
Lingxiao Jiang
December 2009

Computer Science

Scalable Detection of Similar Code: Techniques and Applications

Abstract

Similar code, also known as cloned code, commonly exists in large software. Studies

show that code duplication can incur higher software maintenance cost and more software

defects. Thus, detecting similar code and tracking its migration have many important ap-

plications, including program understanding, refactoring, optimization, and bug detection.

This dissertation presents novel, general techniques for detecting and analyzing both

syntactic and semantic code clones. The techniques can scalably and accurately detect

clones based on various similarity definitions, including trees, graphs, and functional be-

havior. They also have the general capability to help reduce software defects and advance

code reuse. Specifically, this dissertation makes the following main contributions:

First, it presents Deckard, a tree-based clone detection technique and tool. The key

insight is that we accurately represent syntax trees and dependency graphs of a program as

characteristic vectors in the Euclidean space and apply hashing algorithms to cluster similar

vectors efficiently. Experiments show that Deckard scales to millions of lines of code with

few false positives. In addition, Deckard is language-agnostic and easily parallelizable,

with the potential to scale to billions of lines of code in different languages.

Second, it describes a novel application of Deckard to bug detection. In particular,

it introduces a general notion of context-based inconsistencies as indicators of clone-related

bugs and formalizes three concrete types of such inconsistencies. The formalization is then

applied to the clones identified by Deckard, and many previously unknown bugs in large

projects are discovered. These bugs exhibit diverse characteristics and cannot be detected

by any single previous bug detection technique.

Third, the disseration presents EqMiner, a practical technique to detect functionally

2

equivalent code. Inspired by Schwartz’s randomized polynomial identity testing, EqMiner

adapts automated random testing in a novel way to quickly determine functional equivalence

among arbitrary code fragments automatically extracted from a large program. Evaluated

on the Linux kernel, EqMiner discovered many functionally equivalent, but syntactically

different code fragments, which can facilitate future studies on semantic-aware code reuse.

Scalable Detection of Similar Code:

Techniques and Applications

By

Lingxiao Jiang

B.S. (Peking University) 2000
M.S. (Peking University) 2003

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Zhendong Su, Chair

Professor Premkumar T. Devanbu

Professor Ronald A. Olsson

Doctor Daniel J. Quinlan

Committee in Charge
2009

i

Scalable Detection of Similar Code: Techniques and Applications

c© Lingxiao Jiang, 2009. All rights reserved.

To my dear wife Xiaojing and our parents.

ii

Contents

1 Introduction 1
1.1 Definitions for Similar Code . 3
1.2 Limitations of Previous Work . 7
1.3 Main Contributions . 9
1.4 Dissertation Outline . 10

2 Scalable and Accurate Tree-based Clone Detection 12
2.1 Overview . 13
2.2 Algorithm Description . 17

2.2.1 Formal Definitions . 17
2.2.2 Characteristic Vectors for Trees . 18
2.2.3 Vector Clustering . 22
2.2.4 Size-Sensitive Clone Detection . 25

2.3 Implementation and Empirical Evaluation 26
2.3.1 Implementation . 27
2.3.2 Experimental Setup . 27
2.3.3 Evaluation Results . 29

2.4 Extending to Graph Based Clone Detection 36
2.4.1 Definition of PDG-Based Code Clones 39
2.4.2 Algorithm . 39
2.4.3 Evaluation . 41

2.5 Discussion and Future Work . 45

3 Context-Based Detection of Clone-Related Bugs 48
3.1 Overview . 49

3.1.1 Sample Inconsistencies . 50
3.1.2 Approach Overview . 53

3.2 Algorithm Description . 54
3.2.1 Basic Definitions . 54
3.2.2 Context-Based Inconsistencies . 55
3.2.3 Classification of Inconsistencies . 59
3.2.4 Filtering Heuristics . 62
3.2.5 Complexity Analysis . 65

3.3 Implementation . 65

iii

3.4 Empirical Evaluation . 66
3.4.1 Experimental Setup . 66
3.4.2 Results of Inconsistency and Bug Detection 67

3.5 Discussion . 77

4 Scalable Mining of Functionally Equivalent Code Fragments 82
4.1 Overview . 83
4.2 Algorithm Description . 85

4.2.1 A High-level View . 85
4.2.2 Equivalence Definition . 88
4.2.3 Code Chopping . 90
4.2.4 Code Transformation . 90
4.2.5 Input Generation . 94
4.2.6 Code Execution and Clustering . 96

4.3 Implementation . 98
4.4 Empirical Evaluation . 101

4.4.1 Subject Programs . 101
4.4.2 Code Execution . 103
4.4.3 Results of Functionally Equivalent Code Fragments 105

4.5 Discussions and Future Work . 116

5 Related Work 120
5.1 Similarity Detection . 120

5.1.1 Source Code Clone Detection . 120
5.1.2 Similarity Detection on More General Data Structures 123
5.1.3 Higher-Level Clone Detection . 124

5.2 Studies on Code Clones . 125
5.2.1 Clone Refactoring . 125
5.2.2 Clone Evolution . 126
5.2.3 Clone Visualization . 128
5.2.4 Bug Detection . 128

5.3 Program Equivalence . 130
5.4 Random Testing . 131

6 Conclusions 133
6.1 Summary . 133
6.2 Outlook . 134

iv

List of Figures

1.1 From the least semantic-aware definitions to the most semantic-aware ones. 5

2.1 Deckard’s system architecture. 13
2.2 A sample parse tree with generated characteristic vectors. 15
2.3 Cloned lines of code detected by Deckard (with grouping and full parameter

tuning) and CloneDR on JDK 1.4.2. 30
2.4 Cloned lines of code detected by Deckard (with grouping and selective

parameter tuning) on Linux kernel 2.6.16. 30
2.5 Effects of minT on clone detection rates (percentage of cloned lines of code)

of Deckard and CP-Miner on Linux kernel 2.6.16. 31
2.6 Running time of Deckard (with grouping and full parameter tuning) and

CloneDR on JDK 1.4.2. 34
2.7 Running time for Deckard (with grouping and selective parameter tuning)

and CP-Miner on Linux kernel 2.6.16. 35
2.8 Effects of selective parameter tuning in LSH. Comparable minT and stride to

Figure 2.6. 36
2.9 Example of non-contiguous code clones. 37
2.10 The PDG for the code on the left side in Figure 2.9. 38
2.11 PDG-based semantic clone detection algorithm built on Deckard. 41
2.12 Example of semantic clones differing only by locking code (MySQL). 43
2.13 Example of semantic clones differing only by debugging and unrelated code

(PostgreSQL). 44
2.14 An example illustrating an alternative kind of code similarity. Lines 3–5

are copied from lines 14–16. In this case, we would like to view that code
between lines 2–6 is only one edit away from the code between lines 10–11. 46

3.1 Sample No. 1 context-based inconsistency among similar code. 51
3.2 Sample No. 2 context-based inconsistency among similar code. 52
3.3 Sample No. 3 context-based inconsistency among similar code. 52
3.4 Overview of inconsistency-based bug detection approach. 53
3.5 Sample type-1 inconsistency and bug. 56
3.6 Clone-related bug example: a wrong function call. 72
3.7 An example of programming style issues: less optimized code. 74

4.1 The work flow for mining functionally equivalent code. 85

v

4.2 Histograms for code fragments. 108
4.3 Histogram of the sizes of functionally equivalent clusters. 110
4.4 Spatial distribution of functionally and syntactically equivalent code in the

Linux kernel. 111

vi

List of Tables

2.1 Cloned lines of code and running time for CP-Miner on Linux kernel 2.6.16. 32
2.2 Worst-case complexities of CloneDR, CP-Miner, and Deckard (m is the

number of lines of code, n is the size of a parse tree, |Buckets| is the number
of hash tables used in CloneDR, d is the number of node kinds, |g| is the size
of a vector group, 0 < ρ < 1, c is the number of clone classes reported, and
|rcAN | is the average size of the clone classes). 33

2.3 Effects of selective parameter tuning in LSH. The data is for JDK 1.4.2, with
minT 50, stride 2. 35

2.4 Clone detection times. 42

3.1 Statistics of subject programs and their clones used in inconsistency studies. 67
3.2 Numbers of inconsistencies and bugs reported when all or no bug filters

(Section 3.2.4) were enabled. 68
3.3 Effects of filters on false positives and negatives. Each row corresponds to

different filters (Section 3.2.4). “None” means no filter was enabled; “All”
means all filters were enabled. They are the same data for Table 3.2. . . . 70

3.4 Categories of detected clone-related bugs. 71
3.5 Categories of detected style issues in code clones. 73
3.6 Category of inconsistencies that cause false positives. 75
3.7 Comparison with CP-Miner on Linux kernel 2.6.19. 77
3.8 Potential effects of different clone detection parameters on false positives and

negatives with all filters enabled. 78

vii

Abstract

Similar code, also known as cloned code, commonly exists in large software. Studies

show that code duplication can incur higher software maintenance cost and more software

defects. Thus, detecting similar code and tracking its migration have many important ap-

plications, including program understanding, refactoring, optimization, and bug detection.

This dissertation presents novel, general techniques for detecting and analyzing both

syntactic and semantic code clones. The techniques can scalably and accurately detect

clones based on various similarity definitions, including trees, graphs, and functional be-

havior. They also have the general capability to help reduce software defects and advance

code reuse. Specifically, this dissertation makes the following main contributions:

First, it presents Deckard, a tree-based clone detection technique and tool. The key

insight is that we accurately represent syntax trees and dependency graphs of a program as

characteristic vectors in the Euclidean space and apply hashing algorithms to cluster similar

vectors efficiently. Experiments show that Deckard scales to millions of lines of code with

few false positives. In addition, Deckard is language-agnostic and easily parallelizable,

with the potential to scale to billions of lines of code in different languages.

Second, it describes a novel application of Deckard to bug detection. In particular,

it introduces a general notion of context-based inconsistencies as indicators of clone-related

bugs and formalizes three concrete types of such inconsistencies. The formalization is then

applied to the clones identified by Deckard, and many previously unknown bugs in large

projects are discovered. These bugs exhibit diverse characteristics and cannot be detected

by any single previous bug detection technique.

Third, the disseration presents EqMiner, a practical technique to detect functionally

equivalent code. Inspired by Schwartz’s randomized polynomial identity testing, EqMiner

adapts automated random testing in a novel way to quickly determine functional equivalence

among arbitrary code fragments automatically extracted from a large program. Evaluated

on the Linux kernel, EqMiner discovered many functionally equivalent, but syntactically

different code fragments, which can facilitate future studies on semantic-aware code reuse.

viii

Acknowledgments and Thanks

Throughout my whole Ph.D. program, many people have played important roles in my

memorable years at UC Davis. I would like to express my sincere gratitude and appreciation

to them.

My major advisor, Professor Zhendong Su, is the most important person who helped to

shape my research ideas and styles. He is very patient, tolerant of many mistakes I have

made. He put in immeasurable efforts to train me to be a researcher and scientist. He sets

high standards for all of our work, exhibits inspiring enthusiasm for research, and works

very hard to strike for excellence. I greatly appreciate everything he has done for me. He

is and will always be a great model for me to pursue excellence in research.

I also thank the other members of my dissertation committee, Prof. Prem Devanbu, Prof.

Ron Olsson, and Dr. Dan Quinlan. Their practical, experienced perspective on Software

Engineering problems helped improve the work presented in this dissertation. I truely

appreciate their efforts on reviewing and perfecting my dissertation under an extremely

tight schedule. Although of very different styles from Prof. Su, their passion, dedication,

and professionalism are also excellent sources for me to continuously learn from.

I thank my labmates and collaborators who provided invaluable supports not just for

research, but also for everyday life. Stoney Jackson, Matt Roper, Nija Shi, Chad Sterling,

Brian Toone, Gary Wassermann, and Eric Wohlstadter introduced me to the Kemper 2249

lab. Gary and Nija provided special advices for life as graduate students. Mark Gabel,

Stéphane Glondu, Ghassan Misherghi, and Andreas Sæbjøernsen worked hard to support

much of our research projects. Section 2.4 is more-so Mark’s work than my own, but

is included in the dissertation for completeness. Earl Barr, Chris Bird, Jed Crandall,

Zhongxian Gu, Taeho Kwan, Sophia Sun, Jeff Wu, and Dennis Xu also frequently gave

very useful feedback on ideas, paper drafts, and practice talks to help improve the quality

of our work.

ix

The open, collegial atmosphere in the Computer Science department benefited me in

many different ways. Quite a few faculty members imparted me much valuable knowledge

and advices. The systems and administrative staff paid quite an effort to solve technical

and logistical issues for me. I thank them all and the wonderful environment they have

created for us students.

My most heartfelt acknowledgement goes to my wife, Xiaojing, and our parents for

their constant, unconditional supports during the six years of my Ph.D. study. Their love,

encouragements, and comforts are my endless sources of energy and happiness. I dedicate

my dissertation and love to them.

x

1

Chapter 1

Introduction

Software systems are becoming more and more sophisticated, complex, and ubiquitous,

while standards for software quality and productivity are becoming higher and higher.

Developers constantly seek various techniques, tools, and practices to speed up software

development without introducing additional software defects. One commonly used tactic

for this purpose is to reuse prior knowledge existing in previous software projects. Source

code is one of the most directly reusable forms of prior knowledge, along with specifications,

design documents, and test suites used for previous projects. Developers often copy and

paste code to quickly implement functionalities that have been implemented before. This

practice is not just applied within the same project, it is also often used across projects,

e.g., by embedding one project inside another. The abundance of open source software also

facilitates this practice since developers can easily access the code bases of previous open

source projects and incorporate portions of that code into their own code bases. According

to various studies [92, 101, 104, 119], a large program may have more than 20% of its code

similar to some other parts of the program.

The excessive amount of similar code imposes significant cost on and challenges to

software management and maintenance. For example, after a piece of code has been copied

and pasted to different places within or outside a project, the different instances of the

2

same piece of code need to be maintained separated; a bug fix in one place may need to

be propagated to other places to improve software quality, while consistent propagation of

code changes among different instances can be difficult. Manually tracking and propagating

code changes across all instances of a copied piece of code can be error-prone and tedious.

Studies have shown that the number of software errors and the cost for software maintenance

are closely related to the number of lines of code. Jones [99] estimated that there are,

on average, five defects in software requirements, design, and code per function point;

Humphrey [85] found that even experienced software developers normally inject 100 or

more defects per thousand lines of code. The amount of software is huge; more than 250

billions lines of code have being maintained and the number is constantly increasing [164].

Studies have estimated that the relative cost for maintaining software and managing its

evolution could represent more than 90% of its total cost, which has been named as legacy

crisis by Seacord et al. [160]. A large number of software defects have occurred, many of

which have caused critical incidents, especially when they are found after release. National

Institute of Standards and Technology (NIST) has shown that software errors cost the

U.S. economy an estimated $59.5 billion annually, or about 0.6% of the gross domestic

product [132]. Considering that similar code may account for more than 20% of the sizes

of software projects, a significant portion of software maintenance and failure cost may

be attributed to similar, redundant code which demands extra testing, debugging, and

maintenance effort.

Reducing maintenance cost is thus a strong motivation for detecting similar code in

large projects, refactoring them to reduce redundancy and improve software quality, and

tracking and managing their migration and evolution.

In addition, detecting, tracking, and managing similar code may also help improve

software productivity, enabling faster code development by providing effective ways for de-

velopers to utilize prior knowledge embedded in existing code bases. Based on the frequency

at which a piece of code is used, a large, searchable code library containing commonly used

code can be constructed; the pieces of code in the library can have various granularities and

1.1. Definitions for Similar Code 3

modalities, from sequences of primary code statements to sets of functions and modules,

from co-existent function calls to programming rules, design patterns and even software

architectures. When developers can reuse the code library for development of new software

in an easy, error-proof way, instead of copying, pasting, and inlining code, new software

can then be developed faster with fewer defects since the reused parts are built on the top

of previous proven code bases and developers can be freed from many coding details and

focus more on overall design issues and new features needed during the development. Just

like the Standard Template Library (STL) provides generic algorithms and data structures

for C++ programs, and like the Java Class Library in the Java Platform provides much of

the same reusable functions commonly found in modern operating systems, the library of

commonly used similar code can provide additional reusable code. Different from existing

libraries though, such a library can provide not only more reusable code, but also coding

patterns and examples showing ways to use the reusable code. For example, the library

could contain a set of commonly used APIs and a set of code templates that illustrate

the ways those APIs should be used (e.g., the functions allocate, initialize, traverse,

calculate, and release should be called in sequence). Such a library comprised of similar

code of different granularities and modalities may help to alleviate the problem of API

jungles [126] and enable a new, more efficient way of code reuse.

1.1 Definitions for Similar Code

There have been many studies that define similar code differently. In software engineering,

similar code is also known as cloned code (or code clones), reflecting the fact that much

similar code occurs due to the practice of copying and pasting during software development

process. Code clones introduced by copying and pasting are mostly of similar appearance,

i.e., lexically or syntactically similar, even after developers make changes to the pasted

versions. Such code clones may also have similar functionality (e.g., producing the same

output given the same input) since they are derived from the same origin. Further, there

1.1. Definitions for Similar Code 4

are other software engineering practices that may introduce different kinds of code clones.

For example, n-version programming [38, 107, 121, 131] produces functionally similar code

that is quite different in syntax and even architectural design.

Beside the origins of code clones, applications with different purposes in mind may also

affect the definitions of code clones. For example, if code refactoring is carried out mainly

based on syntactic similarity among code, a clone definition based on code syntax should

be sufficient. If the refactoring is carried out based on functionality regardless of the time

and space complexities, e.g., replacing all code that sorts a sequence of data with a call to

a common sorting routine, we will need a similarity definition based on code functionality

or semantics. For another example, if our goal is to detect code plagiarism among students,

we cannot use a purely functionality-based definition since students usually have the same

coding task to work on and their code should have the functionality when implemented

correctly; if we want to detect code plagiarism in the wild, we will need to consider a

similarity definition based on a combination of syntax, functionality, and runtime behavior,

not only at source code level but also at binary code level, since plagiarized code may often

be obfuscated to avoid detection even though they have the same functionality.

Based on the semantic-awareness of the definitions for code clones, we can have a wide-

spectrum, from the least semantic-aware definitions to the most semantic-aware ones. We

say a definition is the least semantic-aware when it considers two pieces of code as code

clones only if they are exactly the same as character by character, including spaces, tabu-

lators, line breaks, etc. Exact string matching algorithms (e.g., KMP [46]) can be applied

to find such clones. Such a definition is very restrictive and does not allow any code editing

when a piece of code is copied and pasted. More flexible clone definitions have been intro-

duced to tolerate different kinds of code edits. The literature has provided a classification

of four types of clones [22, 152], to allow code clones that can be transformed from one to

another using different kinds of code editing operations:

Type 1: Code pieces are exactly the same as each other except for differences in white-

1.1. Definitions for Similar Code 5

Semantic Awareness of Code Clones

Strings
Token

Sequences

Syntactic

Structures

Program

Dependency

Graphs

Formal

SemanticsBirthmarks Functionalities

Figure 1.1: From the least semantic-aware definitions to the most semantic-aware ones.

space characters and code comments.

Type 2: Code pieces are syntactically identical except for differences in identifiers, literals,

and types.

Type 3: Code pieces are syntactically similar and can be transformed to each other by

further edit operations (e.g., statement addition, deletion, and modification).

Type 4: Code pieces have similar semantics but different syntactic appearances.

This classification is constructed mainly according to the possible edit operations per-

formed by developers when they copy and paste a piece of code. It is suitable to classify

clones introduced by this coding practice. However, the classification is very coarse-grained;

it does not distinguish different kinds of semantic clones (Type 4). In this dissertation,

we provide a spectrum of code clone definitions based on their semantic-awareness that

extends the above classification. Figure 1.1 illustrates the spectrum.

The least semantic-aware definition of code clones treats each program as a sequence

of characters or strings and is concerned with the differences among strings, while token-

based definitions treat each program as a sequence of tokens and ignore differences due to

white-spaces or code comments. Sometimes, differences among certain tokens which are

considered non-essential for a particular application may also be ignored. These definitions

are usually unable to deal with additional edits or systematically take syntactic boundaries

into consideration.

In order to be less sensitive to code formats or names used in programs, syntax-based

clone definitions, either based on parse trees (PTs) or abstract syntax trees (ASTs), are

1.1. Definitions for Similar Code 6

introduced to abstract away many coding details, but preserve essential syntactic structures

and consider similarities among such structures during clone detection and analysis.

Further, each code clone may not necessarily be a consecutive segment of its contain-

ing program. Code performing one functionality may be interwoven with code performing

another functionality. For example, many programs have logging capabilities and the code

responsible for logging is often interwoven with the code performing the main function-

ality. Although the logging code in different programs is seldom consecutive, it is often

very similar to each other if we examine it separately from the containing programs. Such

situations are getting more attention with the emergence of aspect-oriented software devel-

opment (AOSD); mining these cross-cutting functionalities or aspects in legacy programs

requires different definitions of clones. Some definitions aggregate interdependent code to-

gether while separating unrelated code based on program dependencies (data dependencies

and control dependencies) among expressions and statements involved, and define similar-

ities among the aggregated code so that non-consecutive code clones can be reduced to

consecutive code clones.

There are other semantic-aware definitions than program dependency and aspect-oriented

definitions. Birthmark-based ones construct code fingerprints that are representative char-

acteristics, either static or dynamic, of each piece of code, and define similarities among such

fingerprints. Many kinds of information about the code, e.g., how many execution paths

are possible, which functions are called, how the status of a particular variable changes

along an execution, what is the behavior of the code when it errs, etc., can be encoded in

the fingerprints.

Definitions based on formal semantics, e.g., operational semantics, also exist. They con-

sider pieces of code as clones when they have equivalent formal semantics. Such definitions

commonly originated from the concept of program equivalence; they may consider every

intermediate state of each piece of code and be too computationally expensive for practical

usages.

Functionality-based definitions consider inputs and outputs for each piece of code, and

1.2. Limitations of Previous Work 7

define code fragments to be clones if outputs from different pieces of code for the same

input are similar. Such definitions are not concerned with code appearance, structure,

dependencies, or intermediate states, but focus on externally observable behavior of each

piece of code, which allows very different implementations of the same functionality. We

say such definitions are the most semantic-aware ones for code clones.

No clear cut boundary delineates the many different code clone definitions; actual clone

definitions can be a combination of several kinds of definitions in the spectrum. For ex-

ample, a program dependency based definition can take either syntactic structures or code

functionality or both into consideration when defining what are treated as clones. Which

definition is appropriate could depend on an actual application of code clone detection and

analysis.

1.2 Limitations of Previous Work

Many previous studies have tackled each kind of code clones defined in the spectrum.

Different clone detection algorithms have thus been proposed for detecting and analyzing

different kinds of clones. Many of them indeed span several kinds of clones in the spectrum.

File comparison tools (e.g., diff and cmp [66]) are commonly available on Unix-like sys-

tems, providing byte-based and line-based file comparison. These tools are very primitive

for code clone detection purposes. Much work has been carried out to provide tools di-

rectly for clone detection and analysis. Baker’s work [9–11] is most representative among

string-based clones. She has proposed “parameterized” string matching algorithms to find

duplicated code in programs, where identifiers and literals are replaced with a global con-

stant.

Token-based definitions are more robust against code changes such as spacing and for-

matting. Many tools have been developed based on such definitions. CCFinder [101, 124]

and CP-Miner [119] are perhaps the most well-known ones among token-based techniques.

Such tools usually process programs first to produce token sequences, which are then

1.2. Limitations of Previous Work 8

scanned for duplicated subsequences that indicate potential code clones. Although such

techniques can be very efficient, they often cannot systematically recognize valid syntac-

tic boundaries in programs and cause inappropriate results since clones detected by such

techniques may be syntactically invalid units.

Syntactic structure-based definitions are even more robust against more kinds of code

changes than token-based ones. Detection techniques based on such definitions usually parse

programs into parse trees or abstract syntax trees, then identify exact or close matches of

subtrees as clones [18, 19, 174]. Alternatively, various metrics are used to fingerprint the

subtrees, and subtrees with similar fingerprints are reported as possible code clones [111,

127]. Although these previous tree-based techniques and tools often generate more accurate

clone reports than string or token based tools, they are still commonly considered not

semantic-aware and do not scale to billions or millions of lines of code.

Studies have also considered more semantic-aware definitions for code clones as shown

in the spectrum. First, program dependency graphs (PDGs) [62, 83] are used to represent

certain semantic information as data dependencies and control dependencies, which are

then searched for similar subgraphs [110, 114, 123]. These previous techniques directly or

indirectly rely on graph or subgraph isomorphism which are NP-hard problems [7,69] and

thus do not scale.

Birthmark-based definitions often define particular fingerprints for each piece of code

then define code similarities based on the similarities among corresponding code finger-

prints. Various kinds of fingerprints have been proposed for detecting illegal theft code or

code clones [44,45,86,157,191]. Although these techniques are often semantic-aware, they

are sensitive to the defined fingerprints as well, and which fingerprint is more appropriate

may depend on a particular application.

Formal semantic based definitions are closely related to program equivalence [47], which

is a classic problem and is undecidable in general. Equivalence based on operational seman-

tics has been proposed long time ago [143, 150]. Due to their computational complexity,

such concepts are used mainly for checking whether two given pieces of code are equivalent

1.3. Main Contributions 9

or not, instead of searching for unknown code clones in large programs.

Functionality based definitions can be treated as special cases of semantic based defini-

tions where intermediate programs states are ignored and only input and output states for

each piece of code are considered for comparing similarity. Such definitions have also been

investigated [23, 48, 187], but not been applied in clone detection and analysis. Similar to

syntactic structure based techniques, the literature has not shown scalable realizations of

these semantic-aware definitions.

1.3 Main Contributions

This dissertation aims to develop scalable, accurate, and practical clone detection algo-

rithms that are based on syntax trees, dependency graphs, and code functionality, and are

more semantic-aware and robust against code modifications than previous string, token, or

tree based techniques. Also, with the development of practical detection algorithms, this

dissertation explores various applications of code clones besides the traditional application

of code refactoring. Specifically, the dissertation makes the following contributions:

• It presents a spectrum of definitions of code clones based on semantic-awareness

(Figure 1.1) which provides a mean to understand, classify, and relate numerous

clone-related studies.

• It presents Deckard, a scalable and accurate tree-based code clone detection tech-

nique and tool. The key insight of Deckard is to represent syntax trees or de-

pendency graphs of a program as structure-preserving characteristic vectors in the

Euclidean space and employ efficient hashing algorithms to cluster these vectors. Ex-

periments have shown that Deckard scales to millions of lines of code with few false

positives. Also, Deckard is language-agnostic, applicable to any language with a

formally specified grammar. In addition, the algorithms within Deckard can be

easily parallelized, making Deckard suitable for distributed clone detection on the

1.4. Dissertation Outline 10

billions of lines of open source code.

• It proposes a novel application of clone detection to bug detection. In particular, it

presents a general notion of context-based inconsistencies as strong indicators of clone-

related bugs and applies Deckard to identify such inconsistencies. Many previously

unknown bugs in large projects, e.g., the Linux kernel and Eclipse, are discovered.

These bugs exhibit diverse characteristics and are difficult to detect with any single

previous bug detection technique.

• It presents EqMiner, the first scalable technique to detect functionally equiva-

lent code for understanding code duplication at the functionality level. Inspired

by Schwartz’s randomized polynomial identity testing, EqMiner adapts automated

random testing to quickly determine the functional equivalence among arbitrary code

fragments automatically extracted from a large program. Evaluated on the Linux

kernel, EqMiner discovered many functionally equivalent code fragments that are

syntactically different.

1.4 Dissertation Outline

The rest of this dissertation is organized according to the aforementioned main contribu-

tions. Chapter 2 presents the design of, implementation of, and experiments on Deckard.

It will also show that the general framework proposed in Deckard—structure vectorization

and efficient hashing—can be applicable for clone detection beyond tree-based definitions.

Chapter 3 shows a novel application of clone detection to bug detection. It illustrates

that clone-related inconsistencies can be a valuable bug finding technique and complement

other bug detection techniques. Chapter 4 presents the first scalable functional code clone

detection technique applicable to large programs; it not only validates the folklore that

functionally equivalent but syntactically different code commonly exist, but also proposes

many techniques to address challenges associated with large-scale functional code clone

1.4. Dissertation Outline 11

detection. Then, Chapter 5 discusses more related work that is not necessarily limited to

code clone detection and analysis, to broaden the connection of this dissertation to other

fields. Finally, Chapter 6 concludes and describes some considerations on future directions

for clone detection and analysis.

12

Chapter 2

Scalable and Accurate Tree-based

Clone Detection

Chapter 1 has argued that code clones are common and have many important software

engineering applications. Many previous studies have developed various techniques and

tools for clone detection. Among previous techniques, CCFinder [101] and CP-Miner [119]

(which are token-based clone detection tools), and CloneDR [18,19] (which is a syntax tree-

based clone detection tool) represent the state-of-the-art. However, they either do not scale

to large code bases due to expensive algorithms for tree-comparison or are not robust against

minor code modifications due to their token-based nature. This chapter presents an efficient

algorithm for identifying similar subtrees and applies the algorithm to tree representations of

source code. The algorithm is based on a novel characterization of subtrees with numerical

vectors in the Euclidean space Rn and an efficient hashing algorithm to cluster these vectors

w.r.t. the Euclidean distance metric. Subtrees with their corresponding vectors in one

cluster are considered similar, and thus indicate code associated with the subtrees are

clones. The algorithm is also language independent, applicable to syntax trees generated

from any programming language.

This chapter also presents an implementation of the tree similarity algorithm in a tool

2.1. Overview 13

Language
Description

Parse Tree
Builder
Generator

Source
Repository

Parse Tree
Builder Parse

Trees

Vector
Generator

Post
Processor

Vector
Clustering

Clones Vector
Database

Clone
Reports

Figure 2.1: Deckard’s system architecture.

called Deckard. We have done extensive empirical evaluation of Deckard on large

software (including JDK which is written in Java and the Linux kernel which is written

in C) and compared Deckard against CloneDR and CP-Miner. Results indicate that

Deckard is both scalable and accurate: it detects more clones in large code bases than

both CloneDR and CP-Miner; it is more scalable than CloneDR, which is also tree-based,

and is as scalable as the token-based CP-Miner.

2.1 Overview

As introduced in the beginning of this chapter, the main idea of our algorithm is to compute

particular characteristic vectors to approximate structural information within trees and

then adapt Locality Sensitive Hashing (LSH) [50] to efficiently cluster similar vectors (and

thus code clones).

Figure 2.1 shows the high level architecture of Deckard:

• A parser is automatically generated from a formal grammar of a language.

• The parser translates sources files in a program or a set of programs into parse trees.

• The parse trees are processed to produce a set of characteristic vectors whose di-

mensions are fixed for a particular programming language and capture the syntactic

information of parse trees.

2.1. Overview 14

• The vectors are clustered by special hashing algorithms; close (w.r.t. Euclidean dis-

tances) ones are put into the same cluster.

• Additional post-processing heuristics, such as filtering out clusters with tiny or over-

lapping code fragments, are used to generate code clone reports.

This section aims to illustrate the above main steps of the algorithm with a small

example using the following two C program fragments which are array initialization:for (int i= 0; i < n; i++)

x[i]= 0;

for (int i= 0; i < n; i++)

y[i]= "";

The parse trees generated by Deckard for these two code segments are identical,

because the code differs only in identifier names and literal values and Deckard ignores

such token-level differences. The parse tree is shown in Figure 2.2. A pairwise (sub)tree

comparison could be used to detect such clones, but this is expensive for large programs

because of the possibly large number of subtrees. In the following, we demonstrate a novel,

efficient technique for tree similarity detection.

Characteristic Vectors We introduce characteristic vectors to capture structural infor-

mation of trees (and forests). This is a key step in our algorithm. The characteristic vector

of a subtree is a point 〈c1, . . . , cn〉 in the Euclidean space, where each ci represents the

count of occurrences of a specific tree pattern in the subtree. For this example, we let the

tree patterns be the node kinds in a parse tree and node kinds are basically non-terminals

and terminals defined within the grammar of a programming language. We will introduce

more general tree patterns in Section 2.2.2.

Not all nodes in parse trees are essential for capturing tree structural information; many

are redundant w.r.t. their parents, or were introduced to simplify the language grammar

specification. We thus also distinguish between relevant and irrelevant nodes. Example

irrelevant nodes include C tokens ‘[’ and ‘]’ used in array expressions and parentheses (‘(’

2.1. Overview 15

for_s

for (decl ; cond_e ; incr_e) expr_s

primary_e ++primary_e > primary_eint id = primary_e assign_e ;

array_e = primary_e

primary_e [primary_e]

lit id id id

lit

id id

1,1,0,0,0,0,0,1,0 2,0,0,0,0,1,0,0,0

2,0,0,0,1,0,0,0,0

2,1,1,0,1,0,0,0,0

2,1,1,0,1,0,1,0,0

6,2,1,1,1,1,1,1,1

3,1,0,0,0,1,0,1,0 3,0,0,1,0,1,0,0,0 3,0,0,1,0,1,0,0,0

Key

terminal irrelevant irrelevantnonterminal mergeable vector merged vector

Figure 2.2: A sample parse tree with generated characteristic vectors.

and ‘)’) which may be used in C for exressing explicit precedence, function application, and

delimiting conditional clauses.

In Figure 2.2, nodes with solid outlines are relevant while nodes with dotted outlines are

irrelevant. Irrelevant nodes do not have an associated pattern or dimension in our vectors.

For the example, the ordered dimensions of characteristic vectors are occurrence counts of

the relevant nodes: id, lit, assign e, incr e, array e, cond e, expr s, decl, and for s. Thus, the

characteristic vector for the subtree rooted at decl is 〈1, 1, 0, 0, 0, 0, 0, 1, 0〉 because there is

an id node, a lit node, and a decl node.

Characteristic vectors are generated with a post-order traversal of the parse tree by

summing up the vectors for children with the vector for the parent’s node. As an example,

the vector for the subtree rooted at assign e 〈2, 1, 1, 0, 1, 0, 0, 0, 0〉 is the sum of the vectors for

array e (〈2, 0, 0, 0, 1, 0, 0, 0, 0〉), = (〈0, 0, 0, 0, 0, 0, 0, 0, 0〉), primary e (〈0, 1, 0, 0, 0, 0, 0, 0, 0〉),

and the additional node assign e (〈0, 0, 1, 0, 0, 0, 0, 0, 0〉). Users may also specify a minimum

token count to suppress vectors for small subtrees; this helps to avoid reporting small clones

2.1. Overview 16

which are often uninteresting. For example, in Figure 2.2, with this threshold set to three,

no vector is generated for the subtree rooted at incr e. By varying this threshold, we can

systematically find only large clones.

Vector Merging The aforementioned technique considers only those code fragments with

a corresponding subtree in the parse tree. However, developers often insert code fragments

within some larger context. Differences in the surrounding nodes may prevent the parents

from being detected as clones (cf. Section 2.3.3 for a concrete example from JDK 1.4.2). To

identify these cloned fragments, we use a second phase of characteristic vector generation,

called vector merging, to sum up the vectors of certain node sequences. In this phase, a

sliding window moves along a serialized form of the parse tree. The windows are chosen so

that a merged vector contains a large enough code fragment. In Figure 2.2, for example,

we merged the vectors for decl and cond e to get the vector 〈3, 1, 0, 0, 0, 1, 0, 1, 0〉 for the

combined code fragment.

The choice of which nodes in the tree to merge affects which and how many code

fragments from source files will be considered as candidates for code clones. Merged nodes

should correspond to code fragments that are valid syntactic units in the source, while not

frequently containing large subtrees. Roots of expression trees, likely to be units for copy-

pasting, are often good choices for merging vectors. We call such chosen nodes mergeable

nodes. In Figure 2.2, the four children of the for statement are used as mergeable nodes.

It is not necessary for mergeable nodes to be on the same level. If we had chosen any

statement to be mergeable, the entire for loop would have been considered as one unit

without subsequences. In Figure 2.2, we also required each merged fragment to contain at

least five tokens. If we had required six tokens instead, there would have been only two

merged vectors instead of three: one for decl and cond e, and the other for cond e, incr e,

and expr s.

2.2. Algorithm Description 17

Vector Clustering and Post-Processing After we have selected the characteristic

vectors, our algorithm clusters similar characteristic vectors w.r.t. their Euclidean distances

to detect cloned code. The two sample C code fragments both have the same characteristic

vector 〈6, 2, 1, 1, 1, 1, 1, 1, 1〉, and Deckard reports them as clones. Because the number of

generated vectors can be large, an efficient clustering algorithm is needed. We will present

such an algorithm in Section 2.2.

The subtree rooted at expr s also illustrates the need for post-processing. When a

particular subtree has a low branching factor, the vectors for a child and its parent are

usually very similar and thus likely to be detected as clones. We employ a post-processing

phase following clustering to filter such spurious overlapping clones.

2.2 Algorithm Description

This section gives a detailed description of our tree similarity algorithm: it first formally

defines a clone pair (Section 2.2.1), then introduces characteristic vectors for trees and

describes how to generate them (Section 2.2.2), and finally explains our vector clustering

algorithm for clone detection (Section 2.2.3).

2.2.1 Formal Definitions

In this dissertation, we view clones as syntactically similar code fragments. Thus, it is

natural to define the notion of similar trees first. We follow the standard definition and use

tree editing distance as the measure for tree similarity.

Definition 2.1 (Editing Distance). The editing distance of two trees T1 and T2, denoted

by δ(T1, T2), is the minimal sequence of edit operations (either relabel a node, insert a node,

or delete a node) that transforms T1 to T2.

Definition 2.2 (Tree Similarity). Two trees T1 and T2 are σ-similar for a given threshold

σ, if δ(T1, T2) < σ.

2.2. Algorithm Description 18

We are now ready to define the notion of a clone pair.

Definition 2.3 (Clone Pair). Two code fragments C1 and C2 are called a clone pair if

their corresponding tree representations T1 and T2 are σ-similar for a specified σ.

Such a definition based on tree editing distance faithfully captures how similar two code

fragments are. However, it does not lead naturally to an efficient algorithm due to several

reasons:

• The complexity of computing the editing distance between two trees is expensive.1

• It requires many pairwise comparisons to locate similar code in large software (quadratic

in the worst case).

Instead, we approximate tree structures using numerical vectors and reduce the tree

similarity problem to detecting similar vectors. Before describing the details, we define the

two common distance measures for numerical vectors that we use in this dissertation.

Definition 2.4 (Distance Measures on Vectors). Let v1 = 〈x1, . . . , xn〉 and v2 = 〈y1, . . . , yn〉

be two n-dimensional vectors. The Manhattan distance of v1 and v2, H(v1, v2), is their l1

norm, i.e., H(v1, v2) = ||v1−v2||1 =
∑n

i=1 |xi−yi|; it is also equivalent to Hamming distance

if the vectors are binary (whose elements are 1 or 0). The Euclidean distance of v1 and v2,

D(v1, v2), is their l2 norm, i.e., D(v1, v2) = ||v1 − v2||2 =
√

∑n
i=1(xi − yi)2.

Such distance measures are much easier to compute and efficient algorithms for near-

neighbor queries exist for numerical vectors. Based on these observations, we show how

to abstract trees into vectors and how to efficiently cluster similar vectors to detect code

clones.

2.2.2 Characteristic Vectors for Trees

Recall that in Section 2.1 we illustrated the use of occurrence counts of relevant nodes

to abstract a subtree (or subtrees). That example shows a special case of the general

1More precisely, for two trees T1 and T2 the complexity is O(|T1| × |T2| × d1 × d2), where |Ti| is the size
of Ti and di is the minimum of the depth of Ti and the number of leaves of Ti [189].

2.2. Algorithm Description 19

construction that we will introduce in this section. In particular, we describe a general

technique to map a tree (or forests) to a numerical vector which characterizes the structure

of the given tree. Without loss of generality, we assume trees are binary [108].

Atomic Tree Patterns and Vectors

Given a binary tree, we define a family of atomic tree patterns to capture structural infor-

mation of a tree. They are parametrized by a parameter q, the height of the patterns.

Definition 2.5 (q-Level Atomic Tree Patterns). A q-level atomic pattern is a complete

binary tree of height q. Given a label set L, including the empty label ε, there are at most

|L|2q−1 distinct q-level atomic patterns.

Definition 2.6 (q-Level Characteristic Vectors). Given a tree T , its q-level characteristic

vector (denoted by vq(T)) is 〈b1, b2, . . . , b|L|2q
−1〉, where bi is the number of occurrences of

the i-th q-level atomic pattern in T .

For example, in Figure 2.2, we used the relevant nodes as the 1-level atomic patterns

and characterized trees with their 1-level characteristic vectors.

Abstracting trees as q-level vectors yields an alternative to the standard tree similarity

definition based on editing distance. Our plan is to use Euclidean distance between q-level

vectors to approximate the editing distance of the corresponding trees. We adapt a result of

Yang et al. on computing tree similarity [183] to show that this approximation is accurate.

Theorem 2.7 (Yang et al., Thm. 3.3 [183]). For any trees T1 and T2 with editing distance

δ(T1, T2) = k, the l1 norm of the q-level vectors for T1 and T2, H(vq(T1), vq(T2)), is no more

than (4q − 3)k.

For any two integer vectors v1 and v2,
√

H(v1, v2) ≤ D(v1, v2) ≤ H(v1, v2). Thus we

have the following corollary that relates the tree editing distance of two trees with the

Euclidean distance of their q-level vectors.

2.2. Algorithm Description 20

Corollary 2.8. For any trees T1 and T2 with editing distance δ(T1, T2) = k, the l2 norm of

the q-level vectors for T1 and T2, D(vq(T1), vq(T2)), is no more than (4q − 3)k and no less

than the square root of the l1 norm, i.e.,

√

H(vq(T1), vq(T2)) ≤ D(vq(T1), vq(T2)) ≤ (4q − 3)k.

Corollary 2.8 suggests that either
D(vq(T1),vq(T2))

4q−3 or

√
H(vq(T1),vq(T2))

4q−3 can be used as a

lower bound of the tree editing distance δ(T1, T2). When such a lower bound is larger than

a specific threshold σ, T1 and T2 cannot be σ-similar and thus not a clone pair for the

specified σ. On the other hand, when the lower bound is smaller than σ, δ(T1, T2) is likely

to be less than σ too. Hence, we reduce the problem of tree similarity to the problem of

detecting similar q-level vectors.

Notice that Definition 2.6, Theorem 2.7, and Corollary 2.8 can be relaxed to work on

tree forests (a collection of trees) as well because tree forests can be viewed as a tree by

adding an additional root. This is important for dealing with code fragments that do not

correspond to a single subtree in the parse tree (cf. Section 2.1).

Vector Generation

There are two phases of vector generation: one for subtrees and one for subtree forests (for

generating merged vectors). Algorithm 2.1 shows how vectors are generated for subtrees.

Given a parse tree T , we essentially perform a post-order traversal of T to generate vectors

for its subtrees. Vectors for a subtree are summed up from its constituent subtrees (line 5).

Certain tree patterns may not be important for a particular application, so we distinguish

between relevant and irrelevant tree patterns (a concept that is similar to and generalizes

relevant and irrelevant nodes from Section 2.1). If a pattern rooted at a particular node

N is relevant (line 6), we look up its index in the vector space using IndexOf (line 7) and

update the vector correspondingly (line 8).

We also allow vectors to be generated only for certain subtrees, for example those that

2.2. Algorithm Description 21

Algorithm 2.1 q-Level Vector Generation

1: function qvg(T : tree, C : configuration): vectors

2: V ← ∅
3: Traverse T in post-order
4: for all node N traversed do
5: VN ←

∑

n ∈ children(N) Vn

6: if IsRelevant(N , C) then
7: id← IndexOf(N, C)
8: VN [id]← VN [id] + 1
9: end if

10: if IsSignificant(N , C)
∧

11: ContainsEnoughTokens(VN, C) then
12: V ← V ⋃{VN}
13: end if
14: end for
15: return V
16: end function

are more likely to be units of clones, such as subtrees rooted at declarations, expressions and

statements. Users can select those significant node kinds to generate q-level vectors (line

10). For example, if array e in Figure 2.2 had been specified as insignificant, no vector would

have been generated for it. In addition, we may want to ignore small subtrees that contain

too few tokens (cf. incr e in Figure 2.2). Users can define a minimal token requirement on

the subtrees, which is enforced with ContainsEnoughTokens (line 11).

Algorithm 2.2 shows how vectors are generated for adjacent subtree forests. It serializes

the parse tree T in post-order, then moves a sliding window along the serialized tree to

merge q-level vectors from nodes within the sliding window. Because it is not useful to

include every node in the serialized tree, we select certain node kinds (called mergeable

nodes) as the smallest tree units to be included (to make larger code fragments in the

context of clone detection). For example, the significant nodes, decl, cond e, incr e, and

expr s in Figure 2.2 are specified as mergeable. Users can specify any suitable node kinds

as mergeable for a particular application. If both a parent and a child are mergeable, we

exclude the child in the sliding window for the benefit of selecting larger clones. This is

implemented by NextNode in Algorithm 2.2 (line 9).

Users can also choose the width of the sliding window and how far it moves in each

2.2. Algorithm Description 22

Algorithm 2.2 Vector Merging for Adjacent Tree Forests

1: function wvg(T : tree, C : configuration): vectors

2: ST ← Serialize(T, C); V ← ∅
3: step← 0; front← ST.head
4: back ← NextNode(ST.head, C)
5: repeat
6: Vmerged ←

∑

n∈[front,back] Vn

7: while back 6= ST.tail
∧

8: ¬ContainsEnoughTokens(Vmerged, C) do
9: back ← NextNode(back, C)

10: Vmerged ←
∑

n∈[front,back] Vn

11: end while
12: if RightStep(step, C) then
13: V ← V ⋃{Vmerged}
14: end if
15: front←NextNode(front, C)
16: step← step + 1
17: until front = ST.tail
18: return V
19: end function

step, i.e., its stride. Larger widths allow larger code fragments to be encoded together, and

may help detect larger clones, while larger strides reduce the amount of overlapping among

tree fragments, and may reduce the number of spurious clones. With sliding windows of

different widths, our algorithm can generate vectors for code fragments of different sizes

and provide a systematic technique to find similar code of any size.

2.2.3 Vector Clustering

Given a large set of vectors V, quadratic pairwise comparisons are computationally infeasible

for similarity detection. Instead, we can hash vectors with respect to the Euclidean distances

among them, and then look for similar vectors by only comparing vectors with equal hash

values.

Locality Sensitive Hashing (LSH) [50, 70] is precisely what we need. It constructs a

special family of hash functions that can hash two similar vectors to the same hash value

with arbitrarily high probability and hash two distant vectors to the same hash value with

arbitrarily low probability. It also helps efficiently find near-neighbors of a query vector.

2.2. Algorithm Description 23

In the following, we provide some basic background on LSH, then discuss how it is applied

for clone detection.

Locality Sensitive Hashing

Definition 2.9 ((p1, p2, r, c)-Sensitive Hashing). A family F of hash functions h : V → U

is called (p1, p2, r, c)-sensitive (c ≥ 1), if ∀vi, vj ∈ V,

if D(vi, vj) < r then Prob[h(vi) = h(vj)] > p1

if D(vi, vj) > cr then Prob[h(vi) = h(vj)] < p2

For example, Datar et al. have shown that the following family of hash functions, which

map vectors to integers, is locality sensitive [50]:

{hα,b : Rd → N | hα,b(v) = bα · v + b

w
c, w ∈ R, b ∈ [0, w]}

Definition 2.10 ((r, c)-Approximate Neighbor). Given a vector v, a vector set V, a distance

r, and c ≥ 1, U = {u ∈ V | D(v, u) ≤ cr} is called an rcAN set of v, and any u ∈ U is a

(r, c)-approximate neighbor of v.

Given a vector set V of size n and a query vector v, LSH may establish hash tables

for V and find v’s rcAN set in O(dnρ log n) time and O(nρ+1 + dn) space, where d is the

dimension of the vectors and ρ = logp2
p1 < 1

c
for c ∈ [1,+∞). As long as we feed r (the

largest distance allowed between v and its neighbors) and p1 (the minimal probability that

two similar vectors have the same hash value) to LSH, it automatically computes other

parameters that would give optimal running time of a query.

LSH-based Clone Detection

LSH’s querying functionality can help find every vector’s rcAN sets, which are needed for

clone detection. Algorithm 2.3 describes the utilization of LSH:

2.2. Algorithm Description 24

Algorithm 2.3 LSH-based Clone Detection

1: function lshcd(V : vectors, r : distance, p1 : prob): rcANs

2: N ← ∅; LSH(V , r, p1)
3: repeat pick a v ∈ V
4: rcAN ← queryLSH(v)
5: if |rcAN | > 1 then
6: N ← N ⋃{rcAN \⋃

n∈N n}
7: end if
8: V ← V \ rcAN
9: until V = ∅

10: return PostProcessing(N)
11: end function

• All vectors are stored into LSH’s hash tables (line 2), where r serves as the threshold

σ defined in Definition 2.3.

• A vector v is used as a query point to get an rcAN set (lines 3 and 4).

• If the rcAN set only contains v itself, it means v has no neighbors within distance σ

and should be deleted directly (line 8).

• Otherwise, the rcAN set is treated as a clone class (lines 6 and 8). Such a process

may query LSH n times in the worst case.

Thus, our LSH-based clone detection takes O(dnρ+1 log n) time, where d is the dimension

of the vectors, i.e., |L|2q−1 in terms of q-level vectors, where |L| is the number of node kinds

in a parse tree.

All the rcAN sets may contain potentially spurious clones (cf. Section 2.1) and are post-

processed to generate clone reports. A filter is created to examine the line range of every

clone in an rcAN set and remove any that is contained by or overlaps with others. A second

filter is applied after the first one to remove rcAN sets that contain only one vector. Both

filters run in linear time in the number of rcAN sets and quadratic time in the size of the

sets.

2.2. Algorithm Description 25

2.2.4 Size-Sensitive Clone Detection

Definition 2.3 of a clone pair does not take into account the varying sizes of code fragments.

It is however natural to allow more edits for larger code fragments to be still considered

clone pairs. In this section, we introduce a size-sensitive definition of code clones and

an algorithm for detecting such clones. Such a higher tolerance to edits for larger code

fragments facilitates the detection of more large clones.

Definition 2.11 (Code Size). The size of a code fragment C in a program P , denoted by

S(C), is the size of its corresponding tree fragments (subtree forest) in the parse tree of P .

Definition 2.12 (Size-Sensitive Clone Pair). Two code fragments C1 and C2 form a size-

sensitive clone pair if their corresponding trees T1 and T2 are f(σ, S(C1), S(C2))-similar,

where f is a monotonic, non-decreasing function with respect to σ and S(Ci).

Clone detection based on Definition 2.12 requires larger distance thresholds for larger

code. We now present a technique to meet such a requirement. The basic idea is vector

grouping: vectors for a program are separated into different groups based on the sizes of

their corresponding code fragments; then LSH is applied on each group with an appropriate

threshold; and finally, all reported clone classes from different groups are combined.

Any grouping strategy is appropriate as long as it meets the following requirements:

• It should not miss any clones detectable with a fixed threshold, thus each group should

overlap with the neighboring groups.

• It should not produce many duplicate clones, thus overlapping should be avoided as

much as possible.

• It should produce many small groups to help reduce clustering cost.

Algorithm 2.4 shows a generic vector grouping algorithm, where s is a user-specified

code size for the first group. Each vector v is dispatched into groups whose size ranges

contain the size of its corresponding code fragment, i.e., S(Cv). sizeRanges shows our

2.3. Implementation and Empirical Evaluation 26

Algorithm 2.4 Vector Grouping

1: function vg(V : vectors, r : distance, s : size)
2: R← sizeRanges(V , r, s)
3: dispatch V into groups according to the ranges in R
4: end function
5:

6: function sizeRanges(V : vectors, r : distance, s : size)
7: The code size range for the 1st group ← [0, s + r]
8: The range for the 2nd group ←
9: r = 0 ? [s + 1, s + 1] : [s, s + 3r + 1]

10: repeat compute [li+1, ui+1] as
11: li+1 ← r = 0 ? (ui + 1) : (ui − li

s
r)

12: ui+1 ← r = 0 ? (ui + 1) : (s+2d
s

ui − 2 d2

s2 li + 1)
13: until ui ≥ maxv∈V{S(Cv)}
14: end function

formulae for grouping. The exact constraints used to deduce the grouping formulae can

vary as long as they meet the aforementioned requirements.

We can estimate S(C) with the size of C’s vector v = 〈x1, . . . , xn〉, i.e., S(C) ≈ S(v) =

∑n
i=1 xi. Although irrelevant nodes may cause S(v) < S(C), this should have little impact

on clone detection because each S(C) is adjusted accordingly.

It is also worth mentioning that vector grouping has the added benefit to improve

scalability of our detection algorithm. Because the vectors are separated into smaller groups,

the number of vectors will usually not be a bottleneck for LSH, thus enabling the application

of LSH on larger programs. In addition, because vector generation works on a file-by-file

basis and the separated vectors are processed one group at a time, our algorithm can be

easily parallelized. and its performance has a great potential to be improved.

2.3 Implementation and Empirical Evaluation

This section discusses our implementation of Deckard and presents a detailed empiri-

cal evaluation of it against two previous state-of-the-art tools: CloneDR [18, 19] and CP-

Miner [119].

2.3. Implementation and Empirical Evaluation 27

2.3.1 Implementation

In our implementation, we use 1-level vectors to capture tree structures. Deckard is

language independent and works on programs in any programming language that has a

context-free grammar. It automatically generates a parse tree builder to build parse trees

required by our algorithm. Deckard takes a YACC grammar and generates a parse tree

builder by replacing YACC actions in the grammar’s production rules with tree building

mechanisms. The generated parse tree builders also have high tolerance of syntactic errors.

They can skip code portions that they cannot parse, recover from error states, and continue

the tree building process from where they can parse. Thus, even if the given YACC grammar

for a language does not completely or accurately specify the language, the generated parse

tree builders can still be highly usable. For example, the YACC grammar we used for Java

does not recognize the assert keyword added in Java 1.4, but the generated parse tree

builder still successfully built parse trees for 8, 451 files out of 8, 453 in JDK 1.4.2.

Section 2.3.3 will show that Deckard works effectively for both C and Java. In addi-

tion, YACC grammars are available for many languages, often with the requisite error re-

covery to localize syntax problems. Thus, it should be straightforward to port Deckard to

other languages. In particular, the ROSE open source compiler infrastructure [146,147,156]

supports Fortran, C, C++, Python, and other languages. It can construct unified parse

trees and abstract syntax trees for most programs written in the supported languages. It

could potentially enable cross-language clone detection and code reuse in the future.

2.3.2 Experimental Setup

We performed extensive experiments on Deckard, and the most detailed ones were on JDK

1.4.2 (8,534 Java files, 2,418,767 LoC)2 and Linux kernel 2.6.16 (7,988 C files, 5,287,090

LoC). We also compared Deckard to both CloneDR [18, 19], a well-known AST-based

clone detection tool for Java, and CP-Miner [119], a token-based tool for C, to show that

2Our current implementation of Deckard cannot parse programs written in Java 1.5 or later because
the YACC grammar we used for Java does not recognize many new language features (e.g., generics).

2.3. Implementation and Empirical Evaluation 28

Deckard can achieve higher clone detection rates with comparable computational cost.

To compare with CloneDR, we ran experiments on a workstation with a Xeon 2GHz

processor and 1GB of RAM, with both Windows XP (for CloneDR) and Linux kernel 2.4.27

(for Deckard). CloneDR has several parameters that may affect its clone detection rates,

and we chose the most lenient values for all those parameters.

• The minimal depth of a subtree to be considered a clone is set to two.

• The minimal number of tree nodes a clone should contain is set to three.

• The maximal number of parameters allowed when using parameterized macros to

refactor clones is set to 65535.

• Similarity is set to a value between 0.9 and 1.0, where CloneDR [19] defines Similarity

as the following:

Similarity(T1, T2) =
2H

2H + L + R
(Eq. 1)

where H is the number of shared nodes in trees T1 and T2, L is the number of different

nodes in T1, and R is the number of different nodes in T2. This definition takes tree

sizes into account, similar to our definition in Section 2.2.4.

To make our comparisons fair despite the different configuration options in each, we

compute Deckard’s threshold σ from Similarity as follows. Suppose v1 and v2 are the

1-level vectors for T1 and T2 respectively. Because the l1 norm of v1 and v2 can be approx-

imated as L + R and l2 ≥
√

l1 for integer vectors, we can transform a given Similarity s

to an approximate l2 distance:

2.3. Implementation and Empirical Evaluation 29

Ds(v1, v2) ≥
√

H(v1, v2) ≈
√

L + R

{Eq. 1}
=

√

(1− s)× (|T1|+ |T2|)

≥
√

2(1− s)×min(S(v1), S(v2))

Given a vector group V,
√

2(1 − s)×minv∈VS(v) can serve as the threshold σ used by

Deckard for the group. This is similar to Section 2.2.4, where we use vector sizes to

approximate tree sizes. In Figures 2.3, 2.6, 2.4, 2.7, and 2.8, we show Similarity only,

without showing the derived σ.

To compare with CP-Miner (available for Linux), we ran experiments on a worksta-

tion running Linux kernel 2.6.16 with an Intel Xeon 3GHz processor and 2GB of RAM.

CP-Miner uses a different distance metric, called gap, which is the number of statement in-

sertions, deletions, or modifications to transform one statement sequence to another. Such

a parameter is invariant w.r.t. different code sizes.

2.3.3 Evaluation Results

We have evaluated Deckard in terms of the following: clone quantity (i.e., number of

detected clones), clone quality (i.e., number of false clones), and its scalability. Our results

indicate that Deckard performs significantly better than both CloneDR and CP-Miner.

Clone Quantity

We measure clone quantity by the number of lines of code that are within detected clone

pairs. In the first experiment, we compared Deckard with CloneDR on JDK. It seems that

CloneDR was not able to parse files containing certain keywords (e.g., assert). CloneDR

also failed to work on the entire JDK at once. Thus, we excluded those syntactically prob-

lematic files reported by CloneDR and separated the remaining files into nine overlapping

2.3. Implementation and Empirical Evaluation 30

Similarity

C
lo

n
ed

 L
o
C

 (
#
)

/
1
0
^

5

minT 30, stride 2

minT 30, stride 4

minT 30, stride 8

minT 30, stride 16

minT 30, stride inf

minT 50, stride 2

minT 50, stride 4

minT 50, stride 8

minT 50, stride 16

minT 50, stride inf

CloneDR

Figure 2.3: Cloned lines of code detected by Deckard (with grouping and full parameter
tuning) and CloneDR on JDK 1.4.2.

0

5

10

15

20

25

30

35

40

1.0 0.9999 0.999 0.99 0.95 0.9

Similarity

C
lo

n
ed

 L
o

C
 (

#
)

/
1

0
^

5

minT 30, stride 2

minT 30, stride 4

minT 30, stride 8

minT 30, stride 16

minT 30, stride inf

minT 50, stride 2

minT 50, stride 4

minT 50, stride 8

minT 50, stride 16

minT 50, stride inf

Figure 2.4: Cloned lines of code detected by Deckard (with grouping and selective pa-
rameter tuning) on Linux kernel 2.6.16.

groups, with each group containing around 1,000 files.3 Figure 2.3 shows the total detected

cloned lines over many runs on JDK. For Deckard, we used a variety of configuration

3To reduce potential false negatives for CloneDR, we separated the files into as few groups as possible
and nine was the result of a trial-and-error process. We also assume clones most likely occur among spatially
close files (e.g., files stored under the same directory), so we listed all file names with their path names from
JDK in the dictionary order and then split the ordered list; and files in the same bottom directory were
always put into the same group. In addition, we allowed two adjacent (w.r.t. the ordered list) groups to
share about 100 files to further help reduce potential false negatives.

2.3. Implementation and Empirical Evaluation 31

0.05

0.1

0.15

0.2

0.25

0.3

30 50 70 90

minT

C
lo

n
e
 D

et
e
ct

io
n

 R
a

te
s

(%
) stride 2,

Similarity

1.0
stride 4,

Similarity

1.0
CPMiner

Gap 0

CPMiner

Gap 1

Figure 2.5: Effects of minT on clone detection rates (percentage of cloned lines of code) of
Deckard and CP-Miner on Linux kernel 2.6.16.

options: minT (the minimal number of tokens required for clones) was set to 30 or 50, stride

(the size of the sliding window) ranged from 2 to infinity (i.e., +∞, meaning that vector

merging is disabled), and Similarity ranged between 0.9 and 1.0. The total number of

cloned lines detected by Deckard ranges from 204,263 to 1,943,777, while the number of

cloned lines detected by CloneDR ranges from 246,708 to 727,701.

In our second experiment, we compared Deckard with CP-Miner on the Linux kernel.

Figure 2.4 shows the total number of clone lines detected by Deckard under different

configuration options with minT set to 30 or 50, stride ranging from 2 to infinity, and

Similarity ranging from 0.9 to 1.0. The total number of detected cloned lines ranges from

338,519 to 3,936,242. For CP-Miner, we used four configuration options with minT set to

30 or 50 and gap set to 0 or 1. Its total number of detected clone lines ranges from 498,113

to 1,108,062 as shown in Table 2.1. It failed to operate with gap > 1.

In addition, Figure 2.5 plots the decline in clone detection rates as minT increases for

both CP-Miner and Deckard. Even with Similarity set to 1.0, Deckard detects more

clones than CP-Miner.

2.3. Implementation and Empirical Evaluation 32

minT Gap Cloned LoC (#) Time (min)

30 0 684,119 18.7
1 1,108,062 19.7

50 0 498,113 11.9
1 783,925 18.7

Table 2.1: Cloned lines of code and running time for CP-Miner on Linux kernel 2.6.16.

Clone Quality

The number of reported spurious clones is also important in assessing clone detection tools.

We performed random, manual inspection on rcAN sets (i.e., clustered similar vectors)

using two criteria:

• Does an rcAN set contain at least one clone pair that corresponds to copy-pasted

fragments?

• Are all clones in an rcAN set copies of one another?

If a set fails to satisfy either of the criteria, we classify it as a false clone report. However,

it may be difficult to decide for certain whether two code fragments are clones or not. For

example, consider the following code fragments from JDK 1.4.2:

1 else if (option.equalsIgnoreCase("basic")) {

2 bBasicTraceOn = true;

3 } else if (option.equalsIgnoreCase("net")) {

4 bNetTraceOn = true;

5 } else if (option.equalsIgnoreCase("security")) {

6 bSecurityTraceOn = true;

7 } else ...

8 ...

9 else if (opt.equals("-nohelp")) {

10 nohelp = true;

11 } else if (opt.equals("-splitindex")) {

12 splitindex = true;

13 } else if (opt.equals("-noindex")) {

14 createindex = false;

15 } else ...

2.3. Implementation and Empirical Evaluation 33

CloneDR CP-Miner LSH LSH w/ Grouping

Time O(n2

|Buckets|) O(m2) O(dnρ log n) O(d
∑

g∈G |g|ρ log |g|)
Mem O(n) O(m) O(nρ+1 + dn) O(maxg∈G{|g|ρ+1 + d|g|})

Deckard w/ Post-Processing

Time O(n + d
∑

g∈G |g|ρ+1 log |g|+ c|rcAN |2)
Mem max{O(c|rcAN |), Og∈G(|g|ρ+1 + d|g|)}

Table 2.2: Worst-case complexities of CloneDR, CP-Miner, and Deckard (m is the number
of lines of code, n is the size of a parse tree, |Buckets| is the number of hash tables used
in CloneDR, d is the number of node kinds, |g| is the size of a vector group, 0 < ρ < 1, c is
the number of clone classes reported, and |rcAN | is the average size of the clone classes).

The code between lines 1–7 and that between lines 9–15 have identical structure but

different variable names, functions, and constants. CloneDR and CP-Miner may detect

them as clones if the two if-else sequences are standalone statements, but miss them if

they are in the middle of different, larger if-else statements. Deckard always detects

them with reasonably small settings for minT and stride.

We inspected 100 randomly selected rcAN sets reported by Deckard for JDK 1.4.2

with minT set to 50, stride set to 4, and Similarity set to 1.0. Of those, 93 rcAN sets

are clearly real clones. Among the remaining seven rcAN sets, three involve if-else andswitch-case that are similar to the above if-else example, three involve sequences of

simple import statements, and one involves sequences of simple declarations. Although it

is unclear whether these are clones, the reported clone pairs are all structurally the same.

Also because both CloneDR and CP-Miner may detect such code as clones, we also classified

these as real clones. This experiment indicates that Deckard is highly accurate. Because

the version of CloneDR that we have does not output the actual clones, we cannot directly

compare its accuracy with Deckard. For future work, we plan to develop a better user

interface for Deckard, which would allow us to conduct further user studies and to more

rigorously assess the quality of reported clones.

2.3. Implementation and Empirical Evaluation 34

Similarity

R
u

n
n

in
g
 T

im
e

(m
in

)
/

1
0

 minT 30, stride 2

minT 30, stride 4

minT 30, stride 8

minT 30, stride 16

minT 30, stride inf

minT 50, stride 2

minT 50, stride 4

minT 50, stride 8

minT 50, stride 16

minT 50, stride inf

CloneDR

Figure 2.6: Running time of Deckard (with grouping and full parameter tuning) and
CloneDR on JDK 1.4.2.

Scalability

Table 2.2 presents the worst-case time and space complexities for CloneDR, CP-Miner,

Deckard, and LSH. Although the number of tree nodes n is usually several times larger

than the number of statements m in a program, Deckard’s performance is still comparable

to CP-Miner for large programs because ρ is usually much smaller than one. With vector

grouping, LSH’s memory consumption can be significantly reduced to make Deckard scale

to very large programs.

Figure 2.6 plots running times for both Deckard and CloneDR on JDK. We see that

Deckard is several times faster than CloneDR when Similarity is less than 0.999. Here,

we also show that Deckard can be configured to run significantly faster without much

accuracy loss. By default, LSH takes O(kd
∑

g∈G |g|ρ log |g|) time to tune its own parameters

and build optimal (w.r.t. query time) hash tables, where k is the number of iterations it

uses to find the optimal parameters. Such cost accumulates when the vectors are split into

groups, and thus LSH may spend much time on parameter tuning. Reusing the parameters

computed for certain groups (e.g., the largest group) can dramatically reduce LSH’s running

time with little effect on clone quantity and quality. Table 2.3 shows the effectiveness of such

2.3. Implementation and Empirical Evaluation 35

0

20

40

60

80

100

120

140

160

180

1.0 0.9999 0.999 0.99 0.95 0.9
Similarity

R
u

n
n

in
g

 T
im

e
(m

in
)

minT 30, stride 2

minT 30, stride 4

minT 30, stride 8

minT 30, stride 16

minT 30, stride inf

minT 50, stride 2

minT 50, stride 4

minT 50, stride 8

minT 50, stride 16

minT 50, stride inf

Figure 2.7: Running time for Deckard (with grouping and selective parameter tuning)
and CP-Miner on Linux kernel 2.6.16.

Sim G (#) Cloned LoC (#) T (min)

Full Tuning 1.0 1984 624265 224.8
Selective Tuning 624265 14.9

Full Tuning 0.99 235 792326 58.6
Selective Tuning 792298 16.3

Table 2.3: Effects of selective parameter tuning in LSH. The data is for JDK 1.4.2, with
minT 50, stride 2.

a strategy in reducing the overall running time of Deckard, especially when the vectors

are split into many groups. Figure 2.8, compared with Figure 2.6, gives a more clear view of

the benefit of the strategy: Deckard’s running time was 4 to 12 times shorter and became

about 6 times faster than CloneDR.

Figure 2.7 shows Deckard’s running time on the Linux kernel with selective parameter

tuning. When Similarity > 0.95, Deckard runs in tens of minutes and is comparable

to CP-Miner (cf. Table 2.1); it can be even faster when Similarity is close to 1.0. When

Similarity ≤ 0.95, Deckard may take more time than CP-Miner. This extra cost is

reasonable considering that Deckard is tree-based and detects more clones, while CP-

Miner is token-based and cannot operate with gap > 1, and that Similarity ≤ 0.95 is often

too small for clone detection tasks.

2.4. Extending to Graph Based Clone Detection 36

0

20

40

60

80

100

120

140

160

1.0 0.9999 0.999 0.99 0.95 0.9

Similarity

R
u

n
n

in
g
 T

im
e

(m
in

)

minT 30, stride 2

minT 30, stride 4

minT 30, stride 8

minT 30, stride 16

minT 30, stride inf

minT 50, stride 2

minT 50, stride 4

minT 50, stride 8

minT 50, stride 16

minT 50, stride inf

CloneDR

Figure 2.8: Effects of selective parameter tuning in LSH. Comparable minT and stride to
Figure 2.6.

2.4 Extending to Graph Based Clone Detection

Code clones detected by Deckard and other previous tools are mainly limited to contiguous

code fragments within a program; they are sensitive to even the most simple structural

differences in otherwise semantically similar code, such as inserting unrelated statements

inside of a code fragment, replacing a syntactic structure with a semantically equivalent

one. As an example, consider the pair of code snippets in Figure 2.9: both perform the

same overall computation, but the snippet on the right contains extra statements to time

the loop. Since the second code snippet has computationally unrelated code interleaved,

previous techniques based on tokens or trees are unable to detect such clones. Techniques

have been proposed to use program dependence graphs (PDGs) [62] to find such clones

since the computationally unrelated code may become naturally separated from others in

PDGs and the problem of interleaved code is less a concern.

Figure 2.10 shows the PDG for the code in Figure 2.9. A PDG is a static representation

of data and control dependencies through a procedure. The nodes of a PDG consist of

program points constructed from the source code: declarations, simple statements, expres-

sions, and control points. A control point represents a point at which a program branches,

2.4. Extending to Graph Based Clone Detection 37

1 int func(int i, int j) {

2 int k = 10;

4 while (i < k) {

5 i++;

6 }

8 j = 2 * k;

9 printf("i=%d, j=%d\n",

10 i, j);

11 return k;

12 }

1 int func_timed(int i, int j) {

2 int k = 10;

4 long start = get_time_millis();

5 long finish;

6 while (i < k) {

7 i++;

8 }

9 finish = get_time_millis();

10 printf("loop took %dms\n",

11 finish - start);

13 j = 2 * k;

14 printf("i=%d, j=%d\n", i, j);

15 return k;

16 }

Figure 2.9: Example of non-contiguous code clones.

loops, or enters or exits a procedure and is labeled by its associated predicate.

The edges of a PDG encode the data and control dependencies between program points.

Given two program points p1 and p2, there exists a directed data dependency edge from

p1 to p2 if and only if the execution of p2 depends on data calculated directly by p1. For

example, consider the statements on lines 2 and 8 of the code on the left in Figure 2.9.

The second statement calculates a value that is initialized in the first. This dependency

is illustrated by a directed edge between the two nodes in Figure 2.10. Note that the

node corresponding to the formal parameter j does not have any outgoing edges. This

accurately reflects the fact that j is redefined without ever being used at line 8 in the code.

The incrementing of i on line 5 constitutes both a use and a definition, so the node in

the PDG corresponding to i++ has both a self data dependency loop and outgoing data

dependency edges.

Similarly, there exists a directed control dependency edge from p1 to p2 if and only if

the choice to execute p2 depends on the test in p1. The while loop on line 4 of the code

illustrates the use of control dependency edges flowing from a control point node. The

corresponding PDG node in Figure 2.10 is labeled with the guard expression i<k, and

2.4. Extending to Graph Based Clone Detection 38

formal-out

func()

exit

entry

func()

formal-in

int i

formal-in

int j

body

func()

return

return k

ctrl-pt

i < k

expr

k = 10

actual-in

j

expr

j = 2 * k call-site

printf()

expr

return k

expr

i++

actual-in

i

actual-in

“i=%d,

j=%d”

decl

int k
Key:

 statement node

 control point node

 data dependency

 control dependency

Figure 2.10: The PDG for the code on the left side in Figure 2.9.

there is a control dependency edge to the enclosed increment statement and a self control

dependency edge. Function calls are modeled as control points that control the execution of

expressions corresponding to the calculation of the actual parameters and the assignment

of the return value (or assignments to out parameters). For example, the call to printf on

line 10 is modeled in this way: there are three outgoing control edges that connect to the

three parameters.

PDGs may also contain implicit nodes that do not have a direct source correspondence.

These include entry, exit, and function body control points, and are represented by a light

shade in Figure 2.10. Since we focus on intraprocedural dependencies, these nodes are

2.4. Extending to Graph Based Clone Detection 39

omitted for simplicity.

Previous PDG-based similarity detection tools use various algorithms for subgraph iso-

morphism, which is a computationally expensive problem, to detect either similar proce-

dures or code fragments [110, 123]. Those techniques have not been shown to scale to

million-line programs.

In the following, we present an extended definition of code clones, based on PDG similar-

ity, that captures more semantic, non-contiguous information. We then provide a scalable,

approximate algorithm for detecting these clones. We reduce the difficult graph similarity

problem to a simpler tree similarity problem by creating a mapping between PDG subgraphs

and their related structured syntax.

2.4.1 Definition of PDG-Based Code Clones

Since we already have Definition 2.3 for tree-based code clones and we can assume there

is always a mapping function, ρ, that maps a sequence of syntax (of arbitrary type) to a

PDG subgraph, we can expand the tree-based definition to graph-based clones.

Definition 2.13 (PDG-Based Semantic Code Clones). Two disjoint, possibly noncontigu-

ous sequences of program syntax C1 and C2 are PDG-based semantic code clones if and

only if C1 and C2 are syntactic code clones or ρ(C1) is (sub-)graph isomorphic to ρ(C2).

Applying this relaxed definition, a subset of the code on the right in Figure 2.9 (excluding

the code for timing) has exactly the same PDG as the code on the left, and thus the two

pieces of code can be considered clones.

2.4.2 Algorithm

The problem is to locate these PDG-based semantic clones in a scalable manner. Previous

techniques were not able to scale mainly because of two reasons:

• There is a combinatorial explosion of possible clone candidates to consider.

2.4. Extending to Graph Based Clone Detection 40

• Although graph isomorphism testing may be feasible for small, simple PDGs, it is

computationally expensive in general. Any method that would require pairwise com-

parisons would not scale.

We propose a scalable, approximate technique for locating such clones based on the

fact that both structured syntax trees and dependence graphs are derived from the original

source code and a mapping function ρ can always be constructed between a PDG subgraph

and its corresponding syntax. We refer to this associated syntax as the syntactic image,

and the algorithm employed in Deckard can also be applied on syntactic images to help

identify PDG-based semantic clones.

Definition 2.14 (Syntactic Image). The syntactic image of a PDG subgraph G, µ(G), is

the maximal set of AST subtrees that correspond to the concrete syntax of the nodes in G.

The set is a dominating set, i.e., for all pairs of trees T, T ′ ∈ µ(G), T * T ′.

Mapping a PDG subgraph to an AST forest effectively reduces the graph similarity

problem to an easier tree similarity problem that we can solve efficiently using Deckard.

Based on this idea, the overall algorithm for detecting PDG-based semantic clones are

straightforward and is shown in Figure 2.11. At a high level, the algorithm functions as

follows:

1. We run Deckard’s primary vector generation. Subtree and sliding window vectors

efficiently provide contiguous syntactic clone candidates for the entire program.

2. For each procedure, we enumerate a finite set of significant subgraphs; i.e., we enu-

merate subgraphs that hold semantic relevance and are likely to be good semantic

clone candidates. Intuitively, we produce subgraphs of maximal size that are likely

to represent distinct computations. Details about selecting such subgraphs are in our

paper [67].

3. For each subgraph G, we compute µ(G) to generate its syntactic image which is

essentially an AST forest.

2.4. Extending to Graph Based Clone Detection 41

DECKARDProgram

AST
PDG

PDG

Subgraphs
Clones

LSH Vector

Clustering

Syntactic

Image

Mapping

Computation

Separation
AST

Forests

Vector

Generation

Characteristic

Vectors

Figure 2.11: PDG-based semantic clone detection algorithm built on Deckard.

4. We use Deckard’s sliding window vector merging to generate a complete set of

characteristic vectors for each AST forest.

5. We use Locality Sensitive Hashing to quickly solve the near-neighbor problem and

enumerate the clone groups. As in Deckard, we apply a set of post-processing

filters to remove spurious clone groups and clone group members.

2.4.3 Evaluation

The effectiveness of the extended algorithm is evaluated against Deckard on five open

source projects: The GIMP, GTK+, MySQL, PostgreSQL, and the Linux kernel, where

PDGs are constructed using the CodeSurfer tool from GrammaTech [75].

Performance

The extended algorithm is still comparably scalable w.r.t. Deckard. Table 2.4 shows the

execution times for both our semantic clone detection algorithm and tree-based algorithm

(Deckard). In this table, the VGen phase performs all vector generation; Cluster phase

performs LSH clustering.

2.4. Extending to Graph Based Clone Detection 42

Program Size (MLoC) AST Only (min:sec) AST+PDG (min:sec)
VGen Cluster VGen Cluster

GIMP 0.78 0:37 1:11 0:44 1:45

GTK 0.88 0:31 0:57 0:34 0:53

MySQL 1.13 0:27 1:16 0:29 0:34

PostgreSQL 0.74 0:40 1:50 0:51 2:30

Linux 7.31 8:42 6:01 9:48 7:24

Table 2.4: Clone detection times.

Coverage wise, our tool locates more clones than its tree-only predecessor. This is

expected: we produce exactly the same set of vectors, then augment it with vectors for

semantic clones. In many cases, we observed that the average number of cloned lines of

code per clone group differs significantly between the tree-only and semantic versions of the

analysis. As we increase the minimum number of statement nodes for a given clone group,

the clones reported by the semantic analysis tend to cover more lines of code than those

reported by the tree-only analysis. We believe this is because when the minimum vector size

is set to smaller values, the larger semantic clones are detected simultaneously with their

smaller, contiguous constituent components. While the semantics-based analysis is able

to tie these disparate components together, it does not necessarily increase the coverage.

When the minimum is raised, these smaller components are no longer detected as clones.

After each of our experiments, we sampled thirty clone groups at random and verified

their contents as clones. When the minimum number of statement nodes was set to four, we

experienced a false positive rate of two in 30. These false positives took the form of small

(two to three lines) snippets of code that incidentally mapped to identical characteristic

vectors. When the minimum was set to eight or more, we found no false positives in

these random samples. This low false positive rate is possibly due to the relatively large

magnitude of AST-based vectors: the Linux kernel code contained (after macro expansion)

an average of thirty AST nodes per line. These larger vectors create a more unique signature

for each line of code that is less likely to incidentally match a non-identical line.

2.4. Extending to Graph Based Clone Detection 43

1 static void os_event_free_internal(os_event_t event)

2 {

3 ut_a(event);

4 /∗ This i s t o avo i d f r e e i n g t h e mutex t w i c e ∗/
5 os_fast_mutex_free(&(event ->os_mutex));

6 ut_a(0 == pthread_cond_destroy(&(event ->cond_var)));

7 /∗ Remove from t he l i s t o f e v e n t s ∗/
8 UT_LIST_REMOVE(os_event_list , os_event_list , event);

9 os_event_count --;

10 ut_free(event);

11 }

1 void os_event_free(os_event_t event)

2 {

3 ut_a(event);

4 os_fast_mutex_free(&(event ->os_mutex));

5 ut_a(0 == pthread_cond_destroy(&(event ->cond_var)));

6 /∗ Remove from t he l i s t o f e v e n t s ∗/
7 os mutex enter(os sync mutex);

8 UT_LIST_REMOVE(os_event_list , os_event_list , event);

9 os_event_count --;

10 os mutex exit(os sync mutex);

11 ut_free(event);

12 }

Figure 2.12: Example of semantic clones differing only by locking code (MySQL).

Qualitative Analysis

The quantitative results above show that this technique finds more clones with a larger

average size. In addition, we took a closer, qualitative look at the results since semantic

clones should be more interesting than simple copied and pasted or otherwise structurally

identical code. We have observed programming idioms that are pervasive throughout the

results, which shows the value of extending Deckard’s algorithm to PDG-based clones.

On a general level, our algorithm was able to locate semantic clones that were slightly

to somewhat larger than their syntactic equivalents, which were also found. The semantic

clone often contained the syntactic clone coupled with a limited number of declarations,

initializations, or return statements that were otherwise separated from the syntactic clone

by unrelated statements. In addition, many semantic clones were subsumed by larger

2.4. Extending to Graph Based Clone Detection 44

1 pg_index = heap_open(IndexRelationId , RowExclusiveLock);

2 indexTuple = SearchSysCacheCopy(INDEXRELID ,

3 ObjectIdGetDatum(indexRelationId), 0, 0, 0);

4 if (! HeapTupleIsValid(indexTuple))

5 elog(ERROR , "cache lookup failed for index %u",

6 indexRelationId);

8 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);

9 Assert(indexForm->indexrelid = indexRelationId);

10 Assert(!indexForm->indisvalid);

11 indexForm ->indisvalid = true;

13 simple_heap_update(pg_index , &indexTuple ->t_self , indexTuple);

14 CatalogUpdateIndexes(pg_index , indexTuple);

15 heap_close(pg_index , RowExclusiveLock);

1 rel = heap_open(TypeRelationId , RowExclusiveLock);

2 tup = SearchSysCacheCopy(TYPEOID ,

3 ObjectIdGetDatum(typeOid), 0, 0, 0);

4 if (! HeapTupleIsValid(tup))

5 elog(ERROR , "cache lookup failed for type %u",

6 typeOid);

8 typTup = (Form_pg_type) GETSTRUCT(tup);

9 typTup->typowner = newOwnerId;

11 simple_heap_update(rel , &tup ->t_self , tup);

12 CatalogUpdateIndexes(rel , tup);

13 /∗ Update owner dependency r e f e r e n c e ∗/
14 changeDependencyOnOwner(TypeRelationId, typeOid, newOwnerId);

15 heap_close(rel , RowExclusiveLock); /∗ Clean up ∗/

Figure 2.13: Example of semantic clones differing only by debugging and unrelated code
(PostgreSQL).

syntactic clones. We observed cases where our tool was able to locate clone groups that

differed only in their use of global locking (e.g., Figure 2.12).

We also noticed clones that differed only by debugging, logging or unrelated (data-wise)

statements. One example appears in Figure 2.13. While we found several examples of this

behavior, we do suspect that we missed other cases due to the fact that logging code often

displays current state information, which places a data dependency on the logging code and

causes its inclusion in a larger semantically related PDG subgraph.

2.5. Discussion and Future Work 45

2.5 Discussion and Future Work

This section discusses possible directions to extend our technique.

Support for q-Levels

In our current implementation of Deckard, we mainly consider 1-level binary branches

because we would like to detect reordering, such as stmt1; stmt2; and stmt2; stmt1;,

as clones because 1-level does not take order information into account. As a result, some

code, such as var->bar.foo and var.bar->foo, may be considered as clones while they are

usually not. One way to address this issue is to allow general q-level vectors such as 2-level.

However, because the number of node kinds in a grammar is commonly larger than one

hundred, then using 2-level vectors would produce vectors of a very high dimension (in the

order of 1003) which may impose additional challenges on the LSH-based vector clustering

in order to find close vectors efficiently. Whether such q-level vectors are appropriate may

depend on applications.

In fact, the design and implementation of our vector generation algorithm has already

taken some of these concerns into account. For example, a quick solution is to re-engineer

the IndexOf function in Algorithm 2.1 to be able to generate “1.5-level” indices for certain

pairs of node kinds in order to incorporate some neighboring information into characteristic

vectors while remaining the vector dimension within LSH’s capability. Thus, var->bar.foo

and var.bar->foo will have different vectors and will no longer be clustered as clones, re-

ducing false clone reports. In addition, under most circumstances, characteristic vectors for

parse trees are sparse, and LSH has been engineered to handle sparse vectors of dimension

more than 1003 [50]. As a result, we may still be able to carry out clone detection using

higher-level branch vectors.

2.5. Discussion and Future Work 46

1 /∗ we have : ∗/
2 stmt 1;

3 stmt a;

4 stmt b;

5 stmt c;

6 stmt 2;

8 ...

9 /∗ and : ∗/
10 stmt 1;

11 stmt 2;

13 /∗ and : ∗/
14 stmt a;

15 stmt b;

16 stmt c;

Figure 2.14: An example illustrating an alternative kind of code similarity. Lines 3–5 are
copied from lines 14–16. In this case, we would like to view that code between lines 2–6 is
only one edit away from the code between lines 10–11.

Alternative Metric for Code Clones

For clone detection, we may also take a different view of similarity between code. Currently,

we use tree editing distance as the target. Sometimes, it makes sense to copy a big chunk

of code and insert it somewhere. For example, consider the code fragment in Figure 2.14.

In the figure, we assume that lines between 14–16 are copied into lines 3–5. Because this is

just a simple copy, it is reasonable to consider this as a single edit. Thus, we would like to

view the code between lines 2–6 and the one between lines 10–11 as similar; more precisely,

they have distance one.

On the other hand, were the code between lines 14–16 not there, the code between

lines 2–6 should be viewed to be far apart from and lines 10–11 because many edits (inser-

tions of additional statements) are now needed to make them the same.

To detect similarity with respect to such a view of code similarity, we can modify our

existing algorithm to iteratively compute clones until we reach a fixpoint. More precisely,

we first apply the existing algorithm to discover simple clones (level-1 clones). Then we use

this information to compute level-2 clones, by replacing the level-1 clones with a fresh single

node in the code and applying our existing algorithm on the modified code. This process

can be repeated if necessary, but we believe in practice level-2 clones are what we really

need. We leave it as future work to experiment with such enhancement of our algorithm.

2.5. Discussion and Future Work 47

Beyond Trees

As a concrete example shown in Section 2.4, our algorithm is not limited to trees; it can

be adapted for code clones defined on program dependency graphs.

There are also a few other directions that our algorithm can be extended. First, we

can extend it to generate implicit programming rules, similar to PR-Miner [120]. The

extension should be straightforward because of the generality of our algorithm: only the

vector generation routine may need to be adjusted to account for higher-level information.

Similarly, we can extend our algorithm to check for correlated structure updates, which are

those updates that must happen at the same time. It is also valuable to extend our algorithm

to detect high-level code clones and similar subgraphs, for example, within control flow

graphs or software models (e.g., UML diagrams). Further, our algorithm can be applicable

for binary code [154] and even articles in natural languages if we could construct meaningful,

structure-preserving characteristic vectors for them using a natural language parser, e.g.,

the Stanford Parser [2, 105,106].

48

Chapter 3

Context-Based Detection of

Clone-Related Bugs

Chapter 1 has mentioned that the substantial existence of code clones may incur signif-

icant maintenance costs. One aspect of software maintenance is to track bugs and their

fixes across the software life cycle. Multiple copies of the same piece of code may require

duplicated tracking efforts for the same bug since a bug fix for one copy of the code has

better to be propagated to all other copies, and forgetting to propagate bug fixes may incur

confused, duplicated debugging efforts. Also, code cloning often comes with minor mod-

ifications to the copied code in order to fit the code into a different surrounding context.

Inconsistent changes may introduce subtle bugs into the copied versions. Although much

research has proposed techniques for detecting and refactoring clones to improve software

maintainability, little has been done to detect latent clone-related bugs.

This chapter introduces a general notion of context-based inconsistencies among clones

and presents an efficient algorithm to detect such inconsistencies for locating clone-related

bugs. We have implemented our algorithm and evaluated it on large open source projects

including the latest versions of the Linux kernel and Eclipse. Many previously unknown

bugs and programming style issues in both projects have been discovered. We have also

3.1. Overview 49

categorized the bugs and style issues and noticed that they exhibit diverse characteristics

and are difficult to be detected by any single existing bug detection technique, and thus

believe that the context-based inconsistencies are an important complement to previous

bug detection techniques and can help reduce software maintenance costs on code clones.

3.1 Overview

Software projects contain much similar code (i.e., code clones), which may be introduced by

many commonly adopted software development practices, e.g., reusing a generic framework,

following a specific programming pattern, and directly copying and pasting code. These

practices can improve the productivity of software development by quickly replicating simi-

lar functionalities. However, such practices, especially copying and pasting, can also reduce

program maintainability and introduce subtle programming errors. For example, when en-

hancements or bug fixes are done on a piece of duplicated code, it is often necessary to make

similar modifications to the other instances of the code. As previous work [115] indicates,

it is easy for developers to miss some instances of the duplicated code and thus to introduce

subtle bugs. “I think I have fixed the bug. Why is it still happening?” and “Why does

the function work well in that way, but not in this way?” may be example questions that

software maintainers ask and which may allude to clone-related bugs.

Finding similar code automatically is an important step to alleviate the aforementioned

issues. Much work [19, 92, 101, 119] has been done on clone detection. Also, many tech-

niques [90, 148] have been proposed for eliminating similar code to help reduce software

maintenance cost. On the other hand, various studies [102,104,148] indicate that similarity

in software is inherent, and clone unification and removal may not always be desired. There

are multiple reasons for the inherent existence of clones.

Limited expressiveness of programming languages: Clone instances may have evolved

over a substantial period of time with many independent changes so that they cannot

be easily unified or removed.

3.1. Overview 50

Performance concerns: Unified code may have worse performance.

Software development practices: Some experimental code may be short-lived, unsta-

ble, and inappropriate to be unified.

Thus, code clones would always exist, and clone-related bugs may also lurk around

in mature code. Therefore, we need automatic techniques, beyond clone detection and

removal, to detect and eliminate such errors.

In particular, this chapter introduces a general notion of context-based inconsistencies

among clones (to capture the intuition that similar code should be used “consistently”) and

develop an efficient algorithm for detecting such inconsistencies (to discover latent clone-

related bugs). Our approach is based on the central observation that many bugs are caused

by copying and pasting code and making minor modifications to the pasted code and its

surrounding code (i.e., the “context”). If the changes are not consistent with the context

of the duplicated code, or if the code is pasted without appropriate changes for use in the

new context, inconsistencies occur and may strongly indicate bugs in the code.

3.1.1 Sample Inconsistencies

Figure 3.1, 3.2, and 3.3 show several inconsistencies detected by our approach among similar

code. In Figure 3.1, lines 408–419 and lines 323–334 are detected as similar code. However,

the enclosing if statements of the two pieces of code are different: one uses strncmp which

takes three arguments, while the other uses strcmp which takes only two arguments in their

respective conditions for if. This turns out to be a logic error in “Code 2.”

In Figure 3.2, lines 4861–4864 and lines 2386–2391 are detected as similar code. Their

main difference is that two more statements (lines 2389–2390) in “Code 4” are enclosed in

the for statement. One can see that msgbuf[0] in “Code 4” is always NULL (i.e., ‘\0’),

and thus nothing in msgbuf would be output. Although the difference does not significantly

impact the functionality of the code, it is still a bug and would manifest in debugging code.

As another example, the pair of code snippets in Figure 3.3, which differ in variable

3.1. Overview 51

Code 1
File: linux-2.6.19/drivers/scsi/arm/eesox.c

407: if (length >= 9 && strncmp (buffer, "EESOXSCSI", 9) == 0) {

408: buffer += 9;

409: length -= 9;

410:

411: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) {

......

418: } else
419: ret = -EINVAL;

420: } else
421: ret = -EINVAL;

Code 2 (Similar to Code 1 but buggy)
File: linux-2.6.19/drivers/scsi/arm/cumana 2.c

322: if (length >= 11 && strcmp (buffer, "CUMANASCSI2") == 0) {

323: buffer += 11;

324: length -= 11;

325:

326: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) {

......

333: } else
334: ret = -EINVAL;

335: } else
336: ret = -EINVAL;

Figure 3.1: Sample No. 1 context-based inconsistency among similar code.

naming, exhibits a local inconsistency within the clones themselves. In particular, the if
condition performs a NULL check on l_stride, but r_stride is used within the if statement

in “Code 6.” This is suspicious when one wonders what is the use of the null-check. and

indeed, it has been confirmed by the GCC developers as a bug and fixed quickly.

Although such bugs may be discovered by thorough testing, designing “enough” test

cases is often difficult and time consuming. In addition, even if a program exhibits abnormal

behavior, it may still require much time to locate the actual bug locations. Such bugs may

3.1. Overview 52

Code 3
File: linux-2.6.19/drivers/cdrom/sbpcd.c

4859: if (cmd_type==READ_M2)

4860: {

4861: for (xa_count=0;xa_count<CD_XA_HEAD;xa_count++)

4862: sprintf(&msgbuf[xa_count*3], " %02X", ...);

4863: msgbuf[xa_count*3]=0;

4864: msg(DBG_XA1,"xa head:%s\n", msgbuf);

4865: }

Code 4 (Similar to Code 3 but buggy)
File: linux-2.6.19/drivers/cdrom/sbpcd.c

2386: for (i=0;i<response_count;i++)

2387: {

2388: sprintf(&msgbuf[i*3], " %02X", ...);

2389: msgbuf[i*3]=0;

2390: msg(DBG_SQ1,"cc_ReadSubQ:%s\n", msgbuf);

2391: }

Figure 3.2: Sample No. 2 context-based inconsistency among similar code.

Code 5
File: gcc-4.0.1/gcc/fortran/dependency.c

414: if (l_stride != NULL)

415: mpz_cdiv_q (X1, X1, l stride ->value.integer);

Code 6 (Similar to Code 5 but buggy)
File: gcc-4.0.1/gcc/fortran/dependency.c

422: if (l_stride != NULL)

423: mpz_cdiv_q (X2, X2, r stride ->value.integer);

Figure 3.3: Sample No. 3 context-based inconsistency among similar code.

3.1. Overview 53

Language

Description

Source

Repository

Parse Tree

Builder

Generator

Parse Tree

Builder

Tree-based

Clone

Detection
Clone Reports

(1)

(2)

DECKARD

Calculation of

Inconsistency

Inconsistency

Classification

and Filtering

Bug Reports

(4) (5)

(4) (6)

(3)

Parse

Trees

Figure 3.4: Overview of inconsistency-based bug detection approach.

also be difficult to detect using standard program analysis techniques due to a couple of

reasons:

• These techniques usually require certain property specifications (e.g., null-pointers

cannot be dereferenced, array accesses must be within bounds, and certain temporal

safety properties should hold), while clone-related bugs are diverse and difficult to

specify (cf. Section 3.4).

• Most of these techniques still have limited scalability, especially for code bases with

millions of lines of code (e.g., the Linux kernel and Eclipse).

3.1.2 Approach Overview

Figure 3.4 shows the architecture and main steps of our bug detection algorithm. First,

it uses a clone detection tool (Deckard in this study) to detect code clones in programs

(Steps 1 and 2). Then, it computes inconsistencies in the contexts of clones based on parse

trees (Steps 3 and 4). Next, it classifies the inconsistencies based on their potential relations

with actual bugs and filters out uninteresting inconsistencies (Step 5). Finally, it generates

bug reports to be inspected by developers (Step 6). We describe these steps in detail in

Section 3.2, and present our implementation and empirical evaluation of the approach in

Section 3.4.

3.2. Algorithm Description 54

3.2 Algorithm Description

This section describes the details of our approach for detecting inconsistencies and bugs

based on the contexts of code clones. We first define clone contexts based on the defini-

tions for clones from Chapter 2 (Section 3.2.1). We then define three types of context-based

inconsistencies among clones and formulate the inconsistency detection as mechanical tree

matching problems (Section 3.2.2). We also classify these inconsistencies based on their

potential relations with actual bugs (Section 3.2.3) and present heuristics for pruning unin-

teresting ones (Section 3.2.4). Finally, the remaining clones with un-filtered inconsistencies

are considered as bug indicators and can be reported to developers for inspection.

3.2.1 Basic Definitions

For the definitions below, we assume there is a generic clone detection algorithm A such that

A(F1, F2) = true if and only if code fragments F1 and F2 are similar code w.r.t. a suitable

definition of similarity (e.g., in terms of tree editing distance as presented in Chapter 2).

Definition 3.1 (Clones). A pair of code fragments F1 and F2 is called a clone pair if they

are similar, i.e., A(F1, F2) holds. A group of code fragments {F1, . . . , Fk} is called a clone

group if A(Fi, Fj) holds for all 1 ≤ i, j ≤ k. Each code fragment Fi in a clone pair or a

clone group is called a clone instance.

Definition 3.2 (Context). The context of a code fragment F is the innermost language

construct that encloses F . We further restrict contexts to control-flow constructs. For

example, in C, if, switch, for, do, while statements, and function definitions are such

constructs. In Java, class definitions can also be such constructs.

We use the contexts for clones as the basis for inconsistency and bug detection to

capture our intuition that similar code should perform similar functionalities and should

be used under similar contexts. Thus clones with different contexts indicate likely bugs.

Admittedly, the actual code surrounding clones may vary, and not all differences in the

3.2. Algorithm Description 55

surrounding code are equally indicative of bugs. Thus, in this dissertation, we confine the

context to be the smallest enclosing construct that may impact the control flows of a clone

to ignore context differences that may be too far away from the clone.

We here use an example to illustrate our definitions: in Figure 3.1, the lines 408–419

and 323–334 are a clone pair, and the two if statements beginning with lines 407 and 322

are the respective contexts for the two clones.

Although the definition of a context is language-dependent, it is still straightforward to

provide a generic algorithm to find the context of a given clone. Algorithm 3.1 gives the

high-level description of how we find the context of a clone. Given the parse tree of the

program file which contains the clone, we perform a bottom-up search in the tree to find

the smallest enclosing tree node of the clone that is a contextual node, i.e., a control-flow

construct, and the subtree rooted at this node contains the whole piece of the given clone.

3.2.2 Context-Based Inconsistencies

We observe that bugs are often introduced when a developer duplicates a piece of code

and makes inappropriate changes or forgets to make certain necessary changes. We thus

formalize context differences of clones as indications of such bugs. In particular, we define

three types of context inconsistencies of clones.

Definition 3.3 (Type-1 Inconsistency). Given a pair of clones F1 and F2 and their corre-

sponding contexts C1 and C2, F1 and F2 have a type-1 inconsistency if the kinds of C1 and

C2 (denoted by kind(C1) and kind(C2)), in terms of language constructs, are different. We

denote such an inconsistency by I1(F1, F2) such that I1(F1, F2) = 1 if kind(C1) 6= kind(C2),

and I1(F1, F2) = 0 otherwise.

We lift this definition to a clone group. Given a clone group G, there exists a unique

equivalence partition G/I1 = {g1, g2, . . . , gk} of G such that

(1) ∀i ∀C∈gi
∀C ′

∈gi
: I1(C,C ′) = 0, and

(2) ∀i ∀j6=i ∀C∈gi
∀C ′′

∈gj
: I1(C,C ′′) = 1.

3.2. Algorithm Description 56

Code 1 (missing necessary checks in the shaded part)
File: org.eclipse.debug.ui/ui/org/eclipse/debug/ui/memory/AbstractTableRendering.java

3557: int colCnt = fTableViewer.getTable().getColumnCount();

3558: TableItem item = fTableViewer.getTable().getItem(0) ;

3559: for (int i=0; i<colCnt; i++)

3560: {

3561: Point start = new Point(item.getBounds(i).x,

3562: start = fTableViewer.getTable().toDisplay(start);

......

3565: if (start.x < point.x && end.x > point.x)

3566: return i;

3567: }

Code 2
File: org.eclipse.debug.ui/ui/org/eclipse/debug/internal/ui/memory/provisional/ \\

AbstractAsyncTableRendering.java

2697: TableItem item = null;

2698: for (int i=0; i<fTableViewer.getTable().getItemCount(); i++)

item =

2705: if (item != null)

2706: {

2707: for (int i=0; i<colCnt; i++)

2708: {

2709: Point start = new Point(item.getBounds(i).x,

2710: start = fTableViewer.getTable().toDisplay(start);

......

2713: if (start.x < point.x && end.x > point.x)

2714: return i;

2715: }

2716: }

Figure 3.5: Sample type-1 inconsistency and bug.

We say that G has type-1 inconsistency if k > 1 and let I1(G) = k denote the type-1

inconsistency of G.

As an example, Figure 3.5 shows a clone pair which has type-1 inconsistency. The

3.2. Algorithm Description 57

Algorithm 3.1 Find the context of a given clone

1: function Context(T : tree, F : clone): node

2: Find the smallest subtree TF in T , s.t., TF properly contains F
3: Let R be the root of TF

4: Find the youngest contextual ancestor node CR of R
5: Return CR

6: end function

lines 3559–3567 and 2707–2715 are reported as a clone pair, and the context for “Code 1”

is a function definition, while the context for “Code 2” is an if statement. In fact, the

inconsistency was confirmed as a bug on line 3558: the developers omitted the necessary

checks to make sure that 0 is a valid subscript and item is not null.

Calculating type-1 inconsistencies is as straightforward as finding contexts: we simply

compare the kinds of the nodes returned by Algorithm 3.1. Despite their simplicity, type-1

inconsistencies have interesting potentials for finding many bugs, especially bugs due to

missing checks (cf. Table 3.4).

Definition 3.4 (Type-2 Inconsistency). Given a pair of clones F1 and F2 and the condi-

tional predicates P1 and P2 in their contexts, F1 and F2 have a type-2 inconsistency if P1

does not match P2 in terms of parse tree matching. We denote such an inconsistency by

I2(F1, F2) such that I2(F1, F2) = 1 if P1 and P2 do not match, and I2(F1, F2) = 0 otherwise.

If F1 or F2 has no corresponding predicates, we let I2(F1, F2) = 0.

We lift this definition to a clone group. Given a clone group G, there exists a unique

partition G/I2 = {g0, g1, g2, . . . , gk} of G such that

(1) g0 contains exactly those clones with no context predicates,

(2) ∀i6=0∀C∈gi
∀C ′

∈gi
: I2(C,C ′) = 0, and

(3) ∀i6=0∀j6=0 6= i ∀C∈gi
∀C ′′

∈gj
: I2(C,C ′′) = 1.

We say that G has type-2 inconsistency if k > 1 and let I2(G) = k denote the type-2

inconsistency of G.

This definition is also language-dependent because different languages may have different

definitions of conditional predicates. As an example, the pair of code snippets in Figure 3.1

3.2. Algorithm Description 58

has no type-1 inconsistency because both of them are if statements. However, they have a

type-2 inconsistency because their if conditions invoke two different functions with different

numbers of parameters.

Clones with type-2 inconsistencies may be executed along different control flow paths

(which are controlled by the conditions) and thus behave differently. Such inconsistencies

violate our assumption that similar code should perform similarly under similar situations,

and thus may indicate bugs.

A simple way to compare two conditional predicates P1 and P2 is to compare every node

in the parse trees for P1 and P2 in a pre-order traversal. We say P1 matches P2 if each node in

one parse tree has the same type (without considering certain terminal values, e.g., identfier

names and literal constants) as its correponsding node in another tree. Although such a

comparison may falsely report inconsistencies on semantically equivalent but syntactically

different expressions, such as p[i] and *(p+i) in C, it may provide a reasonable upper-

bound estimation on the total number of type-2 inconsistencies in clone groups. One can

also argue that as long as the purpose of duplicating code is to improve software productivity

(instead of plagiarism), code clones with the same semantics should often have the same

syntactic structure and there is usually no reason to modify the code to have different

syntactic structures. In practice, some code may become similar due to other reasons

besides direct copying and pasting (e.g., applying the same programming pattern). Thus

semantically equivalent but syntactically different expressions do exist, and in Section 3.2.4,

we employ certain heuristics to reduce false alarms on type-2 inconsistencies.

Definition 3.5 (Type-3 Inconsistency). Given a pair of clones F1 and F2, F1 and F2 have a

type-3 inconsistency if F1 and F2 contain different numbers of unique identifiers. We denote

such an inconsistency by I3(F1, F2) such that I3(F1, F2) = 1 if F1 and F2 have different

numbers of unique identifiers, and I3(F1, F2) = 0 otherwise.

We lift this definition to a clone group. Given a clone group G, there exists a unique

equivalence partition G/I3 = {g1, g2, . . . , gk} of G such that

3.2. Algorithm Description 59

(1) ∀i ∀C∈gi
∀C ′

∈gi
: I3(C,C ′) = 0, and

(2) ∀i ∀j6=i ∀C∈gi
∀C ′′

∈gj
: I3(C,C ′′) = 1.

We say that G has type-3 inconsistency if k > 1 and let I3(G) = k denote the type-3

inconsistency of G.

The type-3 inconsistencies capture another kind of differences in code clones that may

be introduced by modifying identifiers (including names of variables, functions, types, etc.),

which is a common practice during copying and pasting code. Often, not all identifiers in

clones are modified; occasionally some identifiers that should be changed are left unchanged,

and some that should not be changed are changed. These cases may lead to different

numbers of unique identifiers in the clones and thus indicate likely bugs. For example, in

the pair of code in Figure 3.3, “Code 6” is similar to “Code 5,” but it has seven unique

identifiers (excluding keywords and punctuations), while “Code 5” only has six. In fact, it

was confirmed by the GCC developers that the “extra” identifier (r_stride) should have

been l_stride instead.

Compared with type-1 and type-2 inconsistencies, type-3 inconsistencies are local to

code clones themselves. We calculate the type-3 inconsistencies by traversing the parse

trees of clones and counting all identifiers that we visit. Alternatively, a simpler lexical

scanner can be used to count the numbers. We currently do not distinguish identifiers for

types from identifiers for variables or functions. Based on the parse trees, we can incorporate

such differences to improve the accuracy of type-3 inconsistencies.

3.2.3 Classification of Inconsistencies

It is obvious that not all context inconsistencies are actual bugs. In fact, probably most

of such inconsistencies are not bugs when code is copied and pasted with caution. To

better invest manual efforts when examining the inconsistencies for bugs, we utilize a series

of classification heuristics to rank the inconsistencies so that we can examine most likely

buggy inconsistencies first, or filter out unlikely buggy clones to reduce false positives.

3.2. Algorithm Description 60

The first criterion for sorting inconsistent clone groups is the types of their inconsisten-

cies.

Definition 3.6 (Inconsistency Rank). Given a clone group G, the inconsistency rank of

the group, denoted by rank(G), is a 4-tuple 〈|G|, I1(G), I2(G), I3(G)〉, where |G| is the

number of clones in G.

Given two clone groups G1 and G2 and their associated ranks:

rank(Gi) = 〈|Gi|, I1(Gi), I2(Gi), I3(Gi)〉, i ∈ {1, 2},

the order between G1 and G2 is given by the lexicographical order between rank(G1) and

rank(G2), i.e.:

G1 = G2 ⇐⇒ |G1| = |G2|
∧ ∀i ∈ {1, 2, 3} Ii(G1) = Ii(G2)

G1 > G2 ⇐⇒

|G1| > |G2|
∨

|G1| = |G2|
∧

I1(G1) > I1(G2)
∨

|G1| = |G2|
∧

I1(G1) = I1(G2)
∧

I2(G1) > I2(G2)
∨

|G1| = |G2|
∧ ∀i ∈ {1, 2} Ii(G1) = Ii(G2)
∧

I3(G1) > I3(G2)

Recall that for i ∈ {1, 2, 3}, Ii(G) > 1 indicates the existence of type-i inconsistencies in

the clone group G. The larger Ii(G) is, the more inconsistencies the group has. However,

an Ii(G) that is too high (e.g., > 5) and too close to the total number of clones in the group

(e.g., > 50% of |G|) may mean that there are too many inconsistencies in the clone group.

In such cases, the inconsistencies may be intended by developers, and may no longer be

indications of anomalies or bugs. On the other hand, the smaller Ii(G) is (except for one),

the more likely the inconsistencies are not intended and are indications of bugs. Based on

such an intuition, we choose to include only those clone groups G with small values of Ii(G)

during the ordering of clone groups.

3.2. Algorithm Description 61

In addition, based on our experience, type-1 inconsistencies may be further classified

into several subtypes, and different subtypes have different likelihoods to be bugs. In the

following, we define subtypes for type-1 inconsistencies. Such a type-refinement can further

help the classification of clone groups and reduce false positives (Section 3.2.4).

Definition 3.7 (Inconsistency Subtypes). Given a clone pair F1 and F2 and their contexts

C1 and C2, the kinds of C1 and C2 (in terms of language constructs) can be one of switch,

if, loop, function-definition (or fundef), and program (or prog). The subtype of F1 and F2,

written IS(F1, F2), is defined based on the kinds of C1 and C2:

Subtype-1: IS(F1, F2) = 1, if kind(C1) = (fundef | prog) ∧

kind(C2) = (fundef | prog)

Subtype-2: IS(F1, F2) = 2, if kind(C1) = (fundef | prog) ∧

kind(C2) = loop

Subtype-3: IS(F1, F2) = 4, if kind(C1) = loop
∧

kind(C2) = (switch | if)

Subtype-4: IS(F1, F2) = 8, if kind(C1) = kind(C2) = loop

Subtype-5: IS(F1, F2) = 16, if kind(C1) = (switch | if) ∧

kind(C2) = (switch | if)

Subtype-6: IS(F1, F2) = 32, if kind(C1) = (switch | if) ∧

kind(C2) = (fundef | prog)

Given a clone group G, the subtype of G is the bit-wise OR of all possible subtype

inconsistencies among the clones in G, i.e.,

IS(G) = ORFi,Fj∈G IS(Fi, Fj).

The subtypes capture our intuitions on the relations between context inconsistencies

and latent bugs:

• Subtype-6 may indicate a missing conditional check or a redundant check.

3.2. Algorithm Description 62

• Subtype-5 and subtype-4 are actually type-1 consistent, but their conditional pred-

icates within different contexts may help refine possible type-2 inconsistencies (i.e.,

different conditional predicates).

• Subtype-3 and subtype-2 may indicate that a substantial semantic change is intended

among the clones and the code may be less likely a bug.

• Subtype-1 may indicate that the clones and their contexts have too few differences to

introduce a bug.

Also, one can utilize more language-dependent features to refine the above subtypes.

For example, the kinds of contexts in Java may also include synchronized and try-catch-

finally. If a clone in a clone pair misses such a context, it may indicate lock-based

concurrency errors or un-handled exceptions.

The inconsistency ranks and subtypes form the basis of the following filtering heuristics

for bug detection.

3.2.4 Filtering Heuristics

Many reasons, such as different programming styles, may introduce context inconsistencies

that may not be actual bugs. For example, preferences to while loops over for loops

may introduce context differences; device driver code for different models of a printer may

be similar but have different conditional checks for different features of the printers. For

bug detection, such inconsistencies are usually false positives and should be pruned before

manual inspection. We next present a set of heuristics based on inconsistency ranks and

subtypes to prune clone groups that are unlikely bugs.

The first heuristic is to prune certain type-1 inconsistencies by considering some contexts

as the same:for ≡ while: we treat for and while as the same context.

3.2. Algorithm Description 63switch-case ≡ if-else: we treat a switch-case statement and a sequence of if-else
statements as the same context.

fundef ≡ classdef ≡ file: we treat function definitions, class definitions, and file scopes

as the same context.

The second heuristic is to prune type-2 inconsistencies by recognizing some small ex-

pressions that are likely semantically equivalent:

ce ≡ ce!=0: we treat a conditional expression ce the same as the expression ce!=0 (using

C’s syntax).

!ce ≡ ce==0: we treat a conditional expression !ce the same as the expression ce==0

(using C’s syntax).

e1<e2 ≡ e2>e1: we treat conditional expressions of the form e1<e2 the same as e2>e1,

where e1, e2 are two expressions.

e1+e2 ≡ e2+e1: we treat e1+e2 the same as e2+e1 because addition is conceptually com-

mutative; similar treatment is applied to other conceptually commutative operators,

such as *, ||, and &&).1

. ≡ ->: we treat different field access operators, such as . and ->, the same, and ignore

address-of and dereference operators, such as & and *.

In addition, we also propose several filtering heuristics to prune clone groups. These

heuristics are based on the observation that some types of inconsistencies do not strongly

indicate bugs because of either too minor changes or too significant changes among the

clones. Given a clone group G, we have the following filters:

1In reality, e1<e2 and e1+e2 may not be semantically equivalent to e2>e1 and e2+e1, respectively, because
the C language specification leaves the order of evaluation of subexpressions in an expression undefined.
Also, e1&&e2 and e1||e2 may not be semantically equivalent to e2&&e1 and e2||e1, respectively, because
the evaluation of logical expressions is short-circuited.

3.2. Algorithm Description 64

Filter 1: If subtype-1 is set in IS(G), prune the group since such cases may imply that

the clones have no real differences.

Filter 2: If subtype-2 is set in IS(G), prune the group since such cases may imply that

the clones are intended to have significant semantic differences because adding or

removing loops is unlikely accidental.

Filter 3: If subtype-3 is set in IS(G) and the if or switch context is not enclosed in another

loop context, prune the group since such cases may imply that the clones may be

intended to be semantically different because of loops.

Filter 4: Instead of using the exact tree matching algorithm (Section 3.2.2) to compute

type-2 inconsistencies, use more approximate measures, such as tree editing distances

or Euclidean distances [92], to allow small differences in contextual conditions to

further prune type-2 inconsistencies.

Filter 5: If G has type-3 inconsistencies and the difference among the numbers of unique

variables in the clones in G is large (e.g., > 2), prune the group since such cases

may imply that the clones have gone through many modifications and possibly have

different semantics.

Filter 6: If the clones in G are very close to each other (e.g., less than 10 lines apart),

prune the group since such cases may imply that the clones were written by the same

programmer during a short period of time and thus may be less likely to contain

inconsistencies.

After filtering, the remaining clone groups can be inspected for actual bugs. We will

show that the estimated amount of inspected code is small w.r.t. the sizes of the original

programs. For example, we manually examined less than 12000 lines of code in the Linux

kernel, which are collectively about 0.2% of the total 5.6 million lines, to find 57 bugs and

programming style issues (cf. Section 3.4). Considering that the maintenance of duplicated

3.3. Implementation 65

code is still mostly manual and little work has been done on finding clone-related bugs, the

code inspection burden of our approach is light and worthwhile, especially when compared

to manual audits of the entire code base.

We note that it is possible that our filters may prune certain buggy inconsistencies.

This is a common trade-off one needs to make: less code inspection burden versus finding

more bugs. Section 3.4 will present results to show that the filters perform well in terms of

reducing false positives with few false negatives.

3.2.5 Complexity Analysis

Our approach relies on detected clones and traverses the parse trees of the clones to calculate

inconsistency ranks and subtypes. In the worst case, our approach takes linear time w.r.t.

the number of clone groups, the size of a clone group, and the sizes of the parse trees of

the source files that contain the clones. In practice, most clone groups are small, with two

to five clone instances; few groups have more than ten clone instances. In addition, our

algorithm often only needs to traverse a small portion of the parse trees because clones are

usually much smaller than the complete files. Our experimental results in Section 3.4 will

also show that our approach can often generate valuable bug reports in tens of minutes,

including clone detection time.

3.3 Implementation

Our bug detection algorithm works on top of a clone detection tool. In our implementation,

we use our own Deckard (Chapter 2) to detect code clones as inputs to our bug detection

algorithm. Deckard’s tree-based and language-independent nature make it a convenient

choice for our purpose. However, it is worth mentioning that our inconsistency-based bug

detection algorithm is general and can be applied with other clone detection techniques [9,

10, 18, 19, 101, 110, 114, 119]. Although those techniques have algorithmic and parametric

differences from Deckard, we do not anticipate any fundamental difficulty in using them

3.4. Empirical Evaluation 66

with our algorithm.

On the other hand, quality and quantity of detected clones clearly affect the effectiveness

of our approach. As a summary for Chapter 2, Deckard has three main parameters that

may affect the number and quality of its detected clones. The first one is Similarity,

which specifies the similarity between two pieces of code for them to be considered clones.

It ranges from 0.0 to 1.0; the larger Similarity is, the less difference is tolerated among

clones, and less clones may be reported. The second parameter is minT, the minimum

token number for a piece of code to be considered. The larger minT is, the less clones may

be reported. The third parameter, stride, mainly controls the minimum spatial distance

(in terms of tokens in source files) between two clones. The smaller its value is, the more

clones may be reported. Smaller strides may also produce more overlapping clones, and the

post-processing phase in Deckard may take more time to prune overlapping segments.

If stride is set to ∞, only non-overlapping and syntactically complete pieces of code (e.g.,

a complete if statement or a complete for statement) are considered as candidates for

clones.

3.4 Empirical Evaluation

Our experiments are mainly performed on a machine with a 3GHz Intel Xeon CPU, 8GB of

memory, and Fedora Core 5. Section 3.4.1 describes the setup for our empirical evaluation

and Section 3.4.2 presents detailed results on detected clone-related inconsistencies and

bugs.

3.4.1 Experimental Setup

First, for most of our evaluation, we set Deckard’s Similarity parameter to 1.0, minT

(the minimum token number) to 50, and stride to∞. These correspond to standard choices

in other clone detection tools, and we want to focus on evaluating the bug detection aspects

of our approach. We note that the numbers of false positives and negatives may vary with

3.4. Empirical Evaluation 67

Program Version # Files # LoC # Clone # Cloned Detection
Groups LoC Time (sec)

Linux 2.6.19 8733 5639833 7852 358331 289

Eclipse CVS 01/08/07 8320 1832332 2246 70455 160

Table 3.1: Statistics of subject programs and their clones used in inconsistency studies.

different parameter settings. In Section 3.5, we will evaluate the impact of different choices

of Deckard’s parameters on the effectiveness of our approach for bug detection.

Second, we choose well-known large open source projects, such as the Linux kernel and

Eclipse, as the subjects in our evaluation. These projects are written in different pro-

gramming languages, C and Java, which can help us evaluate the generality and language-

independence of our approach. Table 3.1 shows some basic statistics on the projects, in-

cluding their lines of code and numbers of source files. Table 3.1 also shows clone-related

metrics. For each project, it lists the number of clone groups detected by Deckard, the

total number of lines of cloned code, and Deckard’s time on clone detection. Thus, the

358331 lines of clones in the 7852 clone groups in the Linux kernel and the 70455 lines of

clones in the 2246 clone groups in Eclipse form the main code base where we search for

bugs in our following experiments.

3.4.2 Results of Inconsistency and Bug Detection

This section presents statistics of the inconsistencies and bugs detected by our approach in

the Linux kernel and Eclipse. It also provides a categorization of the bugs we found and

compares our results with another bug detection tool–CP-Miner.

Statistics of Detected Inconsistencies

Our approach found many context inconsistencies in our subject programs. Many of these

inconsistencies revealed true programming errors and programming style issues.

Table 3.2 shows how many inconsistencies and bugs we found in the subject programs.

For each clone group reported by Deckard, its inconsistency rank and subtype were cal-

3.4. Empirical Evaluation 68

Program Detection # Clone # Type-1 # Type-2 # Type-3
Time (sec) Groups Inc. Bugs Inc. Bugs Inc. Bugs

Linux w/ all filters 387 7852 115 10 350 25 69 12

Linux w/o filters 355 7852 177 11 527 29 388 15

Eclipse w/ all filters 127 2246 146 2 249 13 26 2

Eclipse w/o filters 125 2246 224 4 390 17 91 4

Program Total # # # Style # False Estimat. of LoC
Inc. Bugs Suspects Issues Positives for Inspection

Linux w/ all filters 396 33 69 9 285 11258

Linux w/o filters 881 41 85 16 739 37430

Eclipse w/ all filters 265 15 42 13 195 6096

Eclipse w/o filters 461 21 50 17 373 11536

Table 3.2: Numbers of inconsistencies and bugs reported when all or no bug filters (Sec-
tion 3.2.4) were enabled.

culated (cf. Section 3.2.2), and we counted the number of clone groups of each type of

inconsistencies (Columns “# Type-i Inc.”) and the total number of groups reported as

potential bugs (Column “Total # Inc.”). We use the number of lines of code (Column

“Estimat. of LoC for Inspection”) in all the groups, including their contexts, to estimate

the amount of code that we need to inspect for actual bugs. Such numbers may help readers

to understand better the amount of manual effort to inspect the inconsistent clone groups.

The amount of code ranges from 0.2% to 0.7% of the original programs, or from 3.2% to

16.2% of the clones. We believe the manual effort can be justified by the large number of

detected bugs.

The numbers of actual bugs revealed by each type of inconsistencies are shown in

Columns “# Type-i Bugs.” The total numbers of bugs, programming style issues, and

suspicious clones are also shown in Columns “Total # Bugs,” “# Style Issues,” and “#

Suspects” respectively. For each remaining clone group after filtering, we manually in-

spected it to check whether it points to a real bug. We made such decisions based on our

knowledge of the code:

• If we have high confidence that an inconsistency causes inappropriate behavior in any

3.4. Empirical Evaluation 69

clone of the group, we classified it as a bug.

• If we have high confidence that an inconsistency has no effect on the intended behavior

of the clones, we classified it as a false positive.

• If we believe the clones are behaviorally correct but the code has redundancies or is

unnecessarily complicated or confusing, we classified it as a programming style issue.

• If we are uncertain about an inconsistency or it takes us too long (more than 30

minutes) to understand the code, we classified it as a suspect.

During the examination of a clone group, we may also perform simple data-flow analysis

to help understand the code. For most clone groups, the code was fairly easy to understand

and the manual inspection took only several minutes each.

We were able to find 33 bugs and 9 programming style issues in the Linux kernel and

15 bugs and 13 style issues in Eclipse when all filters were enabled. When fewer filters were

enabled, we were able to find more bugs and style issues (Row “Linux w/o filters” and

“Eclipse w/o filters” in Table 3.2). Table 3.3 also shows the impact of different filters (cf.

Section 3.2.4) on bug detection for the Linux kernel. With no filter enabled or all filters

enabled, more than 450 false positives were pruned with 15 false negatives. This is a trade-

off one has to make between low false positive and negative rates. The bugs exhibit diverse

characteristics (Table 3.4), and they would be difficult for existing bug detection tools to

discover. Considering the relatively light code inspection that is needed, we believe our

approach is worthwhile for improving quality of the programs. To date we have received

confirmation from developers for two bugs in the Linux kernel and two bugs in Eclipse (and

additional ones for GCC and Apache) for the bugs that we have reported.

Table 3.2 also shows the running time of our algorithm (Column “Detection Time

(sec)”), excluding the time for clone detection and manual inspection. Most of the time

was spent on (re-)parsing of clones, the most expensive operation in our approach. As

a possible implementation improvement, we could keep parse trees in memory when they

3.4. Empirical Evaluation 70

Filter # Inconsistencies # # Sus- # Style Est. of # False
Type-1 Type-2 Type-3 Total Bugs pects Issues LoC Positives

All. 115 350 69 396 33 69 9 11258 285
1 177 527 98 591 40 83 13 16495 455
2 133 485 383 837 39 82 16 36396 700
3 159 506 388 859 40 84 16 37061 719
4 177 445 388 807 38 80 14 35214 675
5 176 524 356 849 41 85 16 34151 707
6 165 474 324 767 38 80 13 34265 636
None. 177 527 388 881 41 85 16 37430 739

Table 3.3: Effects of filters on false positives and negatives. Each row corresponds to
different filters (Section 3.2.4). “None” means no filter was enabled; “All” means all filters
were enabled. They are the same data for Table 3.2.

were generated by Deckard for the first time to reduce the number of re-parsing, trading

space for time.

Breakdown of Bugs and Style Issues

In this section, we categorize the detected bugs and programming style issues in the Linux

kernel and Eclipse (Table 3.4 and 3.5). In total, there are 41 bugs and 16 style issues in

the Linux kernel, and 21 bugs and 17 style issues in Eclipse. We also noticed that the bugs

and style issues have diverse characteristics, confirming that many different kinds of bugs

can be introduced when developers copy and paste code.

Table 3.4 lists the main reasons that caused these bugs. Missing necessary condi-

tional checks before using certain data seems to be the most common kind of bugs (Row

“ID 1”). Figure 3.5 shows such an example. Figure 3.6 shows another error caused by

“Wrong function calls.” Lines 2674–2721 and lines 2724–2773 are clones, and they have

different numbers of unique identifiers. It did not take us long to realize that the call to

pci_bus_write_config_word on line 2682 should have been pci_bus_write_config_byte.

Because pci_bus_write_config_word takes parameters of type void *, the type checker

did not catch the mismatch between the type of temp_byte and the expected type by the

function. At a coarser granularity, most bugs caused by “Wrong function calls,” “Wrong

variables,” “Wrong data fields,” and “Wrong macros” may be classified as “Wrong identi-

3.4. Empirical Evaluation 71

ID Category # Bugs # Bugs
in Linux in Eclipse

0 Total 41 21

1 Missed conditional checks 9 8

2 Negated conditions 1 0

3 Inappropriate conditions 1 3

4 Off-by-one 2 1

5 Inappropriate scoping 2 0

6 Missed or inappropriate qualifiers 2 0

7 Wrong variables 3 4

8 Missed or inappropriate locks 4 0

9 Inappropriate logic for corner cases 3 2

10 Unhandled cases or exceptions 2 3

11 Wrong function calls 3 0

12 Wrong data fields 5 0

13 Wrong macros 4 0

Table 3.4: Categories of detected clone-related bugs.

fiers.” The fact that many bugs fall into this category confirms that copying and pasting

code often requires identifier renaming, which can be error-prone.

Table 3.5 shows the kinds of style issues found by our approach. Although some code

with style issues may be deliberate, such as for debugging, for code obfuscation, for an

experimental or immature feature, or as dummy code, we believe that code with the style

issues listed in Table 3.5 is generally confusing, results in less optimized code, and reduces

program readability and maintainability, and it should be avoided as much as possible.

Here, we give an example for “Less optimized code” in Figure 3.7. “Code 1” and

“Code 2” were reported as clones, but have different context conditions. One can see that

newWidth in “Code 1” is calculated more times than necessary (line 592), while “Code 2”

is optimized to calculate width only once (line 680). Compilers may not be able to perform

the optimization automatically because getClientArea() is fairly complicated and the

compiler may not be able to infer that newWidth is a constant.

Some of the bugs and style issues can be detected by existing techniques. For example,

missing a NULL check (e.g., Figure 3.5) can be revealed by data flow analyses. However,

3.4. Empirical Evaluation 72

Code 1 (wrong function call)
File: linux-2.6.19/drivers/pci/hotplug/cpqphp ctrl.c

2673: if (hold_IO_node && temp_resources.io_head) {

......

2681: temp_byte = (hold_IO_node->base) >> 8;

2682: rc = pci bus write config word (..., temp byte);

......

2700: temp_byte = (io_node->base - 1) >> 8;

2701: rc = pci_bus_write_config_byte(..., temp_byte);

......

2721: }

Code 2
File: linux-2.6.19/drivers/pci/hotplug/cpqphp ctrl.c

2724: if (hold_mem_node && temp_resources.mem_head) {

......

2732: temp_word = (hold_mem_node->base) >> 16;

2733: rc = pci bus write config word (..., temp word);

......

2751: temp_word = (mem_node->base - 1) >> 16;

2752: rc = pci_bus_write_config_word(..., temp_word);

......

2773: }

Figure 3.6: Clone-related bug example: a wrong function call.

many bugs may involve programming logic errors, such as inappropriate conditions (e.g.,

Code 2 in Figure 3.1) and inappropriate scoping (e.g., Code 4 in Figure 3.2), and are

difficult to discover without specifications. Section 3.5 discusses further how our approach

and existing techniques may complement each other.

We also believe that the categories of clone-related bugs and style issues can be useful

in two aspects: they can help developers to understand better possible reasons that cause

clone-related errors and consciously prevent them from happening again in the future; and

automated tools may be implemented to check code clones against each of such categories

3.4. Empirical Evaluation 73

ID Category # Style Issues
in Linux in Eclipse

0 Total 16 17

1 Redundant conditional checks 1 5

2 Redundant locks 2 0

3 Dead code 0 0

4 Unnecessary obscured code 2 1

5 Less optimized code 2 2

6 Redundant macro checking code 1 0

7 Unhandled application features 2 5

8 Unused variables 3 0

9 Redundant operations 1 0

10 Redundant type casts 1 1

11 Unnecessary name/data aliases 1 1

12 Inconsistencies between code and comments 0 1

13 Redundant error checking code 0 1

Table 3.5: Categories of detected style issues in code clones.

for code validation.

Breakdown of False Positives

Admittedly, our approach reported many false positives although it found many actual

bugs. False positive rates, in terms of the number of bugs and style issues over the number

of identified inconsistencies, may be up to 90%. On the other hand, many bugs discovered

by our approach may be difficult to find with other techniques, and the number of lines of

code of the reported inconsistencies account for only less than 1% of the total number of

lines of code in the original programs. We believe the manual effort involved in applying

our approach is worthwhile for improving program reliability. Next, we analyze possible

reasons for the false positives so that we can reduce them further in the future.

Table 3.6 lists several reasons that are responsible for most false positives in our ex-

periments. Basically, many differences among clones legitimately exist because they are

intended to behave differently, such as drivers for devices with slightly different features,

and exception handling code for different types of exceptions. Any such intended behavioral

3.4. Empirical Evaluation 74

Code 1 (less optimized)
File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org/ \\

eclipse/swt/widgets/ExpandBar.java

590: for (int i = 0; i < itemCount; i++) {

591: ExpandItem item = items [i];

592: int newWidth = Math.max (0,getClientArea().width – spacing*2);

593: if (item.width != newWidth) {

594: item.setBounds (0, 0,newWidth, item.height, false, true);

595: }

596: }

Code 2
File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org/ \\

eclipse/swt/widgets/ExpandBar.java

680: int width = Math.max (0, getClientArea().width – spacing*2);

681: for (int i = 0; i < itemCount; i++) {

682: ExpandItem item = items [i];

683: if (item.width != width)

item.setBounds(0, 0, width, item.height, false, true);

684: }

Figure 3.7: An example of programming style issues: less optimized code.

differences may cause a false positive because our approach is currently syntax-based:

• Our current definitions for contexts and inconsistencies only consider language syntax.

• All our filters are mainly syntax-based.

• The clone detection tool used in our approach, Deckard, is also syntax-based and

may report semantically different but syntactically similar code as clones.

All of the reasons for false positives listed in Table 3.6 are related to program semantics

(e.g., types, data and control dependencies) and their intended behavior. It would be inter-

esting to extend the idea of context-based inconsistency and bug detection to semantic-based

3.4. Empirical Evaluation 75

Reasons for False Positives

1 Different features in devices cause divergences in their (mostly similar) driver code.

2 Similar functions accept parameters of different types and handle types differently.

3 Names of types, functions, variables, etc. clash.

4 Some code of similar and simple syntactic structures may not be real clones.

Table 3.6: Category of inconsistencies that cause false positives.

clones and incorporate semantic information into the definitions of contexts and inconsis-

tencies and the filters to detect bugs more accurately (discussed further in Section 3.5)

Comparison with CP-Miner

CP-Miner [119] is a token-based clone detection tool for C. To our knowledge, it is the

only existing tool that looks for bugs directly in cloned code. In this section, we compare

CP-Miner’s effectiveness with Deckard’s on the Linux kernel. Section 5.2.4 will discuss

other related bug detection techniques.

CP-Miner also assumes that inconsistencies among clones indicate bugs. However, its

definition of inconsistencies is local to the clones, similar to our type-3 inconsistencies.

Different from our type-3 inconsistencies, it is based on identifier mappings among clones:

Given a clone pair F1 and F2, every instance of all identifiers in F1 is mapped to an identifier

in the same position in F2; and for each unique identifier ID, an UnchangedRatio(ID) is

defined as the following:

UnchangedRatio(ID) ,
of Unchanged(ID) in F2

Total # of(ID) in F1

For example, in the clone pair in Figure 3.3, let Code 1 be F1 and Code 2 be F2,

then UnchangedRatio(X1) = 0
2 = 0 because both instances of X1 have been changed to X2.

Similarly, we have UnchangedRatio(l_stride) = 1
2 and UnchangedRatio(value) = 1. Also,

the order of C1 and C2 matters. Similar to our type-3 inconsistencies, UnchangedRatio is

used to measure whether programmers change identifiers consistently when they copy and

paste code. A non-zero or non-one value for UnchangedRatio may indicate inconsistent

3.4. Empirical Evaluation 76

changes of the identifiers and reveal a potential bug. UnchangedRatio is a finer-grained

metric than our type-3 inconsistencies, and if a clone pair has type-3 inconsistency, it must

have some identifier with a non-zero value for its UnchangedRatio, which means CP-Miner

may generate more reports than ours and we may miss certain bugs. On the other hand,

our type-3 inconsistencies are more efficient to calculate and report fewer false positives.

Table 3.7 shows our experiments on the Linux kernel 2.6.19, using 50 for minT (the

minimum token number) and 1.0 for Similarity for both CP-Miner and Deckard. We

also set the stride parameter in Deckard to ∞. Deckard reported fewer clones (Column

“# Cloned LoC”) in slightly longer time (Column “Total Run Time (sec)”), thus the initial

code base for reporting bugs is smaller for our approach.2 However, our approach still found

more bugs and style issues (Column “# True Pos.”)3 because we look for inconsistencies

not only within clones, but also in the contexts which are beyond the clones. We also

achieved a much lower false positive rate. All reports (Column “# Positives”) generated by

CP-Miner and our approach were manually inspected by us. Among the 251 reports from

CP-Miner, 55 cases were classified as suspects.

It is also interesting to note that the intersection between the problems found by CP-

Miner and the problems found by our approach is empty (Column “Set Diff. of True Pos.”).

Among the 13 cases from CP-Miner, five (three were duplicated reports) were pruned by

our filters, and the other eight were not in the clones reported by Deckard with our

parameter setting. After examining these eight reports, we see no reason why they could

not have been detected by our type-3 inconsistencies if they had been reported as clones

by Deckard with different parameter settings. Thus, it would also be interesting to

investigate further whether the finer-grained identifier mapping-based approach in CP-

Miner can actually detect more bugs than our simpler type-3 inconsistencies.

2These results do not imply Deckard performs worse than CP-Miner in general. With different parame-
ter settings, Deckard can detect more clones than CP-Miner in the same amount of time (cf. Section 2.3.3).

3CP-Miner does not report cases when UnchangedRatio > 0.4 by default. It is also a trade-off between
false positives and negatives chosen by CP-Miner.

3.5. Discussion 77

Total Run # Cloned # Po- # Sus- # True Pos. Set Diff. of
Time (sec) LoC sitives pects (Bug+Style) True Pos.

Our Approach 676 358331 396 69 42 42

CP-Miner 582 534202 251 55 13 13

Table 3.7: Comparison with CP-Miner on Linux kernel 2.6.19.

3.5 Discussion

We now discuss issues related to our approach’s effectiveness.

Which Clones to Choose From?

Our approach works on code clones detected by Deckard (Chapter 2) which is a tree-

based clone detection tool. The set of clones may vary when we use different parameters

for Deckard, and the bug reports from our approach may also vary. Table 3.8 shows such

effects by varying Deckard’s parameters.

Recall from Section 3.3 that the three main parameters for Deckard are Similarity,

minT (the minimum token number), and stride. We experimented with different similarities

(the first segment of Table 3.8, by setting the minimum token number to 50 and the stride

to ∞), different minimum token numbers (the second segment of Table 3.8, by setting

Similarity to 1.0 and stride to ∞), and different strides (the third segment of Table 3.8,

by setting Similarity to 1.0 and minT to 50) on the Linux kernel 2.6.19.

As a summary, smaller similarities, smaller minimum token numbers, and smaller strides

will lead to more clones, and our approach will also produce more bug reports. It would

be interesting to actually calculate the false positive and negative rates for each of the

parameters and give a more quantitative guide on choosing appropriate parameters for

different applications. According to our experience, Similarity 1.0, minT 50, and stride ∞

had a good balance between false positives and negatives.

3.5. Discussion 78

Time (sec) # Clone # LoC Est. of LoC # Inconsistencies

Clone Detection Groups (clones) for Inspc Type-1 Type-2 Type-3 Total

Similarity (minT 50, stride ∞)

1.0 289 387 7852 358331 11258 115 350 69 396

0.999 288 360 7854 367272 9481 110 280 64 330

0.99 290 402 8462 403545 13945 122 322 155 441

0.95 311 837 15738 599866 63684 788 1919 2089 2637

minT (Similarity 1.0, stride ∞)

50 289 387 7852 358331 11258 115 350 69 396

128 277 108 1324 161079 840 2 13 6 18

64 294 370 7805 294931 6393 55 147 83 220

32 330 1042 23780 495037 23990 389 1040 427 1327

16 372 3602 63763 867991 182957 3552 8311 6514 11485

stride (Similarity 1.0, minT 50)

∞ 289 387 7852 358331 11258 115 350 69 396

16 345 507 10828 433778 15044 159 390 154 499

8 370 694 15536 520857 22649 218 500 286 705

4 419 1184 26532 675863 34235 439 782 569 1174

2 517 2199 49235 916752 50862 723 1399 1136 2199

Table 3.8: Potential effects of different clone detection parameters on false positives and
negatives with all filters enabled.

Why Not Use Existing Bug Detection Techniques?

Many static and dynamic analysis techniques, such as ESC/Java [63] and Valgrind [134],

exist for bug detection. Static analyses are usually sound—they do not miss bugs with

the property that they are looking for. Dynamic analyses are usually accurate—they do

not report false positives. However, such techniques usually need to analyze all code in

a program for bugs because they do not know in general where to analyze, and thus may

not be able to scale to programs with millions of lines of code. Also, they usually require

certain property specifications so that they can know what kinds of bugs to target, and thus

their bug finding capabilities are limited by available specifications.

Compared with those techniques, our approach has mainly two advantages: it effectively

reduces the amount of code which requires analysis for bugs; and it can hint at possible

properties of latent bugs for more specific analyses through the discovered inconsistencies.

For example, when the type-3 inconsistency in Figure 3.3 was discovered, a simple difference

3.5. Discussion 79

analysis of the data and control dependencies of the two snippets revealed that there is a

missing data dependency between r_stride and the if condition. Then we knew that the

latent bug could either be a missing NULL check on r_stride or a wrong use of r_stride.

Such advantages can help guide the existing techniques on where and what to analyze and

make them more scalable. In fact, many bugs we found are difficult to be discovered by

any single existing technique. We believe that our approach complements well the existing

techniques. Conversely, incorporating existing analysis techniques into our approach can

provide semantic information to help reduce more false positives and improve the usability

of our approach. The following section elaborates on this.

How to Reduce False Positives Further?

Currently, when a clone group is reported as a possible bug, we inspect it in the following

steps: first locate the clones in the original source code and find the actual differences

among clones based on their inconsistency ranks and subtypes, then inspect the clones

and their contexts to look for any hints, e.g., comments and data dependencies, which can

explain the differences, and perform manual data-flow analysis to help understand the code

whenever necessary.

Several steps in the inspection process can be automated and may help to prune false

positives without human intervention. On one hand, we frequently asked ourselves com-

mon questions, such as “where is the variable defined,” “whether can the return value of

this function ever be null,” and “whether can this conditional predicate ever be false,”

during code inspection. Most of such semantic-related questions can be easily answered

by many program analyses and theorem proving techniques, and help to decide whether

an inconsistency is legitimate. As for the purpose of filtering, such techniques do not need

to be accurate as long as they can answer the questions with low false negative rates. On

the other hand, the inconsistencies among clones can provide hints at what questions to

ask. As a simple example, there is a missing NULL check for variable item in “Code 1” in

Figure 3.5. Based on the difference, it was obvious to ask whether item could ever be NULL

3.5. Discussion 80

to decide whether the missed check is an actual bug. Generalizing such question-generation

schemes and integrating them with other techniques will be like integrating query genera-

tors with answer machines, and it will be interesting to investigate how many more false

positives may be pruned by an automated code inspection mechanism provided by such an

integration.

As another aspect, our current definitions of contexts and inconsistencies are mainly

syntax-based and only consider the smallest enclosing control-flow construct of a clone.

They have not incorporated any semantics of the clones, and neither do the filters for

pruning bug reports. It will be interesting to extend our definitions to semantic-based

representations of programs, such as program dependency graphs [62], so that semantic

information, such as types, data and control dependencies, can be considered to help detect

more bugs while pruning more intended inconsistencies. Further, we believe that the basic

idea that inconsistencies among clones are indications of bugs can be directly applied to

semantic-based code clones [110, 114], which are most robust against code modifications,

such as re-ordered statements, non-contiguous code, and redundant code, than syntax-based

clones. Such clones, together with syntax-based clones, may naturally exclude syntactically

similar but semantically different code and thus introduce fewer false positives in the first

place.

What Conditions Decide Applicability?

A basic assumption that we have made in this dissertation is that similar code should per-

form similar functionalities under similar contexts and thus context inconsistencies among

code clones can be strong indications of bugs. However, in practice, much similar code does

not satisfy such an assumption. Many inconsistencies among clones are likely intended and

should not be treated as indications of bugs. If such inconsistencies commonly occur in a

program, our approach would report too many false positives to be useful.

One such situation is when we use smaller similarities to generate clones. When a

smaller similarity is used, code with more differences may still be treated as clones, and

3.5. Discussion 81

thus inconsistencies can become more commonly intended. In our experiments, we mainly

restricted Deckard’s Similarity to 1.0 to avoid clones with too many differences. Al-

though such a restriction may miss certain bugs, we believe that it currently is a reasonable

trade-off between low false positive and negative rates. In the future, our inconsistency

classification and filtering heuristics can be improved to tolerate inconsistencies which are

introduced by smaller similarities so that false positive rates can be kept low.

Another situation is when clones evolve independently and intentionally deviate from

each other in certain aspects. For example, drivers for several different models of a display

card from the same manufacturer have much code in common, but also have many differ-

ences that handle different features in the different models. Such inconsistencies among

clones may only be indications of different features instead of bugs. For such cases, sim-

ple filtering strategies may not always be enough for reducing false positives because the

inconsistencies caused by diverse code features may not be easily described by any specific

filtering pattern. If there exists inconsistency specifications from people who know what

kinds of differences are intended, we could utilize such specifications to find unintended

inconsistencies only and reduce false positives. With the advances in specification mining

techniques [5, 113], we may be able to infer such inconsistency specifications in the near

future, instead of asking for them from developers.

82

Chapter 4

Scalable Mining of Functionally

Equivalent Code Fragments

The studies presented in previous chapters focus on similar code based on code syntactic

structures and dependency graphs. Although such similar code is an important class of

duplicated code and the main target of previous studies, there is another important class of

duplicated code that is concerned with the actual functionality of the code and beyond syn-

tax trees and dependency graphs. Such duplicated code can occur due to various software

engineering practices, e.g., n-version programming. Although there have been studies on

coarse-grained, program-level and function-level functional equivalence at small scales, it

is not known whether significant fine-grained, code-level functional duplications exist. De-

tecting functional equivalence is desirable also because it could enable many applications

including code understanding, optimization, maintenance, and reuse.

This chapter introduces the first practical approach to automatically mine functionally

equivalent code fragments of arbitrary size—down to an executable statement—from large

programs. The notion of functional equivalence in this chapter is based on the input and

output behavior of each piece of code. The core algorithm is developed based on automated

random testing. It automatically extracts a large number of candidate code fragments from

4.1. Overview 83

a subject program, and generates random inputs to partition the code fragments based on

their output values on the generated inputs. A large-scale empirical evaluation of the

algorithm is conducted on the Linux kernel 2.6.24. The results show that there may exist

many functionally equivalent code fragments that are syntactically different (i.e., they are

unlikely due to code copying and pasting practices).

4.1 Overview

It is a common intuition that similar code, either syntactically or semantically, is ubiquitous

in large software projects. Large-scale studies have shown that a large project may often

contain more than 20% syntactically similar code. The abundance of similar code provides

opportunities for studies on its origins, characteristics, and evolution with the potential to

improve many aspects of software development processes.

Although there are many existing techniques for detecting syntactically similar code [9,

19,92,101], few studies exist that target semantically similar code that may not be syntac-

tically similar. In fact, no study has even empirically validated the ubiquitous existence of

semantically similar code although it is a common intuition.

This chapter proposes a scalable approach for identifying functionally equivalent code

fragments, where functional equivalence is a particular case of semantic equivalence that is

concerned with the input and output behavior of a piece of code. With such an approach, we

are able to discover many functionally equivalent code fragments, covering more than 624K

lines of code in the Linux kernel 2.6.24, confirming the common intuition. About 58% of

the functionally equivalent code fragments are syntactically different, which shows the need

for functionality-aware code analysis techniques in addition to syntactic approaches. We

have also validated our results by sampling reported equivalent code fragments and running

additional random tests on them. Regardless of certain limitations, more than 96% of the

sampled code fragments remained in some equivalent clusters, showing probabilistically

high accuracy of our approach.

4.1. Overview 84

Different from previous studies on finding semantically equivalent code or checking

the semantic equivalence between two pieces of code, our approach is distinguishable in

several aspects. First, the definition of functional equivalence used in this chapter considers

only the equivalence among the final outputs of different code fragments given the same

input; it does not consider the intermediate program states, while many definitions for

semantic equivalence, e.g., equivalent operational semantics, consider every intermediate

program state as well. One important practical benefit of this definition is that it focuses on

externally observable behavior of a piece of code and is insensitive to code transformations

or different implementations for the same behavior. Thus, it may admit more functionally

equivalent code.

Second, inspired by Schwartz’s randomized polynomial identity testing [159], we apply

random testing on arbitrary pieces of code and detect those with the same input and

output behavior. The Schwartz-Zippel lemma [159, 193] states that evaluating two given

polynomials with a limited number of random values are sufficient to decide, with high

probability, whether the two polynomials are equivalent. Although the lemma only holds

for polynomials, we leverage its intuition here for arbitrary code: if two pieces of code

always produce the same outputs on a selected number of random inputs, we have high

confidence that they are functionally equivalent; even if they may actually differ sometime,

e.g., at error-handling and boundary cases, they may still be considered functionally similar

and provide opportunities for further studies.

Third, to the best of our knowledge, the large-scale study presented in this chapter is

the first of its scale on the existence of functionally equivalent code in million-line software.

Many unique optimizations in the implementation made our approach scalable.

The rest of the chapter is organized as the following. Section 4.2 gives an overview of our

approach and discusses its algorithmic details. Then, Section 4.3 presents the implementa-

tion of our approach for C programs, and Section 4.4 details our empirical evaluation of the

approach on both a small sorting benchmark and the Linux kernel. Section 4.5 discusses

some limitations of and future work for our approach.

4.2. Algorithm Description 85

Code

Transformer

Code

Chopper

Code

Filter

Code

Clustering

Input

Generator

Source

Code

Functionally

Equivalent

Code

Clusters

Figure 4.1: The work flow for mining functionally equivalent code.

4.2 Algorithm Description

This section presents details of our approach for detecting functional equivalence. We start

with a high-level view of the approach.

4.2.1 A High-level View

The main components of our approach are illustrated in Figure 4.1.

Code Chopper Since we consider functionally equivalent code of various sizes, instead

of whole programs or whole functions, we use a code chopper in Figure 4.1 to extract

code fragments from a program as candidates for functionally equivalent ones. It takes a

function definition and parses it into a sequence of statements; then it extracts all possible

consecutive subsequences from the statement sequence, and each of the subsequences is

considered a candidate for functional equivalence. We here illustrate what code fragments

may be extracted for the following sample code excerpt from a selection sort algorithm:

where the code to the right is the normalized sequence of statements of the code to the left.

4.2. Algorithm Description 86

1 min = i;

2

3 for(j=i+1; j<LENGTH; j++)

4 {

5

6 if(data[j] < data[min])

7 min = j;

8 }

9 if (min > i) {

10 int tmp = data[min];

11 data[min] = data[i];

12 data[i] = tmp; }

1 min = i;

2 j = i+1;

3 while (1) {

4 if(j >= LENGTH)

5 break;
6 if(data[j] < data[min])

7 min = j;

8 j++; }

9 if(min > i) {

10 tmp = data[min];

11 data[min] = data[i];

12 data[i] = tmp; }

When we require the minimum number of primary statements1, contained in a code

fragment to be 10, the code chopper will generate three code fragments if the control

boundaries of statements are respected: the first contains lines 1–12, the second contains

lines 2–12, and the third contains lines 3–12. If the boundaries are not respected, the code

chopper may generate six code fragments.

Code Transformer Because we define semantic equivalence in terms of input and output

behavior, we need to identify the inputs and outputs for each code fragment. This task is

straightforward if we only consider coarser-grained code: for a whole program, we could

directly use the inputs and outputs of the program; for a whole function, we could use the

arguments of the functions as its inputs and its side effects and return values as its outputs.

It is not obvious for a code fragment of arbitrary sizes. The code transformer exploits the

heuristic that inputs should be the variables that are used but not defined in the code, and

outputs should be the variables that are defined but not used by the code. Thus, specialized

data-flow analyses can be utilized to identify such input and output variables. For example,

for the code fragment containing lines 1–12 from the above example, the variables i and

data are used before their first definitions and thus they are identified as the input variables

for this code fragment; the variable data is the only variable along the control flow paths

of the code fragment that is not used after its last definition and thus it is identified as the

1Informally, we consider every expression statement, if, switch, loop, return, break, goto, and continue
statements primary. The setting for different applications may be changed.

4.2. Algorithm Description 87

only output variable.

Since our approach requires executions of all of the code fragments, each code fragment

should be made compilable and executable. For C programs, this can involve many details

such as defining all types used in the code, defining functions that are called but not defined

in the code, and declaring all variables used in the code. The code transformer also takes

care of these details.

Input Generator Since the executions of each code fragment require random inputs,

the input generator component takes a code fragment and its input variables and generates

random values for the input variables. Currently, it does not take the validity of randomly

generated inputs w.r.t. a code fragment into account since we assume functionally equivalent

code fragments should exhibit the same behavior on even invalid inputs. Section 4.2.5 has

more details about the way our input generator works.

Code Clustering The code clustering component takes a set of code fragments that have

been compiled and random inputs generated by the input generator, executes each code

fragment with the same random inputs, and separates two code fragments into two different

code clusters whenever the outputs of the two code fragments differ on the same input. In

such a way, all the code fragments will be dispatched into a set of code clusters, each of

which may be considered a functionally equivalent class, assuming enough executions are

performed for the code fragments. Section 4.2.6 has more details on how the outputs are

compared against each other and how the clustering process works.

Code Filter Since the code chopper may extract many code fragments that overlap with

each other in terms of their locations in the original source code they correspond to, it may

not be interesting to consider them functionally equivalent if two code fragments overlap

too much. Thus, a code filter can be placed both before and after code clustering to reduce

both unnecessary executions of code fragments and false positives.

4.2. Algorithm Description 88

4.2.2 Equivalence Definition

This section formally introduces our definition for the aforementioned functional equiva-

lence. We denote a piece of code as C and its set of input variables as I. We also use I to

represent a sequence of concrete values (also called an input) that can be used to instantiate

I and execute C. Similarly, we use O to denote the set of output variables of C, and use O

to represent a set of concrete values (also called an output) that is a concrete instantiation

of O. Then, C(I) = O means that the execution of C with the input I generates the output

O. We also use I and O to represent the sets of all possible inputs and outputs respectively.

Definition 4.1 (Functional Equivalence). Two code fragments C1 and C2 are functionally

equivalent if there exist two permutations p1, p2 : I → I, such that ∀I ∈ I, C1(p1(I)) =

C2(p2(I)), where “=” is the standard set equivalence operator.

The definition has several aspects worthy of discussion:

• Considering the fact that the ordering of input variables for two functionally equiv-

alent code fragments should not matter, the definition allows different permutations

of an input for C1 and C2. For example, one can see that x1 in the following code

functions the same as y2 and y1 functions the same as x2, but they appear in differ-

ent orders in the headers of foo and bar. Then, for any given input I = 〈i1, i2〉, we

need to instantiate <x1,y1> as 〈i1, i2〉, but <x2,y2> as 〈i2, i1〉, in order for the two

pieces of code to generate the same (in the sense of set equivalence) outputs. Adding

the permutation functions in the definition is to allow different orderings of input

variables among functionally equivalent code.

foo(int x1, int y1) {

a1 = x1 + y1;

b1 = x1 - y1;

}

bar(int x2, int y2) {

a2 = y2 - x2;

b2 = y2 + x2;

}

On the other hand, considering that the ordering of input variables in any individual

code fragment is fixed, the definition requires the same permutation functions for all

4.2. Algorithm Description 89

inputs, i.e., p1 and p2 should be fixed for all inputs for the same pair of functionally

equivalent code fragments.

• An output of C1 and that of C2 are compared as sets, instead of sequences. This

flexibility accommodates code fragments that perform the same computation but

output their results in different orders. The need is also illustrated by the above code

example: given an input I = 〈i1, i2〉, foo outputs 〈i1 + i2, i1 − i2〉 according to the

sequential ordering of a1 and b1 and bar outputs 〈i1− i2, i1 + i2〉, thus it is necessary

to compare the outputs as unordered sets so that foo and bar can be detected as

functionally equivalent.

• Considering that different code fragments can perform the same computation with

different numbers or types of input variables, the definition defines the behavior of a

code fragment C w.r.t. an input I (a sequence of concrete primitive values), instead

of the input variables I of C. For example, the following code can be considered

functionally equivalent to the above foo and bar:

fun(struct {int x3, y3;} X) {

a3 = X.x3 + X.y3;

b3 = X.x3 - X.y3;

}

Also, despite the differences in their input variables, we can use any I = 〈i1, i2〉 to

instantiate the only input variable X in fun as X={i1,i2} (in the syntax of C language).

Thus, although the definition requires the inputs used for different code fragments to

be the same, it does not require them to have the same numbers or types of input

variables. Similarly, an output of a code fragment is viewed as a set of concrete

primitive values, instead of possibly ordered or complex values for output variables

of different types.

• In addition, we assume all side effects of each code fragment can be captured by its

output variables and each fragment interacts with its environment only through I

4.2. Algorithm Description 90

and O.

Sections 4.2.6 and 4.3 will describe our strategies for realizing the definition for mining

functionally equivalent code in practice.

4.2.3 Code Chopping

As mentioned in Section 4.2.1, code fragments are extracted from each function for later

steps. Given a sequence of n primary statements, there may be n(n+1)
2 consecutive subse-

quences of the statements. Since code fragments that across statement boundaries, e.g.,

the fragment containing lines 2–11 from the code snippet on Page 86, are syntactically in-

valid and may not be interesting units for functionality study, our code chopper thus avoids

generating such subsequences. Also, we use a parameter minStmtNum to exclude code

fragments that contain fewer than minStmtNum primary statements. An obvious benefit

of these two options is that it helps reduce the number of candidate code fragments and

relatively improves the scalability of our approach.

Algorithm 4.1 illustrates the mechanism of the code chopper. Given a syntax tree of a

C function, it utilizes a pre-order traversal (S) of the primary statements in the function

and a sliding window controlled by a starting point (si) and an ending point (sj) on the

statement sequence to generate code fragments that respect statement boundaries (Line

10) and minStmtNum (Line 13).

4.2.4 Code Transformation

The main tasks for the code transformer are to identify the input and output variables of

each code fragment extracted by the code chopper and make it compilable and executable.

Input Variables

Since variables in C code are often required to be initialized (i.e., defined) before their uses,

a variable in a code fragment should get its value from the environment and thus be treated

4.2. Algorithm Description 91

Algorithm 4.1 Code Fragment Generation

1: function CodeGen(F)
2: Input: F : a function in a syntax tree
3: Output: a set of code fragments C = {ci}
4: C ⇐ ∅
5: S ⇐ (pre-order traversal of all statements in F)
6: for all statement si ∈ S, where i is the index of si in S do
7: ci ⇐ 〈〉 /* empty list */
8: for all statement sj ∈ S, where j ≥ i do
9: ci ⇐ append(ci, sj)

10: if sj , si not in the same statement scope then
11: continue
12: end if
13: if j − i + 1 ≥ minStmtNum then
14: C ⇐ C ∪ {ci}
15: vectorGen(ci) /* Only for evaluation purpose in Section 4.4.3 */
16: end if
17: end for
18: end for
19: end function

as an input variable if it is not defined in the code fragment before its first use. Hence,

comes the following definition:

Definition 4.2 (Input Variables). A variable v used in a code fragment c is an input

variable for c if there is no definition for v before some use of v in c, where “before” or

“after” is measured along the directions of any control flow path in c.

Liveness analysis [138] for a function F can tell us which variables should be live at the

entry point of F , i.e., undefined before their first uses in F and thus the input variables for

F . Similarly, we use a local version of liveness analysis for any code fragment c extracted

from F to decide which variables are live at the entry point(s) of c and should be the input

variables for c. The local liveness analysis is the same as standard backwards-may liveness

analysis except that it propagates liveness information only on a subgraph of the control

flow graph of F that corresponds to c.

Functions called in c are also live at the entry point(s) but handled differently from

variables (discussed later in this section). Undefined labels in goto statements imply the

4.2. Algorithm Description 92

target statements are not contained in the code fragment c and we can terminate the

executions of c whenever they reach such gotos. Thus, we simply transform gotos with

undefined labels to “goto _dummy_label;”, and add, as the last statement of c, a labeled

empty statement “_dummy_label: ;”.

Output Variables

Given an arbitrary code fragment c, it is non-trivial to decide which variables hold the data

intended by the programmer to be externally observable (i.e., part of its output). We use

the following heuristics to make the decision:

• A definition d for a variable v in c should serve some purpose (i.e., to be used some-

where in c or later): if v is used after d, v may not be needed any more since its value

has served some purpose; if v is not used after d, it should be an output variable if

we want d to be used somewhere later.

• return statements in c may indicate that the programmer wants the return value to be

part of an output. Thus, we transform all return statements in c so that a specially-

named variable is assigned the return value before each return and considered as an

output variable for c.

Definition 4.3 (Output Variables). A variable v in a code fragment c is an output variable

for c if it is a specially-named variable for a return statement in c or there is no use of v

after a definition of v on some control flow path in c.

Reaching definition analysis [138] for a function F can tell us which definitions may

reach the exit point of F and thus be the output for F . Similarly, we use a local version

of reaching definition analysis for any code fragment c extracted from F to decide which

variable definitions may reach the exit point(s) of c and should be the output variables for

c. The local reaching definition analysis is the same as standard forwards-may reaching

4.2. Algorithm Description 93

definition analysis except that it propagates reaching information only on a subgraph of

the control flow graph of F that corresponds to c.

We can also strength Definition 4.3 by changing some control flow path to all control

flow path, then the reaching definition analysis will be a forwards-must analysis, and only

those variable definitions that must reach the exit point(s) of c will be included in the set

of output variables. The alternative definition will obviously change the output of a code

fragment, and may affect the results of mining functionally equivalent code. Section 4.4.3

will mention an example for this effect in our benchmark program.

Type Definitions

To make a code fragment c compilable, the first thing is to define every type referenced in

c. One option is to traverse the code and identify which types are used in c and search in

the source files for the definitions of the used types. Since a used type may refer to another

type not explicitly used in c, we need to compute a closure of the referenced types. In this

dissertaion, we adopt the following simpler option which may include extra unused types:

the GCC preprocessor is invoked on the original source file f from which c is generated,

then the preprocessed file naturally contains all types defined in any file included by f ;

Thus, as long as as the code chopper includes all the preprocessed type definitions with c,

the problem is resolved, as long as the original file is compilable.

Function Calls

Each code fragment c may call other functions, some of which are library functions, some of

which are functions defined somewhere else in the original source code. Strictly speaking,

for two code fragments to be functionally equivalent, we should take the side-effects of the

function calls into account and include all those function definitions with c.

In this dissertaion, we take an alternative look at function calls: we view each callee as

a random value generator and ignore its side-effects besides assignments through its return

values (i.e., the random values). Thus, n function calls in c are viewed as n extra input

4.2. Algorithm Description 94

variables for c whose values will be generated randomly. Such a strategy helps to limit

the execution time of each code fragment and improve the scalability of our approach. As

future work, it may be possible to replace function calls with a learned mapping between

inputs and outputs for the callees (i.e., a summary of the behavior of the callees) to model

them more accurately and modularly but still keep our approach scalable.

4.2.5 Input Generation

For each execution of a code fragment c, we need to instantiate its input variables with

an input that may also be used for other code fragments. To make it easier to instantiate

different types of input variables, we only separate input variables into two categories (non-

pointers and pointers, and arrays are treated as pointers) and our input generator aims to

generate generic values that may be used for all types. We thus encode each input as a

sequence of concrete values, each of which may be assigned to a variable of primitive types,

and a sequence of p0 and p1, each of which may indicate a null or non-null pointer.

For example, an input I = {48,−1, p1, p0} is able to instantiate variables of different

types in the following way: if a variable v is of type float, v will be instantiated with 48.0;

if v is of type char, v will be the character ‘0’ (ASCII code 48); if v is of typestruct node {int value; struct node * next;}

v will be a struct containing value=48 and a non-null next pointing to another struct,

allocated at run-time, containing value=-1 and a null next. If an input contains fewer

values than required by a variable or a set of variables, zeros are used. For example, if v is

of the following type:struct three {int a; char b; float c;}

v will be a struct containing a=48, b=EOF (ASCII code -1), c=0.0, and the p1 and p0 are

not used in this case.

4.2. Algorithm Description 95

With such an encoding scheme, generating random inputs and instantiating input vari-

ables can be separated into two phases. It helps the input generator to generate random

inputs independently from any code fragment.

On the other hand, considering certain code specific properties may help the input

generator to generate inputs more effectively and help reduce invalid code executions in

the following code clustering step. In particular, we consider (1) increasing the probability

of generating p0 against that of generating p1 and (2) choosing the number of generated

values in an input that may suit the need of a code fragment the best.

To achieve (1), we consider limiting the probability of generating non-null pointers to

avoid generating deeply linked data structure, e.g., trees, and help limit code execution

time. We use exponential decay on the probability of generating p1: the more pointer

values are added in an input, the more unlikely for p1 to occur, i.e., when generating the

first pointer value for an input, the probability of generating p1 is 1
2 ; when generating the

second pointer value, the probability of generating p1 will be 1
22 ; and so on.

To achieve (2), we consider generating enough concrete, primitive values for instantiating

as many input variables as possible, while limiting the number of possible input permu-

tations that may be required to check functional equivalence as defined in Definition 4.1.

We thus statically estimate the possible number of concrete primitive values needed by a

code fragment by counting the needed values if the “first-level” pointers are non-null (the

counters are initialized to 0):

• If a variable is of a primitive type, the counter will be increased by one.

• If a variable is a struct, the counter will be increased by the number of concrete values

needed by all the non-pointer fields in the struct. This rule is recursively applied to

a non-pointer field if the field is also a struct.

• If a variable is a pointer, the counter will be increased by the number of concrete values

needed by a variable of the pointed type, which is then recursively counted using these

4.2. Algorithm Description 96

three rules. Note that pointers pointed to by a pointer are recursively followed, but

pointer fields in a struct are ignored. This is what we mean by “first-level” pointers.

The number of needed pointer values is estimated similarly:

• If a variable is of a primitive type, the counter will be kept the same.

• If a variable is a struct, the counter will be increased by the sum of the number of

pointer fields and the number of pointer values needed by other non-pointer fields in

the struct. This rule is recursively applied to a non-pointer field if the field is also a

struct.

• If a variable is a pointer, the counter will be increased by one plus the number of

pointer values needed by a variable of the pointed type, which is then recursively

counted using these three rules. Similarly, pointers pointed to by a pointer are recur-

sively counted, but pointer fields in a struct are only counted once.

Then, the number of values needed in an input for a set of code fragments is determined

by the minimum among the estimations for all code fragments. Using such a minimum

helps avoid redundant values in inputs and reduce the number of input permutations and

code executions that may be required to check functional equivalence among all the code

fragments. Section 4.3 will also introduce a code fragment grouping strategy that may help

to accommodate code fragments that require inputs of different sizes.

4.2.6 Code Execution and Clustering

The goal of the code clustering component is to execute every code fragment generated

and transformed in previous steps and separate them into functionally equivalent code

clusters. Algorithm 4.2 illustrates the code execution and clustering process.

Algorithm 4.2 uses what we call representative-based partitioning strategy to make the

code execution and clustering process incremental and scalable. Notice that any difference

4.2. Algorithm Description 97

Algorithm 4.2 Code Execution and Clustering

1: function CodeExe(I, C)
2: Input: I: a finite set of inputs
3: Input: C: a finite set of code fragments
4: Output: a set of code clusters C = {Ci}
5: C⇐ ∅
6: for all I ∈ I do
7: for all c ∈ C do
8: O⇐ ∅
9: for all permutation p of I do

10: O⇐ O
⋃

c(p(I)) /* code execution */
11: end for
12: for all Ci ∈ C do /* code clustering */
13: /* Oi is the representative outputs for Ci */
14: if O

⋂

Oi 6= ∅ then
15: Ci ⇐ Ci ∪ c
16: break
17: end if
18: end for
19: if ∀Ci ∈ C, c /∈ Ci then
20: C|C|+1 ⇐ {c}
21: O|C|+1 ⇐ O /*record representative outputs*/
22: C⇐ C

⋃

C|C|+1

23: end if
24: end for
25: end for
26: end function

between the outputs of two code fragments should cause the two fragments to be separated

into two clusters, and given the output set O of a code fragment c on a given input I and an

existing cluster Ci, we only need to compare O with the output set Oi of the representative

code fragment in Ci to decide whether c can be put into Ci, avoiding quadratic number

of comparisons (Lines 13–17). To make the algorithm incremental, we design it in such a

way that it does not execute one code fragment on all generated inputs; instead, it tries

to execute all code fragment (Line 7) on one input first and partition them into smaller

sets (also called code clusters). Thus, the whole set can be gradually partitioned into

functionally equivalent clusters with more and more inputs (Line 6). Also, the outputs of the

representative code fragment (the first code fragment put into the cluster) are kept (Lines

4.3. Implementation 98

19–23) for comparison with coming code fragments during the incremental partitioning.

A difficulty with the incremental scheme is to find one permutation of all inputs that

satisfies the requirements of Definition 4.1. We observe that it is unlikely for two functionally

different code fragments to produce the same output even when different permutations

for different inputs are allowed. We thus relax Definition 4.1 in Algorithm 4.2 to reflect

the observation and look for a permutation for each input independently (Lines 9–18).

Section 4.3 also presents a strategy to reduce the complexity introduced by n! permutations.

During output comparison, we use concrete values of output variables except for pointers

for which we use p0 or p1, depending on whether the pointer is null or non-null, and the

values pointed to by the pointer (recursions may occur if the pointer is multi-level).

Note that we do not consider input validity: randomly generated inputs may not satisfy

implicit invariants required by each code fragment, and thus an execution of a fragment

may not generate any output due to various reasons, e.g., segmentation faults and infinite

loops. We use error code of a failed execution as its output, and compare the error codes

to decide whether two failed executions behave the same.

It is also worth mentioning that the executions of different code fragments for the same

input can be easily parallelized, and so can the execution and clustering for each code

cluster. Thus, the algorithm can be implemented as a parallel program and its degree of

parallelism increases as it makes progress on code clustering.

4.3 Implementation

We have implemented our approach as a prototype, called EqMiner. This section discusses

our implementation strategies for EqMiner.

The code chopper, the code transformer, and the input generator are implemented based

on CIL [133]. The code clustering component is implemented as Python and Bash scripts.

4.3. Implementation 99

Data Storage All the code fragments and their inputs and outputs are stored in plain

text for convenient inspection. A significant disadvantage is that it may take a large amount

of disk space when the number of code fragments is large even if each text file is very small.

Also, since a file system often limits the number of subdirectories and files in a directory,

we added a layer of file management in the code chopper and the code clustering to split

or merge directories as needed. A future improvement will be to store compressed files in

database system to avoid slow file operations.

Code Compilation Although it is easy and convenient to make each code fragment

independent from each other, it can waste a lot of disk space and take much longer time

to compile if many code fragments include common contents, such as the required type

definitions. When millions of code fragments are generated, it is worthwhile to extract the

common contents from the code fragments and compile the common contents just once as

shared libraries, and link the share libraries with much smaller code fragments. Such an

optimization was justified in our evaluation on the Linux kernel (Section 4.4): GCC may

take about a tenth of a second on our system to compile one code fragment without any

optimization; it may take up to four second if -O3 is enable. Then, it would take at least

seven days to compile millions of code fragments or nine months if -O3 is enable. Extracting

common contents from code fragments and compiling common contents only once as shared

libraries, we could compile sequentially all the code fragments with -O3 enabled in about

seven days, and we utilized our cluster system with varying numbers of available hosts to

finish all the compilation within 15 hours in parallel.

Input Generation The main complexity in Algorithm 4.2 is to use all possible n! permu-

tations of an input containing n values to execute each code fragment c. We argue that the

exponential number of input permutations is largely unnecessary, based on the following

assumptions:

• Random orderings of input variables mostly occur when computations on the variables

4.3. Implementation 100

are (conceptually) associative, such as addition and sorting. For such associative

computations, different input permutations should lead to the same output.

• Most computations in the code fragments are not associative, and when they are

not, programmers are more likely to follow certain customs (such as the ordering of

involved operands or the flow of computation) to order the input variables, instead

of randomly.

In EqMiner, we impose an empirical limit 5! on the number of permutations allowed for

each input (based on the numbers of input variables from the Linux kernel, cf. Section 4.4.3)

Also, we no longer perform regular permutations on an input since it is better to randomly

select the limited permutations from all possible permutations. For this purpose, we use

random shuffling of an input to implement the Line 9 in Algorithm 4.2 as:

for all (upto 5!) a random shuffle p of I do

Also, to allow converting a randomly generated concrete value into different primitive

types in C, we limit the range of the value to [−127, 128] so that it can be casted into many

types, e.g., char, short int, unsigned int, float, etc.

Parallelization We also observe that certain properties of each code fragment, such as

the numbers of input and output variables, may provide opportunities for higher degrees of

parallelism. The intuition is that useful functionally equivalent code is likely to execute on

similar types of inputs and generate similar types of outputs. For example, different sorting

algorithms often take the same array type as their input and output the same sorted array

type. Code fragments with significantly different amount input and output variables are

much less likely to be functionally equivalent.

Given a large set of code fragments, we first separate them into different groups ac-

cording to the number of input and output variables they have—the fragments in the same

group have the same numbers of input and output variables, then invoke Algorithm 4.2 on

4.4. Empirical Evaluation 101

every group in parallel. Alternatively, to prevent missing certain functionally equivalent

code, such as those mentioned in Section 4.2.2, we can group the code fragments based on

their estimated numbers of needed concrete values. In addition to increased degree of par-

allelism, another benefit of this grouping strategy is that we can generate inputs containing

different numbers of concrete values for different groups so that groups with more input

variables can have more values for increased testing accuracy.

4.4 Empirical Evaluation

This section presents our empirical experience with EqMiner on a benchmark program

and the Linux kernel 2.6.24. The evaluations were carried out on a Fedora Core 5 system

with a Xeon 3GHz CPU and 16GiB of memory, and a ROCKS computer cluster system

with the SGE roll and varying numbers of hosts with an Opteron 2.6GHz CPU and 4GiB

of memory.

4.4.1 Subject Programs

Sorting Benchmark We first used a benchmark program which contains several imple-

mentations of different sorting algorithms, including bubble sort, selection sort, recursive

and non-recursive quick sort, recursive and non-recursive merge sort, and heap sort, to

evaluate the effectiveness and accuracy of EqMiner.

Since the input generator in the prototype does not handle arrays, we wrote the bench-

mark in a way that the sorting algorithms accept a single struct containing a fixed number

(seven) of integers as their input variable, but they internally cast the struct to an array

before actual sorting. Also, the coexistence of recursive and non-recursive versions was used

to evaluate the effects of the way EqMiner handles function calls (cf. Section 4.2.4).

There are about 350 lines of code in the program and 200 code fragments were generated

when the minStmtNum was set to 10.

4.4. Empirical Evaluation 102

Linux Kernel 2.6.24. We used the Linux kernel as it is a large project with a relatively

long history of development and a large number of participating developers, thus we can

both evaluate the existence of functionally equivalent code in a popular software and test

the scalability of our approach.

The Linux kernel 2.6.24 contains 9, 730 C files totaling more than 6.2 million lines of

code. Since our code chopper requires compilable code to obtain abstract syntax trees and

control flow graphs, we only consider a subset of the kernel that is compilable on our Fedora

Core 5 system. Specifically, we used the default setting when configuring the kernel before

compilation, and saved the intermediate files (preprocessed C files with the suffix .i) for

chopping.

We obtained 4, 750 preprocessed C files which correspond to about 2.8 million lines of

code in the original source code. Each file was a compilable unit and can be processed by the

code chopper independently from other files. The total number of lines of code contained in

the preprocessed files is not interesting due to the fact that these preprocessed files contained

a lot of commonly used type definitions and function declarations and definitions. On the

other hand, it is interesting to know the numbers of functions and statements contained in

those functions since they directly affect the number of code fragments generated by the

code chopper.

Among the 4, 750 preprocessed files, CIL successfully parsed and constructed ASTs

and CFGs for 3, 748 files. There were 41, 091 functions with unique names in the 3, 748

preprocessed files, about 1
3 of the total number of functions (more than 136K) in the Linux

kernel [67]. If duplicated functions or functions with the same names in different files were

also counted, the number would be more than 67K. We used these 67K functions for our

following study and used the containing file and function name and line numbers as the

unique identifier for each code fragment.

We calculated the numbers of primary statements contained in each function to estimate

the total number of generated code fragments. Data showed that more than 26K functions

contained fewer than 10 primary statement, while there were more than ten functions

4.4. Empirical Evaluation 103

contained more than 1, 000 statements. Since we set the minStmtNum to 10, our code

chopper ignored the code fragments for those small functions. Without respecting the

statement boundaries, the code chopper generated more than 20 million code fragments

due to the fact that more than ten functions contained thousands of statements. The

number was reduced to about 6.5M when we respected boundaries.

4.4.2 Code Execution

An important decision we need to make is which code fragments we should use and how

many test cases we should execute for each code fragment. Ideally, the more code fragments,

the more functionally equivalent code we may find; the more test cases used, the more

accurate the mined functionally equivalent code may be. On the other hand, even if each

execution takes only one tenth of a second, it can take more than a week to sequentially

execute each of the 6.5M code fragments once. In the following, we present several heuristic

strategies we applied to address the scalability issue.

Code Fragment Sampling

Our code chopper in general generates quadratic number of code fragments w.r.t. the num-

ber of statements in a function. For example, a function named serpent_setkey has more

than 1, 600 sequential expression statements which led to more than 1.3M fragments for

this function only. It appears uninteresting to consider every one of them for functional

equivalence, but it is still interesting to consider some fragments that are “representative”

and collectively cover significant portions of the function.

Our data showed that most functions (more than 85%) in the Linux kernel had fewer

than 15 statements, implying most functions would have fewer than 120 code fragments

generated. Thus, we again used random sampling: we randomly selected up to 100 code

fragments from all the code fragments in each function to be used in our following study.

With this strategy, the total number of code fragments that required further executions

became 830, 319, more than seven times smaller than the original 6.5M, but still covering

4.4. Empirical Evaluation 104

more than 1.6 million lines of code.2

Limiting Code Execution Time

Intuitively, most code fragments are small and their executions should finish quickly. On

the other hand, there are code fragments that can fall into infinite loops if the randomly

generated inputs do not satisfy certain requirements of the code. For example, one code

fragment from the non-recursive merge sort in our benchmark looks like the following:for(s=0; s < ArrayLength -b; s+=2*b) {

...

}

Since the variable b is identified as an input variable, random values will be fed into b.

If 0 is used, the increment statement in the for loop will never change the value of s and

cause an infinite loop.

Therefore, we imposed a limit on how long each execution of a code fragment can take.

Preliminary evaluations on hundreds of fragments showed that if a fragment ever finished,

it finished within 0.2 second. Thus, we set the limit to 0.5 second and killed the process

if it exceeded that limit, and the output of the execution was marked as a failure with an

error code for later output comparison. This strategy helped save tremendous amount of

CPU time in our study.

Limiting the Number of Test Cases

Our study focused on functionally equivalent code, and any output difference between

two pieces of code fragments would set them apart based on our code clustering algorithm.

Assuming the input space of any code fragment, including invalid ones is uniformly sampled

by our random input value generator, we have reason to believe if two code fragments have

2Note that, unlike the previous numbers for lines of code counted w.r.t. the kernel source files, this
number was calculated w.r.t. preprocessed files for simplicity. Also, it may be better during the sampling
process to ensure the selected code fragments accumulatively cover most statements in each function so that
we may miss less functionally equivalent code.

4.4. Empirical Evaluation 105

the same outputs in ten out of ten test cases, they are likely to be functionally equivalent.

On the other hand, even if uniform sampling is achieved, two code fragments may behave

differently only on very rare cases and it may not be practical to distinguish one from

another using random executions. This limitation is similar to that of traditional random

testing [26, 139]. For example, the following two code fragments only differ at the if
condition and they will only exhibit different behavior when input happens to be 23456,

which is very unlikely, even if we do not limit the range of random generated values (cf.

Section 4.3).if (input < 23456) {

...

} else {

...

}

if (input < 23457) {

...

} else {

...

}

Fortunately, we could consider such code fragments functionally similar, although not

equivalent, since they only differ at rare cases. Section 4.5 discusses more about the concept

of functional similarity.

Based on the above considerations, we set the limit for the number of test cases to 10.

Thus, each code fragment would be executed at most 5!× 10 = 1200 times, taking at most

10 minutes.

The next section looks at some characteristics of the mined functionally equivalent code

clusters.

4.4.3 Results of Functionally Equivalent Code Fragments

This section presents our findings on the sorting benchmark and the Linux kernel 2.6.24

and examines the accuracy of the results.

Sorting Benchmark

Within 104 minutes of sequential executions (no parallel executions at all), the 200 code

fragments (no grouping at the beginning) were partitioned into 69 equivalence clusters. The

4.4. Empirical Evaluation 106

following summarizes the results of our inspection.

Most of the code fragments in the clusters are portions of the functions they belong to,

instead of the whole functions. Their appearance in the same clusters are mainly due to

two facts:

• Some portions of the different sorting algorithms are indeed functionally equivalent to

each other, e.g., portions of the recursive and non-recursive merge sort, and portions

of bubble sort and selection sort.

• Some code fragments overlap with each other so much and there is no functional

difference among them. While the second kind of functional equivalence is trivial,

the first kind is more interesting since the existence of such functionally equivalence

code fragments may indicate the need to extract commonly used code fragments for

the purpose of reuse, which is one of the reasons why we carry out the study on

functionally equivalent code.

At the level of whole functions, EqMiner correctly clustered the fragments that cor-

respond to bubble sort, selection sort, non-recursive merge sort, and non-recursive quick

sort into the same cluster. It was not surprising to see recursive merge sort and recursive

quick sort were not in the cluster due to the current way EqMiner replaces function calls

(cf. Section 4.2.4). For the heap sort, we noticed that a local variable in the function was

identified as an output variable, which tricked the output comparison to view the code frag-

ment differently: the local variable was defined as a flag that can affect the control flows

of the code; it may not be used in one of the paths and was considered an output variable

by our local reaching definition analysis (cf. Section 4.2.4). After we added a superficial

statement that uses the local variable at the end of the heap sort function, the variable

was no longer considered an output variable and the corresponding code fragment was then

clustered with the code fragments for the other four algorithms. Alternatively, we used the

strengthened definition of output variables (cf. Section 4.2.4), the above flag variable was

no longer an output variable; however, it led to an opposite problem that some functionally

4.4. Empirical Evaluation 107

significant variables, e.g., the variable storing the sorted data, were left out, causing both

false positives and negatives.

The evaluation based on the sorting algorithms showed the capability of EqMiner

on mining functionally equivalent code fragments with satisfying accuracy. On the other

hand, it showed the sensitivity of EqMiner on the automatically identified input and

output variables. At the function level, it is often easy to improve the validity of the

identified input and output variables based on the parameters of the function and its side

effects and return values, but it is not obvious how to identify input and output variables

for arbitrary portions of the function in general. The def-use analyses used in our approach

is a reasonable semantic-aware heuristic, but it will still be worthwhile to investigate other

heuristics in the future that can identify functionality-significant variables as inputs and

outputs to help reduce both false positives and negatives.

Linux Kernel

As mentioned in Section 4.4.2, 830, 319 code fragments were used as candidates for func-

tionally equivalent code.

Based on the numbers of input and output variables every candidate code fragment had,

the code fragments were first separated into 2, 909 groups of various sizes. The numbers

of input variables in the code fragments ranged from 0 to 511, and the numbers of output

variables ranged from 0 to 118. Figure 4.2 shows the histograms of the numbers of input

and output variables in the code fragments respectively. We saw that most of the code

fragments (51%) had fewer than six input variables so that our execution strategy on

limiting the possible input permutations to 5! was reasonable.

The sizes of the groups (i.e., the numbers of code fragments in the groups) ranged from 1

to 76972. The largest group contained code fragments that had two input variables and one

output variable. Most groups (more than 90%) contained fewer than 200 code fragments,

and more than 1, 000 groups contained only one code fragment and there was no need to

execute the code fragments in those groups. Also, only 18 groups (fewer than 1%) contained

4.4. Empirical Evaluation 108

0 100 200 300 400 500 600
0

1

2

3

4

5

6

#s of Input Variables in Each Code Fragment

of

 C
od

e
F

ra
gm

en
ts

 (
Lo

g1
0

S
ca

le
: 1

0n)

(a) Semi-log histogram of the numbers of input variables

0 20 40 60 80 100 120
0

1

2

3

4

5

6

#s of Output Variables of Each Code Fragment

of

 C
od

e
F

ra
gm

en
ts

 (
Lo

g1
0

S
ca

le
: 1

0n)

(b) Semi-log histogram of the numbers of output variables

Figure 4.2: Histograms for code fragments.

4.4. Empirical Evaluation 109

more than 10, 000 code fragments. The data suggested that the time required to perform

the executions for mining functionally equivalent code should be acceptable on our systems.

The executions of the code fragments in different groups were parallelized. We also

parallelized the executions of the code fragments as mentioned at the end of Section 4.2.6

to speed up the clustering process on groups with large numbers of code fragments.

Since there were many users on our computer cluster system, the number of available

hosts on the system varied significantly during the time period when we had our evaluations.

Thus, the degree of parallelism was limited, ranging from several to 36 processes at a time.

Also, the NFS server which we used to store all the code fragments and related data may

have been a performance bottleneck that limited the actual degree of parallelism. We did

not measure how many code executions were parallelized or how much CPU and disk time

were. We simply recorded the wall clock time of all the executions, rounded to hours, and

that was 189 hours, within 8 days.

The 830, 319 code fragments were separated into 269, 687 clusters. Most (164, 994,

more than 60%) of the clusters contained only one fragment, which means most fragments

are not functionally equivalent to others. About 30% (82, 907) of the clusters contained

two to five fragments. Fewer than 1% (1, 675) of the clusters contained more than 100

fragments. Many fragments in these large clusters actually overlapped with each other, and

may be considered trivial. Also, many of these fragments came from static functions that

were commonly included by many source files. For example, one cluster contained 33, 225

fragments, most of which were generated from the same inline, static function kmalloc that

was included in many preprocessed C files. Although such code fragments were trivially

functionally equivalent, it showed the capability of EqMiner on detecting them. When we

excluded such code fragments, only 159 non-overlapping fragments were left in the cluster.

Quantity of Functionally Equivalent Code We used a code filter to filter out all

but one trivial code fragments in each cluster (which one to keep relies on the order of

the occurrence of the overlapping fragments), and removed the cluster if only one code

4.4. Empirical Evaluation 110

1

10

100

1000

10000

100000

2 3 4 5-10 11-20 21-100 101-3842

Sizes of Clusters

#
 o

f
C

lu
st

er
s

(L
o

g
1

0
 S

ca
le

)

Figure 4.3: Histogram of the sizes of functionally equivalent clusters.

fragment was left in the cluster. We then obtained a set of 32, 996 clusters that can be

viewed as functional equivalence code clusters, covering about 624K lines of code in the

Linux kernel. Figure 4.3 shows the histogram of the sizes of the clusters. Most of clusters

(25, 935) contained just two code fragments; very few (14) clusters contained more than 100

code fragments. On the other hand, there were still several clusters containing thousands

of code fragments, and the largest one is 3, 842.

The following code represents a common pattern of the code fragments in the largest

cluster. A single output variable is identified, and it is assigned a value near the end of the

code fragment through an input variable which is introduced due to various reasons, e.g.,

a function call or an undefined variable.

output = 0;

... /∗ d e f s and u s e s o f v a r i o u s v a r i a b l e s ∗/
output = input;

Assuming the input and output variables identified by EqMiner for these code frag-

ments are appropriate, such code fragments are indeed functionally equivalent according to

4.4. Empirical Evaluation 111

1

10

100

1000

10000

100000

ar
ch

bl
oc

k

cr
yp

to

dr
iv

er
s fs in

it
ip

c

ke
rn

el lib m
m ne

t

se
cu

rit
y

so
un

d

Directory Names in the Linux Kernel

#
 o

f
C

o
d
e

F
ra

g
m

en
ts

 (
L

o
g
1
0
 S

ca
le

)

Functionally

Equivalent

Syntactically

Equivalent

Figure 4.4: Spatial distribution of functionally and syntactically equivalent code in the
Linux kernel.

our definition. However, whether it is really useful to consider them functionally equivalent

is still a question worth of future investigation.

Figure 4.4 shows the spatial distribution of the mined functionally equivalent code

in the Linux kernel directories. We can see that the drivers directory contains the most

functionally equivalent code fragments (more than 35K), while the block directory contains

the fewest (only 13). This distribution is similar to that of syntactically equivalent code

fragments, which we discuss next.

Differences From Syntactically Equivalent Code Since many existing techniques

can detect syntactically similar code, one may wonder what different results our approach

can bring. Answering this question would also help to justify the significance of mining

functionally equivalent code fragments in addition to syntactically similar ones. In the

following, we present the result comparison between EqMiner and Deckard (Chapter 2).

As presented in Chapter 2, Deckard detects syntactically similar code by characteriz-

4.4. Empirical Evaluation 112

ing the syntax tree of a program as a set of vectors and searching for code fragments that

have similar characteristic vectors. To have a common ground for comparison, we added

the Line 15 in Algorithm 4.1 to generate a characteristic vector for any code fragment gen-

erated by EqMiner, and requested Deckard to use the set of vectors that corresponded

to the 830, 319 fragments in our study to search for syntactically equivalent code (i.e., set

its Similarity parameter to 1.0, but allow token level differences).

On one hand, the spatial distribution of syntactically equivalent code fragments detected

by Deckard is similar to that of functionally equivalent ones (Figure 4.4). On the other

hand, the two sets of code equivalence clusters are different in terms of the code fragments

contained in the clusters.

We calculated the percentage of the code fragments that were contained in the clus-

ters reported by EqMiner but not contained in the clusters reported by Deckard. To

our surprise, the percentage was close to 91%, which means only 9% of the functionally

equivalent code fragments were also syntactically equivalent. Notice that if there were over-

lapping code fragments in a cluster, all but one of them (often the first one in the clusters)

were removed from the cluster by our code filter, while which one was the first may be

different from cluster to cluster, causing the high number of unmatched code fragments

between the two sets of clusters. After disabling the code filter, the difference percentage

decreased to less than 58%, which means more than 42% functionally equivalent code frag-

ments were syntactically equivalent. We also found that many code fragments reported

by Deckard (more than 36%) were not reported by EqMiner, which means many syn-

tactically equivalent code were functionally different. The still relatively large difference

set between the two sets of clusters is an indication that the two kinds of code detection

techniques, functionality-based and syntax-based, can complement each other.

Through a preliminary manual inspection on the difference sets of the clusters, we

noticed several categories of the code fragments in the difference set that contributed to

the differences:

4.4. Empirical Evaluation 113

• Many functionally equivalent code is indeed syntactically different. For example, the

following two pieces of code are in fact functionally equivalent to “output = input;,”

an identity function that simply outputs its inputs.

output = 0;while(output < input) {

...

output ++;

}

if (0) {

...

} else {

output = input;

}

• Lexical differences cause syntactically equivalent code to be functionally different. For

example, Deckard considers the code “if(input < 10) output = 10;” syntacti-

cally equivalent to the code “if(input < 100) output = 100;,” while EqMiner

considers them different from each other. As another example, the following pair of

code fragments only differ at a single variable name and are syntactically equivalent,

but they are functionally different.

output = 0;if (output < input) {

...

output = input + 1;

}

output = 0;if (output < input) {

...

output = output + 1;

}

• False positives produced by EqMiner may have contributed to a large portion of the

difference set. For example, Deckard recognizes function calls and considers calls

with different numbers of parameters syntactically different, but EqMiner treats

any function call as a random input variable and thus may report false functionally

equivalent code fragments.

In the following paragraphs, we discuss the accuracy of EqMiner further.

Accuracy As we previously presented, we limited the number of test cases executed for

each code fragment to 10. This restriction helped improve the performance of EqMiner,

4.4. Empirical Evaluation 114

but it may cause false positives in the sense that it may incorrectly put functionally different

code fragments in the same cluster.

We used additional test cases to evaluate the accuracy of EqMiner. Two different

measurements, one stricter than the other, were used to calculate false positive (FP) rates:

First false positive rates: Given a cluster C, its first false positive rate R1(C) is the

number of the code fragments in C that have different outputs from its representative’s

outputs during the additional testing over the number of all code fragments in C. As

a special case, if the former number is just one smaller than the latter, i.e., no code

fragments in the cluster are functionally equivalent, we increase the former number

by one and thus let R1(C) be 100%.

Given a set of clusters C, its first false positive rate R1(C) is the number of all such

code fragments in C that have different outputs from its corresponding representative’s

outputs during the additional testing over the total number of all code fragments in

C. The special cases when no code fragments in a cluster are functionally equivalent

are handled in a way similar to the above.

Second false positive rates: Given a cluster C, its second false positive rate R2(C) is

the number of singleton clusters generated during the additional testing (i.e., the

number of code fragments considered functionally nonequivalent to any other code

fragments in C) over the number of all code fragments in C.

Given a set of clusters C, its second false positive rate R2(C) is the number of all such

code fragments in C that are put into singleton clusters during the additional testing

over the total number of all code fragments in C.

The first false positive rate is more strict in the sense that it tells how many code

fragments in a cluster may not belong to the cluster, while the second false positive rate

tells how many code fragments in a cluster may not belong to any functionally equivalent

cluster.

4.4. Empirical Evaluation 115

Ideally, we should carry out additional tests for every cluster. Due to the limitation of

computing resources, we only focused on 128 clusters each of which contains fewer than

100 code fragments: we randomly selected 50 clusters from the clusters sized between 2

and 4, another 50 clusters from the clusters sized between 5 and 20, and included all of

the clusters (28) sized between 20 and 100. We did not choose the clusters in a uniformly

random way since the sizes of the clusters are not distributed uniformly (cf. Figure 4.3)

and we were trying not to spend too much time on large clusters. The set of clusters we

chose contain 1, 913 code fragments, and we denote the whole set as E. We then allowed

each code fragment from E to execute with 100 randomly generated inputs.

To compute the first false positive rate R1(E), we first executed the representative in

every cluster in E with 100 random inputs and recorded their outputs for each of the inputs.

Then, we executed all other code fragments in E with the same inputs in parallel. For each

code fragment, whenever it generated an output different from the corresponding output

of its representative, it was marked as a false positive and its execution was terminated. In

addition, if all code fragments in a cluster except for the representative were marked, the

representative was also marked as a false positive. This process was finished in about 13

hours on our cluster system, and we obtained the false positive rate R1(E) = 28%.

To compute the second false positive rate R2(E), we used a different strategy from the

above: we simply invoked Algorithm 4.2 on each of the cluster in E, in parallel, with the

number of test cases set to 100. The process was finished in about 16 hours on our cluster

system. Although the number of clusters increased to 206 from 128, only 57 code fragments

were in singleton clusters, which means the false positive rate R2(E) is within 3%.

In addition, we excluded the false positives marked during the calculation of R1(E)

from E and executed an additional 100 random tests on the rest of E in order to further

justify the false positive rates. We noticed that there were additional 69 code fragments

marked as false positives, increasing the false positive rate R1(E) to 32%. Also, we invoked

Algorithm 4.2 on the resulting clusters (excluding singleton clusters) generated during the

calculation of the previous R2(E) with additional 100 tests, and we only noticed 6 new

4.5. Discussions and Future Work 116

singleton clusters, increasing the false positive rate R2(E) to 3.5%.

On one hand, the relatively low second false positive rate showed that the code fragments

mined by EqMiner were very likely to functionally equivalent to some others. On the

other hand, we noticed that several factors may have contributed to the relatively high first

false positive rates, including implementation limitations, invalid inputs, and inadequate

test coverage. Further investigation may help to decide whether directed random testing

techniques that combine concrete and symbolic executions [72, 161] can help alleviate the

problem of generating valid, sufficient tests that also exists in traditional random testing [26,

139].

4.5 Discussions and Future Work

As discussed in our earlier publication [94], there is still room for improvements, from the

refinement of the definition of functional equivalence to more robust implementations.

Scalability As described in Section 4.4.2, EqMiner employed various heuristics to re-

duce the expenses of computing resources. Some of the heuristics, such as limiting the

number of code fragments by sampling, may lead to missed functionally equivalent code

(i.e., false negatives), while others, such as limiting the number of test cases, may increase

false positive rates. It will be a challenging and interesting task to scale EqMiner to as

many code fragments as possible with as many test cases as possible. It may require the

combination of novel techniques and significant engineering efforts to simplify the problem

or explore the degree of parallelism in this problem further. Existing program analysis

techniques may be of some help. For example, directed testing that combines symbolic and

concrete executions [72,161] may help reduce the number of test cases required to explore

the execution paths and functionality of each code fragment, thus reduce expenses on code

executions without increasing false positive rates. Also, program slicing, either static or

dynamic [17,76,180], may help our code chopper to focus on the most relevant code portions

4.5. Discussions and Future Work 117

and reduce the number of candidate code fragments.

Code Chopping In this dissertation, we generate code fragments mainly based on the

syntax of a sequence of statements. In fact, many syntactically consecutive statements may

not be semantically related to each other, as shown in [67] that more than half of the func-

tions in the Linux kernel perform more than one unrelated computations. It is intuitively

uninteresting to put statements for different computations in the same code fragment and

consider it a candidate for functionally equivalent ones. Thus, utilizing program depen-

dency information and generating code fragments based on program slices may help to

exclude uninteresting candidates and leave with us more semantic-relevant ones for further

consideration. Also, since program slices are often smaller than a whole function body, the

number of code fragments generated by the new code chopper would be smaller and help

scale up EqMiner.

Identifying Input and Output Variables Section 4.4.3 has discussed that EqMiner

can be sensitive to the input and output variables identified for each code fragment. The

liveness and reaching definition analyses used in EqMiner may include functionally in-

significant variables in the sets of input and output variables, causing false positives and

negatives. If the code chopping was carried out on program slices, such mis-identifications

could be fewer since input and output variables are often more prominent and meaningful

along the data flows within slices. Other heuristics, such as statistical learning, may lever-

age programmers’ knowledge and help to identify more appropriate variables as inputs and

outputs.

Functional Equivalence Definition This chapter defines functional equivalence based

on the same input and output behavior, which is different from the classic concept of

semantic equivalence based on program semantics, such as operational semantics. We in

effect do not consider intermediate program states in our definition and have not attempted

to detect semantically equivalent code yet. As a result, our approach may not be directly

4.5. Discussions and Future Work 118

applicable for plagiarism detection, for example, among student programming homeworks.

In principle, we can use functional equivalence to search for semantically equivalent code:

first identify the smallest units of code (e.g., a statement) that are functionally equivalent

to some others, then look for compositions of such code units that are consecutive and still

functionally equivalent to some others. Repeated compositions of consecutive code units

may thus form larger code fragments that are semantically equivalent. It would be future

work to investigate the feasibility and complexity of such a problem.

We have not explored the concept of functional similarity in the sense that we only

considered code fragments that are equivalent and have not considered code fragments

that are equivalent on certain inputs but different on others. It would be ideal to have a

general definition for similarity so that functional differences between code fragments may

be quantified and studied further. For example, we may say the following pair of code has

a similarity 0.8 since they behave differently on two out of ten inputs, supposing the input

domain is the whole set of integers:if (input % 10 == 0) {

output = 0;

} else {

output = 1;

}

if (input % 10 == 1) {

output = 0;

} else {

output = 1;

}

Broader Applicability Although our implementation is only for C language, the def-

inition of functional equivalence is only concerned with the input and output behavior of

arbitrary piece of code and not binded to any particular programming language. This gen-

eral concept of functional equivalence would be applicable to not only source code, but also

binary code. Further, detecting code clones across different languages of different abstrac-

tion levels would also be possible. This would potentially enable more applications such as

cross-language code and component reuses.

4.5. Discussions and Future Work 119

Categorization and Application Categorizing functionally equivalent code fragments

may help us to understand the characteristics of the code and understand further about

how equivalent code occurs and evolves. One immediate application of such a study will be

functionality-based refactoring that helps extract functionally equivalent code into shared

libraries for easy reuse. It will be a valuable complement for syntax-based refactoring in the

current mainstream. Also, our study can enable semantic-aware code search, in addition to

syntax-based search approaches, that may help improve developer productivity. In addition,

small functional differences among similar code may be useful for detecting program errors,

similar to many other types of syntactic or semantic inconsistencies that have been used

for bug detection [53,58,95].

We only performed limited investigation on the mined code clusters, and have not

derived general knowledge about the patterns or characteristics of the code clusters. Future

work will investigate further in this direction, and aim to categorize the characteristics of

mined functionally equivalent code fragments, to increase the accuracy of the code clones,

and to explore their potential applications.

120

Chapter 5

Related Work

This chapter discusses closely related studies on code clones and related code detection and

analysis techniques, and classifies them into the categories.

5.1 Similarity Detection

This dissertation focuses on defining, detecting, and analyzing source code similarity. Many

notions and techniques presented in the dissertation may also be applicable to data beyond

source code and relate to previous work on those domains.

5.1.1 Source Code Clone Detection

As mentioned in Section 1.2, there have been quite a number of detection techniques that

target diffeernt kinds of code clones classified in the spectrum in Figure 1.1.

String-Based Approaches A program is first divided into strings, usually lines. Each

code fragment consists of a contiguous sequence of strings. Two code fragments are similar

if their constituent strings match. The representative work here is Baker’s “parameterized”

matching algorithm, Dup ([9,10]), where identifiers and literals are replaced with a global

constant to normalize strings with minor differences and help to detect more similar code.

5.1. Similarity Detection 121

Token-Based Approaches A program is processed to produce a token sequence, which

is scanned for duplicated token subsequences that indicate potential code clones. Compared

to string-based approaches, a token-based approach is usually more robust against code

changes (e.g., comments and spacing). CCFinder [101] and CP-Miner [119] are perhaps the

most well-known among token-based techniques, where CCFinder employes a suffix-tree

algorithm [78] to find similar token subsequences and CP-Miner uses a frequent subsequence

mining algorithm in data mining, CloSpan [4,182], to find repeatedly occurring subsequences

even with gaps. Some software plagiarism detection tools (e.g., Moss [155] and JPlag [145])

also use token-based techniques to search for similar code fragments.

Tree-Based Approaches A program is parsed to produce a parse tree or abstract syntax

tree (AST) representation of the source program. Exact or close matches of subtrees can

then be identified by comparing subtrees within the generated parse tree or AST [18,19,61,

112, 166, 174]. Alternatively, different metrics can be used to fingerprint the subtrees, and

subtrees with similar fingerprints are reported as possible duplicates [111,127]. Deckard

is also tree-based, but because of our novel use of characteristic vectors and efficient vector

clustering techniques, it detects significantly more clones and is much more scalable.

Birthmark-Based Approaches A program is often fingerprinted in particular ways

and fingerprints for different pieces of code are checked against each other to find sim-

ilar code. The approaches are often used for the purposes of detecting plagiarism and

protecting software intellectual properties. Various kinds of fingerprints have been pro-

posed for detecting illegal theft code or code clones, either static ones that are based on

the program’s source code lines, tokens, syntax trees, control flow graphs, or dependency

graphs [40, 86, 96, 127, 155], or dynamic ones that are based on program execution traces

and states [44,157], or combined ones [45,191]. Although these techniques are often aware

of certain program semantics, they are sensitive to the defined fingerprints and not made

scalable, and which fingerprint is more appropriate may depend on a particular application.

5.1. Similarity Detection 122

Graph-Based Approaches Approaches that take some semantic information (e.g., data

and control dependencies) into consideration have also been proposed. Komondoor and

Horwitz [110] suggest the use of program dependence graphs (PDGs) [62] and program

slicing [175] to find isomorphic PDG subgraphs in order to identify code clones. They also

propose an approach to group identified clones together while preserving the semantics of

the original code [109] for automatic procedure extraction to support software refactoring.

Liu et al. [123] apply a relaxed subgraph isomorphism algorithm to look for plagiarised

code. These techniques are more robust in dealing with code formatting than tree-based

approaches, but they have not scaled to large code bases, while our work has proposed

a general framework to make both tree-based and graph-based approaches much more

scalable.

The existence of diversified code clone detection techniques and tools also calls for com-

parisons. Bellon et al. [22] present an experiment conducted in 2002 that evaluates six

clone detectors (CCFinder [101,124], CLAN [111,115,127], CloneDR [18,19], Dup [10,11],

Duplix [114, 128], and Duploc [57, 151]) in terms of recall and precision as well as space

and time expenses, and concludes that a different tools have different strength and weak-

nesses and thus may be suitable for different contexts and applications. Rysselberghe and

Demeyer [153] compare three detection techniques and conclude that different techniques

may be useful for different scenarios. There are also many other tools (e.g., Clone Dig-

ger [33], KClone [91], CloneDetective [100], PMD/CPD [1], SDD [118], etc.) that came into

existence in recent years and have not been included in the comparison. An up-to-date,

large-scale comparison among the state-of-the-art tools would be an insightful experiment

to perform in the near future. The mutation/injection based framework proposed by Roy

and Cory [152] may be used to automatically generate several kinds of code clones and

compare precisions and recalls of different tools.

5.1. Similarity Detection 123

5.1.2 Similarity Detection on More General Data Structures

Various techniques for finding data of similar structures are also becoming popular. For

example, data of tree-structures (e.g., XML databases) and similarity detection on such

data are gaining increasing attention. However, efficient tree similarity detection still re-

mains an open problem, while similarity detection on high dimension numerical vectors has

already been extensively studied and efficient algorithms exist. Yang et al. [183] propose

an approximation algorithm for computing tree editing distances based on q-level vectors.

Similar algorithms exist for searching approximately same strings based on characteristic

vectors for strings q-grams (i.e., all strings of length q over a fixed alphabet) [103, 171].

We adapt their characterization to capture structural information in parse trees, and apply

LSH [50] to search for similar trees. To the best of our knowledge, Deckard is by far the

most scalable and effective tool for tree-based clone detection.

For data of graph-like structures, graph or subgraph isomorphism algorithms are abun-

dant. Although subgraph isomorphism is a NP-Complete problem and the complexity

for graph isomorphism even remains unresolved [69], there exist many approximate algo-

rithms [27,52,73]. Krinke et al. [114] use paths of limited lengths in graphs to approximate

the program dependence graphs and look for code clones by looking for matching paths.

We have also worked on PDGs for code clone detection and our approach maps graphs back

to syntax trees and is much more scalable than previous work.

Similarity detection techniques are also applicable to binary code, in addition to source

code. Schulman [158] fingerprints binary code and applies a string matching algorithm to

find similar binary code. Sæbjørnsen et al. [154] generate characteristic vectors for disas-

sembled binary code and also use LSH to find binary clones. Related to binary similarities,

security communities have many studies on malware detection which looks for binaries with

certain matching signatures or behaviors [20,41,42,184]. There would be abundant research

opportunities to explore the connection between clone detection and malware detection.

5.1. Similarity Detection 124

5.1.3 Higher-Level Clone Detection

Clones also occur due to similarities at levels higher than source code, such as design

patterns, software architectures, software models. Many clone detection techniques may be

applied to detect such high-level clones.

Basit and Jarzabek [15,16] employ an algorithm for frequent itemset mining [74] to find

higher-level syntactic clones among a set of source code clones found by CCFinder [101].

Pham et al. [142] utilize characteristic vectors defined for graphs [135] to detect model-level

clones in Matlab/Simulink models.

Ishio et al. [87] define a set of rules to transform Java source code into sequences and

apply the PrefixSpan algorithm [141] to find crosscutting concerns. Bruntink et al. [30,31]

propose clone class metrics to extract aspects from code-level clones. Shi and Olsson [163]

rediscover design patterns from Java programs by analyzing code structures and system

behavior. PR-Miner [120] also uses frequent itemset mining to detect implicit, high-level

programming patterns for specification discovery or bug detection. For example, “an allo-

cator a must be followed by a deallocator b” is an example of such high-level similarities.

Ammons et al. [5] apply machine learning approach to infer program specifications by ob-

serving program execution traces and summarizing the frequent API interaction patterns as

state machines. Lo et al. [125] propose a specification mining architecture with trace filter-

ing and clustering techniques to improve the accuracy, robustness and scalability of specifi-

cation miners. Kremenek et al. [113] expressed program properties as annotation variables

and then inferred the annotations by encoding various types of evidence, including domain

specific knowledge about a property, on Annotation Factor Graphs. Gabel et al. [68] use

BDD [32] based techniques to learn simple generic patterns and compose them into large,

complex specifications, providing a fully automated, trace-based API miner. Although our

approach currently operates at the code level, the detection algorithms based syntax trees

and program dependence graphs can also be used to detect higher-level clones as long as

we adjust vector generation to appropriately model corresponding problems. We leave for

5.2. Studies on Code Clones 125

future work the application of our algorithms on such high-level pattern discovery tasks.

5.2 Studies on Code Clones

As introduced in Chapter 1, the purpose of detecting code clones is to enable many impor-

tant applications. Much work has also studies detected clones in different ways to facilitate

different applications.

5.2.1 Clone Refactoring

A few independent studies address the question of how much clone coverage in large open-

source projects. The goal is to determine what fraction of a program is duplicated code

and how much it affects code complexity and maintenance cost. It is difficult to directly

compare these studies because such results are usually sensitive to many factors: the differ-

ent definitions of code similarity used, the particular detection algorithms used, the various

choices of parameters for these algorithms, and the different code bases used for evaluation

(e.g., CCFinder [82, 101] reports 29% cloned code in JDK, and CP-Miner [119] reports

22.7% cloned code in Linux kernel 2.6.6). However, these studies do confirm that there is

a significant amount of duplicated code in large code bases.

Many code refactoring techniques and tools based on code clones are also proposed to

improve code readability, quality, and maintainability. Baxter et al. [18] extract and refactor

code clones as macros so that programs can be rewritten in more concise forms. Balazinska

et al. [12] present a clone classification scheme for assessing and measuring different system

reengineering opportunities. They also extract clone differences and interpret them in terms

of programming language entities to support object-oriented refactoring [13]. The proposed

classification considers each group of cloned Jarzabek et al. [90] use meta-programming

techniques to reduce code redundancies. They also introduce XVCL, a variant configura-

tion language, to allow flexible reuse of generic, adaptable meta-components [89]. Yu and

Ramaswamy [186] classify automatically detected code clones into different categories and

5.2. Studies on Code Clones 126

propose strategies to refactor the clones to improve modularity. Yoshida et al. [185] propose

a more semantic-aware refactoring technique and tool based on dependencies among clones

(also called “chained clones”). Tairas and Gray [167] use Latent Semantic Indexing (LSI) to

detect trends and associations among clone clusters and determine if they provide further

comprehension to assist in the maintenance of clones. They also propose a domain-specific

language for representing code clones in order to perform analysis and suggest refactoring

opportunities on the clones [169].

Although people often believe that duplicated code is harmful to the quality of code

and causes additional maintenance cost, we must acknowledge that some clones exist for

good reasons, as mentioned in Section 3.1. In particular, Rajapakse et al. [148] suggest

that unifying clones may not be always desirable because of its impact on system qualities

and performance. Kapser and Godfrey [102] also identify several patterns of cloning that

may even be beneficial to code quality, and suggest that code refactoring that reduces the

amount of code clones may not always be the best solution; instead, tools that can help

to maintain multiple instances of a clone group synchronously (e.g., Linked Editing pre-

sented by Toomim et al. [170]) may be a better option. CloneTracker [55,56] use abstract

clone region descriptor to track changes in clone groups in evolving software and provide

notifications and assistances for developers to modify clones consistently. CReN [88] pro-

vides identifier tracking and renaming supports for code clones in integrated development

environments, such as Eclipse. Hou et al. [84] further identify several design elements for

supporting code clone tracking and management.

5.2.2 Clone Evolution

Related to clone tracking and management mentioned above, the need for such techniques

is not just because we cannot always refactor clones away, it is also because clones them-

selves keep changing along with the evolution of software from one version to another.

Research has studied how clones in software projects are introduced or removed over

time across different versions, aiming to understand the evolution and dynamics of clones.

5.2. Studies on Code Clones 127

Laguë et al. [115] examined six versions of a telecommunication software system and found

that a significant number of clones were removed due to refactoring, but the overall number

of clones increased due to the faster rate of clone introduction. Antoniol et al. [6] model

clones across versions of a program as time series, and use the predictive model to study the

evolution of clones. Kim et al. [104] describe a study of clone genealogies, using CCFinder

as the clone detector. They find that many code clones are short-lived and thus performing

aggressive refactoring may not be worthwhile, and that long-lived clones pose great chal-

lenges to refactoring because they evolve independently and can deviate significantly from

the original copy.

In addition, the need for incremental clone detection is also emerging due to fasting

evolving software. It is often more costly to run clone detection and analysis on a whole

set of code than on a changed set of code from one version to another. A number of

techniques, in addition to the above ones that track clones along code changes, have been

proposed to address the problem recently. Gode and Koschke [71] detect clones based on

the detection results for the previous version and create mappings among clones of different

versions to supply information about additions and deletions of clones. Such incremental

analysis can be cheap and useful for on-the-fly detection and evolutionary clone analysis.

Nguyen et al. [136] propose a framework for clone management that constructs clone groups

and tracks and updates clone groups when code evolves. They also incorporate the capa-

bility of clone management into software configuration management systems (SCMs, e.g.,

Subversion) to make SCMs clone-aware [137].

With the increasing popularity of open source software, open source code repositories

are also becoming abundant. Much information related to open source software devel-

opment, including code changes, bug tracks, email archives, developer migrations, etc. is

readily available. Such information can help to answer many interesting research questions,

e.g., how does software change [192], what is the social structure among open source de-

velopers [25], and what are the effects of distributed development processes on software

quality [149]. It would also valuable future work to use such data to answer some clone-

5.2. Studies on Code Clones 128

specific questions as well, e.g., how do clones evolve along the development process, how

do clones affect code quality, and what are the correlations between software processes and

clones.

5.2.3 Clone Visualization

To aid studies on clone patterns and their evolutions, many tools have also been developed

to visualize software and code clones in different ways. Johnson [97] tries to use graphs (e.g.,

Hasse diagrams) to provide insights into the structure of code redundancies in the GNU

GCC compiler. CCFinder [101,124] uses scatter plots and heat maps to show the locations

and densities of clones. Tairas et al. [168] look into an alternative visualization method by

extending the AspectJ Development Tool Visualiser as an Eclipse plugin to visualize the

clone results from a free version of CloneDR [19]. SoftGUESS [3] provides users with a

mechanism to interactively explore clone structures both through direct manipulation as

well as a domain-specific language. Chevalier et al. [39] visualize the evolution of the code

clone structure by emphasizing both changing and constant code patterns.

5.2.4 Bug Detection

Studies have also proposed bug detection techniques based on the general observation as

ours that inconsistencies can be indications of bugs. The concept is applicable not only to

code clones, but also higher-level clones mentioned in Section 5.1.3.

As shown in Section 3.4.2, both CP-Miner [119] and our approch look for inconsisten-

cies at the source code level; the difference is that we look in the contexts surroudning

clones, in addition to the clones themselves. Engler et al. [58] and PR-Miner [120] aim to

detect violations of programming rules which are mined from programs themselves, which

are in spirit close to much of Engler’s follow-up work on Metal [8, 79]; a difference is that

inconsistencies are mainly automatically discovered in PR-Miner and our work, but need

to be given in Metal-related work. Ammons et al. [5] and Kremenek et al. [113] consider

the problem in the context of program specifications: they look for inconsistencies among

5.2. Studies on Code Clones 129

detected program specifications for bugs. Also related is Xie et al.’s work [179] on using re-

dundancies in programs, such as idempotent operations, unused values, dead code, un-taken

conditional branches, and redundant null-checks, to flag possible bugs. Dillig et al. [53] look

for inconsistent uses of the same pointer to find null-pointer dereference errors.

The technique used in EqMiner to generate code fragments, although simpler and

more straightforward, can be viewed as a specific instance of the general notions of program

slicing [175] and data slicing [37,181]. Similar techniques, which simplify or remove parts of

a program that have no effect on a concerned property, have been applied to bug detection.

Delta debugging [43, 129, 188] is an example; it provides an automated way to simplify

failure-inducing inputs and helps to locate failure-related program states. Gupta et al. [77]

use the intersection of forward and backward program slices to reduce the sizes of code for

further debugging. Zhang et al. [190] use value profiles of statements to prune statements

in dynamic slies that are unlikely related to program failures. Sterling and Olsson propose

the concept of program chipping [165] to automatically remove parts of a program so that

the part that contributes to some symptomatic output becomes more apparent. Their tool,

ChipperJ, is an implementation for Java programs. Similar to EqMiner, ChipperJ works

on syntax trees and has to deal with code compilation and the problem of invalid executions

(e.g., infinite loops).

In a broader sense, our clone-related bug detection is also related to the large body

of work on bug detection techniques, including software model checking techniques (e.g.,

SLAM/BLAST [14,81] and Saturn [177,178]), type inference and checking (e.g.,CQual [64,

65], Vault [51], and Osprey [93]), dataflow analysis-based approaches (e.g., ESP [49]), and

verification-based approaches (e.g., ESC/Java [63] and LCLint [60]). These techniques

have been applied in various settings to find software errors in large systems [35, 54, 98,

116,162,173]. Most of these techniques require programmer annotations. Our detection of

clone-related bugs do not require any annotations, and many of the errors detected by our

technique cannot be detected by these techniques. On the other hand, these systems are

generally sound (i.e., they can show the absence of certain classes of bugs), while ours is

5.3. Program Equivalence 130

not and may have both high false positives and false negatives. detection. As discussed in

Section 3.5, we believe that our approach complements well these existing techniques.

Besides static techniques, there are also dynamic bug detection techniques and combi-

nations of the two kinds. Brun and Ernst [29] use Daikon, a dynamic invariant detection

tool [59], to generate properties of programs, and use machine learning algorithms (e.g.,

Decision Trees [130], Support Vector Machines [34], Random Forests [28]) to identify fault-

revealing properties based on similarities and differences among different versions of the

same program properties are fault-revealing or not. DIDUCE [80] also tracks dynamic

program invariants (similar to Daikon) and discovers abnormal behavior by examining in-

structed program runs. These are dynamic approaches, while our work on detecing clone-

related bugs is static.

5.3 Program Equivalence

Code clone detection, especially finding functionally equivalent code, is closely related to

the classic problem of program equivalence [47], which is undecidable in general. Definitions

of program equivalence based on operational semantics have been proposed long time be-

fore [143,150]. Definitions based on input and output behavior have also been investigated

in the literature [23, 48, 187]. However, to the best of our knowledge, our work is the first

that uses random testing for large-scale detection of functionally equivalent code fragments.

Previous work mostly considers equivalence among programs or functions, instead of ar-

bitrary code fragments, and requires clear input and output interface for the programs or

functions under consideration. Also, previous work focuses more on checking equivalence

between two given pieces of code, instead of detecting equivalence among a large number

of pieces of code, partly due to scalability constraints.

The most closely related work on using random testing for program equivalence is

Podgurski and Pierce’s behavior sampling [144]. They identify functionally relevant routines

by executing candidates on a set of random or user-specified inputs and comparing their

5.4. Random Testing 131

outputs to user-provided outputs. There are several significant technical differences between

their work and ours which may complement each other:

• Their technique was proposed mainly to query for a routine that satisfies certain

requirements from an existing library, for the purpose of reuse and program synthesis,

while our technique is mainly to detect functionally equivalent code from a large set

of sources and may be used to construct a library containing reusable code.

• Their technique works for routines where inputs and outputs are well defined and

requires a one-to-one correspondence (including variable number and types) between

the inputs of candidate routines and those of user-specified inputs, while our technique

works for arbitrary code fragments and allows input and output variables to have

different types.

• Our subject program is of millions of lines of code which is more challenging in terms

of scalability.

• Their technique also considers behavior sampling for abstract data types (ADTs) [122]

since they consider types as part of their functional equivalence definition, while we

consider primitive input values without types. Many ideas and challenges mentioned

in their paper, such as handling code with complex interfaces and facilitating au-

tomatic program synthesis based on reusable code libraries and such code search

capability, are similar to ours and remain as intriguing future work.

5.4 Random Testing

Although working on different granularities, our technique used for detecting functionally

equivalent code in fact shares a similar property with any software testing activity [21],

such as regression testing, that aims to uncover functional differences among programs and

specifications: it guarantees functional differences when it separates code fragments into

different clusters, but it cannot fully guarantee functional equivalence.

5.4. Random Testing 132

As we utilize random testing in this dissertation, our techniques also share the same

challenges faced with random testing [26,140]:

• The probability of generating particular inputs that cause particular program behav-

ior may be very small and it is very difficult to generate sufficient inputs that expose

all program behaviors (a.k.a. test coverage problem).

• Many random generated input values may lead to the same observable behavior and

are thus redundant.

As we mentioned in Section 4.5, the test coverage problem may be addressed by in-

troducing the concept of functional similarity: if we have a way to quantify behavioral

differences between two arbitrary programs (e.g., measuring “sizes” of unexposed behav-

iors of a program against another, as Offutt et al. [139] measure “sizes” of program faults),

unexposed program behaviors may be modeled by a similarity threshold and no longer

require concrete inputs to test.

Symbolic executions [24, 172, 176], combined with concrete executions [36, 72, 117, 161],

can also be applied to increase test coverage and reduce test redundancy. Similar techniques

may be adapted for our setting to generate the most cost-efficient inputs to effectively expose

different program behaviors for the clone detection purpose.

133

Chapter 6

Conclusions

This dissertation has presented techniques for scalable and accurate detection of similar

code and their applications. These techniques are applicable to a wide spectrum of simi-

larity definitions, from syntax-based ones to functionality-based ones. Since similar code

commonly occurs in large software projects, detecting, tracking, and managing similar code

play an important role in improving software quality, reducing maintenance cost, and in-

creasing development productivity.

6.1 Summary

We have presented a spectrum of code clones based on their semantic-awareness. The

spectrum provides a unified view of most existing code clone detection techniques and tools

and may help identify appropriate requirements when applying clone detection and analysis

to different applications.

We have proposed a general framework for reducing complex similarity problems to

vector similarity problems in the Euclidean space with efficient clustering schemes available.

Within the framework, code clones based on parse trees, abstract syntax trees, control flow

graphs, or program dependency graphs can all be detected by clustering characteristic

vectors for these structures. More generally, the idea of generating characteristic vectors as

6.2. Outlook 134

a first step for detecting similar code has broader applicability, including but not limited

to clones in binary code, clones in different programming languages, and even clones in

articles in natural languages, as long as we can find a feasible way to extract characteristic

vectors that preserve application-specific features of the original code or articles.

Empirical evaluations have showed that the general framework easily scales to millions

of lines of code with few false positives, not only for syntax trees but also for graphs. In

addition, it is language-agnostic and can be easily parallelized; it thus has the potential to

scale to the billions of lines of existing open source software.

We have also expanded our efforts into more semantic-aware techniques. We have

particularly developed a random testing based approach for finding functionally equivalent

code fragments. It is the first of its kind to explore functionally equivalent code in a large

scale (the Linux kernel with millions of lines of code). Our empirical study has showed that

many functionally equivalent but syntactically different code fragments exist and may help

expand the applicable domains of previous clone-based techniques and applications.

As a sample application, we have presented a novel application of clone-based bug de-

tection. In particular, we have proposed a general notion of context-based inconsistencies

as indicators of code clone-related bugs and presented three concrete types of such incon-

sistencies. Then, the concepts have been applied to the clones identified by Deckard and

many previously unknown bugs in the Linux kernel and Eclipse have been discovered. These

bugs exhibited diverse characteristics and are difficult to detect with any single previous

bug detection technique.

6.2 Outlook

In each of the previous chapters, we have discussed some short-term future work which is

related to different aspects of this dissertation and concerned more about specific technical

details and improvements. Here, we consider longer-term directions for code clone detection

and analysis.

6.2. Outlook 135

Promoting Search-Assisted Development Paradigm

As introduced in Chapter 1, one significant application of code clone detection and analysis

is to facilitate code reuse, likely through an easily reusable library containing commonly

used code clones. To construct a library that fully utilizes the available open source software

which may be in different programming languages and collectively reach trillions of lines

of code, we need code clone detection and analysis techniques and tools that can scale,

work across language boundaries, extract clone patterns, generate code summaries, and

aggregate common usage patterns. In addition, we need techniques that work not just at

the code level, but also at higher levels, such as design patterns and software architectures,

as well as at meta-levels, such as error-proneness and time/space complexity of each piece

of code. High-level and meta-level characteristics will help developers to understand and

reuse existing code more efficiently, and help them to prevent similar errors from happening

again.

Following the construction of such a large, reusable library, search-assisted programming,

where a code search engine is integrated with development environments, would become

an obvious necessity. The code search engine, built upon efficient code clone detection and

analysis technqiues, should be able to answer many of developers’ programming questions,

ranging from syntax to semantics, from simple code reuse to overall design choices. Here

are some sample questions that should be easy for the search engine to find answers from

the library:

• What is the standard way to use a particular API?

• How should code perform a common task, e.g., sending a file through the HTTP

protocol with a particular set of APIs?

• Which design pattern is best suited for this particular context?

• How should these particular components be organized and reused?

6.2. Outlook 136

In addition to programming, the library and the code search engine can also be extended

to include test cases and debugging information to help enable search-assisted testing and

debugging. Then, developers could also reuse tests and debugging knowledge by asking

suitable questions. For example, are bugs that previously occurred under similar contexts

also possible in this context? Is there a known test case for similar code usable for this

code? Is there any known defect that has similar symptoms as this one? Is there a better

way to make this code use less memory?

Although this search-assisted development paradigm (combining programming, testing,

and debugging) may still be far from realization, it is a realistic goal that aims to utilize

all kinds of information about existing code to help developers to make more intelligent

development choices and fewer errors. Similar to token-level word auto-completion provided

by existing development environments, a foreseeable feature of the paradigm is to provide

automatic code change suggestions and validations based on its surrounding contexts, such

as a better way to use a given API, the correctness of the way the API is used, the complexity

of a given piece of code, and a better optimized version of the code.

Facilitating Interdisciplinary Research

Techniques presented in this dissertation have their connections to many areas in computer

science, such as program analysis, software testing, computational geometry, and informa-

tion retrieval. For example, the idea of generating characteristic vectors and clustering in

the framework proposed in Deckard is similar in spirit to indexing and clustering ideas

in the area of information retrieval. If we look at the problem of code clone detection and

analysis abstractly, it is indeed similar to the problem of information retrieval which aims

to find certain documents within or information about documents. Much research on data

mining and machine learning can also be applied to the problem of code clone detection. On

the other hand, code is not exactly the same as normal texts; its particular structures and

meanings may require different mining techniques other than normal information retrieval

techniques and may boost the advance of other areas. Program analysis techniques can

6.2. Outlook 137

help to reveal such structures and much hidden properties of code so as to facilitate more

effective clone detection and analysis.

Expanding Applicable Domains

Subject programs used in the empirical studies in this dissertation are more standalone

ones, but we expect the techniques presented in this dissertation are also applicable to

many different kinds of software, such as binary code as we mentioned before, web applica-

tions which often involve multi-layer, multi-language programming, and embedded software

which is often closely tied to particular physical devices. With the evolving programming

languages and software development practices, the details of particular clone detection and

analysis techniques may also keep evolving; however, we believe research on code clones

will remain active across all software applications due to the ubiquitous existence of clones.

A Central Goal

As a final note, a central goal of research on code clones is to improve software quality, in-

crease development productivity, and reduce development and maintenance cost. Studying

clones is to reduce unnecessary duplication, facilitate formation of common code libraries,

improve code reusability, drive search-and-reuse based program synthesis and development,

and promote high-productivity, high-understandability programming styles. Much exciting

code clone-related work remains to be done towards the goal of achieving high-quality, low-

cost software, and the success of such work will rely on how well we can distill and organize

useful information from large existing code bases and incorporate such information into

software engineering processes.

BIBLIOGRAPHY 138

Bibliography

[1] Finding Duplicate Code with PMD/CPD. http://pmd.sourceforge.net/cpd.html.

[2] The Stanford Parser: A Statistical Parser. http://nlp.stanford.edu/software/

lex-parser.shtml.

[3] Eytan Adar and Miryung Kim. SoftGUESS: Visualization and exploration of code

clones in context. In ICSE’07: Proceedings of the 29th International Conference

on Software Engineering, pages 762–766, Minneapolis, Minnesota, USA, May 20–26,

2007. IEEE Computer Society.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In ICDE’95:

Proceedings of the 11th International Conference on Data Engineering, pages 3–14,

Taipei, Taiwan, March 6–10, 1995. IEEE Computer Society.

[5] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specification. In

POPL’02: Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 4–6, Portland, Oregon, USA, January 16–18, 2002.

ACM.

[6] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Ettore Merlo. Mod-

eling clones evolution through time series. In ICSM’01: Proceedings of the 2001 IEEE

International Conference on Software Maintenance, pages 273–280, Florence, Italy,

November 6–10, 2001. IEEE Computer Society.

http://pmd.sourceforge.net/cpd.html
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml

BIBLIOGRAPHY 139

[7] Vikraman Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Information

and Computation, 204(5):835–852, May 2006. Elsevier.

[8] Ken Ashcraft and Dawson Engler. Using programmer-written compiler extensions

to catch security holes. In S&P 2002: Proceedings of the 2002 IEEE Symposium on

Security and Privacy, pages 143–159, Berkeley, California, USA, May 12–15, 2002.

IEEE Computer Society.

[9] Brenda S. Baker. On finding duplication and near-duplication in large software sys-

tems. In WCRE’95: Proceedings of the 2nd Working Conference on Reverse Engi-

neering, pages 86–95, Toronto, Canada, July 14–16, 1995. IEEE Computer Society.

[10] Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application

to software maintenance. SIAM Journal on Computing (SICOMP), 26(5):1343–1362,

October 1997. Society for Industrial and Applied Mathematics.

[11] Brenda S. Baker. Finding clones with Dup: Analysis of an experiment. IEEE Trans-

actions on Software Engineering (TSE), 33(9):608–621, September 2007. IEEE Com-

puter Society.

[12] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas

Kontogiannis. Measuring clone based reengineering opportunities. In METRICS’99:

Proceedings of the 6th International Software Metrics Symposium, pages 292–303,

Boca Raton, Florida, USA, November 4–6 1999. IEEE Computer Society.

[13] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lagüe, and Kostas

Kontogiannis. Advanced clone-analysis to support object-oriented system refactor-

ing. In WCRE’00: Proceedings of the 7th Working Conference on Reverse Engineer-

ing, pages 98–107, Brisbane, Queensland, Australia, November 23–25, 2000. IEEE

Computer Society.

BIBLIOGRAPHY 140

[14] Thomas Ball and Sriram K. Rajamani. The SLAM project: Debugging system soft-

ware via static analysis. In POPL’02: Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 1–3, Portland,

Oregon, USA, January 16–18, 2002. ACM.

[15] Hamid Abdul Basit and Stan Jarzabek. Detecting higher-level similarity patterns in

programs. In ESEC/FSE’05: Proceedings of the 5th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 156–165, Lisbon, Portugal, September

5–9, 2005. ACM.

[16] Hamid Abdul Basit and Stan Jarzabek. A data mining approach for detecting

higher-level clones in software. IEEE Transactions on Software Engineering (TSE),

35(4):497–514, July–August 2009. IEEE Computer Society.

[17] Samual Bates and Susan Horwitz. Incremental program testing using program de-

pendence graphs. In POPL’93: Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 384–396, Charleston,

South Carolina, USA, January 1993. ACM.

[18] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS R©: Program trans-

formations for practical scalable software evolution. In ICSE’04: Proceedings of the

26th International Conference on Software Engineering, pages 625–634, Edinburgh,

Scotland, UK, May 23–28, 2004. IEEE Computer Society.

[19] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine

Bier. Clone detection using abstract syntax trees. In ICSM’98: Proceedings of

the 1998 IEEE International Conference on Software Maintenance, pages 368–377,

Bethesda, Maryland, USA, November 16–19, 1998. IEEE Computer Society.

[20] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Krügel, and

Engin Kirda. Scalable, behavior-based malware clustering. In NDSS’09: Proceedings

BIBLIOGRAPHY 141

of the 16th Annual Network and Distributed System Security Symposium, San Diego,

California, USA, February 8–11, 2009. The Internet Society (ISOC).

[21] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold Co., New York,

USA, 2nd edition, 1990.

[22] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.

Comparison and evaluation of clone detection tools. IEEE Transactions on Software

Engineering (TSE), 33(9):577–591, September 2007. IEEE Computer Society.

[23] Miquel Bertran, Francesc-Xavier Babot, and August Climent. An input/output se-

mantics for distributed program equivalence reasoning. Electronic Notes in Theoret-

ical Computer Science, 137(1):25–46, July 2005. Elsevier.

[24] Dirk Beyer, Adam J. Chlipala, and Rupak Majumdar. Generating tests from coun-

terexamples. In ICSE’04: Proceedings of the 26th International Conference on Soft-

ware Engineering, pages 326–335, Edinburgh, Scotland, UK, May 23–28, 2004. IEEE

Computer Society.

[25] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar

Devanbu. Latent social structure in open source projects. In FSE’08: Proceedings

of the 16th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 24–35, Atlanta, Georgia, USA, November 9–14, 2008. ACM.

[26] David L. Bird and Carlos Urias Munoz. Automatic generation of random self-checking

test cases. IBM Systems Journal, 22(3):229–245, 1983. IBM.

[27] Hans L. Boblaender. Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. Journal of Algorithms, 11(4):631–643, December 1990. El-

sevier.

[28] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

Springer.

BIBLIOGRAPHY 142

[29] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine learning over

program executions. In ICSE’04: Proceedings of the 26th International Conference

on Software Engineering, pages 480–490, Edinburgh, Scotland, UK, May 23–28, 2004.

IEEE Computer Society.

[30] Magiel Bruntink. Aspect mining using clone class metrics. In WARE’04: Proceedings

of the 1st Workshop on Aspect Reverse Engineering, co-located with WCRE 2004,

Delft, The Netherlands, November 9th, 2004. Published as CWI Technical Report

SEN-E0502, February 2005.

[31] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the

use of clone detection for identifying crosscutting concern code. IEEE Transactions

on Software Engineering (TSE), 31(10):804–818, October 2005. IEEE Computer

Society.

[32] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers (TC), 35(8):677–691, August 1986. IEEE Computer

Society.

[33] Peter Bulychev and Marius Minea. Duplicate code detection using anti-unification.

In SYRCoSE 2008: Proceedings of 2008 Spring Young Researchers’ Colloquium on

Software Engineering, volume 2, pages 51–54, Saint-Petersburg, Russia, May 29–

30, 2008. Institute for System Programming of the Russian Academy of Sciences

(ISP/RAS).

[34] Christopher J. C. Burges. A tutorial on support vector machines for pattern recog-

nition. Data Mining and Knowledge Discovery, 2(2):121–167, June 1998. Springer.

[35] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for

finding dynamic programming errors. Software: Practice and Experience (SP&E),

30(7):775–802, June 2000. John Wiley & Sons, Inc.

BIBLIOGRAPHY 143

[36] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.

Engler. EXE: Automatically generating inputs of death. In CCS’06: Proceedings of

the 13th ACM Conference on Computer and Communications Security, pages 322–

335, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM.

[37] Tat W. Chan and Arun Lakhotia. Debugging program failure exhibited by volumi-

nous data. Journal of Software Maintenance: Research and Practice, 10(2):111–150,

March–April 1998. John Wiley & Sons, Inc.

[38] Liming Chen and Algirdas Avizienis. N -version programming: A fault-tolerance

approach to reliability of software operation. In FTCS-25: Proceedings of the 25th

International Symposium on Fault-Tolerant Computing, “Highlights from Twenty-

Five Years”, volume 3, pages 113–119, Pasadena, California, USA, June 27–30 1995.

IEEE Computer Society.

[39] Fanny Chevalier, David Auber, and Alexandru Telea. Structural analysis and vi-

sualization of C++ code evolution using syntax trees. In IWPSE’07: Proceedings

of the 9th International Workshop on Principles of Software Evolution, held in con-

junction with the 6th Joint Meeting of ESEC/FSE, pages 90–97, Dubrovnik, Croatia,

September 3–4, 2007. ACM.

[40] Michel Chilowicz, Etienne Duris, and Gilles Roussel. Syntax tree fingerprinting for

source code similarity detection. In ICPC’09: Proceedings of the 17th IEEE Interna-

tional Conference on Program Comprehension, co-located with ICSE 2009, Vancouver,

British Columbia, Canada, May 17–19, 2009. IEEE Computer Society.

[41] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect ma-

licious patterns. In SEC’03: Proceedings of the 12th USENIX Security Symposium,

pages 169–186, Washington, District of Columbia, USA, August 4–8, 2003. USENIX

Association.

BIBLIOGRAPHY 144

[42] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Xiaodong Song, and

Randal E. Bryant. Semantics-aware malware detection. In S&P 2005: Proceedings of

the 2005 IEEE Symposium on Security and Privacy, pages 32–46, Oakland, California,

USA, May 8–11, 2005. IEEE Computer Society.

[43] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE’05:

Proceedings of the 27th International Conference on Software Engineering, pages 342–

351, St. Louis, Missouri, USA, May 15–21, 2005. ACM.

[44] Christian S. Collberg, Edward Carter, Saumya K. Debray, Andrew Huntwork, John D.

Kececioglu, Cullen Linn, and Michael Stepp. Dynamic path-based software water-

marking. In PLDI’04: Proceedings of the ACM SIGPLAN 2004 Conference on Pro-

gramming Language Design and Implementation, pages 107–118, Washington, Dis-

trict of Columbia, USA, June 9–11, 2004. ACM.

[45] Christian S. Collberg and Clark D. Thomborson. Software watermarking: Models

and dynamic embeddings. In POPL’99: Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 311–324, San

Antonio, Texas, USA, January 20–22, 1999. ACM.

[46] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms. MIT Press, Cambridge, Massachusetts, USA, 2nd edition,

September 2001.

[47] Guy Cousineau and Patrice Enjalbert. Program equivalence and provability. In

MFCS’79: Proceedings of the 8th Symposium on Mathematical Foundations of Com-

puter Science, volume 74 of Lecture Notes in Computer Science (LNCS), pages 237–

245, Olomouc, Czechoslovakia, September 3–7, 1979. Springer.

[48] Roy L. Crole and Andrew D. Gordon. A sound metalogical semantics for input/output

effects. In CSL’94: Selected Papers from the 8th International Workshop on Computer

BIBLIOGRAPHY 145

Science Logic, 1994, volume 933 of Lecture Notes in Computer Science (LNCS), pages

339–353, Kazimierz, Poland, September 25–30, 1995. Springer.

[49] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verifica-

tion in polynomial time. In PLDI’02: Proceedings of the ACM SIGPLAN 2002 Con-

ference on Programming Language Design and Implementation, pages 57–68, Berlin,

Germany, June 17–19, 2002. ACM.

[50] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In SoCG’04: Proceedings

of the 20th ACM Symposium on Computational Geometry, pages 253–262, Brooklyn,

New York, USA, June 8–11, 2004. ACM.

[51] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level

software. In PLDI’01: Proceedings of the ACM SIGPLAN 2001 Conference on Pro-

gramming Language Design and Implementation, pages 59–69, Snowbird, Utah, USA,

June 20–22, 2001. ACM.

[52] Fred DePiero and David Krout. An algorithm using length-r paths to approximate

subgraph isomorphism. Pattern Recognition Letters, 24(1–3):33–46, January 2003.

Elsevier.

[53] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection using semantic

inconsistency inference. In PLDI’07: Proceedings of the ACM SIGPLAN 2007 Con-

ference on Programming Language Design and Implementation, pages 435–445, San

Diego, California, USA, June 10–13, 2007. ACM.

[54] Nurit Dor, Michael Rodeh, and Shmuel Sagiv. CSSV: Towards a realistic tool for

statically detecting all buffer overflows in C. In PLDI’03: Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and Implementation,

pages 155–167, San Diego, California, USA, June 9–11, 2003. ACM.

BIBLIOGRAPHY 146

[55] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving soft-

ware. In ICSE’07: Proceedings of the 29th International Conference on Software

Engineering, pages 158–167, Minneapolis, Minnesota, USA, May 20–26, 2007. IEEE

Computer Society.

[56] Ekwa Duala-Ekoko and Martin P. Robillard. CloneTracker: Tool support for code

clone management. In ICSE’08: Proceedings of the 30th International Conference on

Software Engineering, pages 843–846, Leipzig, Germany, May 10–18, 2008. ACM.

[57] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent

approach for detecting duplicated code. In ICSM’99: Proceedings of the 1999 IEEE

International Conference on Software Maintenance, pages 109–118, Oxford, England,

UK, August 30 – September 3, 1999. IEEE Computer Society.

[58] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent behavior:

A general approach to inferring errors in systems code. In SOSP’01: Proceedings

of the 18th ACM Symposium on Operating System Principles, pages 57–72, Banff,

Alberta, Canada, October 21–24, 2001. ACM.

[59] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. Quickly

detecting relevant program invariants. In ICSE’00: Proceedings of the 22nd Interna-

tional Conference on Software Engineering, pages 449–458, Limerick, Ireland, June

4–11, 2000. ACM.

[60] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool

for using specifications to check code. In FSE’94: Proceedings of the 2nd ACM

SIGSOFT Symposium on Foundations of Software Engineering, pages 87–96, New

Orleans, Louisiana, USA, December 6–9, 1994. ACM.

[61] Raimar Falke, Pierre Frenzel, and Rainer Koschke. Empirical evaluation of clone

detection using syntax suffix trees. Empirical Software Engineering, 13(6):601–643,

December 2008. Springer.

BIBLIOGRAPHY 147

[62] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. Transactions on Programming Languages and

Systems (TOPLAS), 9(3):319–349, July 1987. ACM.

[63] Cormac Flanagan, K.Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,

and Raymie Stata. Extended static checking for Java. In PLDI’02: Proceedings of

the ACM SIGPLAN 2002 Conference on Programming Language Design and Imple-

mentation, pages 234–245, Berlin, Germany, June 17–19, 2002. ACM.

[64] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers.

In PLDI’99: Proceedings of the ACM SIGPLAN 1999 Conference on Programming

Language Design and Implementation, pages 192–203, Atlanta, Georgia, USA, May

1–4, 1999. ACM.

[65] Jeffrey S. Foster, Tachio Terauchi, and Alexander Aiken. Flow-sensitive type qual-

ifiers. In PLDI’02: Proceedings of the ACM SIGPLAN 2002 Conference on Pro-

gramming Language Design and Implementation, pages 1–12, Berlin, Germany, June

17–19, 2002. ACM.

[66] Free Software Foundation. GNU Diffutils for Comparing and Merging Files. http://

www.gnu.org/software/diffutils/manual/.

[67] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones.

In ICSE’08: Proceedings of the 30th International Conference on Software Engineer-

ing, pages 321–330, Leipzig, Germany, May 10–18, 2008. ACM.

[68] Mark Gabel and Zhendong Su. Javert: Fully automatic mining of general temporal

properties from dynamic traces. In FSE’08: Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 339–349,

Atlanta, Georgia, USA, November 9–14, 2008. ACM.

http://www.gnu.org/software/diffutils/manual/
http://www.gnu.org/software/diffutils/manual/

BIBLIOGRAPHY 148

[69] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, San Francisco, California, USA,

January 1979.

[70] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimen-

sions via hashing. In VLDB’99: Proceedings of the 25th International Conference on

Very Large Data Bases, pages 518–529, Edinburgh, Scotland, September 7–10, 1999.

Morgan Kaufmann.

[71] Nils Göde and Rainer Koschke. Incremental clone detection. In CSMR’09: Proceed-

ings of the 13th European Conference on Software Maintenance and Reengineering,

pages 219–228, Fraunhofer IESE, Kaiserslautern, Germany, March 24–27, 2009. IEEE

Computer Society.

[72] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated

random testing. In PLDI’05: Proceedings of the ACM SIGPLAN 2005 Conference on

Programming Language Design and Implementation, pages 213–223, Chicago, Illinois,

USA, June 12–15, 2005. ACM.

[73] Marco Gori, Marco Maggini, and Lorenzo Sarti. Exact and approximate graph match-

ing using random walks. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence (TPAMI), 27(7):1100–1111, July 2005. IEEE Computer Society.

[74] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent item-

sets. In FIMI’03: Proceedings of the 1st IEEE ICDM Workshop on Frequent Itemset

Mining Implementations, volume 90, Melbourne, Florida, USA, November 19, 2003.

CEUR Workshop Proceedings (CEUR-WS.org). Also as RPI Technical Report 03-04.

[75] GrammaTech. CodeSurfer. http://www.grammatech.com/.

[76] Alex Groce and Rajeev Joshi. Exploiting traces in program analysis. In TACAS’06:

Proceedings of the 12th International Conference on Tools and Algorithms for the

http://www.grammatech.com/

BIBLIOGRAPHY 149

Construction and Analysis of Systems, held as part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2006, volume 3920 of Lecture Notes in

Computer Science (LNCS), pages 379–393, Vienna, Austria, March 25 – April 2,

2006. Springer.

[77] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code

using failure-inducing chops. In ASE’05: Proceedings of the 20th IEEE/ACM Inter-

national Conference on Automated Software Engineering, pages 263–272, Long Beach,

CA, USA, November 7–11, 2005. ACM.

[78] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, England; New York,

USA, 1st edition, May 1997.

[79] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and language

for building system-specific, static analyses. In PLDI’02: Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Implementation,

pages 69–82, Berlin, Germany, June 17–19, 2002. ACM.

[80] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-

matic anomaly detection. In ICSE’02: Proceedings of the 24th International Confer-

ence on Software Engineering, pages 291–301, Orlando, Florida, USA, May 19–25,

2002. ACM.

[81] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy

abstraction. In POPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 58–70, Portland, Oregon, USA,

January 16–18, 2002. ACM.

[82] Yoshiki Higo. Code Clone Analysis Methods for Efficient Software Maintenance. PhD

thesis, Osaka University, Japan, 2006.

BIBLIOGRAPHY 150

[83] Susan Horwitz and Thomas W. Reps. The use of program dependence graphs in

software engineering. In ICSE’92: Proceedings of the 14th International Conference

on Software Engineering, pages 392–411, Melbourne, Australia, May 11–15, 1992.

ACM.

[84] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. CnP: Towards an environment for

the proactive management of copy-and-paste programming. In ICPC’09: Proceedings

of the 17th IEEE International Conference on Program Comprehension, co-located

with ICSE 2009, Vancouver, British Columbia, Canada, May 17–19, 2009. IEEE

Computer Society.

[85] Watts S. Humphrey. A personal commitment to software quality. In ESEC’95: Pro-

ceedings of the 5th European Software Engineering Conference, volume 989 of Lecture

Notes in Computer Science (LNCS), pages 5–7, Sitges, Spain, September 25–28, 1995.

Springer.

[86] Hyun-il Lim, Heewan Park, Seokwoo Choi, and Taisook Han. Detecting theft of

Java applications via a static birthmark based on weighted stack patterns. IEICE

Transactions on Information and Systems, E91–D(9):2323–2332, September 2008.

Institute of Electronics, Information and Communication Engineers.

[87] Takashi Ishio, Hironori Date, Tatsuya Miyake, and Katsuro Inoue. Mining coding

patterns to detect crosscutting concerns in Java programs. In WCRE’08: Proceedings

of the 15th Working Conference on Reverse Engineering, pages 123–132, Antwerp,

Belgium, October 15–18, 2008. IEEE Computer Society.

[88] Patricia Jablonski and Daqing Hou. CReN: A tool for tracking copy-and-paste code

clones and renaming identifiers consistently in the IDE. In ETX’07: Proceedings of the

2007 OOPSLA Workshop on Eclipse Technology eXchange, pages 16–20, Montréal,

Québec, Canada, October 21, 2007. ACM.

BIBLIOGRAPHY 151

[89] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang. XVCL: XML-based

variant configuration language. In ICSE’03: Proceedings of the 25th International

Conference on Software Engineering, pages 810–811, Portland, Oregon, USA, May

3–10, 2003. IEEE Computer Society.

[90] Stan Jarzabek and Shubiao Li. Eliminating redundancies with a “composition with

adaptation” meta-programming technique. In ESEC/FSE’03: Proceedings of the 4th

Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 237–246, Helsinki,

Finland, September 1–5, 2003. ACM.

[91] Yue Jia, Dave Binkley, Mark Harman, Jens Krinke, and Makoto Matsushita. KClone:

A proposed approach to fast precise code clone detection. In IWSC’09: Proceedings of

the 3rd International Workshop on Software Clones, held in conjunction with CSMR

2009 (the 13th European Conference on Software Maintenance and Reengineering),

Fraunhofer IESE, Kaiserslautern, Germany, March 24, 2009. IEEE Computer Society.

[92] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. Deckard:

Scalable and accurate tree-based detection of code clones. In ICSE’07: Proceedings

of the 29th International Conference on Software Engineering, pages 96–105, Min-

neapolis, Minnesota, USA, May 20–26, 2007. IEEE Computer Society.

[93] Lingxiao Jiang and Zhendong Su. Osprey: A practical type system for validating

dimensional unit correctness of C programs. In ICSE’06: Proceedings of the 28th

International Conference on Software Engineering, pages 262–271, Shanghai, China,

May 20–28, 2006. ACM.

[94] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent code

fragments via random testing. In ISSTA’09: Proceedings of the 18th International

Symposium on Software Testing and Analysis, pages 81–92, Chicago, Illinois, USA,

July 19–23, 2009. ACM.

BIBLIOGRAPHY 152

[95] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-based detection of clone-

related bugs. In ESEC/FSE’07: Proceedings of the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 55–64, Dubrovnik, Croatia, September

3–7, 2007. ACM.

[96] Howard J. Johnson. Identifying redundancy in source code using fingerprints. In

CASCON’93: Proceedings of the 1993 Conference of the Centre for Advanced Stud-

ies on Collaborative Research, volume 1, pages 171–183, Toronto, Ontario, Canada,

October 24–28, 1993. IBM.

[97] Howard J. Johnson. Visualizing textual redundancy in legacy source. In CASCON’94:

Proceedings of the 1994 Conference of the Centre for Advanced Studies on Collabora-

tive Research, page 32, Toronto, Ontario, Canada, October 31 – November 3, 1994.

IBM.

[98] Robert Johnson and David Wagner. Finding user/kernel pointer bugs with type

inference. In SEC’04: Proceedings of the 13th USENIX Security Symposium, pages

119–134, San Diego, California, USA, August 9–13, 2004. USENIX Association.

[99] Capers Jones. Estimating Software Costs: Bringing Realism to Estimating. McGraw-

Hill Companies, New York, USA, 2nd edition, April 2007.

[100] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. CloneDetective –

A workbench for clone detection research. In ICSE’09: Proceedings of the 31st In-

ternational Conference on Software Engineering, pages 603–606, Vancouver, British

Columbia, Canada, May 16–24, 2009. IEEE Computer Society.

[101] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A multilinguistic

token-based code clone detection system for large scale source code. IEEE Transac-

tions on Software Engineering (TSE), 28(7):654–670, July 2002. IEEE Computer

Society.

BIBLIOGRAPHY 153

[102] Cory Kapser and Michael W. Godfrey. “Cloning considered harmful” considered

harmful. In WCRE’06: Proceedings of the 13th Working Conference on Reverse

Engineering, pages 19–28, Benevento, Italy, October 23–27, 2006. IEEE Computer

Society.

[103] Juha Kärkkäinen. Computing the threshold for q-gram filters. In SWAT’02: Proceed-

ings of the 8th Scandinavian Workshop on Algorithm Theory, volume 2368 of Lecture

Notes In Computer Science (LNCS), pages 348–357, Turku, Finland, July 3–5, 2002.

Springer.

[104] Miryung Kim, Vibha Sazawal, and David Notkin. An empirical study of code clone

genealogies. In ESEC/FSE’05: Proceedings of the 5th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 187–196, Lisbon, Portugal, September

5–9, 2005. ACM.

[105] Dan Klein and Christopher D. Manning. Fast exact inference with a factored model

for natural language parsing. In Advances in Neural Information Processing Systems

15 (NIPS 2002), pages 3–10, Vancouver, British Columbia, Canada, December 9–14,

2002. MIT Press 2003.

[106] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In ACL’03:

Proceedings of the 41st Annual Meeting of the Association for Computational Lin-

guistics, pages 423–430, Sapporo, Japan, July 7–12, 2003. ACL.

[107] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assump-

tion of independence in multiversion programming. IEEE Transactions on Software

Engineering (TSE), 12(1):96–109, January 1986. IEEE Computer Society.

[108] Donald Ervin Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,

3rd edition, July 1997.

BIBLIOGRAPHY 154

[109] Raghavan Komondoor and Susan Horwitz. Semantics-preserving procedure extrac-

tion. In POPL’00: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 155–169, Boston, Massachusetts, USA,

January 19–21, 2000. ACM.

[110] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in

source code. In SAS’01: Proceedings of the 8th International Static Analysis Sym-

posium, volume 2126 of Lecture Notes in Computer Science (LNCS), pages 40–56,

Paris, France, July 16–18, 2001. Springer.

[111] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, M. Galler, and M. Bernstein.

Pattern matching for clone and concept detection. Automated Software Engineering,

3(1–2):77–108, July 1996. Springer.

[112] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract

syntax suffix trees. In WCRE’06: Proceedings of the 13th Working Conference on

Reverse Engineering, pages 253–262, Benevento, Italy, October 23–27, 2006. IEEE

Computer Society.

[113] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler. From

uncertainty to belief: Inferring the specification within. In OSDI’06: Proceedings of

the 7th Symposium on Operating System Design and Implementation, pages 161–176,

Seattle, Washington, USA, November 6–8, 2006. USENIX Association.

[114] Jens Krinke. Identifying similar code with program dependence graphs. In WCRE’01:

Proceedings of the 8th Working Conference on Reverse Engineering, pages 301–309,

Stuttgart, Germany, October 2–5, 2001. IEEE Computer Society.

[115] Bruno Laguë, Daniel Proulx, Jean Mayrand, Ettore Merlo, and John P. Hudepohl.

Assessing the benefits of incorporating function clone detection in a development

process. In ICSM’97: Proceedings of the 1997 IEEE International Conference on

BIBLIOGRAPHY 155

Software Maintenance, pages 314–321, Bari, Italy, October 1–3, 1997. IEEE Computer

Society.

[116] David Larochelle and David Evans. Statically detecting likely buffer overflow vulner-

abilities. In SEC’01: Proceedings of the 10th USENIX Security Symposium, pages

177–190, Washington, District of Columbia, USA, August 13–17, 2001. USENIX As-

sociation.

[117] Eric Larson and Todd Austin. High coverage detection of input-related security

facults. In SEC’03: Proceedings of the 12th USENIX Security Symposium, pages

121–136, Washington, District of Columbia, USA, August 4–8, 2003. USENIX Asso-

ciation.

[118] Seunghak Lee and Iryoung Jeong. SDD: High performance code clone detection

system for large scale source code. In OOPSLA’05: Companion to the 20th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 140–141, San Diego, California, USA, October 16–20, 2005.

ACM.

[119] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: A tool for

finding copy-paste and related bugs in operating system code. In OSDI’04: Proceed-

ings of the 6th Symposium on Operating System Design and Implementation, pages

289–302, San Francisco, California, USA, December 6–8, 2004. USENIX Association.

[120] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically extracting implicit pro-

gramming rules and detecting violations in large software code. In ESEC/FSE’05:

Proceedings of the 5th Joint Meeting of the European Software Engineering Confer-

ence and the ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 306–315, Lisbon, Portugal, September 5–9, 2005. ACM.

BIBLIOGRAPHY 156

[121] Soyini Liburd. An n-version electronic voting system. Master’s thesis, Massachusetts

Institute of Technology, Department of Electrical Engineering and Computer Science,

2004.

[122] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Pro-

ceedings of the ACM SIGPLAN Symposium on Very High Level Languages, pages

50–59, Santa Monica, California, USA, April 1974. ACM.

[123] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: Detection of software

plagiarism by program dependence graph analysis. In KDD’06: Proceedings of the

12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 872–881, Philadelphia, Pennsylvania, USA, August 20–23, 2006. ACM.

[124] Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue. Very-large

scale code clone analysis and visualization of open source programs using distributed

CCFinder: D-CCFinder. In ICSE’07: Proceedings of the 29th International Confer-

ence on Software Engineering, pages 106–115, Minneapolis, Minnesota, USA, May

20–26, 2007. IEEE Computer Society.

[125] David Lo and Siau-Cheng Khoo. SMArTIC: Towards building an accurate, robust

and scalable specification miner. In FSE’06: Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 265–275,

Portland, Oregon, USA, November 5–11, 2006. ACM.

[126] David Mandelin, Lin Xu, Rastislav Bod’ik, and Doug Kimelman. Jungloid mining:

Helping to navigate the API jungle. In PLDI’05: Proceedings of the ACM SIGPLAN

2005 Conference on Programming Language Design and Implementation, pages 48–

61, Chicago, Illinois, USA, June 12–15, 2005. ACM.

[127] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic

detection of function clones in a software system using metrics. In ICSM’96: Pro-

BIBLIOGRAPHY 157

ceedings of the 1996 IEEE International Conference on Software Maintenance, pages

244–254, Monterey, California, USA, November 4–8, 1996. IEEE Computer Society.

[128] Ettore Merlo, Giulio Antoniol, and Jens Krinke. Identifying similar code with metrics

and program dependence graphs. Unpublished manuscript.

[129] Ghassan Misherghi and Zhendong Su. Hdd: Hierarchical delta debugging. In ICSE’06:

Proceedings of the 28th International Conference on Software Engineering, pages 142–

151, Shanghai, China, May 20–28, 2006. ACM.

[130] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, USA, March 1997.

[131] Lajos Nagy, Richard Ford, and William Allen. N -version programming for the de-

tection of zero-day exploit. In IEEE Topical Conference on Cybersecurity, Daytona

Beach, Florida, USA, April 2006.

[132] National Institute of Standards and Technology (NIST). Software Errors Cost

U.S. Economy $59.5 Billion Annually. http://www.nist.gov/public_affairs/

releases/n02-10.htm, June 28, 2002.

[133] George C. Necula, Scott Mcpeak, S. P. Rahul, and Westley Weimer. CIL: Interme-

diate language and tools for analysis and transformation of C programs. In CC’02:

Proceedings of the 11th International Conference on Compiler Construction, held as

part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2002, volume 2304 of Lecture Notes in Computer Science (LNCS), pages 213–228,

Grenoble, France, April 8–12, 2002. Springer.

[134] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. In PLDI’07: Proceedings of the ACM SIGPLAN

2007 Conference on Programming Language Design and Implementation, pages 89–

100, San Diego, California, USA, June 10–13, 2007. ACM.

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/public_affairs/releases/n02-10.htm

BIBLIOGRAPHY 158

[135] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and

Tien N. Nguyen. Accurate and efficient structural characteristic feature extraction

for clone detection. In FASE’09: Proceedings of the 12th International Conference

on Fundamental Approaches to Software Engineering, held as part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2009, volume 5503 of

Lecture Notes in Computer Science (LNCS), pages 440–455, York, UK, March 22–29,

2009. Springer.

[136] Tung Nguyen, Hoan Nguyen, Jafar Al-Kofahi, Nam Pham, and Tien Nguyen. Scalable

and incremental clone detection for evolving software. In ICSM’09: Proceedings of the

25th IEEE International Conference on Software Maintenance, Edmonton, Alberta,

Canada, September 20–26, 2009. IEEE Computer Society.

[137] Tung Nguyen, Hoan Nguyen, Nam Pham, Jafar Al-Kofahi, and Tien Nguyen. Clone-

aware configuration management. In ASE’09: Proceedings of the 24th IEEE/ACM In-

ternational Conference on Automated Software Engineering, Auckland, New Zealand,

November 16–20, 2009. ACM.

[138] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer, January 1999.

[139] A. Jefferson Offutt and J. Huffman Hayes. A semantic model of program faults. In

ISSTA’96: Proceedings of the 1996 International Symposium on Software Testing and

Analysis, volume 21 of SIGSOFT Software Engineering Notes, pages 195–200, San

Diego, CA, USA, January 8–10, 1996. ACM.

[140] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classification

of test inputs. In ECOOP’05: Proceedings of the 19th European Conference on Object-

Oriented Programming, volume 3586 of Lecture Notes in Computer Science (LNCS),

pages 504–527, Glasgow, Scotland, July 27–29, 2005. Springer.

BIBLIOGRAPHY 159

[141] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar

Dayal, and Mei-Chun Hsu. PrefixSpan: Mining sequential patterns efficiently by

prefix-projected pattern growth. In ICDE’01: Proceedings of the 17th International

Conference on Data Engineering, pages 215–224, Heidelberg, Germany, April 2–6,

2001. IEEE Computer Society.

[142] Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and

Tien N. Nguyen. Complete and accurate clone detection in graph-based models. In

ICSE’09: Proceedings of the 31st International Conference on Software Engineer-

ing, pages 276–286, Vancouver, British Columbia, Canada, May 16–24, 2009. IEEE

Computer Society.

[143] Andrew M. Pitts. Operational semantics and program equivalence. In Applied Se-

mantics: Advanced Lectures, International Summer School (APPSEM 2000), vol-

ume 2395 of Lecture Notes in Computer Science (LNCS), Tutorial, pages 378–412.

Springer, Caminha, Portugal, September 9–15, 2002.

[144] Andy Podgurski and Lynn Pierce. Retrieving reusable software by sampling behavior.

ACM Transactions on Software Engineering and Methodology (TOSEM), 2(3):286–

303, July 1993. ACM.

[145] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among

a set of programs with JPlag. Journal of Universal Computer Science, 8(11):1016–

1038, November 2002. A Publication of Graz University of Technology and Universiti

Malaysia Sarawak, in cooperation with Know-Center and Campus02.

[146] Daniel Quinlan, Markus Schordan, Qing Yi, and Andreas Sæbjørnsen. Classification

and utilization of abstractions for optimization. In ISoLA’04: Proceedings of the

1st International Symposium on Leveraging Applications of Formal Methods, pages

57–73, Paphos, Cyprus, October 30–November 2, 2004. Springer.

BIBLIOGRAPHY 160

[147] Daniel J. Quinlan. ROSE: An Open Source Compiler Infrastructure. Lawrence Liv-

ermore National Laboratory (LLNL), http://www.rosecompiler.org/.

[148] Damith C. Rajapakse and Stan Jarzabek. Using server pages to unify clones in web

applications: A trade-off analysis. In ICSE’07: Proceedings of the 29th International

Conference on Software Engineering, pages 116–126, Minneapolis, Minnesota, USA,

May 20–26, 2007. IEEE Computer Society.

[149] Narayan Ramasubbu and Rajesh Krishna Balan. Globally distributed software devel-

opment project performance: An empirical analysis. In ESEC/FSE’07: Proceedings

of the 6th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 125–134, Dubrovnik, Croatia, September 3–7, 2007. ACM.

[150] Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equivalence be-

tween recursive programs. Journal of the ACM (JACM), 27(4):772–796, October

1980. ACM.

[151] Matthias Rieger. Effective Clone Detection Without Language Barriers. PhD thesis,

University of Bern, Switzerland, 2005.

[152] Chanchal K. Roy and James R. Cordy. A mutation/injection-based automatic frame-

work for evaluating code clone detection tools. In Mutation’09: Proceedings of the 4th

International Workshop on Mutation Analysis, held in conjunction with ICST 2009

(the 2nd International Conference on Software Testing, Verification and Validation),

pages 157–166, Denver, Colorado, USA, April 4, 2009. IEEE Computer Society.

[153] Filip Van Rysselberghe and Serge Demeyer. Evaluating clone detection techniques

from a refactoring perspective. In ASE’04: Proceedings of the 19th IEEE/ACM

International Conference on Automated Software Engineering, pages 336–339, Linz,

Austria, September 20–25, 2004. IEEE Computer Society.

http://www.rosecompiler.org/

BIBLIOGRAPHY 161

[154] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhen-

dong Su. Detecting code clones in binary executables. In ISSTA’09: Proceedings of

the 18th International Symposium on Software Testing and Analysis, pages 117–128,

Chicago, Illinois, USA, July 19–23, 2009. ACM.

[155] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms

for document fingerprinting. In SIGMOD’03: Proceedings of the 2003 ACM SIG-

MOD International Conference on Management of Data, pages 76–85, San Diego,

California, USA, June 9–12, 2003. ACM.

[156] Markus Schordan and Daniel Quinlan. A source-to-source architecture for user-

defined optimizations. In JMLC’03: Proceedings of the Joint Modular Languages

Conference, volume 2789 of Lecture Notes in Computer Science (LNCS), pages 214–

223, Klagenfurt, Austria, August 24–27, 2003. Springer.

[157] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic birthmark for

Java. In ASE’07: Proceedings of the 22nd IEEE/ACM International Conference on

Automated Software Engineering, pages 274–283, Atlanta, Georgia, USA, November

5–9, 2007. ACM.

[158] Andrew Schulman. Finding binary clones with opstrings and function digests.

Dr. Dobb’s Journal, 30(7–9):69–73, 56–61, 64–70, July–September 2005. Published

by TechWeb, a division of United Business Media LLC.

[159] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-

tities. Journal of the ACM (JACM), 27(4):701–717, October 1980. ACM.

[160] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Systems:

Software Technologies, Engineering Processes, and Business Practices. SEI Series in

Software Engineering. Addison-Wesley, February 2003.

BIBLIOGRAPHY 162

[161] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine

for C. In ESEC/FSE’05: Proceedings of the 5th Joint Meeting of the European Soft-

ware Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 263–272, Lisbon, Portugal, September

5–9, 2005. ACM.

[162] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting

format string vulnerabilities with type qualifiers. In SEC’01: Proceedings of the 10th

USENIX Security Symposium, pages 201–220, Washington, District of Columbia,

USA, August 13–17, 2001. USENIX Association.

[163] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from Java

source code. In ASE’06: Proceedings of the 21st IEEE/ACM International Conference

on Automated Software Engineering, pages 123–134, Tokyo, Japan, September 18–22,

2006. IEEE Computer Society.

[164] Ian Sommerville. Software Engineering. Addison Wesley, 6th edition, August 2000.

[165] Chad D. Sterling and Ronald A. Olsson. Automated bug isolation via program chip-

ping. Software: Practice and Experience (SP&E), 37(10):1061–1086, August 2007.

John Wiley & Sons, Inc.

[166] Robert Tairas and Jeff Gray. Phoenix-based clone detection using suffix trees. In

ACM-SE 44: Proceedings of the 44th Annual Southeast Regional Conference, pages

679–684, Melbourne, Florida, USA, March 10–12, 2006. ACM.

[167] Robert Tairas and Jeff Gray. An information retrieval process to aid in the analysis of

code clones. Empirical Software Engineering, 14(1):33–56, February 2009. Springer.

[168] Robert Tairas, Jeff Gray, and Ira Baxter. Visualization of clone detection results.

In ETX’06: Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eX-

change, pages 50–54, Portland, Oregon, USA, October 22–23, 2006. ACM.

BIBLIOGRAPHY 163

[169] Robert Tairas, Shih hsi Liu, Frédéric Jouault, and Jeff Gray. CoCloRep: A DSL for

code clones. In ATEM’07: Proceedings of the 4th International Workshop on Software

Language Engineering, held with MoDELS 2007 (the ACM/IEEE 10th International

Conference on Model Driven Engineering Languages and Systems), Nashville, Ten-

nessee, USA, October 1, 2007. Springer.

[170] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated code

with linked editing. In VLHCC’04: Proceedings of the 2004 IEEE Symposium on Vi-

sual Languages – Human Centric Computing, pages 173–180, Rome, Italy, September

26–29, 2004. IEEE Computer Society.

[171] Esko Ukkonen. Approximate string-matching with q-grams and maximal matches.

Theoretical Computer Science, Selected Papers of the Combinatorial Pattern Match-

ing School in Paris, France, July 1990, 92(1):191–211, 1992. Elsevier.

[172] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation

with Java PathFinder. In ISSTA’04: Proceedings of the ACM/SIGSOFT 2004 In-

ternational Symposium on Software Testing and Analysis, volume 29 of SIGSOFT

Software Engineering Notes, pages 97–107, Boston, Massachusetts, USA, July 11–14,

2004. ACM.

[173] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step

towards automated detection of buffer overrun vulnerabilities. In NDSS’00: Proceed-

ings of the 7th Annual Symposium on Network and Distributed System Security, pages

3–17, San Diego, California, USA, February 2–4, 2000. The Internet Society (ISOC).

[174] Vera Wahler, Dietmar Seipel, Jürgen Wolff von Gudenberg, and Gregor Fischer. Clone

detection in source code by frequent itemset techniques. In SCAM’04: Proceedings

of the 4th IEEE International Workshop on Source Code Analysis and Manipula-

tion, pages 128–135, Chicago, Illinois, USA, September 15–16, 2004. IEEE Computer

Society.

BIBLIOGRAPHY 164

[175] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering (TSE),

10(4):352–357, July 1984. IEEE Computer Society.

[176] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A framework

for generating object-oriented unit tests using symbolic execution. In TACAS’05:

Proceedings of the 11th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, held as part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2005, volume 3440 of Lecture Notes in

Computer Science (LNCS), pages 365–381, Edinburgh, UK, March 25 – April 2, 2005.

Springer.

[177] Yichen Xie and Alexander Aiken. Context- and path-sensitive memory leak detec-

tion. In ESEC/FSE’05: Proceedings of the 5th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 115–125, Lisbon, Portugal, September 5–9,

2005. ACM.

[178] Yichen Xie and Alexander Aiken. Scalable error detection using boolean satisfiabil-

ity. In POPL’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 351–363, Long Beach, California, USA,

January 12–14, 2005. ACM.

[179] Yichen Xie and Dawson R. Engler. Using redundancies to find errors. In FSE’02:

Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software En-

gineering, pages 51–60, Charleston, South Carolina, USA, November 18–22, 2002.

ACM.

[180] Bin Xin and Xiangyu Zhang. Efficient online detection of dynamic control depen-

dence. In ISSTA’07: Proceedings of the 16th International Symposium on Software

Testing and Analysis, pages 185–195, London, UK, July 9–12, 2007. ACM.

BIBLIOGRAPHY 165

[181] Bin Xin and Xiangyu Zhang. Memory slicing. In ISSTA’09: Proceedings of the 18th

International Symposium on Software Testing and Analysis, pages 165–176, Chicago,

Illinois, USA, July 19–23, 2009. ACM.

[182] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining closed sequential

patterns in large databases. In SDM’03: Proceedings of the 3rd SIAM International

Conference on Data Mining, pages 166–177, San Francisco, California, USA, May

1–3, 2003. SIAM.

[183] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on tree-

structured data. In SIGMOD’05: Proceedings of the 2005 ACM SIGMOD Inter-

national Conference on Management of Data, pages 754–765, Baltimore, Maryland,

USA, June 14–16, 2005. ACM.

[184] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

Panorama: Capturing system-wide information flow for malware detection and anal-

ysis. In CCS’07: Proceedings of the 14th ACM Conference on Computer and Commu-

nications Security, pages 116–127, Alexandria, Virginia, USA, October 28–31, 2007.

ACM.

[185] Norihiro Yoshida, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro

Inoue. On refactoring support based on code clone dependency relation. In MET-

RICS’05: Proceedings of the 11th IEEE International Software Metrics Symposium,

page 16, Como, Italy, September 19–22, 2005. IEEE Computer Society.

[186] Liguo Yu and Srini Ramaswamy. Improving modularity by refactoring code clones:

A feasibility study on linux. SIGSOFT Software Engineering Notes for the 1st Inter-

national Global Requirements Engineering Workshop (GREW’07), 33(2):1–5, March

2008. ACM.

[187] Vladimir A. Zakharov. To the functional equivalence of turing machines. In FCT’87:

Proceedings of the 1987 International Conference on Fundamentals of Computation

BIBLIOGRAPHY 166

Theory, volume 278 of Lecture Notes in Computer Science (LNCS), pages 488–491,

Kazan, USSR, June 22–26, 1987. Springer.

[188] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering (TSE), 28(2):183–200, February 2002.

IEEE Computer Society.

[189] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing dis-

tance between trees and related problems. SIAM Journal on Computing (SICOMP),

18(6):1245–1262, December 1989. Society for Industrial and Applied Mathematics.

[190] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with

confidence. In PLDI’06: Proceedings of the ACM SIGPLAN 2006 Conference on

Programming Language Design and Implementation, pages 169–180, Ottawa, Ontario,

Canada, June 11–14, 2006. ACM.

[191] Xiaoming Zhou, Xingming Sun, Guang Sun, and Ying Yang. A combined static and

dynamic software birthmark based on component dependence graph. In IIH-MSP-

2008: Proceedings of the 4th International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, volume 2, pages 1416–1421, Harbin, China,

August 15–17, 2008. IEEE.

[192] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Mining

version histories to guide software changes. In ICSE’04: Proceedings of the 26th Inter-

national Conference on Software Engineering, pages 563–572, Edinburgh, Scotland,

UK, May 23–28, 2004. IEEE Computer Society.

[193] Richard Zippel. An explicit separation of relativised random polynomial time and

relativised deterministic polynomial time. Information Processing Letters, 33(4):207–

212, December 1989. Elsevier.

	1 Introduction
	1.1 Definitions for Similar Code
	1.2 Limitations of Previous Work
	1.3 Main Contributions
	1.4 Dissertation Outline

	2 Scalable and Accurate Tree-based Clone Detection
	2.1 Overview
	2.2 Algorithm Description
	2.2.1 Formal Definitions
	2.2.2 Characteristic Vectors for Trees
	2.2.3 Vector Clustering
	2.2.4 Size-Sensitive Clone Detection

	2.3 Implementation and Empirical Evaluation
	2.3.1 Implementation
	2.3.2 Experimental Setup
	2.3.3 Evaluation Results

	2.4 Extending to Graph Based Clone Detection
	2.4.1 Definition of PDG-Based Code Clones
	2.4.2 Algorithm
	2.4.3 Evaluation

	2.5 Discussion and Future Work

	3 Context-Based Detection of Clone-Related Bugs
	3.1 Overview
	3.1.1 Sample Inconsistencies
	3.1.2 Approach Overview

	3.2 Algorithm Description
	3.2.1 Basic Definitions
	3.2.2 Context-Based Inconsistencies
	3.2.3 Classification of Inconsistencies
	3.2.4 Filtering Heuristics
	3.2.5 Complexity Analysis

	3.3 Implementation
	3.4 Empirical Evaluation
	3.4.1 Experimental Setup
	3.4.2 Results of Inconsistency and Bug Detection

	3.5 Discussion

	4 Scalable Mining of Functionally Equivalent Code Fragments
	4.1 Overview
	4.2 Algorithm Description
	4.2.1 A High-level View
	4.2.2 Equivalence Definition
	4.2.3 Code Chopping
	4.2.4 Code Transformation
	4.2.5 Input Generation
	4.2.6 Code Execution and Clustering

	4.3 Implementation
	4.4 Empirical Evaluation
	4.4.1 Subject Programs
	4.4.2 Code Execution
	4.4.3 Results of Functionally Equivalent Code Fragments

	4.5 Discussions and Future Work

	5 Related Work
	5.1 Similarity Detection
	5.1.1 Source Code Clone Detection
	5.1.2 Similarity Detection on More General Data Structures
	5.1.3 Higher-Level Clone Detection

	5.2 Studies on Code Clones
	5.2.1 Clone Refactoring
	5.2.2 Clone Evolution
	5.2.3 Clone Visualization
	5.2.4 Bug Detection

	5.3 Program Equivalence
	5.4 Random Testing

	6 Conclusions
	6.1 Summary
	6.2 Outlook

