ? + > > 
4 x ? + > > 

y ? + > > 
5 x ? 0 0 

y ? + > > 
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Notes 

•  We abstracted the state of each variable 
independently 
            A = {x, y } ! {?, -, 0, +, > } 

•  We lost relationships between variables 
–  E.g., that at a point x and y are always of the same sign 
–  In the previous abstraction we get {x := >, y := >} at 2 

•  We can also abstract the state as a whole 
                A = P({?, -, 0, +, > } £ {?, -, 0, +, > }) 
–  For the previous example we now get the abstraction  

  {(0, +), (+, +)} at 2 
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Other Abstract Domains 

•  Range analysis 
–  Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > } 
–  It is a complete lattice 

•  [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)] 
•  [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)] 
•  With appropriate care in dealing with 1 

–   β : Z ! R such that β(n) = [n..n] 
–   α : P(Z) ! R such that α(S) = lub {β(n) | n 2 S} = 

[min(S)..max(S)] 
–   γ : R ! P(Z) such that γ(r) = { n | n 2 r } 

•  This lattice has infinite-height chains 
–  So the abstract interpretation might not terminate ! 
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Example of Non-Termination 

•  Consider this (common) program fragment 

i := 0 

i <= n 

i := i + 1 

1 

2 

3 4 T F 

We want to do range  
analysis for it 
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Example of Non-Termination 

•  Consider the sequence of abstract states at point 2 
–  [0..0], [0..1], [0..2], … 
–  The analysis never terminates 
–  Or terminates very late if the loop bound is known statically 

•  It is time to approximate even more: widening 
•  We redefine the join (lub) operator of the lattice to 

ensure that from [0..0] upon union with [1..1] the 
result is [0..+1) and not [0..1] 

•  Now the sequence of states is 
–  [0..0], [0, +1), [0, +1)  Done (no more infinite chains) 
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Other Abstract Domains 

•  Linear relationships between variables 
–  A convex polyhedron is a subset of Zk whose elements satisfy 

a number of inequalities: a1 x1 + a2 x 2 + … + ak xk ¸ c 
–  This is a complete lattice. Use linear programming methods 

for computing lub 

•  Linear relationships with at most two variables 
–  Like convex polyhedra but with at most two variables per 

constraint 
–  Octagons: x ± y >= c have efficient algorithms 

•  Modulo constraints 
–  E.g. even and odd  
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Summary of Abstract Interpretation 

•  AI is a very powerful technique that underlies a large 
number of program analyses 

•  AI can also be applied to functional and logic 
programming languages 

•  There are a few success stories 
–  Strictness analysis for lazy functional languages 
–  PolySpace for linear constraints 

•  In most other cases however AI is still slow 

•  When the lattices have infinite height and widening 
heuristics are used the result becomes unpredictable  


