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Review 

•  Operational semantics 
–  relatively simple 
–  many flavors 
–  adequate guide for an implementation of the language 
–  not compositional 

•  Denotational semantics (didn’t cover) 
–  mathematical 
–  canonical 
–  compositional 

•  Operational , denotational 
•  We would also like a semantics that is appropriate for 

arguing program correctness 
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Axiomatic Semantics 

•  An axiomatic semantics consists of 
–  A language for stating assertions about programs 
–  Rules for establishing the truth of assertions 

•  Some typical kinds of assertions: 
–  This program terminates 
–  If this program terminates, the variables x and y have the 

same value throughout the execution of the program, 
–  The array accesses are within the array bounds 

•  Some typical languages of assertions 
–  First-order logic 
–  Other logics (temporal, linear) 
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History 

•  Program verification is almost as old as programming 
(e.g., “Checking a Large Routine”, Turing 1949) 

•  In the late 60s, Floyd had rules for flow-charts and 
Hoare for structured languages 

•  Since then, there have been axiomatic semantics for 
substantial languages, and many applications 
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Hoare Said 

•  “Thus the practice of proving programs would seem to 
lead to solution of three of the most pressing 
problems in software and programming, namely, 
reliability, documentation, and compatibility. However, 
program proving, certainly at present, will be difficult 
even for programmers of high caliber; and may be 
applicable only to quite simple program designs.” 

C.A.R Hoare,  
“An Axiomatic Basis for  
Computer Programming”,  

1969 
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Dijkstra Said 

•  “Program testing can be used to show the presence of 
bugs, but never to show their absence!” 
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Hoare Also Said 

•  “It has been found a serious problem to define these 
languages [ALGOL, FORTRAN, COBOL] with sufficient 
rigor to ensure compatibility among all 
implementations. ... one way to achieve this would be to 
insist that all implementations of the language shall 
satisfy the axioms and rules of inference which 
underlie proofs of properties of programs expressed 
in the language. In effect, this is equivalent to 
accepting the axioms and rules of inference as the 
ultimately definitive specification of the meaning of 
the language.”  
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Other Applications of Axiomatic Semantics 

•  The project of defining and proving everything 
formally has not succeeded (at least not yet) 

•  Proving has not replaced testing and debugging (and 
praying) 

•  Applications of axiomatic semantics: 
–  Proving the correctness of algorithms (or finding bugs) 
–  Proving the correctness of hardware descriptions (or finding 

bugs) 
–  “extended static checking” (e.g., checking array bounds) 
–  Documentation of programs and interfaces 
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Assertions for IMP 

•  The assertions we make about IMP programs are of 
the form: 

                           {A} c {B } 
     with the meaning that: 

–  If A holds in state σ and <c, σ> ⇓ σ’ 
–  then B holds in σ’ 

•  A is called precondition and B is called postcondition 
•  For example: 
                  { y · x } z := x; z := z +1 { y < z } 
    is a valid assertion 
•  These are called Hoare triple or Hoare assertions 
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Assertions for IMP (II) 

•  {A} c {B } is a partial correctness assertion. It does 
not imply termination 

•  [A] c [B ] is a total correctness assertion meaning that 
     If A holds in state σ 
     then there exists σ’ such that <c, σ> ⇓ σ’ 
     and B holds in state σ’ 

•  Now let’s be more formal 
–  Formalize the language of assertions, A and B 
–  Say when an assertion holds in a state 
–  Give rules for deriving Hoare triples 
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The Assertion Language 

•  We use first-order predicate logic on top of IMP 
expressions 

     A :: = true | false | e1 = e2 | e1 ¸ e2 
           |  A1 Æ A2 | A1 Ç A2 | A1 ) A2 | 8x.A | 9x.A 

  

•  Note that we are somewhat sloppy and mix the logical 
variables and the program variables 

•  Implicitly, for us all IMP variables range over integers 

•  All IMP boolean expressions are also assertions 
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Semantics of Assertions 

•  We introduced a language of assertions, we need to 
assign meanings to assertions. 

•  Notation σ ² A to say that an assertion holds in a 
given state . 
–  This is well-defined when  σ is defined on all variables 

occurring in A. 

•  The ² judgment is defined inductively on the 
structure of assertions. 

•  It relies on the denotational semantics of arithmetic 
expressions from IMP 
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Semantics of Assertions 

•  Formal definition: 

 σ ² true         always 
 σ ² e1 = e2      iff «e1¬ σ = «e2¬σ 
 σ ² e1 ¸ e2     iff «e1¬ σ ¸ «e2¬σ 
 σ ² A1 Æ A2    iff σ ² A1 and σ ² A2 
 σ ² A1 Ç A2    iff σ ² A1 or σ ² A2 
 σ ² A1 ) A2   iff σ ² A1 implies σ ² A2 
 σ ² 8x.A         iff 8n2Z.σ[x:=n] ² A 
 σ ² 9x.A         iff 9n2Z.σ[x:=n] ² A 
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Semantics of Assertions 

•  Now we can define formally the meaning of a partial 
correctness assertion  

     ² { A} c { B }: 
         8σ2Σ.8σ’2Σ.(σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B 
 
•  … and the meaning of a total correctness assertion 
     ² [A] c [B] iff 
         8σ2Σ.8σ’2Σ.(σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B  
      Æ 
        8σ2Σ.σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’ 
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Deriving Assertions 

•  Now we have the formal mechanism to decide when 
{A} c {B } 
–  But it is not satisfactory 
–  Because ² {A} c {B } is defined in terms of the operational 

semantics, we practically have to run the program to verify an 
assertion 

–  And also it is impossible to effectively verify the truth of a 
8x. A assertion (by using the definition of validity) 

•  So we define a symbolic technique for deriving valid 
assertions from other valid assertions 
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Derivation Rules for Hoare Triples 

•  We write ` {A} c { B} when we can derive the triple 
using derivation rules 

•  One derivation rule for each command in the language 

•  Plus, the rule of consequence 
 

` A’ ) A   ` {A} c {B}   ` B ) B’ 

` {A’} c {B’} 
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Derivation Rules for Hoare Logic 

•  One rule for each syntactic construct: 

` {A} skip {A} ` {[e/x]A} x := e {A} 

` {A} c1 {B}    ` {B} c2 {C} 

` {A} c1; c2 {C} 

` {A Æ b} c1 {B}    ` {A Æ ¬ b} c2 {B} 

` {A} if b then c1 else c2 {B} 

` {A Æ b} c {A} 

` {A} while b do c {A Æ ¬ b} 
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Hoare Rules 

•  For some constructs multiple rules are possible: 

•  Exercise: these rules can be derived from the 
previous ones using the consequence rules 

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e} 

` A Æ b ) C    ` {C} c {A}   ` A Æ ¬ b ) B 

` {A} while b do c {B} 

(This was the “forward” axiom for assignment) 
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Example: Assignment 

•  Assume that x does not appear in e 
            Prove {true} x := e { x = e } 
•  First the assignment rule 

     because [e/x](x = e) ´ e = [e/x]e ´ e = e 
 
•  Then with the consequence rule: 

` {e = e} x := e {x = e} 

` true ) e = e ` {e = e} x := e {x = e} 
` {true} x := e {x = e} 
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The Assignment Axiom (Cont.) 

•  Hoare said: “Assignment is undoubtedly the most 
characteristic feature of programming a digital 
computer, and one that most clearly distinguishes it 
from other branches of mathematics. It is surprising 
therefore that the axiom governing our reasoning 
about assignment is quite as simple as any to be found 
in elementary logic.” 

•  How about aliasing?  
–  If x and y are aliased then 
     { true } x := 5 { x + y = 10} 
   is true 
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Example: Conditional 

•  D1 is obtained by consequence and assignment 

•  D2 is also obtained by consequence and assignment 

D1 :: ` {true Æ y · 0} x := 1 {x > 0} 
D2 :: ` {true Æ y > 0} x := y {x > 0} 

` {true} if y · 0 then x := 1 else x := y {x > 0} 

` {1 > 0} x := 1 {x > 0} 
` true Æ y · 0 ) 1 > 0 

` {true Æ y · 0} x := 1 {x > 0} 

` {y > 0} x := y {x > 0} 
` true Æ y > 0 ) y > 0 

` {true Æ y > 0} x := y {x > 0} 
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Example: Loop 

•  We want to derive that 
          ` {x · 0} while x · 5 do x := x + 1 { x = 6} 
•  Use the rule for while with invariant x · 6 

•  Then finish-off with consequence 

` x · 6 Æ x · 5 ) x + 1 · 6   ` {x + 1 · 6} x := x + 1 { x · 6 } 
` {x · 6 Æ x · 5 } x := x + 1 {x · 6} 

` {x · 6} while x · 5 do x := x + 1 { x · 6 Æ x > 5} 

` x · 0 ) x · 6 
 ` x · 6 Æ x > 5 ) x  = 6 ` {x · 6} while … { x · 6 Æ x > 5} 

` {x · 0} while … {x = 6} 
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Another Example 

•  Verify that  
           ` {A } while true do c { B} 
   holds for any A, B and c  
•  We must construct a derivation tree 

•  We need an additional lemma: 
             8A.8c. ` { A } c {true}  

–  How do you prove this one?   

 
` A ) true 

` true Æ false ) B 

` {true Æ true} c { true } 

{true} while true do c {true Æ false} 
` {A} while true do c { B} 
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Using Hoare Rules. Notes 

•  Hoare rules are mostly syntax directed 

•  There are three wrinkles: 
–  When to apply the rule of consequence ? 
–  What invariant to use for while ? 
–  How do you prove the implications involved in consequence ? 

•  The last one can rely on theorem proving 
–  This turns out to be doable 
–  Loop invariants turn out to be the hardest problem 
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Where Do We Stand? 

•  We have a language for asserting properties of 
programs 

•  We know when such an assertion is true 
•  We also have a symbolic method for deriving 

assertions 

A 
{ A} c {B} 

σ ² A 
² { A} c {B} 

` A 
` { A} c {B} 

symbolic 
derivation 
(theorem proving) 

meaning 

soundness 

completeness 
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Soundness of Axiomatic Semantics 

•  Formal statement 
         If ` { A } c { B} then ² { A} c { B}  
   or, equivalently 
          For all σ, if σ ² A and D :: <c, σ> ⇓ σ’  
          and H :: ` { A } c { B} then σ’ ² B  
•  How can we prove this? 

–  By induction on the structure of c? 
•  No, problems with while and rule of consequence 

–  By induction on the structure of D? 
•  No, problems with rule of consequence 

–  By induction on the structure of H? 
•  No, problems with while 

–  By simultaneous induction on the structure of D and H 
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Simultaneous Induction 

•  Consider two structures D and H 
–  Assume that x < y iff x is a substructure of y 

•  Define the ordering  
         (d, h) < (d’, h’) iff    d < d’   or   d = d’ and h < h’ 

–  Called lexicographic ordering 
–  Just like the ordering in a dictionary  

•  This is a well founded order and leads to simultaneous 
induction  

•  If d < d’ then h can actually be larger than h’!  
•  It can even be unrelated to h’ ! 
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Soundness of the Consequence Rule 

•  Case: last rule used in H :: ` { A} c { B} is the 
consequence rule: 

•  From soundness of the first-order logic derivations 
we have σ ² A ) A’, hence σ ² A’ 

•  From IH with H1 and D we get that σ’ ² B’ 

•  From soundness of the first-order logic derivations 
we have that σ’ ² B’ ) B, hence σ’ ² B, q.e.d. 

` A ) A’       H1 :: ` {A’} c {B’}       ` B’ ) B 

` {A} c {B} 
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Soundness of the Assignment Axiom 

•  Case: the last rule used in H :: ` { A } c { B} is the 
assignment rule 

•  The last rule used in D :: <x := e, σ> ⇓ σ’ must be  

•  We must prove the substitution lemma:  
        If σ ² [e/x]B and <e, σ> ⇓ n then σ[x := n] ² B 

 D1 :: <e, σ > ⇓ n 
<x := e, σ > ⇓ σ[x := n] 

` {[e/x]B} x := e {B} 
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Soundness of the While Rule 

•  Case: last rule used in H : ` { A } c { B} was the while 
rule: 

•  There are two possible rules at the root of D.  
–  We do only the complicated case 

H1 :: ` {A Æ b} c {A} 

` {A} while b do c {A Æ ¬ b} 

D1 :: <b, σ> ⇓ true     D2 :: <c,σ> ⇓ σ’   D3 ::  <while b do c, σ’ > ⇓ σ’’ 

<while b do c, σ > ⇓ σ’’ 
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Soundness of the While Rule (Cont.) 

Assume that σ ² A 
To show that σ’’ ² A Æ ¬ b 
•  By property of booleans and D1 we get σ ² b 

–  Hence σ ² A Æ b 
•  By IH on H1 and D2 we get σ’ ² A 
•  By IH on H and D3 we get  σ’’ ² A Æ ¬ b, q.e.d. 

•  Note that in the last use of IH the derivation H did 
not decrease 

•  See Winskel, Chapter 6.5 for a soundness proof with 
denotational semantics 
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Completeness of Axiomatic Semantics 
Weakest Preconditions 
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Completeness of Axiomatic Semantics 

•  Is it true that whenever ² {A} c {B} we can also derive 
` {A} c {B} ? 

•  If it isn’t then it means that there are valid 
properties of programs that we cannot verify with 
Hoare rules 

•  Good news: for our language the Hoare triples are 
complete 

•  Bad news: only if the underlying logic is complete 
(whenever ² A we also have ` A) 
- this is called relative completeness 
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Proof Idea 

•  Dijkstra’s idea: To verify that { A } c { B} 
a) Find out all predicates A’ such that ² { A’} c { B}  

•  call this set Pre(c, B) 
b) Verify for one A’ 2 Pre(c, B) that A ) A’  

•  Assertions can be ordered: 

false true ) 

strong weak  
Pre(c, B) 

weakest 
precondition: WP(c, B) 

•  Thus: compute WP(c, B) and prove A ) WP(c, B) 

A 
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Proof Idea (Cont.) 

•  Completeness of axiomatic semantics: 
               If ² { A } c { B } then ` { A } c { B} 
•  Assuming that we can compute wp(c, B) with the 

following properties:  
1.  wp is a precondition (according to the Hoare rules) 
             ` { wp(c, B) } c { B}  
2.  wp is the weakest precondition           
             If  ² { A } c { B}   then  ² A ) wp(c, B) 
 
 
 

•  We also need that whenever ² A then ` A ! 

` A ) wp(c, B)         ` {wp(c, B)} c {B} 

` {A} c {B} 
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Weakest Preconditions 

•  Define wp(c, B) inductively on c, following Hoare rules: 

  wp(c1; c2, B) = wp(c1, wp(c2, B)) 

  wp(x := e, B) = [e/x]B 

  wp(if E then c1 else c2, B) = E ) wp(c1, B) Æ ¬ E ) wp(c2, B) 

{A} c1 {C}            {C} c2 {B} 

{ A } c1; c2 {B} 

{ [e/x]B } x := e {B} 

{A1} c1 {B}            {A2} c2 {B} 

{ E ) A1 Æ ¬ E ) A2} if E then c1 else c2 {B} 
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Weakest Preconditions for Loops 

•  We start from the equivalence 
         while b do c    =  if b then c; while b do c else skip 
•  Let w = while b do c and W = wp(w, B) 

•  We have that  
          W = b ) wp(c, W) Æ ¬ b ) B 

•  But this is a recursive equation ! 
–  We know how to solve these using domain theory 

•  We need a domain for assertions 
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A Partial-Order for Assertions 

•  What is the assertion that contains least information? 
–  true – does not say anything about the state 

•  What is an appropriate information ordering ? 
             A v A’      iff       ² A’ ) A 

•  Is this partial order complete?  
–  Take a chain A1 v A2 v … 
–  Let ÆAi be the infinite conjunction of Ai 

            σ ² ÆAi  iff for all i we have that σ ² Ai 

–  Verify that ÆAi is the least upper bound 

•  Can ÆAi be expressed in our language of assertions? 
–  In many cases yes, we’ll assume yes for now 
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Weakest Precondition for WHILE 

•  Use the fixed-point theorem 
           F(A) = b ) wp(c, A) Æ ¬ b ) B 

–  Verify that F is both monotonic and continuous 

•  The least-fixed point (i.e. the weakest fixed point) is 

             wp(w, B) = ÆFi(true) 

•  Notice that unlike for denotational semantics of IMP 
we are not working on a flat domain ! 
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Weakest Preconditions (Cont.) 

•  Define a family of wp’s 
–  wpk(while e do c, B) = weakest precondition on which the loop 

if it terminates in k or fewer iterations, it terminates in B 
wp0 = ¬ E ) B  
wp1 = E ) wp(c, wp0) Æ ¬ E ) B 
… 

•  wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0} 

•  Weakest preconditions are  
–  Impossible to compute (in general) 
–  Can we find something easier to compute yet sufficient ? 
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Verification Conditions 
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Not Quite Weakest Preconditions 

•  Recall what we are trying to do: 
 false true ) 

strong weak  
Pre(s, B) 

weakest 
precondition: WP(c, B) A 

verification  
condition: VC(c, B) 

•  We shall construct a verification condition: VC(c, B) 
–  The loops are annotated with loop invariants ! 
–  VC is guaranteed stronger than WP 
–  But hopefully still weaker than A: A ) VC(c, B) ) WP(c, B) 
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Verification Conditions 

•  Factor out the hard work 
–  Loop invariants 
–  Function specifications 

•  Assume programs are annotated with such specs. 
–  Good software engineering practice anyway 

•  We will assume that the new form of the while 
construct includes an invariant: 
                    whileI b do c 
–  The invariant formula must hold every time before b is 

evaluated 
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Verification Condition Generation (1) 

•  Mostly follows the definition of the wp function 

VC(skip, B) = B 
VC(c1; c2, B) = VC(c1, VC(c2, B)) 
VC(if b then c1 else c2, B) = b ) VC(c1, B) Æ ¬b ) VC(c2, B) 
VC(x := e, B)  = [e/x]B 
VC(while b do c, B) = ?  
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Verification Condition Generation for WHILE 

     VC(whileI e do c, B) =  
              I Æ (8x1…xn. I ) (e ) VC(c, I) Æ ¬ e ) B) ) 
 
 

•  I is the loop invariant (provided externally) 
•  x1, …, xn are all the variables modified in c 
•  The 8 is similar to the 8 in mathematical induction: 

           P(0) Æ 8n 2 N. P(n) ) P(n+1) 

I holds 
on entry 

I is preserved in  
an arbitrary iteration 

B holds when the  
loop terminates  

in an arbitrary iteration 
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VC and Invariants 

•  Consider the Hoare triple: 
           {x ≤ 0} whileI x ≤ 5 do x := x + 1 {x = 6}  
 

•  The VC for this is: 
x ≤ 0 ⇒  I(x)  ∧   ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧ 
                                               x ≤ 5 ⇒ I(x+1) )) 

•  Requirements on the invariant: 
–  Holds on entry                ∀x. x ≤ 0 ⇒  I(x)  
–  Preserved by the body   ∀x.  I(x) ∧  x ≤ 5 ⇒ I(x+1) 
–  Useful                            ∀x.  I(x) ∧ x > 5 ⇒ x = 6  

•  Check that I(x) = x ≤ 6 satisfies all constraints 
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Memory Aliasing 
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Hoare Rules: Assignment 

•  When is the following Hoare triple valid? 
             { A } *x = 5 { *x + *y = 10 } 

•  A ought to be   “*y = 5 or x = y”  

•  The Hoare rule for assignment would give us: 
        [5/*x](*x + *y = 10)   
      = 5 + *y = 10 
      = *y = 5     (we lost one case) 

•  How come the rule does not work? 
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Handling Program State 

•  We cannot have side-effects in assertions 
–  While creating the VC we must remove side-effects ! 
–  But how to do that when lacking precise aliasing information ? 

•  Important technique: Postpone alias analysis 

•  Model the state of memory as a symbolic mapping 
from addresses to values: 
–  If E denotes an address and M a memory state then: 
–  sel(M,E) denotes the contents of the memory cell  
–  upd(M,E,V) denotes a new memory state obtained from M by 

writing V at address E 
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Hoare Rules: Side-Effects 

•  To model writes correctly we use memory expressions 
–  A memory write changes the value of memory 

•  Important technique: treat memory as a whole 
•  And reason later about memory expressions with 

inference rules such as (McCarthy): 

{ B[upd(µ, E1, E2)/µ] } *E1 := E2 {B} 

sel(upd(M, E1, E2), E3) =  
E2 if E1 = E3 

sel(M, E3) if E1 ≠ E3 



ECS 240  Lecture 10-11 51 

Memory Aliasing 

•  Consider again: { A } *x := 5 { *x + *y = 10 } 
•  We obtain:  
     A = [upd(µ, x, 5)/µ] (*x + *y = 10) 
        = [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10) 
        = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10     (*) 
        = 5 + sel(upd(µ, x, 5), y) = 10 
        = if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10 
        = x = y or *y = 5                                                  

(**) 
•  To (*) is theorem generation 
•  From (*) to (**) is theorem proving 
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Mutable Records - Two Models 

•  Let r :  RECORD f1 : T1; f2 : T2 END 
•  Records are reference types 
•  Method 1 

–  One “memory” for each record 
–  One index constant for each field. We postulate f1 ≠ f2 
–  r.f1 is sel(r,f1) and  r.f1 := E is r := upd(r,f1,E) 

•  Method 2 
–  One “memory” for each field 
–  The record address is the index 
–  r.f1 is sel(f1,r) and  r.f1 := E is f1 := upd(f1,r,E) 
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Next Time   

•  ESC/Java 


