
ECS 240 Lecture 10-11 1

Introduction to Axiomatic Semantics

Lecture 10-11
ECS 240

ECS 240 Lecture 10-11 2

Review

•  Operational semantics
–  relatively simple
–  many flavors
–  adequate guide for an implementation of the language
–  not compositional

•  Denotational semantics (didn’t cover)
–  mathematical
–  canonical
–  compositional

•  Operational , denotational
•  We would also like a semantics that is appropriate for

arguing program correctness

ECS 240 Lecture 10-11 3

Axiomatic Semantics

•  An axiomatic semantics consists of
–  A language for stating assertions about programs
–  Rules for establishing the truth of assertions

•  Some typical kinds of assertions:
–  This program terminates
–  If this program terminates, the variables x and y have the

same value throughout the execution of the program,
–  The array accesses are within the array bounds

•  Some typical languages of assertions
–  First-order logic
–  Other logics (temporal, linear)

ECS 240 Lecture 10-11 4

History

•  Program verification is almost as old as programming
(e.g., “Checking a Large Routine”, Turing 1949)

•  In the late 60s, Floyd had rules for flow-charts and
Hoare for structured languages

•  Since then, there have been axiomatic semantics for
substantial languages, and many applications

ECS 240 Lecture 10-11 5

Hoare Said

•  “Thus the practice of proving programs would seem to
lead to solution of three of the most pressing
problems in software and programming, namely,
reliability, documentation, and compatibility. However,
program proving, certainly at present, will be difficult
even for programmers of high caliber; and may be
applicable only to quite simple program designs.”

C.A.R Hoare,
“An Axiomatic Basis for
Computer Programming”,

1969

ECS 240 Lecture 10-11 6

Dijkstra Said

•  “Program testing can be used to show the presence of
bugs, but never to show their absence!”

ECS 240 Lecture 10-11 7

Hoare Also Said

•  “It has been found a serious problem to define these
languages [ALGOL, FORTRAN, COBOL] with sufficient
rigor to ensure compatibility among all
implementations. ... one way to achieve this would be to
insist that all implementations of the language shall
satisfy the axioms and rules of inference which
underlie proofs of properties of programs expressed
in the language. In effect, this is equivalent to
accepting the axioms and rules of inference as the
ultimately definitive specification of the meaning of
the language.”

ECS 240 Lecture 10-11 8

Other Applications of Axiomatic Semantics

•  The project of defining and proving everything
formally has not succeeded (at least not yet)

•  Proving has not replaced testing and debugging (and
praying)

•  Applications of axiomatic semantics:
–  Proving the correctness of algorithms (or finding bugs)
–  Proving the correctness of hardware descriptions (or finding

bugs)
–  “extended static checking” (e.g., checking array bounds)
–  Documentation of programs and interfaces

ECS 240 Lecture 10-11 9

Assertions for IMP

•  The assertions we make about IMP programs are of
the form:

 {A} c {B }
 with the meaning that:

–  If A holds in state σ and <c, σ> ⇓ σ’
–  then B holds in σ’

•  A is called precondition and B is called postcondition
•  For example:
 { y · x } z := x; z := z +1 { y < z }
 is a valid assertion
•  These are called Hoare triple or Hoare assertions

ECS 240 Lecture 10-11 10

Assertions for IMP (II)

•  {A} c {B } is a partial correctness assertion. It does
not imply termination

•  [A] c [B] is a total correctness assertion meaning that
 If A holds in state σ
 then there exists σ’ such that <c, σ> ⇓ σ’
 and B holds in state σ’

•  Now let’s be more formal
–  Formalize the language of assertions, A and B
–  Say when an assertion holds in a state
–  Give rules for deriving Hoare triples

ECS 240 Lecture 10-11 11

The Assertion Language

•  We use first-order predicate logic on top of IMP
expressions

 A :: = true | false | e1 = e2 | e1 ¸ e2
 | A1 Æ A2 | A1 Ç A2 | A1) A2 | 8x.A | 9x.A

•  Note that we are somewhat sloppy and mix the logical
variables and the program variables

•  Implicitly, for us all IMP variables range over integers

•  All IMP boolean expressions are also assertions

ECS 240 Lecture 10-11 12

Semantics of Assertions

•  We introduced a language of assertions, we need to
assign meanings to assertions.

•  Notation σ ² A to say that an assertion holds in a
given state .
–  This is well-defined when σ is defined on all variables

occurring in A.

•  The ² judgment is defined inductively on the
structure of assertions.

•  It relies on the denotational semantics of arithmetic
expressions from IMP

ECS 240 Lecture 10-11 13

Semantics of Assertions

•  Formal definition:

 σ ² true always
 σ ² e1 = e2 iff «e1¬ σ = «e2¬σ
 σ ² e1 ¸ e2 iff «e1¬ σ ¸ «e2¬σ
 σ ² A1 Æ A2 iff σ ² A1 and σ ² A2
 σ ² A1 Ç A2 iff σ ² A1 or σ ² A2
 σ ² A1) A2 iff σ ² A1 implies σ ² A2
 σ ² 8x.A iff 8n2Z.σ[x:=n] ² A
 σ ² 9x.A iff 9n2Z.σ[x:=n] ² A

ECS 240 Lecture 10-11 14

Semantics of Assertions

•  Now we can define formally the meaning of a partial
correctness assertion

 ² { A} c { B }:
 8σ2Σ.8σ’2Σ.(σ ² A Æ <c,σ> ⇓ σ’)) σ’ ² B

•  … and the meaning of a total correctness assertion
 ² [A] c [B] iff
 8σ2Σ.8σ’2Σ.(σ ² A Æ <c,σ> ⇓ σ’)) σ’ ² B
 Æ
 8σ2Σ.σ ² A) 9σ’2Σ. <c,σ> ⇓ σ’

ECS 240 Lecture 10-11 15

Deriving Assertions

•  Now we have the formal mechanism to decide when
{A} c {B }
–  But it is not satisfactory
–  Because ² {A} c {B } is defined in terms of the operational

semantics, we practically have to run the program to verify an
assertion

–  And also it is impossible to effectively verify the truth of a
8x. A assertion (by using the definition of validity)

•  So we define a symbolic technique for deriving valid
assertions from other valid assertions

ECS 240 Lecture 10-11 16

Derivation Rules for Hoare Triples

•  We write ` {A} c { B} when we can derive the triple
using derivation rules

•  One derivation rule for each command in the language

•  Plus, the rule of consequence

` A’) A ` {A} c {B} ` B) B’

` {A’} c {B’}

ECS 240 Lecture 10-11 17

Derivation Rules for Hoare Logic

•  One rule for each syntactic construct:

` {A} skip {A} ` {[e/x]A} x := e {A}

` {A} c1 {B} ` {B} c2 {C}

` {A} c1; c2 {C}

` {A Æ b} c1 {B} ` {A Æ ¬ b} c2 {B}

` {A} if b then c1 else c2 {B}

` {A Æ b} c {A}

` {A} while b do c {A Æ ¬ b}

ECS 240 Lecture 10-11 18

Hoare Rules

•  For some constructs multiple rules are possible:

•  Exercise: these rules can be derived from the
previous ones using the consequence rules

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e}

` A Æ b) C ` {C} c {A} ` A Æ ¬ b) B

` {A} while b do c {B}

(This was the “forward” axiom for assignment)

ECS 240 Lecture 10-11 19

Example: Assignment

•  Assume that x does not appear in e
 Prove {true} x := e { x = e }
•  First the assignment rule

 because [e/x](x = e) ´ e = [e/x]e ´ e = e

•  Then with the consequence rule:

` {e = e} x := e {x = e}

` true) e = e ` {e = e} x := e {x = e}
` {true} x := e {x = e}

ECS 240 Lecture 10-11 20

The Assignment Axiom (Cont.)

•  Hoare said: “Assignment is undoubtedly the most
characteristic feature of programming a digital
computer, and one that most clearly distinguishes it
from other branches of mathematics. It is surprising
therefore that the axiom governing our reasoning
about assignment is quite as simple as any to be found
in elementary logic.”

•  How about aliasing?
–  If x and y are aliased then
 { true } x := 5 { x + y = 10}
 is true

ECS 240 Lecture 10-11 21

Example: Conditional

•  D1 is obtained by consequence and assignment

•  D2 is also obtained by consequence and assignment

D1 :: ` {true Æ y · 0} x := 1 {x > 0}
D2 :: ` {true Æ y > 0} x := y {x > 0}

` {true} if y · 0 then x := 1 else x := y {x > 0}

` {1 > 0} x := 1 {x > 0}
` true Æ y · 0) 1 > 0

` {true Æ y · 0} x := 1 {x > 0}

` {y > 0} x := y {x > 0}
` true Æ y > 0) y > 0

` {true Æ y > 0} x := y {x > 0}

ECS 240 Lecture 10-11 22

Example: Loop

•  We want to derive that
 ` {x · 0} while x · 5 do x := x + 1 { x = 6}
•  Use the rule for while with invariant x · 6

•  Then finish-off with consequence

` x · 6 Æ x · 5) x + 1 · 6 ` {x + 1 · 6} x := x + 1 { x · 6 }
` {x · 6 Æ x · 5 } x := x + 1 {x · 6}

` {x · 6} while x · 5 do x := x + 1 { x · 6 Æ x > 5}

` x · 0) x · 6
 ` x · 6 Æ x > 5) x = 6 ` {x · 6} while … { x · 6 Æ x > 5}

` {x · 0} while … {x = 6}

ECS 240 Lecture 10-11 23

Another Example

•  Verify that
 ` {A } while true do c { B}
 holds for any A, B and c
•  We must construct a derivation tree

•  We need an additional lemma:
 8A.8c. ` { A } c {true}

–  How do you prove this one?

` A) true

` true Æ false) B

` {true Æ true} c { true }

{true} while true do c {true Æ false}
` {A} while true do c { B}

ECS 240 Lecture 10-11 24

Using Hoare Rules. Notes

•  Hoare rules are mostly syntax directed

•  There are three wrinkles:
–  When to apply the rule of consequence ?
–  What invariant to use for while ?
–  How do you prove the implications involved in consequence ?

•  The last one can rely on theorem proving
–  This turns out to be doable
–  Loop invariants turn out to be the hardest problem

ECS 240 Lecture 10-11 25

Where Do We Stand?

•  We have a language for asserting properties of
programs

•  We know when such an assertion is true
•  We also have a symbolic method for deriving

assertions

A
{ A} c {B}

σ ² A
² { A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness

ECS 240 Lecture 10-11 26

Soundness of Axiomatic Semantics

•  Formal statement
 If ` { A } c { B} then ² { A} c { B}
 or, equivalently
 For all σ, if σ ² A and D :: <c, σ> ⇓ σ’
 and H :: ` { A } c { B} then σ’ ² B
•  How can we prove this?

–  By induction on the structure of c?
•  No, problems with while and rule of consequence

–  By induction on the structure of D?
•  No, problems with rule of consequence

–  By induction on the structure of H?
•  No, problems with while

–  By simultaneous induction on the structure of D and H

ECS 240 Lecture 10-11 27

Simultaneous Induction

•  Consider two structures D and H
–  Assume that x < y iff x is a substructure of y

•  Define the ordering
 (d, h) < (d’, h’) iff d < d’ or d = d’ and h < h’

–  Called lexicographic ordering
–  Just like the ordering in a dictionary

•  This is a well founded order and leads to simultaneous
induction

•  If d < d’ then h can actually be larger than h’!
•  It can even be unrelated to h’ !

ECS 240 Lecture 10-11 28

Soundness of the Consequence Rule

•  Case: last rule used in H :: ` { A} c { B} is the
consequence rule:

•  From soundness of the first-order logic derivations
we have σ ² A) A’, hence σ ² A’

•  From IH with H1 and D we get that σ’ ² B’

•  From soundness of the first-order logic derivations
we have that σ’ ² B’) B, hence σ’ ² B, q.e.d.

` A) A’ H1 :: ` {A’} c {B’} ` B’) B

` {A} c {B}

ECS 240 Lecture 10-11 29

Soundness of the Assignment Axiom

•  Case: the last rule used in H :: ` { A } c { B} is the
assignment rule

•  The last rule used in D :: <x := e, σ> ⇓ σ’ must be

•  We must prove the substitution lemma:
 If σ ² [e/x]B and <e, σ> ⇓ n then σ[x := n] ² B

 D1 :: <e, σ > ⇓ n
<x := e, σ > ⇓ σ[x := n]

` {[e/x]B} x := e {B}

ECS 240 Lecture 10-11 30

Soundness of the While Rule

•  Case: last rule used in H : ` { A } c { B} was the while
rule:

•  There are two possible rules at the root of D.
–  We do only the complicated case

H1 :: ` {A Æ b} c {A}

` {A} while b do c {A Æ ¬ b}

D1 :: <b, σ> ⇓ true D2 :: <c,σ> ⇓ σ’ D3 :: <while b do c, σ’ > ⇓ σ’’

<while b do c, σ > ⇓ σ’’

ECS 240 Lecture 10-11 31

Soundness of the While Rule (Cont.)

Assume that σ ² A
To show that σ’’ ² A Æ ¬ b
•  By property of booleans and D1 we get σ ² b

–  Hence σ ² A Æ b
•  By IH on H1 and D2 we get σ’ ² A
•  By IH on H and D3 we get σ’’ ² A Æ ¬ b, q.e.d.

•  Note that in the last use of IH the derivation H did
not decrease

•  See Winskel, Chapter 6.5 for a soundness proof with
denotational semantics

ECS 240 Lecture 10-11 32

Completeness of Axiomatic Semantics
Weakest Preconditions

ECS 240 Lecture 10-11 33

Completeness of Axiomatic Semantics

•  Is it true that whenever ² {A} c {B} we can also derive
` {A} c {B} ?

•  If it isn’t then it means that there are valid
properties of programs that we cannot verify with
Hoare rules

•  Good news: for our language the Hoare triples are
complete

•  Bad news: only if the underlying logic is complete
(whenever ² A we also have ` A)
- this is called relative completeness

ECS 240 Lecture 10-11 34

Proof Idea

•  Dijkstra’s idea: To verify that { A } c { B}
a) Find out all predicates A’ such that ² { A’} c { B}

•  call this set Pre(c, B)
b) Verify for one A’ 2 Pre(c, B) that A) A’

•  Assertions can be ordered:

false true)

strong weak
Pre(c, B)

weakest
precondition: WP(c, B)

•  Thus: compute WP(c, B) and prove A) WP(c, B)

A

ECS 240 Lecture 10-11 35

Proof Idea (Cont.)

•  Completeness of axiomatic semantics:
 If ² { A } c { B } then ` { A } c { B}
•  Assuming that we can compute wp(c, B) with the

following properties:
1.  wp is a precondition (according to the Hoare rules)
 ` { wp(c, B) } c { B}
2.  wp is the weakest precondition
 If ² { A } c { B} then ² A) wp(c, B)

•  We also need that whenever ² A then ` A !

` A) wp(c, B) ` {wp(c, B)} c {B}

` {A} c {B}

ECS 240 Lecture 10-11 36

Weakest Preconditions

•  Define wp(c, B) inductively on c, following Hoare rules:

 wp(c1; c2, B) = wp(c1, wp(c2, B))

 wp(x := e, B) = [e/x]B

 wp(if E then c1 else c2, B) = E) wp(c1, B) Æ ¬ E) wp(c2, B)

{A} c1 {C} {C} c2 {B}

{ A } c1; c2 {B}

{ [e/x]B } x := e {B}

{A1} c1 {B} {A2} c2 {B}

{ E) A1 Æ ¬ E) A2} if E then c1 else c2 {B}

ECS 240 Lecture 10-11 37

Weakest Preconditions for Loops

•  We start from the equivalence
 while b do c = if b then c; while b do c else skip
•  Let w = while b do c and W = wp(w, B)

•  We have that
 W = b) wp(c, W) Æ ¬ b) B

•  But this is a recursive equation !
–  We know how to solve these using domain theory

•  We need a domain for assertions

ECS 240 Lecture 10-11 38

A Partial-Order for Assertions

•  What is the assertion that contains least information?
–  true – does not say anything about the state

•  What is an appropriate information ordering ?
 A v A’ iff ² A’) A

•  Is this partial order complete?
–  Take a chain A1 v A2 v …
–  Let ÆAi be the infinite conjunction of Ai

 σ ² ÆAi iff for all i we have that σ ² Ai

–  Verify that ÆAi is the least upper bound

•  Can ÆAi be expressed in our language of assertions?
–  In many cases yes, we’ll assume yes for now

ECS 240 Lecture 10-11 39

Weakest Precondition for WHILE

•  Use the fixed-point theorem
 F(A) = b) wp(c, A) Æ ¬ b) B

–  Verify that F is both monotonic and continuous

•  The least-fixed point (i.e. the weakest fixed point) is

 wp(w, B) = ÆFi(true)

•  Notice that unlike for denotational semantics of IMP
we are not working on a flat domain !

ECS 240 Lecture 10-11 40

Weakest Preconditions (Cont.)

•  Define a family of wp’s
–  wpk(while e do c, B) = weakest precondition on which the loop

if it terminates in k or fewer iterations, it terminates in B
wp0 = ¬ E) B
wp1 = E) wp(c, wp0) Æ ¬ E) B
…

•  wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0}

•  Weakest preconditions are
–  Impossible to compute (in general)
–  Can we find something easier to compute yet sufficient ?

ECS 240 Lecture 10-11 41

Verification Conditions

ECS 240 Lecture 10-11 42

Not Quite Weakest Preconditions

•  Recall what we are trying to do:
 false true)

strong weak
Pre(s, B)

weakest
precondition: WP(c, B) A

verification
condition: VC(c, B)

•  We shall construct a verification condition: VC(c, B)
–  The loops are annotated with loop invariants !
–  VC is guaranteed stronger than WP
–  But hopefully still weaker than A: A) VC(c, B)) WP(c, B)

ECS 240 Lecture 10-11 43

Verification Conditions

•  Factor out the hard work
–  Loop invariants
–  Function specifications

•  Assume programs are annotated with such specs.
–  Good software engineering practice anyway

•  We will assume that the new form of the while
construct includes an invariant:
 whileI b do c
–  The invariant formula must hold every time before b is

evaluated

ECS 240 Lecture 10-11 44

Verification Condition Generation (1)

•  Mostly follows the definition of the wp function

VC(skip, B) = B
VC(c1; c2, B) = VC(c1, VC(c2, B))
VC(if b then c1 else c2, B) = b) VC(c1, B) Æ ¬b) VC(c2, B)
VC(x := e, B) = [e/x]B
VC(while b do c, B) = ?

ECS 240 Lecture 10-11 45

Verification Condition Generation for WHILE

 VC(whileI e do c, B) =
 I Æ (8x1…xn. I) (e) VC(c, I) Æ ¬ e) B))

•  I is the loop invariant (provided externally)
•  x1, …, xn are all the variables modified in c
•  The 8 is similar to the 8 in mathematical induction:

 P(0) Æ 8n 2 N. P(n)) P(n+1)

I holds
on entry

I is preserved in
an arbitrary iteration

B holds when the
loop terminates

in an arbitrary iteration

ECS 240 Lecture 10-11 46

VC and Invariants

•  Consider the Hoare triple:
 {x ≤ 0} whileI x ≤ 5 do x := x + 1 {x = 6}

•  The VC for this is:
x ≤ 0 ⇒ I(x) ∧ ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧
 x ≤ 5 ⇒ I(x+1)))

•  Requirements on the invariant:
–  Holds on entry ∀x. x ≤ 0 ⇒ I(x)
–  Preserved by the body ∀x. I(x) ∧ x ≤ 5 ⇒ I(x+1)
–  Useful ∀x. I(x) ∧ x > 5 ⇒ x = 6

•  Check that I(x) = x ≤ 6 satisfies all constraints

ECS 240 Lecture 10-11 47

Memory Aliasing

ECS 240 Lecture 10-11 48

Hoare Rules: Assignment

•  When is the following Hoare triple valid?
 { A } *x = 5 { *x + *y = 10 }

•  A ought to be “*y = 5 or x = y”

•  The Hoare rule for assignment would give us:
 [5/*x](*x + *y = 10)
 = 5 + *y = 10
 = *y = 5 (we lost one case)

•  How come the rule does not work?

ECS 240 Lecture 10-11 49

Handling Program State

•  We cannot have side-effects in assertions
–  While creating the VC we must remove side-effects !
–  But how to do that when lacking precise aliasing information ?

•  Important technique: Postpone alias analysis

•  Model the state of memory as a symbolic mapping
from addresses to values:
–  If E denotes an address and M a memory state then:
–  sel(M,E) denotes the contents of the memory cell
–  upd(M,E,V) denotes a new memory state obtained from M by

writing V at address E

ECS 240 Lecture 10-11 50

Hoare Rules: Side-Effects

•  To model writes correctly we use memory expressions
–  A memory write changes the value of memory

•  Important technique: treat memory as a whole
•  And reason later about memory expressions with

inference rules such as (McCarthy):

{ B[upd(µ, E1, E2)/µ] } *E1 := E2 {B}

sel(upd(M, E1, E2), E3) =
E2 if E1 = E3

sel(M, E3) if E1 ≠ E3

ECS 240 Lecture 10-11 51

Memory Aliasing

•  Consider again: { A } *x := 5 { *x + *y = 10 }
•  We obtain:
 A = [upd(µ, x, 5)/µ] (*x + *y = 10)
 = [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10)
 = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10 (*)
 = 5 + sel(upd(µ, x, 5), y) = 10
 = if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
 = x = y or *y = 5

(**)
•  To (*) is theorem generation
•  From (*) to (**) is theorem proving

ECS 240 Lecture 10-11 52

Mutable Records - Two Models

•  Let r : RECORD f1 : T1; f2 : T2 END
•  Records are reference types
•  Method 1

–  One “memory” for each record
–  One index constant for each field. We postulate f1 ≠ f2
–  r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)

•  Method 2
–  One “memory” for each field
–  The record address is the index
–  r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)

ECS 240 Lecture 10-11 53

Next Time

•  ESC/Java

