
ECS 240 Lecture 8-9 1

Abstract Interpretation
Non-Standard Semantics

Lecture 8-9
ECS 240

ECS 240 Lecture 8-9 2

The Problem

•  It is useful to predict program behavior statically
(without running the program)
–  For optimizing compilers
–  For software engineering tools

•  The semantics we studied so far give us the precise
semantics

•  However, precise static predictions are impossible
–  The exact semantics is not computable

•  We must settle for approximate, but correct static
analysis (e.g. VC vs. WP)

ECS 240 Lecture 8-9 3

The Plan

•  We will introduce abstract interpretation by example

•  Starting with a miniscule language we will build up to a
fairly realistic application

•  Along the way we will see most of the ideas and
difficulties that arise in a big class of applications

ECS 240 Lecture 8-9 4

A Tiny Language

•  Consider the following language of arithmetic
 e ::= n | e1 * e2

•  The denotational semantics of this language
 «n¬ = n
 «e1 * e2¬ = «e1¬ £ «e2¬

•  For this language the precise semantics is computable

ECS 240 Lecture 8-9 5

An Abstraction

•  Assume that we are interested not in the value of the
expression, but only in its sign:
–  positive (+), negative (-), or zero (0)

•  We can define an abstract semantics that computes
only the sign of the result
 σ: Exp ! {-, 0, +}

 σ(n) = sign(n)
 σ(e1 * e2) = σ(e1) σ(e2)

 - 0 +
- + 0 -
0 0 0 0
+ - 0 +

ECS 240 Lecture 8-9 6

Correctness of Sign Abstraction

•  We can show that the abstraction is correct in the
sense that it correctly predicts the sign
 «e¬ > 0 , σ(e) = +
 «e¬ = 0 , σ(e) = 0
 «e¬ < 0 , σ(e) = -

•  Our semantics is abstract but precise

•  Proof is by structural induction on expression e
–  Each case repeats similar reasoning

ECS 240 Lecture 8-9 7

Another View of Soundness

•  We associate with each concrete value an abstract
value:

 β : Z ! { -, 0, + }
•  This is called the abstraction function
•  Conversely we can also define the concretization

function:
 γ : {-, 0, +} ! P(Z)

 γ(+) = { n 2 Z | n > 0 }
 γ(0) = { 0 }
 γ(-) = { n 2 Z | n < 0 }

ECS 240 Lecture 8-9 8

Another View of Soundness (Cont.)

•  Soundness can be stated succinctly
 8e 2 Exp. «e¬ 2 γ(σ(e))
 (the true value of the expression is among the concrete values

represented by the abstract value of the expression)
•  Let C be the concrete domain (e.g. Z) and A be the

abstract domain (e.g. {-, 0, +})

P(C)

Exp A

C
2

γ

σ

«·¬

ECS 240 Lecture 8-9 9

Another View of Soundness (Cont.)

•  Consider the generic abstraction of an operator
 σ(e1 op e2) = σ(e1) op σ (e2)

•  This is sound iff
 8a18a2. γ(a1 op a2) ¶ {n1 op n2 | n1 2 γ(a1), n2 2 γ(a2)}

•  E.g. γ(a1 a2) ¶ { n1 * n2 | n1 2 γ(a1), n2 2 γ(a2) }

•  This reduces the proof of correctness to one proof
for each operator

ECS 240 Lecture 8-9 10

Abstract Interpretation

•  This is our first example of an abstract
interpretation.

•  We carry out computation in an abstract domain

•  The abstract semantics is a sound approximation of
the standard semantics

•  The concretization and abstraction functions
establish the connection between the two domains

ECS 240 Lecture 8-9 11

Adding Unary Minus and Addition

•  We extend the language to e ::= n | e1 * e2 | - e
•  We define σ(- e) = ª σ(e)

•  Now we add addition: e ::= n | e1 * e2 | - e | e1 + e2
•  We define σ(e1 + e2) = σ(e1) © σ(e2)

- 0 +
ª + 0 -

© - 0 +
- - - ?
0 - 0 +
+ ? + +

ECS 240 Lecture 8-9 12

Adding Addition

•  The sign values are not closed under addition
•  What should be the value of “+ © –”?
•  Start from the soundness condition:
 γ(+ © –) ¶ { n1 + n2 | n1 > 0, n2 < 0} = Z
•  We don’t have an abstract value whose concretization

includes Z, so we add one: >

© - 0 + >
- - - > >
0 - 0 + >
+ > + + >
> > > > >

ECS 240 Lecture 8-9 13

Examples

•  Abstract computation might loose information

 «(1 + 2) + -3¬ = 0
 σ((1+2) + -3) = (σ(1) © σ(2)) © σ(-3) = (+ © +) © - = >

•  We loose some precision
•  But this will simplify the computation of the abstract

answer in cases when the precise answer is not
computable

ECS 240 Lecture 8-9 14

Adding Division

•  Fairly straightforward except for division by 0
–  We say that there is no answer in that case
–  γ(+ ® 0) = { n | n = n1 / 0 , n1 > 0 } = ;

•  We introduce ? to be the abstraction of the ;
–  We also use the same abstraction for non-termination !

® - 0 + > ?
- + 0 - > ?
0 ? ? ? ? ?
+ - 0 + > ?
> > > > > ?
? ? ? ? ? ?

ECS 240 Lecture 8-9 15

The Abstract Domain

•  Our abstract domain forms a lattice
–  A partial order is induced by γ
 a1 · a2 iff γ(a1) µ γ(a2)

•  We say that a1 is more precise that a2 !
–  Every finite subset has a least-upper bound (lub) and a

greatest-lower bound (glb)

>

?

- 0 +

ECS 240 Lecture 8-9 16

Lattice Facts

•  A lattice is complete when all subsets have lub and glb
–  Even infinite ones

•  Every finite lattice is complete

•  Every complete lattice is a CPO
–  Since a chain is a subset

•  Not every CPO is a complete lattice
–  Might not even be a lattice

ECS 240 Lecture 8-9 17

More Lattice Facts

•  Early work in denotational semantics used lattices
–  But it was latter seen that only chains need to have lub
–  And there was no need for > and glb

•  In abstract interpretation we’ll use > to denote “I
don’t know”
–  Corresponds to all values in the concrete domain

ECS 240 Lecture 8-9 18

More Definitions

•  We can start with the abstraction function
 β : C ! A (maps a concrete value to the best abstract value)
–  A must be a lattice

•  From here we can derive the concretization function
 γ : A ! P(C)
 γ(a) = { x 2 C | β(x) · a }

•  And the abstraction for sets
 α : P(C) ! A
 α(S) = lub { β(x) | x 2 S }

ECS 240 Lecture 8-9 19

Example

•  Consider our sign lattice
 + if n > 0
 β(n) = 0 if n = 0
 - if n < 0

•  α(S) = lub { β(x) | x 2 S}
–  Example: α ({1, 2}) = lub { + } = +
 α ({1, 0}) = lub { +, 0} = >
 α ({}) = lub {} = ?

•  γ(a) = { n | β(n) · a }
–  Example: γ (+) = { n | β(n) · + } ={ n | β(n) = +} = { n | n > 0 }
 γ (>) = { n | β(n) · > } = Z
 γ (?) = { n | β(n) · ?} = ;

ECS 240 Lecture 8-9 20

Galois Connections

•  We can show that
–  γ and α are monotonic (with the µ ordering on P(C))
–  α (γ (a)) = a for all a 2 A
–  γ (α(S)) ¶ S for all S 2 P(C)

•  Such a pair of functions is called a Galois connection
–  Between lattices A and P(C)

S C

γ ± α

ECS 240 Lecture 8-9 21

Correctness Condition

•  In general, abstract interpretation satisfies the
following diagram

P(C)

Exp A

C
2

γ

σ

«·¬ α (·)

ECS 240 Lecture 8-9 22

Correctness Conditions

Conditions for correct abstract interpretations

1.  α and γ are monotonic

2.  α and γ form a Galois connection

3.  Abstraction of operations is correct
 a1 op a2 = α(γ(a1) op γ(a2))

ECS 240 Lecture 8-9 23

So far

•  Introduced abstract interpretation

•  Two mappings form a Galois connection
–  An abstraction mapping from concrete to abstract values
–  A concretization mapping from abstract to concrete values

•  Next look a bit more at Galois connections

•  Then extend these ideas from expressions to
programs

ECS 240 Lecture 8-9 24

Why Galois Connections ?

•  We have an abstract domain A
–  An abstraction function β : Z ! A
–  Induces α : P(Z) ! A and γ : A ! P(Z)

•  We argued that for correctness
 γ(a1 op a2) ¶ γ(a1) op γ(a2)
–  We wish for the set on the left to be as small as possible
–  To reduce the loss of information through abstraction

•  For each set S µ C, define α(S) as follows:
–  Pick S’ the smallest that includes S and is in the image of γ
–  Define α(S) = γ-1(S’)
–  Then we define: a1 op a2 = α(γ(a1) op γ(a2))

•  Then α and γ form a Galois connection

ECS 240 Lecture 8-9 25

Abstract Interpretation for Imperative Programs

•  So far we abstracted the value of expressions

•  We want now to abstract the state at each point in
the program

•  First we define the concrete semantics that we are
abstracting
–  We use a collecting semantics

ECS 240 Lecture 8-9 26

The Collecting Semantics

•  Recall
–  A state σ 2 Σ = Var ! Z
–  States vary from program point to program point

•  We introduce a set of program points: Labels
•  We want to answer questions like:

–  Is x always positive at label i ?
–  Is x always greater or equal to y at label j ?

•  To answer these questions it helps to construct
 C 2 Contexts = Labels ! P(Σ)

–  For each label, all the states at that label
–  This is called the collecting semantics of the program

•  How can we define the collecting semantics ?

ECS 240 Lecture 8-9 27

Defining the Collecting Semantics

•  We first define relations between the collecting
semantics at different labels
–  We do it for a flowchart program
–  It can be done for IMP with careful definition of program

points
•  Define a label on each edge in the flowchart
•  For assignment

 Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n} x := e
i

j

ECS 240 Lecture 8-9 28

Defining the Collecting Semantics

•  For conditionals

 Cj = { σ | σ 2 Ci Æ «b¬σ = false}
 Ck = { σ | σ 2 Ci Æ «b¬σ = true}

i

b
true false

j k

ECS 240 Lecture 8-9 29

Defining the Collecting Semantics

•  For a join

 Ck = Ci [Cj

•  Verify that these relations are monotonic
–  If we increase a Ci all other Cj can only increase

i

k

j

ECS 240 Lecture 8-9 30

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

ECS 240 Lecture 8-9 31

The Collecting Semantics

•  We have an equation with the unknown C
–  The equation is defined by a monotonic and continuous

function on the domain Labels ! P(Σ)

•  We can use the least fixed-point theorem
–  We start with C0 = λL.;
–  We apply the relations between Ci and Cj to construct C1

i from
C0

j
–  We stop when Ck = Ck-1

–  The problem is that we’ll go on forever for most programs
–  But we know the fixed point exists

ECS 240 Lecture 8-9 32

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

;

;

;

;

;

;

ECS 240 Lecture 8-9 33

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

;

;

;

;

;

ECS 240 Lecture 8-9 34

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

;

;

;

;

ECS 240 Lecture 8-9 35

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

;

;

{x>0,y=1}

ECS 240 Lecture 8-9 36

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

;

{x>0,y=1}

ECS 240 Lecture 8-9 37

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

ECS 240 Lecture 8-9 38

Collecting Semantics: Example

•  Consider the following program (assume x ¸ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ¸ 0}
C2 = { σ[y:=1] | σ 2 C1}
 [{σ[x:=σ(x)-1] | σ 2 C4}
C3 = C2 Å {σ | σ(x) ≠ 0}
C5 = C2 Å {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ 2 C3}

{ x ¸ 0 }

{x ¸ 0, y = 1 Ç y = x + 1}

{x=0,y=1}

{x>0,y=x}

{x¸ 0, y=x+1}

{x>0,y=1}

ECS 240 Lecture 8-9 39

Abstract Interpretation

•  We pick a complete lattice A (abstractions for P(Σ))
–  Along with a monotonic abstraction α : P(Σ) ! A
–  Alternatively, pick β : Σ -> A
–  This uniquely defines its Galois connection γ

•  We take the relations between Ci and move them to
the abstract domain:

 a 2 Labels ! A

•  Assignment
 Concrete: Cj = {σ[x := n] | σ 2 Ci Æ «e¬σ = n}
 Abstract: aj = α {σ[x := n] | σ 2 γ(ai) Æ «e¬σ = n}

ECS 240 Lecture 8-9 40

Abstract Interpretation

•  Conditional
 Concrete: Cj = { σ | σ 2 Ci Æ «b¬σ = false} and
 Ck = { σ | σ 2 Ci Æ «b¬σ = true}
 Abstract: aj = α { σ | σ 2 γ(ai) Æ «b¬σ = false} and
 ak = α { σ | σ 2 γ(ai) Æ «b¬σ = true}

•  Join
 Concrete: Ck = Ci [Cj
 Abstract: ak = α (γ(ai) [γ(aj)) = lub {ai, aj}

ECS 240 Lecture 8-9 41

Least Fixed-Points in the Abstract Domain

•  Now we have a recursive equation with unknown “a”
–  Defined by a monotonic and continuous function on the domain

Labels ! A

•  We can use the least fixed-point theorem:
–  Start with a0 = λL.?
–  Apply the monotonic function to compute ak+1 from ak
–  Stop when ak+1 = ak

•  Exactly the same computation as for the collecting
semantics
–  What is new ?

ECS 240 Lecture 8-9 42

Least Fixed Point in Abstract Domain

•  We have a hope of termination

•  The classic setup is when A has only uninteresting
chains (finite number of elements in each chain)
–  We say that A has finite height (say h)

•  In this case the computation takes at most O(h * |
Labels|2) steps
–  At each step “a” makes progress on at least one label
–  We can only make progress h times
–  And each time we must compute |Labels| elements

•  This is a quadratic analysis: good news

ECS 240 Lecture 8-9 43

Abstract Interpretation: Example

•  Consider the following program

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5 F T

We want to do
sign analysis on it

ECS 240 Lecture 8-9 44

The Abstract Domain for Sign Analysis

•  Consider the complete lattice S = { ?, -, 0, +, > }

•  From it construct the complete lattice A = {x, y} ! S
–  With point-wise ordering as usual
–  The abstract state consists of the sign for x and y

•  We start with a0 = λL.λv2{x,y}.?

ECS 240 Lecture 8-9 45

Example

Label Iterations !
1 x + +

y > >
2 x ? + > >

y ? + > >
3 x ? + > >

y ? + > >
4 x ? + > >

y ? + > >
5 x ? 0 0

y ? + > >

ECS 240 Lecture 8-9 46

Notes

•  We abstracted the state of each variable
independently
 A = {x, y } ! {?, -, 0, +, > }

•  We lost relationships between variables
–  E.g., that at a point x and y are always of the same sign
–  In the previous abstraction we get {x := >, y := >} at 2

•  We can also abstract the state as a whole
 A = P({?, -, 0, +, > } £ {?, -, 0, +, > })
–  For the previous example we now get the abstraction

 {(0, +), (+, +)} at 2

ECS 240 Lecture 8-9 47

Other Abstract Domains

•  Range analysis
–  Lattice of ranges: R ={ ?, [n..m], (-1, m], [n, +1), > }
–  It is a complete lattice

•  [n..m] t [n’..m’] = [min(n, n’)..max(m,m’)]
•  [n..m] u [n’..m’] = [max(n, n’)..min(m, m’)]
•  With appropriate care in dealing with 1

–  β : Z ! R such that β(n) = [n..n]
–  α : P(Z) ! R such that α(S) = lub {β(n) | n 2 S} =

[min(S)..max(S)]
–  γ : R ! P(Z) such that γ(r) = { n | n 2 r }

•  This lattice has infinite-height chains
–  So the abstract interpretation might not terminate !

ECS 240 Lecture 8-9 48

Example of Non-Termination

•  Consider this (common) program fragment

i := 0

i <= n

i := i + 1

1

2

3 4 T F

We want to do range
analysis for it

ECS 240 Lecture 8-9 49

Example of Non-Termination

•  Consider the sequence of abstract states at point 2
–  [0..0], [0..1], [0..2], …
–  The analysis never terminates
–  Or terminates very late if the loop bound is known statically

•  It is time to approximate even more: widening
•  We redefine the join (lub) operator of the lattice to

ensure that from [0..0] upon union with [1..1] the
result is [0..+1) and not [0..1]

•  Now the sequence of states is
–  [0..0], [0, +1), [0, +1) Done (no more infinite chains)

ECS 240 Lecture 8-9 50

Other Abstract Domains

•  Linear relationships between variables
–  A convex polyhedron is a subset of Zk whose elements satisfy

a number of inequalities: a1 x1 + a2 x 2 + … + ak xk ¸ c
–  This is a complete lattice. Use linear programming methods

for computing lub

•  Linear relationships with at most two variables
–  Like convex polyhedra but with at most two variables per

constraint
–  Octagons: x ± y >= c have efficient algorithms

•  Modulo constraints
–  E.g. even and odd

ECS 240 Lecture 8-9 51

Summary of Abstract Interpretation

•  AI is a very powerful technique that underlies a large
number of program analyses

•  AI can also be applied to functional and logic
programming languages

•  There are a few success stories
–  Strictness analysis for lazy functional languages
–  PolySpace for linear constraints

•  In most other cases however AI is still slow

•  When the lattices have infinite height and widening
heuristics are used the result becomes unpredictable

