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Automatic Detection of Floating-Point Exceptions

Abstract

It is well-known that floating-point exceptions can be disastrous and writing numerical

programs that do not throw floating-point exceptions is very difficult. Thus, it is important

to automatically detect such errors. In this thesis, we present Ariadne, a practical, symbolic

execution system specifically designed and implemented for detecting floating-point excep-

tions. The key idea is to systematically transform a numerical program to explicitly check

each exception triggering condition. This transformation effectively reduces the difficult

problem of symbolic reasoning over floating-point numbers to that over the reals, which

has extensive tool support. We also devise novel, practical techniques to solve nonlinear

constraints. We have conducted an extensive evaluation of Ariadne over 424 scalar functions

in the widely used GNU Scientific Library (GSL). Our results show that Ariadne is practical

and identified a large number of real runtime exceptions in GSL. The GSL developers

confirmed our preliminary findings and look forward to Ariadne’s public release, which we

plan to do in the near future.
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1. Introduction

On June 4 1996, the European Space Agency’s Ariane 5 rocket veered off course and

self-destructed because the assignment of a floating-point number to an integer caused an

overflow [31]. The loss is estimated to have been US$370m. Scientific results increas-

ingly rest on software that is usually numeric and may invalidate results when buggy [24].

Numerical software, which uses floating-point arithmetic, is prominent in critical control

systems in devices in national defense, transportation, where numeric control software has

been implicated in Toyota’s infamous failures [30], and health care, where it is being used

in haptic controllers for remote surgery. Clearly, we are increasingly reliant on numerical

software.

Computers have finite storage and must approximate real numbers, whose radix ex-

pansion may be unbounded. Floating-point numbers are a finite precision encoding of

real numbers. Floating-point operations are not closed: their result may have an absolute

value greater than the largest floating-point number and overflow; it may be nonzero and

smaller than the smallest nonzero floating-point number and underflow; or it may lie between

two floating-point numbers, require rounding, and be inexact. Dividing by zero and the

invalid application of an operation to operands outside its domain, like taking the square

root of a negative number, also generate exceptions. The IEEE 754 standard defines these

exceptions [18].

Writing numerical software that does not throw floating-point exceptions is difficult [13,

16]. For example, it is easy to imagine writing if (x != y) { z = 1 / (x−y); } [13] and then

later contending with the program mysteriously failing due to a spurious divide by zero. As
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another example, consider a straightforward implementation to compute the 2-norm of a

vector [16, 17]:

sum = 0 ;

f o r ( i = 0 ; i < N; i ++)

sum = sum + x [ i ] * x [ i ] ;

norm = s q r t ( sum ) ;

For many slightly large or small vector components, this code may overflow or underflow

when evaluating x[i]*x[i] or adding the result to sum. In spite of exceptions during

its computation, the norm itself may, nonetheless, be representable as an unexceptional

floating-point number. Even when some exceptions are caught and handled, others may not

be; these are uncaught exceptions. The divide by zero in the first example is an uncaught

exception. At the same time, the code to catch and handle exceptions at a floating point

operation may be unnecessary — a particular exception may be impossible given the domain

of possible inputs to the operation. In this case, the exception-handling code may degrade the

performance of the system. Thus, we would like to identify both uncaught and unnecessarily

caught exceptions.

Symbolic analysis has successfully tested and validated software [4, 12, 28]. However,

little work has considered symbolic analysis of floating-point code. One natural approach is

to equip a satisfiability modulo theory (SMT) solver with a theory for floating-point. Much

work has pursued formalizing IEEE floating-point standards in various proof systems such

as Coq, HOL, and PVS. This has proved to be a challenging problem and ongoing efforts

simplify and deviate from the IEEE floating-point standard [27].

We propose an alternate approach to symbolically executing numerical software. Our

key insight is that, if we transform floating-point code to create explicit program points at

which floating-point exceptions could occur, we can leverage existing SMT solvers that are

equipped with the theory of real numbers, such as Microsoft’s Z3 [5]. Before a floating

point exception occurs, all floating-point values are reals. Thus, if we symbolically execute

a numeric program without polluting any of its floating-point values with the special values



3

that, by default, represent floating-point exceptions, we can directly feed the resulting

constraints into an SMT solver equipped with the theory of reals. To this end, we transform

a numeric program to explicitly check the operands of each floating-point operation before

executing that operation. If a check fails, the transformed program throws the floating-point

exception that would have occurred if the guarded floating-point operation had executed,

then terminates. In the transformed program, all floating-point values, from program entry

to exit, are reals. To discover whether the original numeric code could throw a particular

floating point exception, we symbolically execute the code. If we can reach any of the

floating-point-exception-throwing program points we injected, we have found a floating-

point exception and we can query the SMT solver to return an input that causes the original

program to throw that exception.

Our approach, which we have christened Ariadne, combines testing and verification.

When we find an exception, we produce a test case that triggers that exception that developers

can add to their test suite and use to fix the bug. Ariadne is sound: when it traverses a path

from start to exit without finding an exception, no instruction on that path can thrown a

floating-point exception. When it can show that all paths to the exception-throwing program

point are unsatisfiable, it verifies that the program does not throw floating-point exceptions.

To realize the Ariadne symbolic execution engine, we have adapted and enhanced the

symbolic execution engine KLEE from Stanford [4]. We taught KLEE to handle floating-

point and use Z3 as its SMT solver instead of STP [11], which does not support the theory

of the reals. Interesting numeric code often contains multivariate, nonlinear constraints. We

fed these constraints to iSAT, a state of the art nonlinear solver [8], but it only handled less

than 1%, rejecting most of our constraints because they contain large constant values that

exceed iSAT’s bounds. We also directly gave them to Z3, which recently added support for

multivariate, nonlinear constraints but it could only handle a small pecentage. These results

motivate us to devise a novel method for handling nonlinear constraints involving rational

functions (to support division), which we also incorporated into KLEE. Our contributions

follow:
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• A technique for transforming numeric code to make floating-point exception handling

explicit;

• An LLVM and Klee-based implementation of our technique and its evaluation on the

GNU Scientific library (GSL);

• A tool that automatically converts fixed precision numeric code into arbitrary precision

numeric code to detect potentially avoidable overflows and underflows; and

• Based on classic results, a method for handling nonlinear constraints involving the

rational functions over the reals.

We evaluated our tool on the GNU Scientific Library (GSL) version 1.14. We analyzed

all functions in the GSL that take scalar inputs, this family of functions includes elementary

and many differential equation functions. Across the 424 functions we analyzed, our tool

discovered inputs that generated 2288 floating-point exceptions. 94% of these are underflows

and overflows, while the remainders are divide-by-zero and invalid exceptions. We reported

preliminary results to the GSL community and they confirmed that our warnings were valid

and said they look forward to the public release of our tool.

To motivate and clarify our problem, chapter 2 presents and explains numerical code

that contains floating-point exceptions. We open chapter 3 with terminology, next describe

the two transformations on which our approach rests — the first preserves the invariant that

the floating-point variables are special-free and thus constraints containing them are suitable

for SMT solvers and the second symbolically handles a subset of external functions that are

difficult to internalize — then present algorithms we use to solve multivariate, nonlinear

constraints. Chapter 4 describes the realization of these transformations and algorithms. In

chapter 5, we present the results of our analysis of the GSL special functions. We discuss

closely related work in and chapter 6 we summarize in chapter 7.
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2. Illustrative Examples

Floating-point arithmetic is unintuitive. Sterbenz [29] illustrates this fact by computing x+y
2 ,

the average of two numbers. Even for a “simple” function like this, it requires considerable

knowledge to implement it well. The four functions av1–av4 in Figure 2.1 are a few possible

average formulas. They are all equivalent over the reals, but not over floating-point numbers.

For instance, av1 overflows when x and y have the same sign and sufficiently large, and

av2 underflows when x and y are sufficiently small. Sterbenz performs a very interesting

analysis of this problem and defines average that uses av1, av3, and av4 according to the

signs of the inputs x and y. The function average is designed to have no overflow. Our

tool Ariadne explores all the paths in average and confirms that it indeed does not raise any

overflows. To run Ariadne, we first issue “llvm-gcc -a sterbenz.c” to compile

and apply the operand checking, explicit floating-point exception transformation to create

sterbenz.c, then issue “ariadne sterbenz.bc” to produce sterbenz.out,

which contains the analysis results. Ariadne discovers 6 underflows, reporting, for example,

x = −3.337611e−308 and y = 2.225074e−308 as an input that triggers this exception at line

4.

In the Ariane 5 disaster, the cast of double precision (64-bit) floating point number to

a 16-bit signed integer caused an integer overflow [31]. Written in C1, a similar cast is

“unsigned short x = (unsigned int )d;”. The cast was intentional. The violation of its implicit

precondition that the absolute value of d be less than INT MAX was not. It seems reasonable

to assume d was the output of some complex, perhaps cypher physical, computation, or the

1The Ariane software was written in Ada.
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1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < f l o a t . h>
3 double av1 ( double x , double y ) {
4 re turn ( x+y ) / 2 . 0 ;
5 }
6 double av2 ( double x , double y ) {
7 re turn ( x / 2 . 0 + y / 2 . 0 ) ;
8 }
9 double av3 ( double x , double y ) {

10 re turn ( x + ( y−x ) / 2 . 0 ) ;
11 }
12 double av4 ( double x , double y ) {
13 re turn ( y + ( x−y ) / 2 . 0 ) ;
14 }
15 double a v e r a g e ( double x , double y ) {
16 i n t sames ign ;
17 i f ( x >= 0 ) {
18 i f ( y >=0)
19 sames ign = 1 ;
20 e l s e
21 sames ign = 0 ;
22 } e l s e {
23 i f ( y >= 0)
24 sames ign = 0 ;
25 e l s e
26 sames ign = 1 ;
27 }
28 i f ( sames ign ) {
29 i f ( y >= x )
30 re turn av3 ( x , y ) ;
31 e l s e
32 re turn av4 ( x , y ) ;
33 } e l s e
34 re turn av1 ( x , y ) ;
35 }

Figure 2.1: Sterbenz’ average function.

fact that it could violate the cast’s precondition would have been noticed. Ariadne detects

integer overflows due to casts involving floating-point numbers. Had Ariadne been applied

to Ariane control software, it would have injected if (abs(d) > INT MAX) throw IntOverflow,

then symbolically executed that complex computation and reported an exception-triggering

input that demonstrated that the precondition could be violated.

We close with a function that contains each of the four floating-point exceptions Ariadne
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Fortran) 
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Exceptions 

Symbolic 
Execution 
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Figure 2.2: The architecture of Ariadne.

1 i n t g s l s f b e s s e l K n u s c a l e d a s y m p x e (
2 c o n s t double nu , c o n s t double x , g s l s f r e s u l t * r e s u l t
3 ) { / * x >> nu*nu+1 * /
4 double mu = 4 . 0 * nu*nu ;
5 double mum1 = mu−1 .0 ;
6 double mum9 = mu−9 .0 ;
7 double p r e = s q r t ( M PI / ( 2 . 0 * x ) ) ;
8 double r = nu / x ;
9 r e s u l t −>v a l = p r e * ( 1 . 0 + mum1 / ( 8 . 0 * x ) +

mum1*mum9 / ( 1 2 8 . 0 * x*x ) ) ;
10 r e s u l t −>e r r = 2 . 0 * GSL DBL EPSILON * f a b s ( r e s u l t −>v a l ) + p r e

* f a b s ( 0 . 1 * r * r * r ) ;
11 re turn GSL SUCCESS ;
12 }

Figure 2.3: A function from GSL’s special function collection.

detects, drawn from our test corpus, the GSL special functions. Figure 2.3 contains the GSL’s

implementation of gsl sf bessel Knu scaled asympx e . This function computes the scaled

irregular modified Bessel function of fractional order. Run on this function, Ariadne reports

the following: The division operation at line 7 throws an Invalid exception when x < 0 and

a Divide-by-Zero when x = 0. When nu =−5.789604e+76 and x = 2.467898e+03, the

evaluation of mum1∗mum9 at line 9 overflows. Finally, when nu =−7.458341e−155 and

x = 2.197413e+03, the evaluation of mu = 4.0∗nu∗nu at line 4 underflows.



8

3. Approach

Figure 2.2 depicts the architecture of Ariadne, which has two main phases. Phase one

transforms an input numeric program into a form that explicitly checks for floating-point

exceptions before each floating-point operation and, if one occurs, throws it and terminates

execution. The transformed program contains conditionals, such as x > DBL MAX, that

cannot hold during concrete execution, where DBL MAX denotes the maximum floating-

point value. The transformed program, including its peculiar conditionals, are amenable to

symbolic execution and any program point that symbolic execution reaches without throwing

an exception has the property that none of its floating-point variables contain a special value,

such as NaN (Not a Number) or ∞. Thus, the numeric constraints generated during symbolic

execution involve those floating-point values that are a subset of R and suitable input to an

SMT solver supporting the theory of the reals. During phase two, Ariadne symbolically

executes the transformed program, and for each path that reach floating-point exceptions

injected in phase one, it attempts to solve the corresponding path constraint. If a satisfying

assignment is found, Ariadne reports the assignment as a concrete input that triggers the

exception. Our symbolic execution is standard; the key challenge in its realization is how

to effectively solve the collected numerical constraints, many of which are multivariate,

nonlinear.

We first present pertinent background in numerical analysis and introduce notation

(Section 3.1), then describe our transformation (Section 3.2) and how we solve the numerical

constraints (Section 3.3).
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Exception Example Default Result

Overflow |x+ y|> Ω ±∞

Underflow |x/y|< λ Subnormals
Divide-by-Zero x/0 ±∞

Invalid 0/0,0×∞,
√
−1 NaN

Inexact nearest(x op y) 6= x op y Rounded result
Table 3.1: Floating-point exceptions; x,y ∈ F [17, §2.3].

3.1 Background and Notation

Four integer parameters define a floating-point number system F⊂ R: the base (radix) β ,

the precision t, the minimum exponent emin, and the maximum exponent emax. With these

parameters and the mantissa m ∈ Z and the exponent e ∈ Z,

F= { ±mβ
e−t | (0≤ m≤ β

t−1∧ emin ≤ e≤ emax)

∨ (0 < m < β
t−1∧ e = emin) }

The floating-point numbers for which β t−1 ≤ m≤ β t ∧ emin ≤ e≤ emax holds are normal;

the numbers for which 0≤ m < β t−1∧ e = emin holds are subnormal [17, §2.1].

Ω = β
emax(1−β

−t) Maximum

−Ω =−β
emax(1−β

−t) Minimum

λ = β
emin−1 Smallest normalized

æ = β
emin−t Smallest denormalized

Floating-point operations can generate exceptions shown in Table 3.1. Some applications

of the operations on certain operands are undefined and cause the Divide-by-Zero and Invalid

exceptions. Finite precision causes the rest. Inexact occurs frequently [13, 19] and is often

an unavoidable consequence of finite precision. For example, when dividing 1.0 by 3.0, an
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Inexact exception occurs because the ratio 1/3 cannot be exactly represented as a floating-

point number. For this reason, Ariadne focuses on discovering Overflow, Underflow, Invalid,

and Divide-by-Zero exceptions.

Throughout this section, we use Q to denote its arbitrary precision subset. Let fp : Q→ F

convert a rational into the nearest floating-point value, rounding down. For next : F×F→ F,

next(x,y) returns the floating-point number next to x in the direction of y.

To model path constraints, we consider formulas φ in the mixed theory of reals and

uninterpreted functions. For a formula φ , fv(φ) =~x denotes the free variables in φ . We use

S to denote satisfiable or SAT; S̄ to denote unsatisfiable or UNSAT; and U for UNKNOWN.

An
Q = (V ×Q)n]{S̄,U} is a disjoint union that is either an n length vector of simultaneous

assignments over Q to the variables V , or it is UNSAT or UNKNOWN. An
F = (V ×F)n]

{S̄,U} is the subset of An
Q whose bindings are restricted to F. For isSAT: An

Q→ B, isSAT(a)

returns true if a /∈ {S̄,U}.

3.2 Program Transformation

We first define Φ, the term rewriting system we use to inject explicit floating-point exception

handling into numeric code. For simplicity of presentation, we assume that nested arithmetic

expressions have been flattened. We assume that the program terminates after throwing a

floating-point exception.

3.2.1 Basic Arithmetic Operations

The operator � ∈ {+,−,∗}, and variables x and y bind to floating-point expressions. We

have the following local rewriting rules:
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1 double z = mu − 1 . 0 ;
2 double abs1 = f a b s ( z ) ;
3 i f (DBL MAX < abs1 ) {
4 p e r r o r ( ” Overf low !\ n ” ) ;
5 e x i t ( 1 ) ;
6 }
7 i f (0 < abs1 && abs1 < DBL MIN) {
8 p e r r o r ( ” Underf low !\ n ” ) ;
9 e x i t ( 1 ) ;

10 }
11 double mum1 = z ;

Figure 3.1: Subtraction Transformation (line 5 of example in Figure 2.3): Ariadne symbol-
ically executes this code over arbitrary precision rationals, where the conditionals can be
tested; fabs returns the absolute value of a double.

Φ(x� y) =


Overflow if |x� y|> Ω

Underflow if 0 < |x� y|< λ

x� y otherwise

Φ(x / y) =



Invalid if y = 0∧ x = 0

Divide-by-Zero if y = 0∧ x 6= 0

Overflow if |x|> |y|Ω

Underflow if 0 < |x|< |y|λ

x / y otherwise

We also have a global contextual rewriting rule Φ(C[e]) = C[Φ(e)], where e denotes an

expression of the form x� y or x / y, and C[·] denotes a program context. Ignoring time-

dependent behavior, it is evident that JpK = JΦ(p)K when the numeric program p terminates

without throwing a floating-point exception.

Figure 3.1 shows a concrete example of how Φ, specialized to C, transforms a subtraction

expression (line 5 of example in Figure 2.3). The result of the subtraction is checked and, if

an exception could occur, execution terminates. The division transformation, depicted in

Figure 3.2, is the most involved transformation. The original expression is taken from line

8 of the example in Figure 2.3. A floating-point division operation can throw four distinct
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1 i f ( x == 0) { / / d enomina tor i s z e r o
2 i f ( nu == 0) {
3 p e r r o r ( ” I n v a l i d !\ n ” ) ;
4 } e l s e {
5 p e r r o r ( ” DivZero !\ n ” ) ;
6 }
7 e x i t ( 1 ) ;
8 }
9 double abs1 = f a b s ( nu ) ;

10 double abs2 = f a b s ( x ) ;
11 i f ( abs1 > abs2 * DBL MAX) {
12 p e r r o r ( ” Overf low !\ n ” ) ;
13 e x i t ( 1 ) ;
14 }
15 i f (0 < abs1 && abs1 < abs2 * DBL MIN) {
16 p e r r o r ( ” Underf low !\ n ” ) ;
17 e x i t ( 1 ) ;
18 }
19 double r = nu / x ;

Figure 3.2: Division Transformation (line 8 of example in Figure 2.3).

exceptions, each of which the transformed code explicitly checks. For instance, given the

inputs nu = 0.0 and x = 0.0, the original expression would have terminated normally and

returned NaN, but the transformed code would detect and output an Invalid exception then

terminate.

3.2.2 Elementary Mathematical Functions

Calls into an unanalyzed library usually terminate symbolic execution. Calls to elementary

mathematical functions, like sqrt, log, exp, cos, sin and pow are frequent in our

constraints. These functions have no polynomial representation. We next describe simple,

yet effective transformations to deal with these functions.

We handle sqrt precisely and directly by adding y, a fresh independent symbolic

variable, as shown in Figure 3.3. For the sqrt expression on line 7 of the example from

Figure 2.3, we add a fresh symbolic variable y and the constraint y · y = M PI/(2.0x).

The others we handle by introducing dependent symbolic variables that allow us to defer

concretization and continue symbolic execution and exploration for floating-point exceptions,
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Φ(sqrt(x)) =

{
Invalid if x < 0
y · y = x otherwise

Φ(exp(x)) =


Overflow if x > log(Ω)
Underflow if x < log(λ )
d otherwise

Φ(log(x)) =

{
Invalid if x≤ 0
d otherwise

Φ(cos(x)) = d where −1≤ d ≤ 1
Φ(sin(x)) = d where −1≤ d ≤ 1

Φ(pow(x,y)) =

{
Invalid if x = 0∧ y≤ 0
d otherwise

Figure 3.3: Rewriting rules for elementary mathematical functions. With the exception of
sqrt, these rewriting rules approximate the functions. We assume that each rule returns a
fresh symbolic variable.

Dependent variable Expression

d0 sin(x
y)

d1 log(x2 + 1
x )

Table 3.2: A dependent symbolic variable table.

rather than simply terminating upon encountering one of these elementary functions. To

introduce a dependent symbolic variable, we rewrite each use of an elementary function as

shown in Figure 3.3. We also record the dependent symbolic variable and the expression on

which it depends in the dependent symbolic variable table, for use during concretization

(Section 3.3.1): Table 3.2 illustrates what happens when the transformation encounters

sin(x
y) and log(x2 + 1

x ), which use the input symbolic variables x, y. It is possible

for a dependent symbolic variable to depend on another dependent variable, as when

log(log(x)) is encountered. Our rewriting of pow could make additional checks for

exceptions, such as y > 0∧ylog(x)> log(Ω), but as we mentioned earlier, we have found

our current handling of pow and the other elementary functions very effective over the

functions we have analyzed.

We use the following terminology in our later discussions. An independent symbolic

variable is an input variable and is necessarily unbound in the dependent symbolic variable

table. A dependent symbolic variable is a symbolic variable that the table binds to an
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expression whose free variables contain at least one symbolic variable.

3.3 Solving Numeric Constraints

Designing SMT solvers that can effectively support multivariate, nonlinear constraints is

an active area of research. Off-the-shelf SMT solvers focus on linear constraints and do

not solve general nonlinear constraints because linear constraints are prevalent in integer

code and solving nonlinear constraints is very expensive. However, real-world numeric

applications contain many nonlinear constraints. In our experiment over the GSL special

functions, 81% of queries are nonlinear, 68% are multivariate and 60% are both nonlinear

and multivariate.

Algorithm 1 is the Ariadne solver for numerical constraints. During symbolic execution,

it is called to solve path constraints. In addition to a path constraints φ , it takes the

dependent symbolic variable table built during the transformation phase, the transformed

numeric program itself and the location (program point) of the query.

To solve φ , Algorithm 1 first concretizes φ using T , the table of dependent symbolic

variables built during the transformation phase, to convert φ into a univariate formula by

binding variables to values in F, if necessary (Section 3.3.1). Next, to convert a nonlinear

univariate formula into a linear formula, again as necessary, Algorithm 1 applies a lineariza-

tion technique that finds the roots of each nonlinear polynomial, then rewrites the constraints

into an equivalent disjunction of interval checks (Section 3.3.2). While φ is univariate and

nonlinear at this point, it is a formula in the theory of the reals, so the solver may return a

solution in Q\F. The findFloat algorithm (Section 3.3.3) finds a floating-point solution for

a univariate, linear formula, if one exists.

Finally, a satisfying assignment in Fn may reach and trigger an exception when sym-

bolically executed over arbitrary precision Q but not when concretely executed over F.

Consider “if(x+1 > Ω) Overflow”. The binding x = Ω is a valid solution in the theory of

reals; it also passes the findFloat test since this test only enforces x ∈ F. Under concrete
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Algorithm 1 ariadneSolve: Φ×T×P×N→ An
F solves numeric path constraints. Note that

n = |fv(φ)|, for φ ∈Φ.
inputs φ ∈Φ, a numeric constraint from p.

T ∈ T, a table of dependent symbolic variables.
p ∈ P, the numeric program under analysis.
l ∈ N, the program point of query.

1: for 1..MAXCONCRETIZATIONS do
2: φ ′,~a := concretize(φ ,T ) // NOP when φ is univariate.
3: continue if not isSAT(~a)
4: ~a :=~a+findFloats(linearize(φ ′))
5: continue if not isSAT(~a)
6: if p(~a) 6= l then
7: return S̄ if |fv(φ)|= 1
8: (x, f ) = choose(~a)
9: φ := φ ∧ x 6= f

10: continue
11: break if isSAT(~a)∨|fv(φ)|= 1
12: return ~a

execution with standard floating-point semantics, however, the difference in magnitude of

the operands means that the result of the addition operation must be truncated to fit into

the finite precision of floating-point which “absorbs” the 1 into x’s value of Ω. In effect,

this manifests as an Inexact exception in the concrete execution. To check for and avoid

reporting solutions such as this one accounts for the concrete execution check at line 6. Here,

the satisfying assignment~a is used as input to determine whether the specified program point

can be reached. If this check fails, a variable binding from~a is chosen nondeterministically

and converted into an inequality so that either the next iteration tries a different solution or

φ is no longer satisfiable. The algorithm ends when the maximum number of concretization

attempts is exhausted, or ~a is satisfiable and passes the concrete execution test or φ is

univariate and completes a single iteration, as it is not concretized.

3.3.1 Concretizing Multivariate Constraints

Algorithm 2 uses concretization to convert a formula that contains multivariate polyno-

mial constraints into a formula containing only univariate polynomial constraints. Its inputs



16

Algorithm 2 concretize : Φ×T→ Φ×An−1
F . This algorithm first concretizes the inde-

pendent symbolic variables that define each dependent variable, concretely evaluates the
resulting expression to compute the dependent variable, before concretizing any remaining
independent symbolic variables.
inputs fv(φ), the set of free variables in φ .

T , a dependent symbolic variable table.
1: ~a := 〈〉
2: C = {vi | 〈· · · ,(si,vi), · · · 〉=~a} // Variables in~a as a set.
3: ∀(d,y) ∈ sort(T ) do
4: ∀z ∈ fv(y)−C do // Skip already concretized variables.
5: a′ := bindVariable(φ ,z)
6: return φ ,a′ if not isSAT(a′)
7: φ := φ [ f/x] for (x, f ) = a′

8: ~a :=~a+a′

9: f := eval(y[~z/~a(~z)])
10: ~a :=~a+(d, f )
11: φ := φ [ f/d]
12: while |fv(φ)|> 1 do
13: a′ := findBinding(φ ,choose(fv(φ))
14: return φ ,a′ if not isSAT(a′)
15: ~a :=~a+a′

16: φ := φ [ f/s] for (s, f ) = a′

17: return φ ,~a

are fv(φ), the set of free variables, which are symbolic in our context, of the formula φ and

T , the dependent symbolic variable table built during the transformation. Independent I and

dependent D symbolic variables (defined in Section 3.2.2) partition these free variables.

To clarify the presentation in this section, we introduce the helper function checkbinding:

Φ×V ×F→ B:

∀ci ∈ φ do

return false if evalexpr(ci[ f/s]) = false

return true

The function evalexpr walks the expression tree that results from the substitution and

evaluates constant expressions. It returns false if the recursive evaluation of constant

expressions reduces the expression tree to false. Its complexity is O(n), where n is the

number of nodes in the expression tree.
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In lines 4–11, we handle dependent symbolic variables. Because a dependent sym-

bolic variable may depend on another dependent symbolic variable, we sort T (line 3)

by the count of distinct dependent variables in its expression field, ascending from zero.

Then, we concretize those independent symbolic variables that appear in the expres-

sion of a dependent symbolic variable and have not already been concretized (i.e. not

in C), using bindVariable: Φ×V → An
F, which finds a concrete binding for a given vari-

able:

for 1..MAXBINDINGS do

f := random(dom(s))

return (s, f ) if checkbinding(φ ,s, f )

return U // UNKNOWN is returned.

At line 9, we first substitute each symbolic variable in y, where we use ~a(~z) to denote the

vector of concrete bindings in~a for the variables in~z, then concretely evaluate the resulting

concretized expression to concretize the dependent symbolic variable. For example, consider

T [d1] = log(x2 + 1
x ) in Table 3.2. When x is concretized to 1, d1 = log(2) = 1.

When more than one independent symbolic variable remain after handling dependent

symbolic variables, we concretize them until one remains in the final while loop at lines

12–161. The function findBinding: Φ→ An
F abstracts different algorithms for finding a

binding of a symbolic variable to a concrete value in its domain. For instance, findBinding

could select the symbolic variable with the highest degree in φ or uniformly at random.

Alternately, findBinding could select the variable that appears most often. Algorithm 3 is the

implementation we used. In it, the choosen function nondeterministically selects an element

from a set, but could be defined to implement an arbitrary selection policy.

Algorithm 2 returns a rewritten φ that has at most one symbolic variable. Algorithm 2

calls evalexpr for each independent symbolic variable over expression trees whose maximum

number of nodes is n. For each dependent variable, we must evaluate its corresponding

1The handling of dependent symbolic variables may concretize all independent symbolic variables and
convert φ into a ground formula, i.e., a formula with no free variables. When this happens, linearize echoes
the ground formula and findFloat returns true or false via an empty assignment binding.
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Algorithm 3 findBinding : Φ×V → An
F. This algorithm finds a concrete binding for some

variable in the multivariate formula φ .
input φ , a multivariate formula.

s, a symbolic variable.
Tested := /0
Candidates := {y | y ∈ fv(φ)∧ typeof(y) = typeof(s)}
repeat

f := random(dom(s))
return (s, f ) if checkbinding(φ ,s, f )
Tested := Tested∪{s}
s := choose(Candidates\Tested)

until Candidates\Tested = /0
return U // UNKNOWN is returned.

expression, say of complexity α . Thus, the complexity of concretize is O(|I|n+ |D|α).

3.3.2 Linearizing Univariate Nonlinear Constraints

Given a univariate, nonlinear constraint, we transform it into a disjunction of linear

constraints, suitable for an off-the-shelf SMT solver. Algorithm 4 linearizes a formula in

the theory of the reals into an equivalent formula by replacing each comparison involving

a nonlinear polynomial with an equivalent collection of disjuncts. For each conjunct in

φ , it loops over each disjunct rewriting those disjuncts that make nonlinear polynomial

comparisons. The complexity of this step is quadratic since finding roots of univariate

polynomials can be done in quadratic time. The correctness of this rewriting rests on

Lemma 3.3.1, which we present next.

Lemma 3.3.1. For a rational function f (x) = P(x)
Q(x) where x ∈ R, there exists a polynomial

R(x) from whose distinct real roots, x1,x2, · · · ,xm, where xi < x j when i < j, the mapping of

intervals

b = {(1,(xm,∞)),(2,(xm−1,xm)), · · · ,(m,(−∞,x1))}

can be formed such that
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Algorithm 4 linearize: Φ→Φ. This algorithm rewrites a nonlinear polynomial constraint
into an equivalent disjunction of linear interval predicates.
input φ =

∧
ci, a univariate numeric path constraint.

∀ci ∈ φ do // All conjuncts in φ .
c′i := ci
∀di ∈ ci do // All disjuncts in ci.

if di = R(x)≺ 0∧degree(R(x))> 1 then
x1,x2, · · · ,xm, · · · ,xn = polysolver(R(x))
The roots x1,x2, · · · ,xm are the distinct real roots of R(x), ordered such that ∀i, j ∈
[1..m], i < j⇒ xi < x j.
b = {(1,(∞,xm)),(2,(xm,xm−1)), · · · ,(m,(x1,−∞))}
eq :=

∨m
i=1 x = xi

lt :=
∨m

i=1 x ∈ b(i)∧ i = 2k,k ∈ N
gt :=

∨m
i=1 x ∈ b(i)∧ i = 2k+1,k ∈ N

ψ := match ≺ with
=→ eq
| ¡→ lt
| ¿→ gt
|≤ → eq ∨ lt
|≥ → eq ∨ gt

c′i := c′i[ψ/di]
φ := φ [c′i/ci] if ci 6= c′i

return φ

f (x) = 0≡
m∨

i=1

x = xi

f (x)< 0≡
m∨

i=1

x ∈ b(i)∧ i = 2k,k ∈ N

f (x)> 0≡
m∨

i=1

x ∈ b(i)∧ i = 2k+1,k ∈ N

Proof. The rational function f (x) = P(x)
Q(x) , by definition. For ≺ ∈ {<,>,=}, P(x)

Q(x) ≺ 0 ≡

P(x)Q(x) ≺ 0∧Q(x) 6= 0 (multiply by Q(x)2) so our problem reduces to that of solving

the predicate R(x) ≺ 0 which either has the form P(x)Q(x) or Q(x). We normalize R(x)

so that its leading coefficient is positive. Assume R(x) has degree n and m real roots

x1 ≤ x2 ≤ ·· · ≤ xm. From the Fundamental Theorem of Algebra, we have R(x) = (x−



20

Algorithm 5 findFloat: Φ→ An
F takes a path constraint and returns a satisfying assignment

over F if one exists.
input φ ∈Φ, a path constraint.

1: while true do
2: ~a := SMT.solve(φ )
3: return ~a if not isSAT(~a)
4: (x,v) =~a
5: ~a := SMT.solve(φ [fp(v)/x])
6: return ~a if isSAT(~a)
7: ~a := SMT.solve(φ [next(fp(v),Ω)/x])
8: return ~a if isSAT(~a)
9: φ := φ ∧ (x < fp(v)∨ x > next(fp(v),Ω))

x1)(x− x2) · · ·(x− xm)(x− xm+1) · · ·(x− xn). If a polynomial has the complex root a+bi,

that root’s conjugate is also a root, so the product of the non-real complex roots of R(x)

is positive. Thus, the distinct, real roots of R(x) determine the truth value of R(x) ≺ 0.

If m = 0, then R(x) > 0 and R(x) ≤ 0 is false. Otherwise, the real roots determine the

signs of their factors when R(x) 6= 0: The roots greater than x form negative factors while

the roots less than x form positive factors. Thus, R(x) < 0 when the number of roots

greater than x is odd and R(x)> 0 otherwise. Let b be a map that orders the intervals into

which x can fall as follows {(1,(xm,∞)),(2,(xm−1,xm)), · · · ,(m,(−∞,x1))}. Then, checking

R(x) > 0 is equivalent to x ∈ b(1)∨ x ∈ b(3)∨ x ∈ b(5)∨ ·· · and checking R(x) < 0 is

x∈ b(2)∨x∈ b(4)∨x∈ b(6)∨·· · while checking R(x) = 0 is (x = xm)∨·· ·∨(x = x1).

3.3.3 Finding a Floating-point Solution

Given a univariate, linear constraint φ , we need to find a solution over F. Algorithm 5 loops

over the intervals that φ defines. It tries to solve φ at line 2, then substitutes the nearest float

less or equal to the solution into φ and tries to solve the resulting formula at line 5. If that

fails, it then substitutes the nearest float greater than or equal the solution into φ and tries to

solve the resulting formula at line 7. If this fails, it rules out the interval under consideration

at line 9 and considers the next interval. The complexity of this step is linear, and we prove

the correctness of Algorithm 5 next.
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Lemma 3.3.2. Algorithm 5 finds a floating-point solution to a univariate linear constraint,

if one exists.

Proof. The solution for a univariate system of linear inequalities is a set of intervals. A

linear inequality has the form ax+b > 0. Either a = 0 and b determines the truth value of

the inequality, or the solution of the clause falls into one of two intervals defined by the

root of clause. Thus, the path constraint φ is a set of intervals
⋃
[ai,bi]

2. For x ∈ [ai,bi],

let x f be the largest floating-point number that less than or equal to x. If either x f ∈ [ai,bi]

or next(x f ,Ω) ∈ [ai,bi] then a floating-point value exists that satisfies the path constraints.

Otherwise, we have x f /∈ [ai,bi]∧next(x f ,Ω) /∈ [ai,bi]∧ [ai,bi]∩ [x f ,next(x f ,Ω)] 6= /0 which

implies x f < ai < bi < next(x f ,Ω). In this case, there is no floating-point number in the

interval [ai,bi)]. So we add the constraint x < x f ∨ x > next(x f ,Ω) to rule out [ai,bi] and

consider a different interval. If the algorithm exhausts all the intervals without finding a

satisfying floating-point value, no floating-point value for x satisfies the path constraint.

2We consider the closed intervals; open intervals can be handled similarly.
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4. Implementation

In this section, we present the implementation of our floating-point exception detection tool,

Ariadne. Ariadne’s implementation mirrors its operation: its components fall into either

transformation or analysis. The transformation rests on LLVM 2.7 [21] and, for its arbitrary

precision transformation, it uses GMP [9]. Its analysis phases extend version 2.7 of the

KLEE symbolic execution engine [4] and uses the polynomial solver from GSL 1.14 to

rewrite constraints [10]. We are indebted to the community for having made these tools

available. To give back, we will publish our tool at anon.utopia.com/tool.

4.1 Transformations

Our transformations are implemented as an LLVM analysis and transform pass and operate

on LLVM IR. For this reason, our transformations are language agnostic and, in particular,

can handle C, C++ and Fortran, the three languages in which most numerical software is

written. The principle transformations are Ariadne, loop bound, and arbitrary precision.

Ariadne This transformation rewrites every floating-point operation, injecting operand

guards before each one, as described in Section 3.2. It also handles elementary functions

and constructs the dependent symbolic variable table (Section 3.2.2. For an input module,

it iterates over all functions, over all of basic blocks in a function, and finally over all

instructions in a basic block. It performs its writing at the instruction-level, matching the

Call instruction and arithmetic (FAdd, FSub, FMul, FDiv) and conversion (FPToSI, FPToUI)

floating-point operations. When handling the Call instruction, the transformation detects

anon.utopia.com/tool
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and handles elementary functions (chapter 3).

Loop Bound Symbolic execution maintains symbolic state for each path; path explosion

can exhaust resources and prevent symbolic execution from reaching interesting program

points. Loops exacerbate this problem. The loop bound transformation takes a bound

parameter that rewrites every loop in its input to obey.

Arbitrary Precision In Section 5.2, we propose classifier that separates likely to be

avoidable over- and under-flows from those that are likely to be unavoidable. A certain

example of an unavoidable exception is λ

2 . The idea is to transform a program that throws a

floating-point exception into an equivalent program with its floats replaced with arbitrary

precision numbers, then run it to check whether if it 1) completes and 2) that the result can

be converted into floating-point without over- or under-flowing. The arbitrary precision

transformation (AP), converts each usage of a float type to mpq t, the GMP library’s arbitrary

precision rational type. AP converts each arithmetic operation to the corresponding GMP

function. Handling structures was a challenge we had to overcome. AP recursively traverses

each structure, transforming the type of float fields to mpq t. Function calls presented another

challenge: AP must distinguish between internal and external functions. AP changes the

prototype of an internal function while marshaling and unmarshaling the parameters to

external functions.

4.2 Analysis

KLEE does not support floating point numbers, because its underlying SMT solver is STP,

which uses bit-vector theory, but does not support the theory of the reals. We modified

KLEE 1) to use the Z3 SMT solver from Microsoft, which supports the theory of real

numbers and uninterpreted functions and 2) to support floating-point symbolic variables,

update its internal expressions when encountering floating-point operations, and output those

expressions, with the symbolic variables labeled with type real , as input to Z3. To implement
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linearization (Section 3.3.2) and find the roots of polynomials, we extended KLEE to use the

GSL polynomial solver package and to internally represent every expression as a rational

function, i.e. a fraction of two polynomials.

LLVM’s select instruction does not have a direct representation as an Z3 abstract syntax

tree (AST). The syntax of the select instruction is select (cond, expr1, expr2). If cond is true,

the value of the select expression is expr1; otherwise it is expr2. To construct a Z3 AST for

the select instruction, we create a new symbolic variable and add a constraint to capture its

semantics:

( cond = t r u e && expr = expr1 )

| | ( cond = f a l s e && expr = expr2 )

Limitations Like other symbolic execution engines, Ariadne does not handle dynamically

allocated objects and its analysis is expensive [1]. Currently, we restrict symbolic variables

to floating-point parameter and assign random values to integer parameters. We do not

handle parameters whose type is pointer or struct . We intend to support these features in

the future.
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5. Evaluation

We first motivate our creation of a new multivariate, nonlinear solver, then present exceptions

it found and discuss its performance as a tester and verifier. Ariadne finds many overflows

and underflows (Xflows), many of which may be an unavoidable consequence of finite

precision. We close with the presentation of an Xflow classifier that seeks to separate

avoidable from unavoidable Xflows and the F→Q type transformation on which it rests.

We ran our experiments on a machine running Ubuntu 10.04.2 LTS (kernel 2.6.32-30-

server) with 128GB RAM and Intel Xeon X7542 6-Core 2.66GHz 18MB Cache, for a

total of 18 cores. The Ariadne engine is described in chapter 4. We choose to analyze the

special functions of the GNU scientific library (GSL) version gsl-1.14, because the first

phase of Ariadne focuses on scalar functions and most of GSL’s special functions take

and return scalars. The GSL is a mature, well-maintained, well-tested, widely deployed

scientific library [10]. It is for these reasons that we selected it for analysis: finding nontrivial

exceptions in it is both challenging and important. In spite of these challenges, Ariadne

found nontrivial exceptions within it.

We transform each special function in the GSL library to make potential floating-point

exceptions explicit. Before each floating-point operation, we test its operands to check for

exceptions. The bodies of these checks throw the relevant exception and contain a program

point that can only be reached if the guarded operation can throw the specific floating-point

exception, as described in Section 3.2.
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5.1 Analysis Performance and Results

External functions and loops cause difficulties for static analyzes, like the symbolic analysis

underlying RKLEE. We handle a subset of external functions as described in Section 3.2.2.

For loops, a classic workaround tactic is to impose a timeout. Another is to bound the

loops. We did both. We imposed two timeouts — per-query and per-run. To bound loops,

we wrote a transformation that injects a bound into each loop, as described in Section 4.1.

Although we could have restricted the use of this loop bound transformation to functions

whose analysis failed, we re-ran the analysis on all functions at each loop bound, seeking

the Pareto optimal balance of loop bound and time-to-completion. The infinity loop bound

means that we did not apply our loop bound transformation.

Our goal is to build a precise and practical tool to detect floating-point exceptions.

To this end, we hybridized the Ariadne solver with the Z3: we handed each query, even

multivariate, nonlinear ones, to Z3 first, and only queried the Ariadne solver on those

queries to which Z3 reported UNKNOWN. We performed the analysis described here

with maximum concretizations set to 10 as we found that this setting effectively balances

performance and precision, and is a testament to the effectiveness of our findBindings

heuristic (Algorithm 3). This hybrid solver (RKLEE) found a total of 2288 input-to-location

pairs that triggered exceptions, distributed as shown in Figure 5.1.

Multiple paths or multiple inputs along a single path might reach an exception-triggering

program point. If that exception is a bug, its fix might require a single condition, implying

that all the bug-triggering inputs are in an equivalence class, or logic bounded by the number

of distinct inputs that trigger it. Thus, we report exceptions as [X ,Y ]: X counts unique

exception locations found and is a lower-bound on the number of potential bugs and Y

counts the unique input to location pairs and is an upper-bound.

Figure 5.2 shows the distribution of functions in terms of the potential exceptions they

contain. As expected, this distribution is skewed: Given the maturity and popularity of

the GSL, it is not surprising that most of its functions contain no latent floating-point
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Figure 5.1: Ariadne found 2288 input-to-location pairs that trigger floating-point exceptions
in the GNU Scientific library, distributed as shown.

exceptions. Ariadne reports 84 exceptions in gsl sf bessel Inu scaled asympx e defined in

gsl/specfunc/bessel.c. For each operation, the Ariadne transformation introduces

two paths to the operation each time it injects the call fabs to compute the absolute value

of an operand. Thus, when the number of operations is O, it can add 2O paths in the worst

case. Further, we count distinct exception-triggering input to location pairs across all paths

in Figure 5.2. For a single exception location, Ariadne can report multiple inputs that lead

to the exception. Most of our constraints are nonlinear. For example, line 299 of this file is

“double mu = 4.0*nu*nu;”. Ariadne finds two different values for nu, viz. −7.458341e−155

and its absolute value 7.458341e− 155, that satisfy the conditional guarding Underflow.

The computation of absolute value that Ariadne injects also creates new paths to an injected

exception-throwing program point. Consider line 302 “double pre = 1.0/ sqrt (2.0*M PI*x);”.

Note that the expression passed to sqrt actually contains only one multiplication because

the compiler replaces the constant multiplication 2.0*M PI with a single constant. To check

for Overflow in this sqrt , Ariadne injects the new conditional (written here in pseudocode)
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Figure 5.2: Bar plot of the number of functions (y-axis) with the specified number of
input-to-location pairs that trigger floating-point exceptions (x-axis).

Function Line Inputs

gsl sf conicalP 1 989 2.000000e+01, 1.000000e+00
gsl sf bessel Jnu asympx e 234 0.000000e+00, 0.000000e+00
gsl sf exprel n CF e 89 -1.000000e+00, 1.340781e+154
gsl sf bessel Knu scaled asympx e 317 0.000000e+00, 0.000000e+00

Table 5.1: A selection of 4 of the 33 Divide-by-Zero exceptions Ariadne found.

1 y = ( 2 . 0 * M PI*x ) i f x > 0

2 y = −(2.0* M PI*x ) o t h e r w i s e

3 i f ( y > DBL MAX) Overf low

4 i f ( y < DBL MIN) Underf low

5 double p r e = 1 . 0 / s q r t ( y ) ;

In this example, Ariadne finds x= 2.861117e+307 that traverses 1, 3 and x=−2.861117e+

307 that traverses 1, 2, 3; both inputs satisfy the conditional and trigger Overflow.

Perhaps the most serious exceptions are Divide by Zero and Invalid exceptions. Table 5.1

and Table 5.2 show the functions in which we found this type of exceptions, the line number,

and exception triggering inputs for a selection of these exceptions. For example, Ariadne
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Function Line Inputs

gsl sf bessel Inu scaled asymp unif e 361 -2.225074e-308, 0.000000e+00
gsl sf bessel Knu scaled asympx e 317 -7.458341e-155, -6.445361e+02
gsl sf bessel Jnu asympx e 234 -5.000000e-01, 0.000000e+00
gsl sf bessel Inu scaled asympx e 302 -1.500000e+00, -4.744681e+03

Table 5.2: A selection of 4 of the 104 Invalid exceptions Ariadne found.
Loop Functions |S|

|Q|
|S̄|
|Q|

|U |
|Q|

Ariadne Exceptions Total Time
Bound No Timeout Discharged Exception-free Ratio Unique Shared (hours)

infinity 319 88 38 0.55 0.22 0.23 0.67 [32,231] [595,784] 94
64 321 91 38 0.57 0.30 0.12 0.80 [0,181] [592,793] 104
32 323 91 38 0.57 0.30 0.12 0.79 [5,187] [603,796] 101
16 318 91 38 0.57 0.30 0.13 0.80 [1,165] [583,786] 100

8 321 91 38 0.57 0.30 0.13 0.79 [1,180] [594,795] 101
4 321 91 38 0.57 0.30 0.13 0.79 [0,177] [580,786] 103
2 320 91 38 0.57 0.30 0.12 0.80 [3,183] [593,786] 108
1 319 91 38 0.57 0.30 0.13 0.79 [1,176] [587,788] 102

Table 5.3: The results of RKLEE’s analysis of the 424 GSL special functions at the specified
loop bounds. Here, Q is the set of all queries issued during analysis and S, S̄ and U partition
Q into its SAT, UNSAT and UNKNOWN queries.

found both an Invalid and a Divide-by-Zero exception in gsl sf bessel Knu scaled asympx e

from gsl/specfunc/bessel.c. Line 317 is “double pre = sqrt (M PI/(2.0*x)) ;”. When

x < 0, sqrt throws Invalid; when x = 0, it throws Divide-by-Zero. The precondition of this

function is x >> nu*nu+1; no explicit precondition on nu exists and the function is public.

Ariadne independently discovers an implication of this precondition, which is a testament to

its utility. Rather than rely on this precondition, defensive programming suggests adding the

conditional if (x > nu*nu+1) to check for domain error.

Table 5.3 shows the results from our analysis of the scalar GSL special functions. The

data shows that, over the GSL special functions, the loop bound has little impact on the

results. We believe that the reason for this is that the analyzed functions do not make heavy

use of looping constructs.

RKLEE attempts to explore all paths within the time bound it is given. When RKLEE does

not time out on a particular function, that function is added to the second, “No Timeout”,

column of the table. RKLEE discharges a function when it determines that every path is

either satisfiable or unsatisfiable. The count of discharged functions is recorded in the third

“Discharged” column. RKLEE found no exceptions in some of the discharged functions: these

functions are “Exception-free”. The three function columns have the property that the “No
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Timeout” functions contain the “Discharged” functions which contain the “Exception-free”

functions. The difference between “No Timeout” and “Discharged” is path abandonment

when a query result is UNKNOWN; the difference between “Discharged” and “Exception-

free” is the discovery of exceptions. RKLEE performs both testing, when it discovers an

exception-triggering input, and verification, its determination that a function is exception-

free is sound, subject to the loop bound setting used. We note that, while most of the

exception-free functions at the infinity bound are loop-free, four are not.

The loop bound transformation monotonically reduces the number of paths in a program,

so each of the function columns should be monotonically increasing. This pattern does not

hold “No Timeout”. There are two reasons for this variation. First, Z3 probabilistically hangs

on some of the nonlinear, multivariate constraints RKLEE feeds it, in spite of its per-query

timeout. Second, KLEE flips coins during path scheduling to ensure better coverage. In

short, some of the analysis runs at certain loop bounds were simply unlucky.

The three Q columns report on RKLEE’s overall effectiveness. Recall that in RKLEE,

Ariadne only handles Z3’s unknown queries. The Ariadne ratio column reports Ariadne

effectiveness at solving Z3’s unknowns in our context. Let SA, S̄A and UA be the SAT,

UNSAT and UNKNOWN queries that Ariadne handles. The Ariadne ratio then is |SA∪S̄A|
|SA∪S̄A∪UA|

.

In short, Ariadne found a substantial fraction of the exceptions and solved 67–80% of the

queries that Z3 was unable to handle.

The “Unique” exception field shows exceptions not found by any other RKLEE analysis

at a different loop bound. Let Eb be the exceptions found at loop bound b. Let Eu
b be the

unique exceptions at b and Es
b be the shared exceptions found at some other loop bound.

Eu
b = Eb−

⋃
x Ex,∀x ∈ B−{b}. So at 32, the analysis discovered 5 unique exception-

triggering locations and 187 unique pairs of input to a location that triggers an exception.

Our analysis is embarrassingly parallelizable, so the test harness forms a partition of

functions for each core (in our case 18), then analyzes each function, one by one, against

each loop bound. It records the analysis time per function per loop bound. The sum of

all the analysis times for all the functions at each loop bound is reported in the total time
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column. Again, we see that, with our corpus, the loop bound does not have much impact on

analysis time.

5.2 Classifying Overflows and Underflows

Some overflows and underflows (Xflows) are an inevitable consequence of finite precision.

The addition Ω+Ω is a case in point. Some Xflows, however, may be avoided by modifying

(e.g. changing the order of evaluation) or replacing the algorithm used to compute the

solution. Because a developer’s time is precious, we introduce the avoidable Xflow classifier

that seeks to distinguish potentially avoidable Xflows from those that are an unavoidable

consequence of finite precision.

Let A : Fn→ F be an algorithm implemented using floating-point and A be that same

algorithm implemented using an arbitrary precision Q. When A(~i) overflows or underflows,

we deem that exception potentially avoidable if A (~i) ∈ [−Ω,Ω]∧|A (~i)| ≥ λ .

This classifier rests on the intuition that, if the result of an arbitrary computation over

arbitrary precision is a floating-point number, then it may be possible to find an algorithm

that can compute that same result over floating-point without generating intermediate values

that trigger floating-point exceptions. Unfortunately, this classifier is imperfect. First,

Xflows the classifier deems unavoidable may, in fact, be avoided or mitigated via operand

guards (input sanitization). For instance, x + y if x < DBL MAX/2 && y < DBL MAX/2 is

safe when x,y≤ Ω

2 . Second, the fact that the result of a computation is a float-point number

may depend on intermediate result that is not. For instance, consider a function that takes

f ∈ F as input, computes x := f Ω and returns 2 if x > 2Ω and 1 otherwise. The result of

this function is always an integer, but the fact, over Q, it returns 2 when f ≥ 2 greater than

or equal to 2 does not imply that a corresponding floating-point algorithm exists that can

produce 2.

To realize our Xflow classifier, we wrote a transformer that takes a numeric program

and replaces its float and double types with an arbitrary precision rational type, for whose
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Overflows Underflows

Interesting 98 250
Total 316 272
Ratio 0.31 0.92

Table 5.4: Potentially avoidable overflows and underflows.

implementation we use gmpq t from GMP [9]. In addition to rewriting types, our arbitrary

precision transformer also rewrites floating-point operations into rational operations. For

instance, z = x + y becomes gmpq add(z,x,y).

Xflows dominated the exceptions we found, comprising 94% of all exceptions. We

defined and realized our classifier with the aim of filtering these Xflows. Nonetheless The

number of potentially avoidable Xflows remains high in Table 5.4. Note that GSL is a worst

case for us. In a numerical library such as the GSL, these ratios are high because the range

of many mathematic functions is small but their implementation relies on floating-point

operations whose operands have extremal magnitude.



33

6. Related Work

This section surveys closely related work. First, Ariadne is related to the large body of

work on symbolic execution [20], such as recent representative work on KLEE [4] and

DART [12]. Our work directly builds on KLEE and uses the standard symbolic exploration

strategy. To the best of our knowledge, it is the first symbolic execution technique applied to

the detection of floating-point runtime exceptions. We have proposed a novel programming

transformation concept to reduce floating-point analysis to standard reasoning on real

arithmetic and developed practical techniques to solve nonlinear constraints.

Our work is also related to static analysis techniques to analyze numerical programs.

The main difference of our work to these techniques is our focus on bug detection rather

than proving the absence of errors—every exception we detect is a real exception, but we

may miss errors. We briefly discuss a few representative efforts in this area. Goubault [14]

develops an abstract interpretation-based static analysis [2] to analyze errors introduced by

the approximation of floating-point arithmetic. The work was later refined by Goubault and

Putot [15] with a more precise abstract domain. Martel [22] presents a general concrete

semantics for floating-point operations to explain the propagation of roundoff errors in

a computation. In later work [23], Martel applies this concrete semantics and designed

a static analysis for checking the stability of loops [17]. Miné [25] proposes an abstract

interpretation-based approach to detect floating point errors. Underflows and round-off

errors are considered tolerable and thus not considered real run-time errors. Monniaux [26]

summarizes the typical errors when using program analysis techniques to detect bugs in or

verify correctness of numerical programs. Astree [3] is a system for statically analyzing
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C programs and attempts to prove the absence of overflows and other runtime errors, both

over the integers and floating-point numbers. There are some other approaches to model

the floating point computation for numerical programs. Fang et al. [6, 7] propose the use of

affine arithmetic to model floating-point errors.
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7. Conclusion and Future Work

We have presented our design and implementation of Ariadne, a symbolic execution en-

gine for detecting floating-point runtime exceptions. We have also reported our extensive

evaluation of Ariadne over a few hundred GSL scalar functions. Our results show that

Ariadne is practical, primarily enabled by our novel combination of program rewriting to

expose floating-point exceptional conditions and techniques for nonlinear constraint solving.

Our immediate future work is to publicly release the tool to benefit numerical software

developers. We would also like to investigate approaches to support non-scalar functions,

such as those functions that accept or return vectors or matrices.
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[27] P. Rümmer and T. Wahl. An SMT-LIB theory of binary floating-point arithmetic. In Interna-

tional Workshop on Satisfiability Modulo Theories (SMT) at FLoC, 2010.

[28] K. Sen. CUTE: a concolic unit testing engine for C. In FSE, pages 263–272, 2005.

[29] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, 1974. ISBN: 0-13-322495-3.

[30] L. A. Times. Toyota’s acceleration issue. http://articles.latimes.com/2009/

http://articles.latimes.com/2009/dec/05/opinion/la-ed-toyota5-2009dec05
http://articles.latimes.com/2009/dec/05/opinion/la-ed-toyota5-2009dec05


38

dec/05/opinion/la-ed-toyota5-2009dec05.

[31] Wikipedia. Ariane 5 flight 501. http://en.wikipedia.org/wiki/Ariane_5_

Flight_501.

http://articles.latimes.com/2009/dec/05/opinion/la-ed-toyota5-2009dec05
http://articles.latimes.com/2009/dec/05/opinion/la-ed-toyota5-2009dec05
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

	Introduction
	Illustrative Examples
	Approach
	Background and Notation
	Program Transformation
	Basic Arithmetic Operations
	Elementary Mathematical Functions

	Solving Numeric Constraints
	Concretizing Multivariate Constraints
	Linearizing Univariate Nonlinear Constraints
	Finding a Floating-point Solution


	Implementation
	Transformations
	Analysis

	Evaluation
	Analysis Performance and Results
	Classifying Overflows and Underflows

	Related Work
	Conclusion and Future Work

