
Toward Effective Debugging by Capturing and
Reusing Knowledge

By

ZHONGXIAN GU

B.S. (Shanghai Jiaotong University) 2008
M.S. (University of California, Davis) 2010

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Zhendong Su (Chair)

Professor Premkumar T. Devanbu

Professor Todd J. Green

Committee in Charge
2013

i

© Zhongxian Gu, 2013. All rights reserved.

Contents

1 Introduction 1

2 FIXATION: Has the Bug Really Been Fixed? 4

2.1 Introduction . 5

2.2 Illustrative Example . 9

2.3 Approach . 11

2.3.1 The Bad Fix Problem . 11

2.3.2 Distance-Bounded Weakest Precondition 14

2.3.3 Detecting Violations of Coverage . 18

2.3.4 Detecting Violations of Disruption . 19

2.4 Empirical Evaluation . 20

2.4.1 Implementation . 20

2.4.2 Experimental Setup . 21

2.4.3 Experimental Results . 22

2.4.4 Threats to Validity . 28

2.5 Related Work . 29

2.5.1 Practical Computation of WP . 29

2.5.2 Automatic Test Input Generation . 30

2.5.3 Bug Fixes and Code Changes . 31

ii

2.6 Discussion and Future Work . 32

3 OSCILLOSCOPE: Reusing Debugging Knowledge via Trace-based Bug Search 34

3.1 Introduction . 35

3.2 Illustrating Example . 38

3.3 Design and Realization of OSCILLOSCOPE . 42

3.3.1 User-Level Support . 42

3.3.2 BQL: A Bug Query Language . 45

3.3.3 Implementation . 53

3.3.4 Extending OSCILLOSCOPE with New Queries 55

3.4 Evaluation . 57

3.4.1 Can OSCILLOSCOPE Find Similar Bugs? 59

3.4.2 How Useful are the Results? . 64

3.4.3 Scalability . 66

3.4.4 Execution Trace Search Accuracy . 68

3.4.5 Threats to Validity . 71

3.5 Related Work . 71

3.6 Discussion and Future Work . 74

4 IDEPP: Capturing and Exploiting IDE Interactions 75

4.1 Introduction . 76

4.2 Illustrative Example . 80

4.3 Design and Implementation of IDE++ . 81

4.3.1 Methodology . 81

4.3.2 The Architecture of IDE++ . 83

4.3.3 Interaction History . 85

4.3.4 Subscribing to IDE++ Events . 86

iii

4.3.5 Extending IDE++ . 88

4.4 Evaluation . 89

4.4.1 Comprehensiveness and Granularity . 89

4.4.2 User-aware IDE Applications . 92

4.5 Related Work . 98

4.5.1 Applications . 99

4.6 Discussion and Future Work . 101

5 CONCLUSION 102

iv

Zhongxian Gu
December 2013

Computer Science

Toward Effective Debugging by Capturing and Reusing Knowledge

Abstract

Debugging is an arduous task — localizing and resolving bugs pervade the software develop-

ment process. The cost of software maintenance accounts for two-thirds of the overall software

production cost. Correctly and quickly fixing a bug reduces cost and improves software qual-

ity. This dissertation presents three complementary research efforts that target and ease different

stages of debugging.

The first concerns the testing and verification of bug fixes. It introduces and formalizes the

bad fix problem: a fix is bad if it does not properly fix the bug or introduces new bugs. Bad fixes

are difficult to detect as they successfully pass the original failing test cases and are more costly

to fix. Our research proposes novel approaches to detect bad fixes to avoid them in an early stage.

The bad fix problem emphasizes the importance and difficulty of debugging and helps understand

and ease the debugging process.

The second aims to help developers fix bugs. Our key insight is to leverage existing debugging

knowledge to fix new bugs. We hypothesize that with respect to the millions of already encoun-

tered bugs, unique and new bugs are rare — most bugs have similar bugs. We have designed and

developed OSCILLOSCOPE, a bug repository and search engine to allow developers search for

similar bugs. Learning from similar bugs and how they were fixed, developers can more quickly

understand and propose correct fixes to bugs.

To ease the use of OSCILLOSCOPE and understand how developers debug, we introduce

IDEPP, an infrastructure that systematically captures fine-grained IDE interactions. IDEPP forms

the third part of this dissertation. It can serve as the basis to support an ecosystem of user-aware

applications including OSCILLOSCOPE and others. In particular, IDEPP not only facilitates the

use of OSCILLOSCOPE, but also enables other general applications to improve programming

productivity.

v

Acknowledgments and Thanks

Many people have provided invaluable support to me during my graduate studies in University

of California, Davis.

First, I want to express my deeply-felt thanks to my PhD advisor, Professor Zhendong Su, for

supporting me during the past five years. There is an old saying spread among the prospective

PhD students, “The most important factor that drives your PhD career and near future is not

the ranking of your university, not the reputation of your research lab, but the personality of your

advisor”. I cannot agree more to this old saying after my PhD career. I feel so lucky that I can have

Zhendong, such a brilliant, patient, and supportive person to be my doctoral advisor. Zhendong

is someone you will instantly love and never forget once you meet him. I hope that I could be

as lively, enthusiastic, and energetic as Zhendong towards research. He spent immeasurable time

and efforts training me to be a researcher. He provided me with ideas and yet allowed significant

freedom to let me pursue my research. He trained me in writing and presenting research. He

sets high standards for all of our work: as he always said, “If you do not feel proud of your own

research, then do not do it”. I greatly appreciate everything he has done for me.

I would not have contemplated this road if not for my parents, Ping Zhou and Qiqi Gu. They

gave me birth, love and pave me the road for pursuing my dream. Especially, I want to express my

great-thankfulness to my mother Ping who played a very important role during all my life. She

helped me to establish perseverance, patience, and all other personalities that I need to be a good

researcher and person.

I thank my colleagues and collaborators who have provided invaluable supports during my

graduate study. I thank Lingxiao for helping me leasing my apartment before I went to USA. I

thank Sophia Sun and Dennis Xu, who offered me the first lunch and helped me to open my first

bank account when I was locked out from my apartment when I just landed in USA. I thank Earl

vi

Barr, who acted as my second advisor during my PhD career. Earl helped me through all the

aspects that required to be a researcher in a different country: English as a secondary language,

technical writing, research altitude. Most importantly, his enthusiasm towards research is and

will always be a great model for me to pursue. I thank the following colleagues that frequently

gave very useful feedback on research ideas, paper drafts, and practice talks to help me improve

the quality of my work: Mehrdad Afshari, Chris Bird, Mark Gabel, Taeho Kwon, Vu Minh Le,

Andreas Saebjoernsen, Drew Schleck, Sophia Sun, Thanh Vo, and Dennis Xu.

I also want to express my heartfelt thankfulness to my girl friend, Siqi Fan, who brought love

, happiness and unconditional support to me. Her accompanies really helps me go through all the

hard times during my PhD career and gradually makes me a man that is ready to hold a family. I

thank all my friends in Davis that gave me a wonderful and unforgettable five-year memory there.

vii

Chapter 1

Introduction

As software systems become increasingly sophisticated, complex, and ubiquitous, it is in-

evitable that they are often shipped with bugs. During the course of a project, its development

team may continuously encounter and receive a large number of bugs over a long period of time.

For example, a total of 4,414 bugs were reported for the Eclipse project in 2009. Localizing and

fixing bugs pervade the software development process.

Although much research has devoted to reduce the burden of debugging, it is still an arduous

task to debug software. According to IDC [43], software maintenance cost $86 billion in 2005,

accounting for as much as two-thirds of the overall cost of software production. During software

maintenance, programmers typically spend 50–80% of their time on debugging. Brian Kernighan

even commented: “Debugging is twice as hard as writing the code in the first place. Therefore, if

you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

Fixing a bug correctly the first time it is encountered will reduce cost and improve software

quality. The central theme of this dissertation is to help programmers achieve this goal. It is or-

ganized into three chapters, each of which forms a distinct contribution. Chapter 2 introduces and

formalizes the bad fix problem. Informally, a fix is bad if it does not properly resolve the bug or in-

troduces new bugs. This chapter also proposes a novel approach to detect and avoid a bad fix in the

1

early stage of development. Chapter 3 proposes novel tool and language support to help program-

mers identify similar bugs and reuse debugging knowledge to fix new bugs. Chapter 4 motivates

and introduces a new IDE infrastructure for capturing systematic, fine-grained user interactions.

The infrastructure helps study how users debug in the IDE and enables new applications to aid

debugging and beyond.

Chapter 2: Fixation Programmers spend much effort developing fixes, however, they may not

pay close enough attention to verify the fixes. When testing a fix, a programmer usually re-

run a program with the original bug-triggering inputs. If no errors occur, the developer usually

deems the bug has been fixed and shifts to the next task. Folklore suggests that bug fixes are

frequently buggy, either failing to handle all bug-triggering inputs or introducing new bugs. Our

research, introduces and formalizes the bad fix problem. In particular, we formalize two criteria to

determine whether a fix is bad: coverage and disruption. The coverage of a fix measures the extent

to which the fix correctly handles all inputs that may trigger a bug, while disruption measures

the deviation from the program’s intended behavior after the application of a fix. To compute

the coverage and disruption of a fix, we also introduce the novel notion of distance-bounded

weakest precondition as the basis for developing a practical tool. To validate our approach, we

have implemented FIXATION, a prototype that automatically detects bad fixes for Java programs.

Our evaluation shows that FIXATION is able to successfully detect extracted bad fixes from real-

world software.

Chapter 3: Oscilloscope Over the many decades of software development, a large number of

bugs have been encountered. Some, among the millions that have occurred, are similar to some

other existing bugs. A fix for a similar bug may help a developer understand a new bug, or even

directly fix it. Studying bugs with similar symptoms, programmers may determine how to detect

or resolve them. In this research, we advocate the systematic capture and reuse of debugging

2

knowledge — most of which is currently wasted — to speed up debugging. We introduce novel

tool and language support to help programmers accurately and efficiently identify similar bugs.

To this end, we have developed OSCILLOSCOPE, an Eclipse plugin, for finding similar bugs, and

its supporting infrastructure. At the heart of this infrastructure is our bug query language (BQL),

a flexible query language that can express a wide variety of queries over traces. We demonstrate

the utility and practicality of our approach via the collection and study of bugs from the Apache

Commons and Mozilla Rhino projects.

Chapter 4: IDEPP Although OSCILLOSCOPE provides an Eclipse plugin to integrate more

easily into the development process, it still requires much effort from developers to utilize it,

in particular, writing meaningful and useful queries. In this research, we intend to automate

this task by studying how programmers debug, extract relevant domain knowledge and use it to

guide OSCILLOSCOPE to search for similar bugs. To this end, we have developed IDEPP, an

Eclipse plugin that comprehensively and systematically captures fine-grained IDE interactions.

These interactions can reflect a developer’s thought process and work habits. By capturing and

exploiting comprehensive, fine-grained interactions, OSCILLOSCOPE can leverage the captured

relevant debugging contexts to help compose queries. We also envision the establishment of an

ecosystem of IDEPP-based applications and extensions to exploit this personalized awareness.

Examples include the dynamic personalization of IDE interfaces, training users how to use IDEs

more effectively, helping users follow best practices, and alerting users of relevant features for a

user’s current task. We have developed four proof-of-concept IDEPP applications to illustrate the

promise of an ecosystem of user-aware applications and the need for capturing comprehensive,

fine-grained interactions.

3

Chapter 2

FIXATION: Has the Bug Really Been

Fixed?

Software has bugs, and fixing those bugs pervades the software engineering process. It is

folklore that bug fixes are often buggy themselves, resulting in bad fixes, either failing to fix a bug

or creating new bugs. To confirm this folklore, we explored bug databases of the Ant, AspectJ, and

Rhino projects, and found that bad fixes comprise as much as 9% of all bugs. Thus, detecting and

correcting bad fixes is important for improving the quality and reliability of software. However,

no prior work has systematically considered this bad fix problem, which this research introduces

and formalizes. In particular, the research formalizes two criteria to determine whether a fix

resolves a bug: coverage and disruption. The coverage of a fix measures the extent to which the

fix correctly handles all inputs that may trigger a bug, while disruption measures the deviations

from the program’s intended behavior after the application of a fix. This research also introduces

a novel notion of distance-bounded weakest precondition as the basis for the developed practical

techniques to compute the coverage and disruption of a fix.

To validate our approach, we implemented Fixation, a prototype that automatically detects bad

fixes for Java programs. When it detects a bad fix, Fixation returns an input that still triggers the

4

bug or reports a newly introduced bug. Programmers can then use that bug-triggering input to

refine or reformulate their fix. We manually extracted fixes drawn from real-world projects and

evaluated Fixation against them: Fixation successfully detected the extracted bad fixes.

2.1 Introduction

According to IDC [43], software maintenance cost $86 billion in 2005, accounting for as much

as two-thirds of the overall cost of software production. Developers spend 50–80% of their time

looking for, understanding, and fixing bugs [12]. Fixing bugs correctly the first time they are

encountered will save money and improve software quality.

Researchers have paid great attention to detecting and classifying bugs to ease developers’

work [3, 14, 18, 21, 24, 38, 72, 82, 87]. In contrast, not much effort has been expended on bug

fixes. When testing a fix, programmers usually rerun a program with the bug-triggering input. If

no error occurs, programmers, hurried and overburdened as they usually are, often move on to

their next task, thinking they have fixed the bug. Folklore suggests that bug fixes are frequently

bad, either by failing to cover, i.e. handle, all bug-triggering inputs, or by introducing disruptions,

i.e. new bugs. A bad fix can decrease the quality of a program by concealing the original bug,

rendering it more subtle and increasing the cost of its fix. Thus, detecting and correcting bad fixes

as soon as possible is important for the quality and reliability of software.

To gain insight into the prevalence and characteristics of bad fixes, we explored the Bugzilla

databases [10] of the Ant, AspectJ and Rhino projects under Apache, Eclipse and Mozilla founda-

tions. At the time of our survey, these databases contained entries to July 2009. In Bugzilla, a bug

is reopened if it fails regression testing or a symptom of the bug recurs in the field. We hypoth-

esized that a reopened bug might indicate a bad fix. We read the comment histories of reopened

bugs to judge whether or not the bug was reopened due to a bad fix. Programmers sometimes even

admit they committed a bad fix: in our survey, we found statements like “Oh, I am sorry I didn’t

5

consider that possibility” and “Oops, missed one code path.” Of all reopened bugs, we found that

bad fixes account for 66% in Ant, 73% in AspectJ, and 80% in Rhino. Bugs reopened because

they failed a regression test belong to the disruption dimension of a bad fix. In our preliminary

findings, reopened bugs comprise 4–7.25% of all bugs in these three projects1. We also found that

38–50% of bugs reopened due to a bad fix either had duplicates or blocked other bugs and were

therefore linked to other bugs in Bugzilla. We found a total of 1,977 bad fixes from reopened

bugs2, and an additional 830 duplicates (i.e. bugs marked as a duplicate of a bad fix), comprising

9% of the total bugs (31,201) in the Apache database. Bad fixes need not manifest in reopened

bugs; we focused on reopened bugs because they often make bad fixes easier to identify. Our

manual study undercounts the prevalence of bad fixes in the studied projects, although we cannot

say by how much.

In this research, we describe the first systematic treatment of the bad fix problem: we introduce

and formalize the problem, and present novel techniques to help developers assess the quality of

a bug fix. We deem a fix bad if it fails to cover all bug-triggering inputs or introduces new bugs.

An ideal fix covers all bug-triggering inputs and introduces no new bugs. We define two criteria

to determine whether or not a fix resolves a bug — coverage and disruption:

Coverage: Many inputs may trigger a bug. The coverage of a fix measures the extent to which

the fix correctly handles all bug-triggering inputs.

Disruption: A fix may unexpectedly change the behavior of the original program. Disruption

counts these deviations from the program’s intended behavior introduced by a fix.

Given a buggy program, a bug-triggering input that results in an assertion failure, a test-suite,

and a fix, the bad fix problem is to determine the coverage and disruption of the fix.

1The absolute numbers are 377
5200 for Ant, 86

2162 for AspectJ, and 38
847 for Rhino. The number is 2939

31201 (9.4%) across
all Apache projects.

2Here we restricted ourselves to bugs that had been reopened, but not marked as duplicates.

6

In theory, Dijkstra’s weakest precondition (WP) [17] can be used to calculate the coverage of a

fix. We start from the manifestation of the bug in the buggy version of the program to discover the

set predicate of bug-triggering subset of the program’s input domain. Then we would symbolically

execute the fixed program to learn whether, starting from that set predicate, inputs still exist that

can trigger the bug. However, Dijkstra’s WP computation depends on loop invariants and must

contend with paths exponential in the number of branches.

We propose distance-bounded weakest precondition (WPd) to perform the WP calculation over

a set of paths near a concrete path. Given a path and a distance budget, WPd produces a set of

paths and computes the disjunction of the WP of each path. In the context of the bad fix problem,

the bug-triggering input induces this concrete path. This process is sound and yields an under-

approximation of the set of bug-triggering inputs. We can improve our under-approximation by

increasing the distance budget. Indeed, in the limit when the distance budget tends to infinity,

WPd is precisely Dijkstra’s WP.

WPd offers two practical benefits. First, because we operate directly on paths, we avoid both

the loop invariant requirement and the path-explosion problem. Second, it is our intuition that

paths closer to the bug-triggering path are more likely to be related to the same bug and more

error-prone, so adding them is likely to quickly approximate the bug-triggering input domain at

low cost. Kim et al. showed that when a bug occurs in a file, more bugs are likely to occur in

that file, a phenomenon they name temporal locality [49]. Their results can be put another way:

defects are lexically clustered, which supports our intuition since many execution paths that are

close to each other are also lexically close.

This approach may appear circuitous: why not apply WPd directly to the fixed program to see

if we can find an input that triggers the assertion failure? The problem is that the original buggy

input no longer triggers the bug in the fixed program. Thus, the concrete path that triggers the

bug in the buggy version of the program no longer reaches the assertion and may not even exist in

fixed program. Computing WP based on this false path may lead to spurious or incorrect results.

7

Regression testing is a measure of our disruption criterion; a project’s test suite is a parameter

of the bad fix problem to take advantage of this fact. We combine random and regression testing

to calculate the disruption of a fix.

To demonstrate the feasibility of our approach, we implemented a prototype, Fixation, which

automatically detects bad fixes in Java programs. Given the buggy and fixed, versions of a pro-

gram, a test-suite, and a bug-triggering input, Fixation solves the bad fix problem. Our tool cur-

rently supports Java programs with conditionals in Boolean and integer domains. When it detects

a coverage failure, it outputs a counterexample that triggers the bug in the fixed program; when it

detects a disruptive fix, it reports the failing test cases or inputs. From examining the counterex-

ample or the failing test cases, programmer can understand why the fix did not work and improve

it.

The main contributions of this research are:

• We introduce the bad fix problem and provide empirical evidence of its importance by

exploring the bug databases of three real projects to find that bad fixes accounts for as

much as 9% of all bugs.

• We formalize the bad fix problem and propose distance-bounded weakest precondition

(WPd), a novel form of weakest precondition, well-suited for the bad fix problem, that re-

stricts the weakest precondition computation to a subset of the paths in a program’s control

flow graph.

• We implemented a prototype, called Fixation, to check the coverage and disruption of a fix.

We evaluated our prototype to demonstrate the feasibility of our approach: Fixation detects

bad fixes extracted from real-world programs.

The rest of this chapter is as follows. In Section 2.2, we illustrate the problem with actual bad

fixes and show how our technique can detect them. Section 2.3 formalizes our criteria for a bad fix

8

1 // no idea what to do if it’s a TAIL_CALL

2 if (fun instanceof NoSuchMethodShim

3 && op != Icode_TAIL_CALL){

4
5 // get the shim and the actual method

6 NoSuchMethodShim =(NoSuchMethodShim)fun;

7 Callable noSuchMethodMethod =

8 noSuchMethodShim.noSuchMethodMethod;

9 ...

10 }

Figure 2.2.1: First fix of NoSuchMethod.

and presents the detailed technique to measure them. We describe our prototype implementation

and evaluation results in Section 2.4. Finally, we survey related work (Section 2.5) and discuss

future work (Section 2.6).

2.2 Illustrative Example

This section describes an actual sequence of bad fixes for a bug from the Rhino project, and

how our approach would have helped.

Rhino is an open-source JavaScript interpreter written in Java. JavaScript allows programmers

to define _noSuchMethod_, a special method that the JavaScript interpreter invokes, instead of

raising an exception, when an undefined method is called on an object. The bug, which we

name NoSuchMethod, was a lack of support for this _noSuchMethod_ mechanism. Its fix is not

complicated; the final patch was less than 100 lines. However, due to bad fixes, the bug was

reopened twice and three fixes were committed in three months.

Figure 2.2.1 contains the first committed fix. On Line 1, the programmer admits that he was

not sure whether this fix covered all relevant inputs. The fix adds an if-block which, when an

undefined method has been called, extracts noSuchMethodMethod from NoSuchMethodShim and

dispatches the undefined method on it, passing the original test case. However, the clause “op

9

1 if (fun instanceof NoSuchMethodShim) {
2 if (fun instanceof NoSuchMethodShim

3 && op != Icode TAIL CALL) {
4
5 // get the shim and the actual method

6 NoSuchMethodShim = (NoSuchMethodShim)fun;

7 Callable noSuchMethodMethod =

8 noSuchMethodShim.noSuchMethodMethod;

9 ...

10 if (op == Icode TAIL CALL) {
11 callParentFrame = frame.parentFrame;

12 exitFrame(cx, frame, null);

13 }
14 ...

15 }

Figure 2.2.2: Second fix of NoSuchMethod. Green, normal weight lines indicate changes added in
this fix; red, strikeout lines indicate those removed; and gray lines are those left unchanged.

!= Icode_TAIL_CALL” could be false for an undefined method call. The programmer missed this

case. Under our criteria, this fix fails the coverage check. Given buggy and fixed versions of the

program, Fixation would compute the predicate of the bug-triggering input domain and symbol-

ically execute the fixed program with that predicate as the initial precondition. Upon reaching

the exception, Fixation would determine the fix to be bad, and return the counterexample “fun

instanceof NoSuchMethodShim ∧ op == Icode_TAIL_CALL” to the programmer. In this exam-

ple, Fixation can exploit the common idiom of asserting false at a code path not expected to be

reached; in general, however, the assertion that captures a bug can be more complex.

After the bug was reopened, the programmer refined the fix, as shown in Figure 2.2.2. The

clause that restricted the operation mode was dropped. Inside this if-block, the programmer added

a block to deal with the case when operation mode was set to Icode_TAIL _CALL. The fix handles

all inputs that triggered the original bug. However, the fix failed when subjected to regression

testing. It fails the disruption check of a bad fix: it excised the bug that motivated its application

at the cost of introducing new bugs.

10

Finally, the programmer committed a third version of the fix, which resolved the bug and

passed the regression tests. This sequence of fixes shows how easy it is to write a bad fix. Pro-

grammers considering only of a subset of the bug-triggering input domain are likely to miss con-

ditions and execution paths. Our technique can help programmers detect these conditions earlier

and write better fixes more quickly.

2.3 Approach

To begin, we formalize our problem domain, then define the coverage and disruption of a fix.

We abstract the bug b as a failure of the assertion ϕ . Ideally, we would directly compute whether

Dijkstra’s WP from ϕ in the fixed program is false. This computation requires loop invariants and

must contend with the path-explosion problem. We have a bug-triggering input and its induced

concrete failing path. The key idea of our approach for computing whether a fix covers all inputs

that can trigger a bug is to leverage that failing path to compute a sound under-approximation of

the bug-triggering input domain, then test the fixed program against inputs from that domain. In

Section 2.3.2, we introduce WPd to compute that sound under-approximation. Section 2.3.3 shows

how we use that under-approximation to symbolically execute the fixed program to calculate a

counterexample to the fix. We close, in Section 2.3.4, by presenting our algorithm for computing

fix disruption which combines regression and random testing.

2.3.1 The Bad Fix Problem

A good bug fix eliminates the bug for all inputs without introducing new bugs. We define two

criteria to measure these dimensions — coverage and disruption.

We model a program P : I→O as a function in terms of its input/output behavior. We assume

that the bug b causes an assertion failure in the buggy program Pb and that we know a bug-

triggering input ib such that Equation 2.3.1 holds. Concretely, ib represents a failing test case, i.e.,

11

the output Pb(ib) violates the assertion ϕ .

Pb(ib) 6|= ϕ (or equivalently, Pb(ib) |= ¬ϕ) (2.3.1)

Many inputs may trigger ¬ϕ . Definition 1 specifies this set.

DEFINITION 1 (Bug-triggering input domain).

ĩb = {i ∈ I : Pb(i) |= ¬ϕ}

A bug fix f creates a new version of the program Pf . At the very least, Pf (ib) |= ϕ , but Pf may

not handle all of ĩb. Definition 2 defines the subset of ĩb that Pf handles.

DEFINITION 2 (Covered Bug-Triggering Inputs).

îb = {i ∈ ĩb : Pf (i) |= ϕ}

Ideally, a fix f eliminates the bug b and covers all of ĩb. With respect to ĩb, the set îb indicates

the degree to which a fix achieves this goal, viz. the first dimension of fix quality, its coverage. We

use cov(f) to denote the coverage of a fix f .

By definition, Pf is correct, relative to b, for the inputs in îb. Outside of ĩb, a bad fix f may

introduce new bugs. Definition 3 captures these bugs.

DEFINITION 3 (Introduced Bugs). Let Po be the correct oracle for P, i.e., for all inputs, Po

produces the desired output.

B f = {i ∈ I \ ĩb : Pf (i) 6= Po(i)} (2.3.2)

12

Figure 2.3.1: A program’s input domain I, the known input ib that triggers the bug b, all inputs
that trigger the bug ĩb, those inputs the fix f handles îb, new bugs B f that f may introduce, and
their inter-relationships.

The disruption of the fix f is the set of new deviating input values it introduces, viz. the set B f .

When f introduces no new bugs, B f = /0 and f is not disruptive. Since we do not have a program

oracle in general, we approximate Po with the program’s test suite T and Pb, the buggy version

of the program. Section 2.3.4 presents the algorithm we use to compute disruption. Along the

disruption dimension, we compare the quality of two fixes in terms of the B f sets they induce.

An ideal fix covers all bug-triggering inputs and introduces no disruptions:

îb = ĩb ∧ B f = /0. (2.3.3)

Figure 2.3.1 illustrates the interrelations of the sets defined in this section. With our coverage

and disruption properties in hand, we now define the bad fix problem.

DEFINITION 4 (Bad Fix Problem). Given a buggy program Pb, a bug-triggering input ib, a test

suite T : I→ O (modeled as a partial function from I to O), and the fix f , determine the coverage

and disruption of f .

We can also use our criteria to partially order fixes for the same bug. The fix fa is better than

13

fb if and only if

cov(fb)⊆ cov(fa) ∧ B fa ⊆ B fb. (2.3.4)

2.3.2 Distance-Bounded Weakest Precondition

To determine whether a fix covers the bug-triggering, we introduce the concept of distance-

bounded weakest precondition (WPd) which generalizes Dijkstra’s weakest precondition (WP).

WPd restricts the weakest precondition computation to a subset of the paths near a distinguished

path in the interprocedural control flow graph (ICFG) of a program. In the context of the bad fix

problem, the distinguished path is Πib , the concrete path induced by the known bug-triggering in-

put ib. In this section, we explain how WPd traverses the ICFG of a program and uses Levenshtein

edit distance [55] to construct the subset of simple paths over which WPd computes the weakest

precondition. By considering only a subset of simple paths, WPd mitigates the path-explosion

problem and does not need loop invariants:

WPd : Programs×Predicates×Paths×N0→ Predicates. (2.3.5)

Equation 2.3.5 defines the signature of WPd , which adds a path Π and a distance d to the

signature of standard WP. An application of WPd(P,ϕ,Π,d) first generates the set C of candidate

paths at most d distance from Π, then computes the standard weakest precondition over only the

candidate paths in C. Equation 2.3.6 defines the candidate paths WPd considers. The metric ∆

computes the distance of two paths. Currently, we assign a symbol to every edge in the program’s

ICFG, map every path to a string, and use Levenshtein distance as our metric ∆.

C = {s ∈ Paths : ∆(s,Π)≤ d} (2.3.6)

14

(a) CFG with loop (b) ICFG∞

Figure 2.3.2: A CFG and its equivalent ICFG∞.

An ICFG represents loops with backedges. Thus, a concrete path that iterates in a loop is not

a simple path in an ICFG. To statically extract paths and compute their distance, we eliminate all

backedges by infinitely unrolling all loops to form an infinitely unrolled ICFG, denoted ICFG∞.

Figure 2.3.2 shows a loop in an ICFG and its unrolled representation in an ICFG∞. All executions

have simple paths in an ICFG∞. ICFGn, a finite subgraph of an ICFG∞, unrolls all loops n times.

All terminating programs iterate each loop a finite number of times, and can be captured by an

ICFGn. In particular, all paths within distance d of Πib statically exist in an ICFGn for some n.

ηG : V → 2V (2.3.7)

l : Σ
∗×Σ

∗→ N0 (2.3.8)

The function ηG in Equation 2.3.7 returns the neighbors of a vertex in the graph G, and l

in Equation 2.3.8 calculates the Levenshtein distance of two strings. Algorithm 1 uses these

functions to calculate C. For the sequence s, Algorithm 1 uses the notation s[i] to denote the ith

15

Algorithm 1 Generate paths Levenshtein distance d from Π

Require: d {distance}
Require: ICFG
Require: Π

G = reverseArcs(ICFG)
Πr = reverse(Π)
result-paths← /0
q.enqueue(〈Πr[0],〈〉〉) {vertex, path}
while not q.empty? do
〈v, p〉= q.dequeue()
if v = Πr[−1]∧ l(p,Πr)≤ d then

result-paths← result-paths ∪ {p}
end if
e = min(|p|−1, |Π|)
if l(p,Πr[0,e])≤ 2d then

p.append(v)
q.enqueue(〈n, p〉),∀n ∈ ηG(v))

end if
end while
return result-paths

component of s, s[−1] to denote the last component of s, and s[i, j], for 0 < i < j ≤ |s| to denote

the substring from i to j in s.

Algorithm 1 reverses Π and the arcs in the given ICFG, before traversing each path until it

exceeds a distance budget of 2d. Paths that reach the entry are retained only if they pass the more

stringent distance d as they can no longer become closer to Π. Algorithm 1 handles either an

ICFG or an ICFG∞, but is easier to understand when traversing an ICFG∞.

The set of candidate paths C that Algorithm 1 outputs may contain infeasible paths, such as

ones that iterate a loop once more than its upper bound. Such paths are discarded in WPd’s second

phase. Each path in C is traversed. When a path reaches a node, a theorem-solver attempts to

satisfy its current predicate. A path whose predicate is unsatisfiable is discarded. For example, a

path that iterates a loop beyond its upper bound generates a predicate similar to i = 4∧ i < 4. The

16

weakest preconditions of satisfiable paths are computed and combined to form a disjunction:

WPd(P,ϕ,Π,d) =
∨
c∈C

WP(c,ϕ). (2.3.9)

As d increases, WPd calculates the weakest precondition of a larger subset of the paths over

which standard WP computes; in the limit, WPd becomes WP:

lim
d→∞

WPd(P,ϕ,Π,d) = WP(P,ϕ). (2.3.10)

Under standard WP, the number of paths grows exponentially with the number of jumps in the

target program. Polymorphism exacerbates this problem in object-oriented programs. In WPd ,

the distance factor d controls the number of paths used in the weakest precondition computation.

When d = 0, WPd only computes WP on the path Π. Varying d allows one to trade off the

precision of the computed predicate against the efficiency of its computation. In contrast with

standard WP, moreover, WPd selects paths close to the erroneous path Πib . Thus, WPd can, in

principle, find a counterexample using fewer resources than standard WP.

Unlike WP, WPd does not need loop invariants. The difficulty of deriving loop invariants

has hampered the application of WP. Indeed, current tools have adopted various heuristics, such

as iterating a loop 1.5 times (loop condition twice, its body once), to circumvent the lack of

loop invariants [11, 21]. Under WPd , edit distance determines candidate paths and therefore the

number of the loop iterations of each loop along the path. WPd supports context-sensitivity via

cloning; the distance budget determines whether WPd explores a path with one more or one fewer

recursive calls. Though edit distance may construct infeasible paths, WP computation along such

a path will produce an unsatisfiable predicate which will cause WPd to discard the path.

17

2.3.3 Detecting Violations of Coverage

With the help of WPd , the coverage of a fix f , cov(f), can be computed in three main steps,

as shown in Equation 2.3.11:

step 3︷ ︸︸ ︷
∃x1 · · ·xn [SE(Pf ,WPd(Pb,¬ϕ,

step 1︷ ︸︸ ︷
e(Pb(ib)),d)︸ ︷︷ ︸

step 2

∧ ϕ)] (2.3.11)

1. Extract the concrete path Πib that the buggy input ib induces;

2. Compute WPd(Pb,¬ϕ,Πib,d) = α; and

3. Symbolically execute Pf using α to derive Pf ’s postcondition ψ , and eliminate the non-input

variables xi from the clause ψ ∧ ϕ to yield cov(f).

In the first step, we run Pb(ib), then apply e to extract Πib . Recall that ϕ is the failing assertion.

In the second step, α under-approximates the set predicate of ĩb, the true bug-triggering input

domain. In this step, we compute α for various values of d, depending on resource constraints.

The precision of our under-approximation depends on d. Starting from the weakest precondi-

tion computed for various d in step 2 anded with the assertion ϕ , the third step uses symbolic

execution [50] to compute the set of bug-triggering inputs handled by the bug fix. We eliminate

non-input variables, i.e. intermediate and output variables, from the clause, as they are irrelevant

to coverage, which concerns only inputs.

To decide whether f is a bad fix in terms of coverage, we check the validity of ψ → ϕ . If it

is valid, the fix does not violate the coverage requirement. Otherwise, we deem f a bad fix and

report any counterexamples to the validity of ψ → ϕ as new bug-triggering inputs. Our assertion

that f does not cover ĩb is sound because α under-approximates ĩb, i.e., {i ∈ I : α} ⊆ ĩb.

18

Algorithm 2 Compute the disruption of a fix
Require: I {The program’s input domain}
Require: pb {The buggy version of the program}
Require: p f {The fixed version of the program}
Require: T : I→ O {The program’s test suite}

1: R = /0
2: ∀(i,o) ∈ T do {Standard regression testing}
3: if p f (i) 6= o then
4: R← R∪{i}
5: end if
6: end for
7: ∀i ∈ a random subset of I do
8: if pb(i)⇒∧pb(i) 6= p f (i) then
9: R← R∪{i}

10: end if
11: end for
12: return R

2.3.4 Detecting Violations of Disruption

To measure the disruption of the fix f , we first run Pf on the test suite, as is conventional,

because test suites are crafted to exercise important execution paths [34, 77]. Each test failure

is a disruption. Given a specification of a program’s input I, we then randomly choose an input

i ∈ I \ ĩb. We compare the output of Pb to Pf to find errors not anticipated by the test suite. Each

time Pb(i) 6= Pf (i), we have found another disruption. Because îb under-approximates the actual

bug-triggering input domain ĩb, we ignore inputs that trigger ¬ϕ in Pb.

Algorithm 2 computes the disruptions of a fix, returning a set of failing inputs. The loop at

lines 7–11 samples inputs from I, ignoring those that trigger the original bug. We use the fact that

Pb fails the assertion ϕ to discover such inputs. In comparing Pf and Pb on those inputs, we do not

assume that Pb has only the one bug b and works correctly for all other inputs; instead, we simply

assume that we can consider each bug in isolation. Further, outside of ĩ,b Pb usefully approximates

the ideal behavior of P; when Pb is a release, deployed version of a program, it presumably passed

regression testing.

19

alg:disrupt:droptildei

2.4 Empirical Evaluation

Our evaluation objective is two-fold: to demonstrate the feasibility and utility of our approach,

and to differentiate WPd from WP. First, we describe our implementation, our computing envi-

ronment and how we selected our test suite. We then show that Fixation detects the bad fix in our

motivating example, as well as five others. We compare WPd to WP by showing how WPd accu-

mulates path predicates, and thus subsets of the true bug-triggering input domain ĩb, as a function

of its parameter d. Finally, we close by describing how a developer might use Fixation to discover

bad fixes and instead commit good ones.

2.4.1 Implementation

Many tools and techniques exist for detecting the disruption of a fix, so we focused our im-

plementation on determining fix coverage. We used the WALA framework [42] to extract the

concrete buggy path induced by a bug-triggering input and build a CFG, from which we extract

candidate paths using Algorithm 1. The extracted concrete path is the sequence of basic blocks

traversed during a particular execution of the program. ICFGn is produced by traversing the CFG

of each method and unrolling each loop the number of times it iterated in the concrete path and

an additional x times, according to an unrolling parameter x; thus, n = x+y, where y is a loop that

iterated the most times in the concrete path. The unrolling parameter allows Fixation to explore

paths that loop more often than the concrete path specifies. We then run our implementation of

Algorithm 1 over this ICFGn and feed each resulting path predicate to the SMT-solver CVC3 [4],

keeping only those that are satisfiable.

Java PathFinder is the Swiss army knife of Java verification [87]. Fixation uses JPF’s Symbc

component to symbolically execute the fixed program, using the weakest precondition produced

above as the precondition. If, given this precondition, the assertion fails in the fixed program,

Symbc generates a concrete input that causes the failure and returns it as a counterexample.

20

2.4.2 Experimental Setup

We built and ran our evaluations on a Dell XPS 630i with 2.4GHz QuadCPU processors and

3.2 GB of Memory, running Ubuntu 8.04 with kernel Linux2.6.24-21-generic. Fixation is built

for and runs on JRE 6.

Although we found many bad fixes in the three projects we explored, most of them were not

fit for evaluation: either the bug comments were unclear or no fix was uploaded. No convention

appears to govern the use of Bugzilla. Some programmers tend to write detailed logs of their

fix activity and upload their fix, but most do not. We selected the first six bugs we found whose

comments proved the existence of bad fix and that had an attached fix. Five of the bad fixes are

from Rhino and MultiTask is from Ant3.

Currently, Fixation does not directly work on the original, unmodified code, since both WPd

and Symbc (JPF v4.1) support only Java programs consisting of statements and expressions that

use only boolean and integer variables. Thus, we first manually sliced away all code not related

to the bugs that caused the bad fixes. We then transformed the code into an integer program that,

given the same inputs, traverses the same paths as the sliced version of the original program.

Since Fixation simply ignores non-integer language constructs, like function calls and field or

array accesses, we left them in place to approximate the original program as closely as possi-

ble. We manually transformed the conditionals in the original code into integer conditionals. To

rewrite fun instanceof NoSuchMethodCall, we introduced the integer variable fun_int and the

integer constant NoSuchMethodCall_int, then replaced the original conditional with the condi-

tional fun_int == NoSuchMethodCall_int. We added logic as necessary so that fun_int correctly

tracked the type of original object fun. At each point the bug manifested itself in the original

program, we added an assertion.

Our principal goal was to faithfully retain the inherent complexity of the program’s logic

3 The sliced and transformed versions of the bad fixes are available at http://wwwcsif.cs.ucdavis.edu/
~gu/bugs.htm.

21

http://wwwcsif.cs.ucdavis.edu/~gu/bugs.htm
http://wwwcsif.cs.ucdavis.edu/~gu/bugs.htm

Name
Loc Nodes Arcs CC

P Pi P Pi P Pi P Pi

NoSuchMethod 60 65 60 64 70 75 12 13
MultiTask 23 36 51 62 54 68 5 8
Substring 8 17 10 16 10 18 2 4
NativeErr 9 20 10 18 10 21 2 5
Loop 34 42 42 46 46 51 6 7
PathExp 114 133 103 119 124 147 23 30

Table 2.1: Bad fix CFG complexity.

through the transformation. Table 2.1 presents evidence that we succeeded; it shows the raw lines

of code, the nodes and arcs in the ICFG, and the Cyclomatic complexity (CC) of ICFGs before

(P) and after Pi transformation. For a program with one exit point, Cyclomatic complexity equals

the number of decision points in the program plus one [61]; we increase it in all six cases.

2.4.3 Experimental Results

Table 2.2 details the results of evaluating the six examples. The second column briefly de-

scribes each bad fix. The third column contains the counterexample Fixation reports. The fourth

column d presents the edit distance used to construct the candidate paths. C denotes the number

of paths Fixation explored before determining the fix to be bad. As a point of reference for C, Pa

is the total number of paths. Time records the time-to-completion.

Neglected Execution Paths The first four bad fixes in Table 2.2 are all due to a programmer’s

ignorance of potential buggy paths. Fixation detected the buggy paths missed by each of these bad

fixes while exploring a limited number of paths. Once it detected a bad fix, Fixation reported a

counterexample to help programmers refine their fixes. Since the bad fixes MultiTask, Substring

and NativeErr all exhibit essentially the same symptoms as NoSuchMethod, we describe only

NoSuchMethod.

22

Name Description Counterexample d C Pa Time (s)

NoSuchMethod Neglect an input.
fun == NoSuchMethodShim

&& op == Icode_TAIL_CALL
0 1 30 0.664

MultiTask Forget targets’ size can
be zero.

type == VECTOR && size

== 0

3 32 48 1.637

Substring Miss a condition. i == 1 && sT == SUB_NULL 2 3 3 0.598

NativeErr Miss handling an ex-
ception.

type == NativeError 2 4 5 0.938

Loop Fail to detect bugs in
loop.

i_c == 6 && m_l = 3 5 354 ∞ 42.542

PathExp

Miss bugs on different
paths.

tG == -10000 && cT ==

T_PRI

&& cI == T_NULL && op ==

T_SHNE

&& sC == T_TRUE

27 234 1021 8.308

PathExplosion2

Miss bugs on different
paths.

tG == -10000 && cT ==

T_PRI

&& cI == T_NULL && op ==

T_SHEQ && sC == T_FALSE &&

· · ·

6 237 1021 8.518

Table 2.2: Fixation results.

Figure 2.4.1 lists the original buggy code that required three fixes sin Section 2.2. The original

bug-triggering input fun == NoSuchMethodShim && op != Icode_TAIL_CALL reminded the pro-

grammer that there was no block for NoSuchMethodShim, so the programmer committed the first fix

in Figure 2.2.1. Fixation took the initial bug-triggering input and buggy code, ran with distance d

set to zero, and discovered the bug-triggering input domain fun != InterpretedFun && fun !=

Continuation && fun != IdFunctionObject. Fixation then symbolically executed the first fixed

program, imposing that predicate together with the set predicate of the program’s input domain

as the initial precondition4. Given that precondition, Fixation reached and implied an assertion

4Without the predicate of the program’s input domain, Symbc may generate nonsensical inputs. Assume that a
program’s input domain is x > 0∧ x < 10 and the computed weakest precondition is x > 5. With only x > 5, Symbc

23

1 instructionCounting ++;

2 ...

3 stackTop -= 1 + indexReg;

4 if(fun == InterpretedFun) {

5 return processInterFun ();

6 }

7 if(fun == Continuation) {

8 return processCon ();

9 }

10 if(fun == IdFunctionObject) {

11 return processIdFunObj ();

12 }

13 ...

14 assert(false); // Should never execute.

Figure 2.4.1: Sliced integer version of NoSuchMethod.

failure, then reported the fix bad and returned the counterexample fun == NoSuchMethodShim &&

op == Icode_TAIL_CALL.

A Bad Fix in a Loop Standard WP needs loop invariants, which are difficult to derive in

general. Current tools usually adopt heuristics at the cost of sacrificing precision [11, 21]. Here,

we show how WPd tackles the loop problem. Two bugs lurk in Figure 2.4.3 — one outside the

loop and the other inside. The initial bug-triggering input i_c == 5 && m_l == 2 exposes only

the bug outside the loop. The first committed fix resolved only this bug. We ran Fixation with

d = 5 on this first fix. Fixation explored 354 candidate paths, most of which were unsatisfiable.

For example, computing WP on the path that takes the true branch inside the for loop in its 4th

iteration generates the unsatisfiable clause i==3 && i>4. Disjuncting predicates from feasible

paths, Fixation reported the bug-triggering input domain (i_c == 5 && m_l > 2) || (i_c == 5

&& m_l <= 2) || (i_c == 6 && m_l > 2) || (i_c == 6 && m_l <= 2). Given this predicate as its

precondition, Fixation output the counterexample i_c == 6 && m_l == 3.

In essence, WPd is unaware of loops. The candidate paths over which WPd computes the

could generate the illegal input x = 20.

24

(a) Loop (b) PathExp 1 (c) PathExp 2

Figure 2.4.2: Feasible paths as a function of edit distance.

weakest precondition are all simple paths, drawn from an ICFGn. Figure 2.4.2a shows the num-

ber of feasible path predicates WPd discovered as a function of the edit distance. It illustrates

that WPd can produce useful results when given limited resources. Loop has infinite paths and

therefore infinite feasible paths, which we cut off at d = 14. By way of comparison, we ran this

example using ESC/Java2 and JPF Symbc, without our path restriction. Using its default settings5,

ESC/Java2 failed to report a potential postcondition violation. Given the domain restriction we

inferred in our first phase, our backward symbolic execution from the assertion failure, Symbc

does reach the assertion failure, but at the cost exploring all loop iterations up to the failure, as op-

posed to only those iterations within d of the failing iteration; more importantly, Symbc continued

searching until it reached loop iteration 1,000, when we killed it.

Path Explosion WPd balances scalability and coverage via its edit distance parameter d.

PathExp illustrates how Fixation detects potential bugs even when considering subsets of the po-

tentially feasible paths. PathExp occurred because Rhino failed to ensure (undefined === null)

evaluated to false as required by the ECMA (JavaScript) specification. In Figure 2.4.4, six nested

bugs are distributed in different paths. From the initial bug-triggering input, the programmer dis-

covered and fixed only bugs 1 and 2. We ran Fixation on PathExp, gradually increasing d as

5ESC/Java2 does not support assertions, so we translated each assertion into a postcondition annotation.

25

1 private static final int M_T = 2;

2 private static final int I_L = 4;

3 ...

4 public AdapterClass createAdapterClass(

5 String adapterName , Scriptable ins[],

6 int adapterType , int i_c , int m_l) {

7 ...

8 assert(i_c <= I_L);

9 ...

10 for(int i = 0; i < i_c; i++) {

11 assert(i <= I_L && m_l <= M_T);

12 ...

13 }

14 ...

15 }

Figure 2.4.3: Sliced integer version of Loop.

shown in Figure 2.4.2b. As the figure depicts, WPd finds no additional paths until d = 27. Ex-

ploring Figure 2.4.4, we find that bugs 3–6 are all in the else block of the first if statement, with

conditional (tG == -1). A path that traverses any of bugs 3–6 shares few nodes with the original

buggy path, which traverses bugs 1 and 2. At d = 27, Fixation finds the new feasible predicate tG

!= -1 && c_T == T_PRI && c_I == T_NULL && op == T_SHNE && sC == T_TRUE after exploring 234

paths. Armed with this predicate, Fixation can symbolically execute the first fixed program and

report a counterexample exposing bugs 3 and 4.

Perhaps, as usual, the programmer was harried and rushing. In any case, he committed a fix

that corrected only bugs 1 and 2. Had the programmer run Fixation, he would have been aware of

the counterexample that his fix failed to handle. Figure 2.4.2c shows the result of running Fixation

with increasing d on the partially fixed program. At d = 5, Fixation detects two new feasible

weakest preconditions after exploring 237 paths. These predicates generate two counterexamples

that identify the remaining two bugs. WPd offers a flexible, principled, and resource-judicious

way to search paths near a bug-triggering path.

26

1 if (tG == -1) {

2 if (c_T == T_PRI && c_I == T_NULL) {

3 //bug 1

4 assert(op!= T_SHEQ && op!= T_SHNE);

5 ... // assignments to op

6 //bug 2

7 assert(op!= T_SHEQ && op!= T_SHNE);

8 ...

9 }

10 } else {

11 if (c_T == T_PRI && c_I == T_NULL) {

12 ...

13 //bug 3

14 assert(op!= T_SHEQ && op!= T_SHNE);

15 ... // assignments to op

16 //bug 4

17 assert(op!= T_SHEQ && op!= T_SHNE);

18 ...

19 if (op == T_EQ || op == T_SHEQ) {

20 if (sC== T_FALSE) {

21 markLabel(popGOTO , popStack);

22 addByteCode(ByteCode_POP);

23 //bug 5

24 assert(op!= T_SHEQ && op!= T_SHNE);

25 }

26 ...

27 //bug 6

28 assert(op!= T_SHEQ && op!= T_SHNE);

29 }

30 }

31 }

Figure 2.4.4: Sliced integer version of PathExplosion.

27

2.4.4 Threats to Validity

Fixation’s edit distance parameter d allows its user to trade-off performance against the com-

pleteness of Fixation’s approximation of the bug-triggering input domain. Determining the op-

timal setting of d to obtain a better result is an interesting problem. The paths WPd traverses

depends on d as well as the structure of the CFG. Gradually increasing d until detecting interest-

ing paths or exceeding a resource threshold, such as time or number of paths explored, appears to

be a good heuristic.

Fixation is currently not optimized. Caching the predicates of already explored paths would

avoid redundant computation. Tabulating function summaries for reuse can also cache WP com-

putations. Adopting lightweight predicate on-the-fly feasibility checking, la Snugglebug [11],

might remove infeasible paths at an earlier stage.

We model bugs as assertion failures. Thus, Fixation’s applicability depends on assertions

being available, inferred, or written by a programmer. In many cases, obtaining such an assertion

is trivial (as in thrown, fatal, exceptions). In others, it can be difficult and is an external threat

to the validity of our approach: an empirical study to investigate and classify those cases would

help users know when Fixation is and is not practical. As with any manual study, our results

may exhibit selection bias. A larger empirical study would also help in showing the technique

generalizes.

We inherit our limitation to integer programs from our symbolic execution components. This

restriction makes the values of d we report optimistic as we operate on slightly smaller, sliced,

versions of the original program. Thus, our reliance on slicing is both a construct and, because

slicing limits the applicability and scalability of our approach, an external, threat to validity. As the

state-of-the-art in symbolic execution improves (e.g. via techniques such as delta-execution [15]),

so will the applicability of our approach. Nonetheless, the evaluation results are encouraging.

Fixation detects bad fixes and reports counterexamples that can help programmers realize the

28

limitation of particular fix. WPd has shown itself to be a promising approach to managing the

path-explosion problem and side-stepping the loop invariant problems.

2.5 Related Work

Our work is the first to offer a systematic methodology for assessing the quality of a bug fix. It

is related to the large body of work on software testing and analysis. This section summarizes the

most closely related efforts. We divide related work into three categories: practical computation of

weakest precondition, automatic test input generation, and studies of bug fixes and code changes.

2.5.1 Practical Computation of WP

Dijkstra’s weakest precondition [17] has been extended to check the correctness of object-

oriented programs. ESC/Java pioneered its use in Java [21]. ESC/Java requires user-defined

annotations to specify the precondition, postcondition and invariants. By checking the validity of

the verification condition generated from guarded commands, ESC/Java warns of potential bugs

such as postcondition violations or null pointer dereferences. ESC/Java’s checking is modular so

it relies on user annotation for procedure calls. To handle loops, it heuristically iterates 1.5 times.

Snugglebug [11] presents an interprocedural WP technique. It introduces directed call graph

construction, generalization, and a current search heuristic to improve the performance and preci-

sion. Polymorphism means that Java programs face the dynamic-dispatch problem when encoun-

tering function calls; directed call graph construction helps find the exact callee without exhaus-

tive search. Generalization enhances function summary reuse using tabulation. The current search

heuristic of Snugglebug prioritizes paths with less looping or call depth.

Path-based WP computation complements WP computation over an entire program. Applying

counterexample-driven refinement, BLAST [37] and SLAM [3] check an abstract path to see if it

corresponds to a concrete trace of the program reaching an error state. He and Gupta proposed

29

path-based weakest precondition to locate and correct an erroneous statement in a function [36].

Their path-based weakest precondition is similar to our WPd when d = 0. We have assumed a fix

at least covers the original bug-triggering input, so single-path approaches may not handle the bad

fix problem. Our approach generalizes path-based WP by parameterizing the distance budget d

and allowing arbitrary non-zero distances.

Our WPd filters the paths over which standard WP computes. Instead of computing WP on all

paths, WPd approximates the true bug-triggering input domain by computing WP on paths that

are close to the original buggy path. Users control the performance and coverage of WPd through

its edit distance parameter. As d increases, WPd generates more paths and takes more time to

compute. Another insight of WPd is that computing the weakest precondition of simple paths

near a known concrete path is precise and does not rely on heuristics: the concrete path specifies

how to resolve a dynamic dispatch target or determine how often to traverse a loop.

2.5.2 Automatic Test Input Generation

Automatic test input generation is an active area of research. Dozens of techniques and tools

have been proposed. For brevity, we highlight only some of the closely related work.

CUTE [82] and DART [24] combine concrete and symbolic execution to generate test inputs

for C programs. Java PathFinder (JPF) [87] performs generalized symbolic execution to generate

inputs for Java programs. We use Symbc from JPF [72] to generate counterexamples. We impose

preconditions to guide the symbolic execution: Given the set predicate of an approximation of the

bug-triggering input domain as the precondition, we ask whether the fixed program can reach the

assertion failure or not. This precondition restricts the search space and enhances the performance

of Symbc. If Symbc outputs a concrete input that causes the assertion to fail, we deem the fix bad

and return that input as a counterexample. Csallner et al.’s work [13] combines static checking and

concrete test-case generation. They perform random testing using the counterexample predicate

30

generated by ESC/Java. Random testing may miss some paths. We symbolically execute all paths

under imposed precondition. Beyer et al. extend BLAST to generate testcases by finding inputs

that satisfy predicates collected from all paths in the program [7]. We also collect predicates to

generate inputs, but for a different purpose: Beyer et al. seek to exhaustively test one program,

while we use symbolic execution on a buggy and a fixed version of a program to evaluate fixes.

2.5.3 Bug Fixes and Code Changes

Research on bug fixes mainly falls into two camps: mining software repositories and empirical

study. BugMem [48] mines bug fix history to predict potential bugs. Kim et al. predict faults by

consulting bug and fix caches they build [49]. Their work shows that bugs exhibit locality and

inspired our design of WPd . Anvik et al. applied machine learning to find programmers who

should be responsible for the fix [1]. Weiss et al. predict fixing effort needed for a particular

bug [91] and Śliwerski et al. proposed a way to locate code fixed using repository mining [83].

Most of the work in this domain is probabilistic and may not be precise. We propose a sound

analysis for evaluating bug fixes: every bad fix we detect is an actual bad fix.

Code change is fundamental to software development. Ryder and Tip propose change impact

analysis to find failure inducing changes and thus judge the quality of change [79, 93]. We con-

sider a subset of the changes they consider, specifically bug fixes. Change impact analysis applies

delta debugging on a sequence of atomic changes drawn from the comparison of two versions

to locate suspicious changes, while we combine our distance-bounded weakest precondition with

symbolic execution to judge the quality of a fix. Differential symbolic execution [68] seeks to

precisely characterize the differences between two program versions. DSE exploits abstract sum-

maries of code that is common between two program versions, as the effects of such code do not

contribute to differences. In contrast, Fixation seeks to identify not only issues of disruption, but

also coverage: a subset of inputs for which both versions behave the same, viz. by manifesting a

31

particular bug.

McCamant and Ernst compare operational abstractions of components and their potential re-

placements to predict the safety of a component upgrade [62]. Our approach is more fine-grained:

assertions need not refer to the modified component as operational abstractions must. Their focus

is different from ours: they seek to verify that a newer component will behave as expected under

the conditions its predecessor was exposed to, and we seek to verify that a component that does

indeed behave differently (due to a bug fix) does so safely (i.e. without disruption) and completely

(i.e. handling all of ĩb).

Regression testing validates modified software to ensure changed code has not adversely af-

fected unchanged code [34, 67, 77, 80]. The cost of regression testing has been extensively studied

and shown that test suite size can be reduced without compromising safety [26, 76]. Currently,

we combine regression and random testing to check the disruption of a fix.

2.6 Discussion and Future Work

When run on buggy and allegedly fixed versions of a program, Fixation reports a new bug-

triggering input drawn from an under-approximation of the true bug-triggering input domain. This

new bug-triggering input is a counterexample to the implicit assertion that the fix is good. Fixation

can miss bad fixes if it fails to explore a buggy path, but it is sound when it asserts that a fix is bad:

every counterexample Fixation reports is certain to cause the fixed program fail the assertion.

We have introduced the bad fix problem and provided empirical evidence of its existence in

real projects. We have formalized the bad fix problem and proposed an approach that combined

our distance-bounded weakest precondition with symbolic execution to evaluate fixes and detect

bad ones. We implemented our idea in a prototype Fixation and evaluated it: Fixation was able to

detect bad fixes extracted from real-world programs.

In the future, we plan to extend Fixation to support more language features in Java and make

32

it applicable to real code. We intend to implement the optimizations mentioned. Unit testing is

an immediate application of Fixation. A failed testcase is an ideal original bug-triggering input

for Fixation. Self-contained assertions in a test suite will allow Fixation to work directly on the

code and obviate manually constructing and inserting the assertion. The fact that the distribution

of code tested by unit testing is relatively local is likely to be a good fit for WPd .

33

Chapter 3

OSCILLOSCOPE: Reusing Debugging

Knowledge via Trace-based Bug Search

Some bugs, among the millions that exist, are similar to each other. One bug-fixing tactic is to

search for similar bugs that have been reported and resolved in the past. A fix for a similar bug can

help a developer understand a bug, or even directly fix it. Studying bugs with similar symptoms,

programmers may determine how to detect or resolve them. To speed debugging, we advocate

the systematic capture and reuse of debugging knowledge, much of which is currently wasted.

The core challenge here is how to search for similar bugs. To tackle this problem, we exploit

semantic bug information in the form of execution traces, which precisely capture bug semantics.

This research introduces novel tool and language support for semantically querying and analyzing

bugs.

We describe OSCILLOSCOPE, an Eclipse plugin, that uses a bug trace to exhaustively search

its database for similar bugs and return their bug reports. OSCILLOSCOPE displays the traces

of the bugs it returns against the trace of the target bug, so a developer can visually examine

the quality of the matches. OSCILLOSCOPE rests on our bug query language (BQL), a flexible

query language over traces. To realize OSCILLOSCOPE, we developed an open infrastructure that

34

consists of a trace collection engine, BQL, a Hadoop-based query engine for BQL, a trace-indexed

bug database, as well as a web-based frontend. OSCILLOSCOPE records and uploads bug traces to

its infrastructure; it does so automatically when a JUnit test fails. We evaluated OSCILLOSCOPE

on bugs collected from popular open-source projects. We show that OSCILLOSCOPE accurately

and efficiently finds similar bugs, some of which could have been immediately used to fix open

bugs.

3.1 Introduction

Millions of bugs have existed. Many of these bugs are similar to each other. When a program-

mer encounters a bug, it is likely that a similar bug has been fixed in the past. A fix for a similar

bug can help him understand his bug, or even directly fix his bug. Studying bugs with similar

causes, programmers may determine how to detect or resolve them. This is why programmers

often search for similar, previously resolved, bugs. Indeed, even finding similar bugs that have not

been resolved can speed debugging.

We theorize that, in spite of the bewildering array of applications and problems, limitations of

the human mind imply that a limited number of sources of error underlie bugs [51]. In the limit,

as the number of bugs in a bug database approaches all bugs, an ever larger proportion of the bugs

will be similar to another bug in the database. We therefore hypothesize that, against the backdrop

of all the bugs programmers have written, unique bugs are rare.

Debugging unites detective work, clear thinking, and trial and error. If captured, the knowl-

edge acquired when debugging one bug can speed the debugging of similar bugs. However, this

knowledge is wasted and cannot be reused if we cannot search it. The challenge is to efficiently

discover similar bugs. To answer this challenge, this research employs traces to precisely capture

the semantics of a bug. Informally, an execution trace is the sequence of operations a program

performs in response to input. Traces capture an abstraction of a program’s input/output behavior.

35

A bug can be viewed as behavior that violates a program’s intended behavior. Often, these viola-

tions leave a footprint, a manifestation of anomalous behavior (Engler et al. [20]) in a program’s

stack or execution trace.

This research introduces novel tool and language support to help a programmer accurately and

efficiently identify similar bugs. To this end, we developed OSCILLOSCOPE, an Eclipse plugin,

for finding similar bugs and its supporting infrastructure. At the heart of this infrastructure is our

bug query language (BQL), a flexible query language that can express a wide variety of queries

over traces. The OSCILLOSCOPE infrastructure consists of 1) a trace collector, 2) a trace-indexed

bug database, 3) BQL, 4) a query engine for BQL, and 5) web and Eclipse user interfaces. OS-

CILLOSCOPE is open and includes the necessary tool support to facilitate developer involvement

and contribution.

The OSCILLOSCOPE database contains and supports queries over both stack and execution

traces. Stack traces are less precise but cheaper to harvest than execution traces. We quantify this

precision trade-off in Section 3.4.4. When available, stack traces can be very effective, especially

when they capture the program point at which a bug occurred [6, 81]. Indeed, a common practice

when bug-fixing is to paste the error into a search engine, like Google. Usually, the error generates

an exception stack trace. Anecdotally, this tactic works surprisingly well, especially with the errors

that novices make when learning an API. OSCILLOSCOPE generalizes and automates this practice,

making systematic use of both execution and stack traces.

To validate our hypothesis that unique bugs are rare, we collected 877 bugs from the Mozilla

Rhino and Apache Commons projects. We gave each of these bugs to OSCILLOSCOPE to search

for similar bugs. We manually verified each candidate pair of similar bugs that OSCILLOSCOPE

reported. If we were unable to determine, within 10 minutes, that a pair of bugs was similar,

i.e. knowing one bug a programmer could easily fix the other, we conservatively deemed them

dissimilar. Using this procedure, we found similar bugs comprise a substantial portion of these

bugs, even against our initial database: 273
877 ≈ 31%. OSCILLOSCOPE finds duplicate bug reports

36

as a special case of its search for similar bugs; while duplicates comprised 74 of the 273 similar

bugs, however, the majority are nontrivially similar. These bugs are field bugs, not caught during

development or testing, and therefore less likely to be similar, a fact that strengthens our hypoth-

esis. When querying unresolved bugs against resolved bugs in the Rhino project, OSCILLOSCOPE

matches similar bugs effectively, using information retrieval metrics we precisely define in Sec-

tion 3.4.1. Of the similar bugs OSCILLOSCOPE returns, 48 of the could have been immediately

used to fix open bugs.

Finding bug reports similar to an open, unresolved bug promises tremendous practical impact:

it could reuse the knowledge of the community to speed debugging. Linus’ Law states “given

enough eyeballs, all bugs are shallow.” An effective solution to the bug similarity problem will

help developers exploit this precept by allowing them to reuse the eyes and minds behind past bug

fixes. OSCILLOSCOPE has been designed and developed to this end.

We make the following main contributions:

• We articulate and elaborate the vision that most bugs are similar to bugs that have already

been solved and take the first steps toward a practical tool built on traces that validates and

shows the promise of this vision;

• We present OSCILLOSCOPE a tool that uses traces to find similar bugs and reuse their de-

bugging knowledge to speed debugging;

• We have developed an open infrastructure for OSCILLOSCOPE, available at http://bql.

cs.ucdavis.edu, comprising trace collection, a trace-indexed bug database, the bug query

language BQL, a Hadoop-based query engine, and web-based and Eclipse plugin user in-

terfaces; and

• We demonstrate the utility and practicality of our approach via the collection and study of

bugs from the Apache Commons and Mozilla Rhino projects.

37

http://bql.cs.ucdavis.edu
http://bql.cs.ucdavis.edu

1 DynaBean myBean = new LazyDynaBean ();

2 myBean.set("myDynaKey", null);

3 Object o = myBean.get("myDynaKey");

4 if (o == null)

5 System.out.println(

6 "Expected result."

7);

8 else

9 System.out.println(

10 "What actually prints."

11);

Figure 3.2.1: When a key is explicitly bound to null, LazyDynaBean does not return null.

3.2 Illustrating Example

Programmers must often work with unfamiliar APIs, sometimes under the pressure of a dead-

line. When this happens, a programmer can misuse the API and trigger cryptic errors. The

following section describes a real example.

Java programmers use getter and setter methods to interact with Java beans. To handle dy-

namic beans whose field names may not be statically known, Java provides Reflection and

Introspection APIs. Because these APIs are hard to understand and use, the Apache BeanUtils

project provides wrappers for them. BeanUtils allows a programmer to instantiate a LazyDynaBean

to set and get value lazily without statically knowing the property name of a Java bean, as on line 2

of Figure 3.2.1. When an inexperienced programmer used LazyDynaBean in his project, he found,

to his surprise, that, even though he had explicitly set a property to null, when he later retrieved

the value from the property, it was not null. Figure 3.2.1 shows sample code that exhibits this

bug: executing it prints “What actually prints.”, not “Expected result.”.

Since this behavior was quite surprising to him, the programmer filed bug BeanUtils-342 on

March 21, 2009. Five months later, a developer replied, stating that the observed behavior is the

intended behavior. In Figure 3.2.2, LazyDynaBean’s get method consults the internal map values

on line 9. If the result is null, the get method first calls the method createOtherProperty, which

38

1 public Object get(String name) {

2 if (name == null) {

3 throw new IllegalArgumentException(

4 "No property name specified"

5);

6 }

7
8 // Value found

9 Object value = values.get(name);

10 if (value != null) {

11 return value;

12 }

13
14 // Property doesn’t exist

15 value = createProperty(name ,

dynaClass.getDynaProperty(name).getType ());

16
17 if (value != null) {

18 set(name , value);

19 }

20
21 return value;

22 }

Figure 3.2.2: LazyDynaBean.get(String name) from revision r295107, Wed Oct 5 20:35:31
2005.

by default calls createProperty to instantiate and return an empty object. In the parameter list

of createOtherProperty, get calls getDynaProperty, which returns Object.class on a name

bound to null. He did, however, suggest a workaround: subclass LazyDynaBean and override its

createOtherProperty method to return null when passed Object.class as its type parameter.

This in turn would cause LazyDynaBean.get() to return null at line 26, the desired behavior.

How could OSCILLOSCOPE have helped the programmer solve this problem? Assuming the

OSCILLOSCOPE database had been populated with traces from the BeanUtils project, a program-

mer would use OSCILLOSCOPE to look for bugs whose traces are similar to the trace for her bug,

then return their bug reports. Then she would examine those bug reports to look for clues to help

her understand and fix her bug. Ideally, she would find a fix that she could adapt to her bug.

39

Figure 3.2.3: OSCILLOSCOPE returns bug reports similar to BeanUtils-342.

Figure 3.2.4: Snapshot of the bug report for BeanUtils-24.

Bug BeanUtils-342 is the actual bug whose essential behavior Figure 3.2.1 depicts. To use

OSCILLOSCOPE to search for bugs similar to BeanUtils-342, a developer can first issue a pre-

defined query. When a developer does not yet know much about their current bug, a predefined

query that we have found to be particulary effective is the “suffix query”. This query deems two

bugs to be similar when the suffixes of their traces can be rewritten to be the same; its effec-

tiveness is due to the fact that many bugs terminate a program soon after they occur. When a

developer specifies the suffix length and edit distance and issues the suffix query to search for

bugs similar to BeanUtils-342, OSCILLOSCOPE returns the bug reports in Figure 3.2.3. The first

entry is BeanUtils-24, where the get method of LazyDynaBean did not return null even when the

property was explicitly set to null.

40

OSCILLOSCOPE executes the suffix query by computing the edit distance of the suffix of

BeanUtils-342’s trace against the suffix of each trace in its database. Here is the tail of the

method call traces of BeanUtils-342 and BeanUtils-24, the closest bug OSCILLOSCOPE found:

BeanUtils-342 BeanUtils-24

... ...

LazyDynaBean set BasicDynaClass setProperties

LazyDynaBean isDynaProperty DynaProperty getName

LazyDynaClass isDynaProperty DynaProperty getName

LazyDynaClass getDynaProperty LazyDynaBean isDynaProperty

DynaProperty getType LazyDynaClass isDynaProperty

LazyDynaBean createProperty LazyDynaClass getDynaProperty

LazyDynaBean createOtherProperty LazyDynaBean get

LazyDynaBean set LazyDynaBean createProperty

DynaProperty getType LazyDynaBean set

LazyDynaBean class$ DynaProperty getType

Each method call in these two traces is an event; informally, OSCILLOSCOPE looks to match

events, in order, across the two traces. Here, it matches the two calls to isDynaProperty followed

by getDynaProperty, then the calls to get and set. Intuitively, the distance between these two

traces is the number of method calls one would have to change to make the traces identical.

Figure 3.2.4 is the snapshot of the bug report of BeanUtils-24. The same developer who

replied to BeanUtils-342 had also replied to BeanUtils-24 four years earlier. From his fix to

BeanUtils-24, the fix for BeanUtils-342 is immediate. With the help of OSCILLOSCOPE, the

programmer could have solved the bug in minutes, instead of possibly waiting five months for

the answer. This example shows how OSCILLOSCOPE can help a programmer find and reuse the

41

Figure 3.3.1: Debugging with the OSCILLOSCOPE Framework.

knowledge embodied in a bug report to fix an open bug.

3.3 Design and Realization of OSCILLOSCOPE

This section introduces the key components of OSCILLOSCOPE: its user-level support for

trace-based search for similar bugs, its bug query language, and core technical issues we overcame

to implement it.

3.3.1 User-Level Support

To support trace-based search for similar bugs, OSCILLOSCOPE must harvest traces, allow

users to define bug similarity either by selecting predefined queries or by writing custom queries,

process those queries to search a trace-indexed database of bug reports, display the results, and

present a user interface that makes this functionality easy to use. Figure 3.3.1 depicts the archi-

tecture of OSCILLOSCOPE that supports these tasks.

Eclipse Plugin Most developers rely on an integrated development environment (IDE); to in-

tegrate OSCILLOSCOPE smoothly into the typical developer’s tool chain and workflow, especially

to complement the traditional debugging process, we built OSCILLOSCOPE as an Eclipse plugin.

42

OSCILLOSCOPE also supports a web-based user interface, described in a tool demo [29].

OSCILLOSCOPE automates the instrumentation of buggy programs and the uploading of the

resulting traces. When a developer who is using OSCILLOSCOPE encounters a bug and wants to

find the bug reports similar to her current bug, she tells OSCILLOSCOPE to instrument the buggy

code, then re-triggers the bug. OSCILLOSCOPE automatically uploads the resulting trace to its

trace-indexed database of bug reports.

Predefined Queries OSCILLOSCOPE is equipped with predefined queries; in practice, users need

only select a query and specify that query’s parameters, such as a regular expression over method

names or an edit distance bound, i.e. a measure of the cost of writing one trace into another which

Section 3.3.2 describes in detail. Since bugs often cause a program to exit quickly, we have found

that the suffix query, (introduced in Section 3.2) which compares short suffixes of traces with a

modest edit distance bound, to be quite effective. Section 3.4.1 describes how we discovered and

validated this suffix query. The bulk of OSCILLOSCOPE’s predefined queries, like the suffix query,

have simple, natural semantics. Once the buggy trace has been uploaded, the developer can allow

OSCILLOSCOPE to automatically use the last selected query to search for similar bugs and return

their bug reports, or select a query herself. OSCILLOSCOPE’s query engine, which is based on

Hadoop, performs the search.

When a JUnit test fails, these steps occur automatically in the background: OSCILLOSCOPE

instruments and reruns the test, uploads the resulting test to the database, then, by default, issues a

predefined suffix query to search for similar bugs and returns the results. This feature is especially

valuable as it targets bugs that occur during development and are more likely to be similar to other

bugs than field bugs which have evaded regression testing, inspection and analysis to escape into

deployment. To speed response time, OSCILLOSCOPE returns partial results as soon as they are

available. Users refresh to see newer results. OSCILLOSCOPE can also visually compare traces to

help developers explore and understand the differences and similarities between two traces.

To find the bug report with the fix to the bug in our illustrating example in Section 3.2, the

43

Figure 3.3.2: Selecting execution trace granularity in the OSCILLOSCOPE Eclipse plugin.

developer would direct OSCILLOSCOPE to instrument the buggy code, re-triggered the bug, then

issued the default suffix query. Behind the scenes, OSCILLOSCOPE would harvest and upload the

trace, then execute the query and display the resolved bug report with the relevant fix.

Trace Granularity Using the OSCILLOSCOPE, programmers can trace code at statement or

method granularity, as show in Figure 3.3.2. Statement-granular traces allow OSCILLOSCOPE to

support the search for local bugs, bugs whose behavior is contained within a single method, and

facilitates matching bugs across different projects that run on the same platform and therefore use

the same instruction set architecture. OSCILLOSCOPE supports coarser granularity traces, such

as replacing a contiguous sequence of method call on a single class with that class name, by

post-processing.

Chop Points Instrumentation is expensive, so we provide OSCILLOSCOPE provides a chop

operator that allows programmers to set a chop point, a program point at which tracing starts or

ends. A programmer can also use chop points to change the granularity of tracing from method

calls to statements. By restricting tracing to occur within a pair of chop points, chopping enables

the scalability of fine-grained, i.e. statement-granular, tracing. When debugging with OSCILLO-

SCOPE, a developer will resort to setting chop points to collect a partial trace for their current

bug when collecting a complete trace is infeasible. Knowing where to place chop points involves

44

guesswork; its payoff is the ability to query the OSCILLOSCOPE database. Thus, the OSCILLO-

SCOPE database contains partial traces and traces that may contain events at different levels of

granularity.

In a world in which OSCILLOSCOPE has taken hold, developers will routinely upload traces

when they encounter a bug. To this end, we have setup an open bug database, available at our

website, and welcome developers to contribute both the buggy traces and the knowledge they

acquired fixing the bugs that caused them. Our tool is not just for students and open source

developers. We have made the entire OSCILLOSCOPE framework privately deployable, so that

companies can use OSCILLOSCOPE internally without having to share their bug database and

worry about leaking confidential information.

We have posited that, when two bugs may share a root cause, this fact manifests itself as a

similarity in their traces. Prior to this region of similarity, of course, the two traces might be

arbitrarily different. Internally, OSCILLOSCOPE relies on BQL, its bug query language, and the

insight and ingenuity of query writers to write BQL queries that isolate the essence of a bug;

these queries define bug similarity and drive OSCILLOSCOPE’s search for similar bugs. Thus,

OSCILLOSCOPE rests on BQL, which we describe next.

3.3.2 BQL: A Bug Query Language

A bug is behavior that violates a user’s requirements. The core difficulty of defining a bug

more precisely is that different users, even running the same application, may have different re-

quirements that change over time. In short, one user’s bug can be another’s feature. To tackle this

problem, we have embraced expressivity as the central design principle of BQL; it allows writ-

ing of queries that embody different definitions of buggy behavior. To support such queries, our

database must contain program behaviors. Three ways to capture behavior are execution traces,

stack traces, and vector summarizations of execution traces. An execution trace is a sequence of

45

events that a program emits during execution and precisely captures the behavior of a program

on an input. Collecting execution traces is expensive and they tend to be long, mostly containing

events irrelevant to a bug. Stack traces encode execution events keeping only the current path

from program entry to where a bug occurs. Finally, one can summarize an execution trace into a

vector whose components are a fixed permutation of a program’s method calls. For example, the

summarization of trace ABA into a vector whose components are ordered alphabetically is 〈2,1〉,

which discards the order of events. In Section 3.4.4 we quantify the loss of precision and recall

these approaches entail. Therefore, we define bug similarity and support queries for bug data,

such as a fix, in terms of execution traces.

Terminology

T denotes the set of all traces that a set of programs can generate. Each trace in T captures an

execution of a program (We discuss our data model in more detail in Section 3.3.2). B is the set

of all bugs. The bug b ∈ B includes the afflicted program, those inputs that trigger a bug and the

traces they induce, the reporter, dates, severity, developer commentary, and, ideally, the bug’s fix.

The function t : B→ 2T returns the set of traces that trigger b. The set of all unresolved bugs U

and the set of all resolved bugs R partition B. We formalize the ideal bug similarity in the oracle

φ . For b0,b1 ∈ B,

similar(b0,b1) =

 T if b0 is similar to b1 wrt φ

F otherwise
(3.3.1)

which we use to define, for b ∈ B,

JbK = {x ∈ B | similar(b,x)}, (3.3.2)

the set of all bugs that are, in fact, similar to b.

46

For b0,b1 ∈ B, and the query processing engine Q,

match(b0,b1) =

 T if b0 is similar to b1 wrt Q

F otherwise
(3.3.3)

which we use to define

[b] = {x ∈ B | match(b,x)}, (3.3.4)

the set of all bugs that the query for b returns.

Ideally, we would like JbK= [b], but for debugging it suffices that we are 1) sound: match(bi,b j)⇒

similar(bi,b j), and 2) relatively complete: similar(bi,b j)⇒ ∃bk ∈ Jb jK−{bi} match(bi,bk), for

any bi 6= b j. In Section 3.4, we demonstrate the extent to which we use traces to achieve these

goals.

Both JbK and [b] are reflexive: ∀b ∈ B, b ∈ JbK∧b ∈ [b], which means that {b} ⊆ JbK∩ [b] 6= /0.

We are often interested in bugs similar to b other than b itself, so we also define

Ub = [b]∩U−{b} unresolved bugs that match b (3.3.5)

Rb = [b]∩R−{b} resolved bugs that match b. (3.3.6)

The syntax of BQL

Figure 3.3.3 defines the syntax of BQL, which is modeled after the standard query language

SQL. The query “SELECT b FROM ALL WHERE INTERSECT?(b, "getKeySet")” returns all bugs whose

traces have a nonempty intersection with the set of all traces that call the getKeySet method. The

clause FROM Project1, Project2 restricts a query to bugs in Project1 or Project2. The terminal

ALL removes this restriction, and is the default when the FROM clause is omitted.

Predicates In addition to the standard Boolean operators, BQL provides SUBSET?, INTERSECT?,

47

〈query〉 ::= SELECT 〈bug〉+[FROM 〈db〉+]
WHERE 〈cond〉 [DISTANCE 〈distance〉]

〈db〉 ::= X | ALL
〈cond〉 ::= 〈cond〉&& 〈cond〉 | 〈cond〉—— 〈cond〉 | (〈cond〉)

| INTERSECT?(〈bug〉,〈pat〉[,d][,n])
| JACCARD?(〈bug〉,〈pat〉, t[,d])
| SUBSET?(〈bug〉,〈pat〉[,d])

〈bug〉 ::= Traces | [len]〈bug〉 | 〈bug〉[len]
| PROJ(〈bug〉,S)

〈pat〉 ::= σ | 〈bug〉 | 〈pat〉— 〈pat〉 | 〈pat〉∗ | (〈pat〉)

Figure 3.3.3: The syntax of BQL: X is a project; for the bug b, Traces = t(b); σ is an event; and
S is a set of events.

and JACCARD? predicates to allow a programmer to match a bug with those bugs whose traces

match the pattern, when the target bug’s traces are a subset of, have a nonempty intersection

with, or overlap with those traces. For example, “SELECT b FROM ALL WHERE SUBSET?(b,b527)”

returns those bugs whose traces are a subset of b527’s traces.

Traces may differ in numerous ways irrelevant to the semantics of a bug. For example, two

traces may have taken different paths to a buggy program point or events with the same semantics

may have different names. Concrete execution traces can therefore obscure semantic similarity,

both cross-project and even within project. As a first step toward combating the false negatives

this can cause, BQL allows two traces to differ in Levenshtein edit distance within a bound.

The Levenshtein distance of two strings is the minimum number of substitutions, deletions and

insertions of a single character needed to rewrite one string into another. The Levenshtein distance

of 011 and 00 is 2 (011→ 01→ 00).

The application of edit distance to a bug’s traces generates a larger set of strings. Thus, BQL

adds the distance parameter d to its set predicates to bound the edit distance used to produce traces

during a similarity search. Edit distance relaxes matching and can introduce false positives. To

48

combat this source of imprecision, the INTERSECT? operator also takes n, an optional constraint

that specifies the minimum number of a bug’s traces that must be rewritten into one of the target

bug’s traces. For example, assume b527 contains multiple traces that trigger an assertion failure

and a programmer wants to search for other bugs with multiple traces. The program could use

the predicate INTERSECT?(b, b527, 50, 3), which forms the set of pairs of traces t(b)× t(b527)

and is true if the members of at least 3 of these pairs can be rewritten into one another using 50

edits.

Operators When we know enough about the problem domain or salient features of our bug, we

may wish to restrict where traces match. The terminal behavior of a buggy program, embodied

in the suffix of its execution trace, often captures a bug’s essential features. Or we may wish

to consider only those traces in which the application initialized in a certain fashion and restrict

attention to prefixes. Thus, BQL provides prefix and suffix operators. These operators use array

bracket notation and return the specified length prefix or suffix.

A programmer may wish to project only a subset of events in a trace. For example, when

searching for bugs similar to b527, a developer may want to drop methods in the log package to

reduce noise. To accomplish this task, he writes

SELECT bug FROM ALL WHERE SUBSET ?(

PROJ(bug , "read ,write ,close"), b527, 10)

where "read,write,close" names the only methods in the trace in which we are interested.

Patterns The last line of Figure 3.3.3 defines the BQL’s pattern matching syntax. Here, the

terminals are either (through the 〈bug〉 the rule), t(bug), the set of traces that trigger a bug, or

σ ∈ Σx, a symbol (i.e. event) in a trace. Patterns that mix symbols from different event alphabets

can succinctly express subsets of traces. For instance, a query writer may wish to find bugs that

traverse the class ca on the way to the method m1 in cb and then execute some method in the class

cc. The pattern cam1cc achieves this. As a concrete example, consider a developer who wishes

49

Figure 3.3.4: Hierarchy of trace event alphabets.

to find all traces that invoke methods in the class PropertyConfiguration (abbreviated PC in the

query below) before invoking the method escapeJava in StringEscapeUtils; this generates the

query

SELECT bug FROM Configuration WHERE

INTERSECT ?(bug , "PC escapeJava").

Semantics

BQL rests on a hierarchy of disjoint alphabets of execution events, shown in Figure 3.3.4.

At the lowest level, execution events are instructions. An instruction symbol encodes an opcode

and possibly its operands; a method symbol encodes a method’s name and possibly its signature

and parameters. Sequences of instructions define statements in the source language; sequences of

statements define basic blocks whose sequences define a path through a method. Thus, a project

defines a sequence of languages of traces defined over each alphabet in its hierarchy.

Formally, a project defines a disjoint sequence of alphabets Σi, i∈N where Σ1 is the instruction

alphabet. Let L (P@Σ) denote the language of traces the project P generates over the event

alphabet Σ. Then, for the project P and its alphabets, each symbol in a higher level language

50

JSELECT (b1, · · · ,bn) FROM (db1, · · · ,dbm) WHERE condK

= {(b1, · · · ,bn) | (b1, · · · ,bn) ∈ JcondK l ∩
⋃

i∈[1,m]

JdbiK}

JSELECT (b1, · · · ,bn) FROM (db1, · · · ,dbm) WHERE cond

DISTANCE distK

= {(b1, · · · ,bn) | (b1, · · · ,bn) ∈ JcondKJdistK ∩
⋃

i∈[1,m]

JdbiK}

JdbK =
{

X if db= X⊂ T
T if db= ALL

JdistK ∈ {h, l,u}
Jcond1 && cond2K = λδ .Jcond1Kδ ∧ Jcond2Kδ

Jcond1 —— cond2K = λδ .Jcond1Kδ ∨ Jcond2Kδ

J(cond)K = JcondK = λδ .JcondKδ

Figure 3.3.5: Semantics of queries and Boolean operators.

JpK = L (p)⊆ T Jp*K = JpK∗

Jp — pK = JpK∪ JpK J(p)K = JpK

Figure 3.3.6: Semantics of the pattern operators.

defines a language in P’s lower-level languages: ∀σ ∈ Σi+1,L (σ)⊆L (P@Σi). Traces can mix

symbols from alphabets of different abstraction levels, so long as there exists an instruction-level

translation of the trace t such that t ∈L (P@Σ1).

The semantics of BQL is mostly standard. Figure 3.3.5 straightforwardly defines queries and

the standard Boolean operators. It defines JdistK as a distance function and uses lambda notation

to propagate its binding to the BQL’s set predicates. The semantics of patterns in Figure 3.3.6 are

standard; the L , used to define pattern semantics, is the classic language operator.

Set Predicates and Edit Distance In Figure 3.3.5, JbK = JTracesK ∈ 2T and the edit distance

function JdistK has signature Σ∗×Σ∗→N. The set of allowed edit distance functions is {h, l,u}.

In this set, h denotes Hamming, l denotes Levenshtein (the default) and u denotes a user-specified

51

JINTERSECT?(b, p)K = JbK∩ JpK 6= /0

JINTERSECT?(b, p,d)K = JbK∩d JpK 6= /0

JINTERSECT?(b, p,n)K = |JbK∩ JpK| ≥ n

JINTERSECT?(b, p,d,n)K = |JbK∩d JpK| ≥ n

JJACCARD?(b, p, t)K =
|JbK∩ JpK|
|JbK∪ JpK|

≥ t

JJACCARD?(b, p, t,d)K =
|JbK∩d JpK|
|JbK∪ JpK|

≥ t

JSUBSET?(b, p)K = JbK⊆ JpK
JSUBSET?(b, p,d)K = ∀x ∈ JbK,∃y ∈ JpK δ (x,y)≤ d

Figure 3.3.7: Semantics of the intersect, Jaccard and subset predicates.

JTracesK ∈ 2T

JPROJ(b,S)K = JbK
∣∣
S

J[len]bK = {α | ∃β αβ ∈ JbK∧|α|= len}
Jb[len]K = {β | ∃α αβ ∈ JbK∧|β |= len}

Figure 3.3.8: Semantics of the trace operators.

edit distance function. BQL allows query writers to specify a distance function to give them

control over the abstraction and cost of a query. For instance, a query writer may try a query

using Hamming distance. If the results are meager, he can retry the same query with Levenshtein

distance, which matches more divergent traces.

For δ ∈ {h, l,u}, the function ∩d : 2Σ∗×2Σ∗×N→ 2Σ∗ is

X ∩d Y = {z| z ∈ X ,∃y ∈ Y δ (y,z)≤ d

∨z ∈ Y,∃x ∈ X δ (x,z)≤ d}
(3.3.7)

and constructs the set of all strings in X or Y that are within the specified edit distance of an

element of the other set. We use ∩d to define JACCARD? and INTERSECT? in Figure 3.3.7. For

JACCARD?, the Jaccard similarity must meet or exceed t ∈ [0,1]; for INTERSECT?, the cardinality of

52

the set formed by ∩d must meet or exceed n ∈ N.

A user-defined distance function u may be written in any language so long as it matches the

required signature. One could define distance metric that reduces a pair of method traces to sets of

methods then measure the distance of those sets in terms of the bags of words extracted from the

method names, identifiers or comments. Alternatively, one could define a Jaccard measure over

the sets of methods or classes induced by two traces, scaling the result into N.

Trace Operators To specify the length of prefixes and suffixes in Figure 3.3.8, we use len ∈N.

In the definition of PROJ, proji is the projection map from set theory and S⊆ Σx, i.e. S is a subset

of symbols from one of the event abstraction alphabets. BQL’s concrete syntax supports regular

expressions as syntactic sugar for specifying S.

3.3.3 Implementation

Four modules comprise OSCILLOSCOPE: a bytecode instrumentation module, a trace-indexed

database, a query processing engine, and two user interfaces. The instrumentation module in-

serts recording statements into bytecode. The instrumentation module is built on the ASM Java

bytecode manipulation and analysis framework. For ease of smooth interaction with existing

workflows, our database has two forms: a standalone database built on Hadoop’s file system and

an trace-based index to URLs that point into an existing Bugzilla database. The OSCILLOSCOPE

plug-in for Eclipse supports graphically comparing traces. A challenge we faced, and partially

overcame, is that of allowing the comparison of traces visually regardless of their length. An

interesting challenge that remains is to allow a user to write, and refine, queries visually by click-

ing on and selecting portions of a displayed trace. The web-based UI is AJAX-based and used

Google’s GWT.

53

Internally, traces are strings with the syntax

〈Trace〉 ::= 〈Event〉 | 〈Event〉〈Trace〉

〈Event〉 ::= 〈Method〉 | 〈Instruction〉

〈Method〉 ::= M FQClassName MethodName Signature

| S FQClassName MethodName Signature

〈Instruction〉 ::= I OPCODE 〈Operands〉

〈Operands〉 ::= OPERAND |OPERAND 〈Operands〉

An example method event follows

M org/apache/commons/beanutils/LazyDynaClass \

getDynaProperty (Ljava/lang/String;) \

Lorg/apache/commons/beanutils/DynaProperty;.

Here, M denotes an instance method (while S in the syntax denotes a static method). The

fully qualified class name follows it, then the method name, and finally the method signature.

To capture method events, we inject logging into each method’s entry. For statements, we inject

logging into basic blocks. To produce coarser-grained traces, we post-process method-level traces

to replace contiguous blocks of methods in a single class or package with the name of the class or

package.

Query Engine The overhead of query processing lies in two places: retrieving traces and

comparing them against the target trace. For trace comparison, we implemented an optimized

Levenshtein distance algorithm [30]. To scale to large databases (containing millions of traces),

OSCILLOSCOPE’s query engine is built on top of Apache Hadoop, a framework that allows for

the distributed processing of large data sets across clusters of computers. The essence of Hadoop

is MapReduce, inspired by the map and reduce functions commonly used in functional program-

54

ming. It enables the processing of highly distributable problems across huge datasets (petabytes

of data) using a large number of computers. The “map” step divides an application’s input into

smaller sub-problems and distributes them across clusters and “reduce” step collects the answers

to all the sub-problems and combines them to form the output.

OSCILLOSCOPE’s query processing is an ideal case for MapReduce, since it compares all

traces against the target trace. This comparison is embarrassingly parallelizable: it can be divided

into sub-problems of comparing each trace in isolation against the target trace. Each mapper

processes a single comparison and the “reduce” step collects those bug identifiers bound to traces

within the edit distances bound to form the final result. Section 3.4 discusses the stress testing we

performed for OSCILLOSCOPE against millions of traces.

3.3.4 Extending OSCILLOSCOPE with New Queries

OSCILLOSCOPE depends on experts to customize its predefined queries for a particular project.

These experts will use BQL and its operators to write queries that extract trace subsequences that

capture the essence of a bug. Learning BQL itself should not be much of a hindrance to these

experts, due to its syntax similarity to SQL and its reliance on familiar regular expressions. To

further ease the task of writing queries, OSCILLOSCOPE visualizes the difference of two traces

returned by a search and supports iterative query refinement by allowing the query writer to edit

the history of queries he issued. To write effective queries, an expert will, of course, need to know

her problem domain and relevant bug features; she will have to form hypotheses and, at times,

resort to trial and error. The payoff for a query writer, and especially for an organization using

OSCILLOSCOPE, is that, once written, queries can be used over and over again to find and fix

recurring bugs. Across different versions of a project, even though methods may change names

as a project evolves, OSCILLOSCOPE can still find similar bugs if their signature in a trace is suf-

ficiently localized and enough signposts, such as method names, remain unchanged so that edit

55

distance can overcome the distance created by those that have changed.

Single Regex Queries Configuration-323 occurred when DefaultConfigurationBuilder

misinterpreted property values as lists while parsing configuration files. The reporter speculated

that the invocation of ConfigurationUtils.copy() during internal processing was the cause. To

search for bugs in the Configuration project that invoke the copy() method in the ConfigurationUtils

class, the reporter could have issued

SELECT bug FROM Configuration WHERE

SUBSET ?(bug , "ConfigurationUtils.copy()").

The result set contains 272 and 283, in addition to 323. Developers acknowledged the problem

and provided a workaround. Thus, the bug 323 can be solved identifying and studying 272 and

283. These bugs predate 323. Here, OSCILLOSCOPE found usefully similar bugs using a query

based on a simple regular expression that matched a single method call.

Lang-421 is another example of a bug for which a simple query parameterized on a regular ex-

pression over method names would have sped its resolution. In this bug, the method escapeJava()

in the StringEscapeUtils class incorrectly escaped the ‘/’ character, a valid character in Java. In

Apache Commons, the Configuration project depends on Lang. To find out similar bugs in the

Configuration project, we set α = StringEscapeUtils.escapeJava and issue the query

SELECT b FROM ALL WHERE INTERSECT ?(

PROJ(b, org/apache/commons/lang/*), ’α’)

to search for all bugs in the database that match pat. This query returns four bugs. It returns

Lang-421, the bug that motivated our search. The second bug is Configuration-408, where

forward slashes were escaped when a URL was saved as a property name. Studying the descrip-

tion, we confirmed that StringEscapeUtils.escapeJava() caused the problem. The third bug,

Configuration-272, concerns incorrectly escaping the ’,’ character; the class StringEscapeUtils

still exhibits this problem. Manually examining the last bug, Lang-473, confirms that it duplicates

56

Lang-421. It is our experience with bugs like these that led us to add the simple “regex query” to

our suite of predefined queries.

Limitations

Overcoming instrumentation overhead is an ongoing challenge for OSCILLOSCOPE. For ex-

ample, stress-testing FindBugs revealed five-fold slowdown. Our first, and most important, coun-

termeasure is our chop operator, described above in Section 3.3.1. In our experience, statement-

granular tracing would be infeasible without it. Longer term, we plan to employ Larus’ technique

to judiciously place chop points [53]. Another direction for reducing overhead is to use sampling,

then trace reconstruction, as in Cooperative Debugging [56]; the effectiveness of this approach

depends, of course, on OSCILLOSCOPE garnering enough participation to reliably acquire enough

samples to actually reconstruct traces. Currently, OSCILLOSCOPE handles only sequential pro-

grams. To handle concurrent programs, we will need to add thread identifiers to traces and explore

the use of vector distance on interleaved traces.

3.4 Evaluation

This evaluation shows that OSCILLOSCOPE does find similar bugs and, in so doing, finds

a generally useful class of suffix-based queries. It measures how OSCILLOSCOPE scales and

demonstrates the accuracy of basing search on execution traces.

To evaluate OSCILLOSCOPE, we collected method-level traces and studied bugs reported

against the Apache Commons (2005–2010): comprising 624153 LOC and 379163 lines of com-

ment, and Rhino (2001–2010): comprising 205775 LOC and 34741 lines of comment projects.

We chose these projects because of their popularity. In most cases, reporters failed to provide a test

case to reproduce the bug. Even with a test case, recompiling an old version and reproducing the

bug was a manual task that consumed 5 minutes on average. This explains why OSCILLOSCOPE’s

57

trace database contains 656 of the 2390 bugs reported against Apache Commons and 221 of the 942

bugs reported against Rhino. For each bug, we recorded related information from the bug tracking

system such as source code, the fix (if available), and developer comments. Our database currently

contains 877 traces (one trace per bug) and its size is 43.1 MB. The minimum, maximum, mean,

and variance of the trace lengths in the database are 2, 50012, 5431.1, and 6.687.

Experimental Procedure In general, we do not know JbK, those bugs that are actually similar to

each other (Equation 3.3.2). We manually approximated JbK from [b], an OSCILLOSCOPE result

set, in two ways. First, we checked whether two bugs shared a common error-triggering point, the

program point at which a bug first causes the program to violate its specification. We studied every

candidate pair of bugs that OSCILLOSCOPE reported to be similar for at most 10 minutes. For

example, we deemed Rhino-217951 and 217965 to be similar because a Number.toFixed() failure

triggered each bug. Second, we recorded as similar any bugs identified as such by a project’s

developers. For example, a Rhino developer commented in Rhino-443590’s report that it looks

like Rhino-359651. Given our limited time and knowledge of the projects, we often could not

determine whether two bugs are, in fact, similar. When we could not determine similarity, we

conservatively deemed the bugs dissimilar. This procedure discovers false positives, not false

negatives. To account for false negative, we introduce the relative recall measure in Section 3.4.1

next. We discuss our methodology’s construct validity in Section 3.4.5.

Using this experimental procedure, we found that similar bugs comprise a substantial portion

of bugs we have collected to date: 273
877 ≈ 31%. 74 of the 273 similar bugs are identical, caused

by duplicate bug reports; the majority, however, are nontrivially similar. Since we conjecture that

the number of ways that humans introduce errors is finite and our database contains field bugs, we

expect the proportion of similar bugs to increase as our database grows.

58

3.4.1 Can OSCILLOSCOPE Find Similar Bugs?

To show that OSCILLOSCOPE accurately finds similar bugs and to validate the utility of a

default query distributed with OSCILLOSCOPE, we investigate the precision and recall of suffix

queries issued against the 221 bug traces we harvested from the Rhino project. We queried OS-

CILLOSCOPE with 48 unresolved Rhino bugs. We found similar bugs for 14 of these bugs, under

our experimental procedure. When computing the measures below, we used this result as our

oracle for JbK.

When we do not deeply understand a bug, matching trace suffixes is a natural way to search

for bugs, since many bugs cause termination. This insight underlies the suffix query we first

introduced in Section 3.2.o For suffixes of length len, the suffix query is

SELECT bug FROM Rhino WHERE

SUBSET ?(tbug[len], bug[len], distance).

Two parameters control suffix comparison: length and edit distance. We conducted two exper-

iments to show how these parameters impact the search for similar bugs. In the first experiment,

we fix the suffix length at 50 and increase the allowed Levenshtein distance. In the second ex-

periment, we fix the Levenshtein distance to 10 and vary the suffix length. Table 3.1 depicts the

results of the first experiment, Table 3.2 those of the second. We report the data in Table 3.2 in

descending suffix length to align the data in both tables in order of increasing match leniency.

In both experiments, we are interested in the number of queries for unresolved bugs that match

a resolved bug, as these might help a developer fix the bug. Recall that R is the set of resolved

bugs (Section 3.3) and Rb (Equation 3.3.6) is the set of resolved bugs similar to b. In the second

column, we report how many unresolved bugs match any resolved bugs. For this purpose, we

define UR = {b ∈U | Rb 6= /0}, then, in column three, we report the percentage of unresolved bugs

that match at least one resolved bug.

To show that our result sets are accurate, we compute their average size across all unresolved

59

|UR| |UR|
|U | |Rb| |Rb|

|R|
Average Average Average

Distance Respr(R,b) Relrec(R,b) F-score(R,b)

0 3 6.3% 0.08 0.05% 0.98 0.75 0.85
10 12 25.0% 0.67 0.39% 0.93 0.94 0.93
20 18 37.5% 1.29 0.75% 0.82 0.96 0.88
30 31 64.6% 2.29 1.32% 0.56 0.98 0.71

Table 3.1: Measures of the utility of our approach as a function of increasing Levenshtein distance
and fixed suffix length 50, ∀b ∈U ; UR is the subset of the unresolved bugs U for which OSCIL-
LOSCOPE finds a similar resolved bug; |UR|

|U | is the percentage of unresolved bugs that are similar

to a resolved bug; |Rb| is the average number of resolved bugs returned for each unresolved bug

b; since R will vary greatly in size, we report |Rb|
|R| , the size of each result set as a percentage of the

resolved bugs; the meaning of the measures Respr, Relrec and restricted F-score are defined in the
text below.

Suffix |UR| |UR|
|U | |Rb| |Rb|

|R|
Average Average Average

Length Respr(R,b) Relrec(R,b) F-score(R,b)

200 2 4.2% 0.08 0.05% 0.97 0.73 0.83
100 5 10.4% 0.19 0.11% 0.97 0.79 0.87
50 12 25.0% 0.67 0.39% 0.93 0.94 0.93
25 24 50.0% 1.83 1.06% 0.68 0.96 0.80

Table 3.2: Measures of the utility of our approach as a function of decreasing suffix length and
fixed distance threshold 10, ∀b ∈ U ; for a detailed discussion of the meaning of the first four
columns, please refer to the caption of Table 3.1; the remaining columns are defined in the text
below.

bugs as

∑ |Rb|
|U |

=|Rb|. (3.4.1)

In the fourth column, we report this average, then because R might grow to be very large, we report

the average cardinality of |Rb| as a percentage of |R|. This is the average number of resolved bugs

a developer would have to examine for clues he might use to solve an unresolved bug. It is a

proxy for developer effort. In this experiment, even the two most lenient matches — Levenshtein

60

distance 30 and 25 length suffixes — do not burden a developer with a large number of potentially

similar bugs. For Rhino, the maximum number of bugs returned by OSCILLOSCOPE for a bug

is six. The effort to analyze each result set is further mitigated by the fact that OSCILLOSCOPE

returns ranked result sets, in order of edit distance.

Next, we report the precision and recall of OSCILLOSCOPE over R, the resolved bugs. When

TP denotes true positives, FP denotes false positives, and FN denotes false negatives, recall that

precision =
TP

TP+FP
recall =

TP
TP+FN

. (3.4.2)

In our context, we have

precision =
|JbK∩ [b]|
|[b]|

recall =
|JbK∩ [b]|
|JbK|

. (3.4.3)

To restrict precision to R, we define

respr(X ,b) =

 1 if [b]∩X = /0
|(JbK∩[b])∩X |
|[b]∩X | otherwise.

(3.4.4)

then, in column four, we report the average respr

1
|U | ∑b∈U

respr(R,b) (3.4.5)

which we manually compute via our experimental procedure. The majority, 34
48 , of the unresolved

bugs in our Rhino data set are unique. These unique bugs dominate the average respr at lower

edit distance and longer suffix length. When distance increases from 10 to 20, and suffix length

drops from 50 to 25, the average respr drops dramatically. The reason is that Rhino, a JavaScript

interpreter, has a standard exit routine. When a program ends without runtime exceptions, Rhino

61

calls functions to free resources. Most the Rhino traces end with this sequence which accounts for

OSCILLOSCOPE’s FPs and decreases the average respr. In general, both Table 3.1 and Table 3.2

show how the greater abstraction comes at the cost of precision.

Our experimental procedure is manual and may overstate recall because we do not accurately

account for FNs; accurately accounting for FNs would require examining all traces. Rather than

directly report recall (Equation 3.4.3), we over-approximate it with relative recall:

relrecall(b) =


1 if JbK = {b}

1 if JbK ∩ [b] − {b} 6= /0

0 otherwise,

(3.4.6)

which measures how often OSCILLOSCOPE returns useful results. Relative recall scores one

whenever a bug 1) is unique or 2) has at least one truly similar bug. Because ∀[b],b∈ JbK∩ [b], we

need to test these two cases separately to distinguish between returning only b when b is, in fact,

unique in the database from returning b, but failing to return other, similar bugs when they exist.

In contrast to precision, relative recall does not penalize the result set for FPs; in contrast to recall,

it does not penalize the result set for FNs. In practice, relative recall can be manually verified,

since we only need to find a counter-example in JbK to falsify the first condition and checking the

second condition is restricted by |[b]|, whose maximum across our data set is 11.

As with precision, we restrict relative recall

relrecall(X ,b) =


1 if JbK = {b}

1 if (JbK ∩ [b] − {b})∩X 6= /0

0 otherwise.

(3.4.7)

62

and, in column five, we report its average,

1
|U | ∑b∈U

relrecall(R,b). (3.4.8)

By definition two paths are different. At edit distance zero, a bug can only match itself, possibly

returning duplicate bug reports. Many paths differ only in which branch they took in a conditional

and thus OSCILLOSCOPE can match them even with a small edit distance budget, which accounts

for the large rise in relative recall moving from an edit distance budget of 0 to 10. Minor differ-

ences accumulate when longer suffixes of two traces are compared. The loss of irrelevant detail

accounts for the large rise in relative recall moving from suffix length 100 to 50.

The F-score is the harmonic mean of precision and recall. Here we define it using restricted

precision and relative recall:

2 · relrecall(X ,b) · respr(X ,b)
relrecall(X ,b)+ respr(X ,b)

. (3.4.9)

Column six in both tables reports this measure.

Unique bugs dominate the first Levenshtein measurement. At distance zero, OSCILLOSCOPE

returned five bugs in total. Among the 34 unique bugs, OSCILLOSCOPE found a similar bug

for only one of them. At suffixes of length 200, OSCILLOSCOPE returned two bugs in total and

both are true positives. The distance zero and suffix length 200 queries are more precise, but

also more susceptible to FNs, because they return so few bugs. Correctly identified, unique bugs

increase relative recall. With the increase of distance or decrease in suffix length, OSCILLOSCOPE

finds more potentially similar bugs, at the cost of FPs. At distance 10 and suffixes of length 50,

OSCILLOSCOPE found similar bugs for 11 of the non-unique bugs, and returned only one FP for

a unique bug.

These tables demonstrate the utility of OSCILLOSCOPE. Its query results often contain re-

63

solved bugs that may help solve the open, target bug. They are small and precise and therefore

unlikely to waste a developer’s time. The second most strict measurement, edit distance 10 in

Table 3.1 and suffix length 50 in Table 3.2 is the sweet spot where OSCILLOSCOPE is sufficiently

permissive to capture interesting bugs while not introducing too many FP.

The six FPs have similar test cases, but their errors are triggered at different program points.

For instance, Rhino-567484 and 352346 have similar test cases that construct and print an XML tree.

A problem with XML construction triggers 567484, while an error in XML.toXMLString() triggers

352346. Two of FN occurred because the distance threshold was too low. At distance 20, OS-

CILLOSCOPE matches these two bugs without introducing FPs. Logging calls, using VMBridge,

separate these two bugs from their peers and required the additional 10 edits to elide. We failed

to find similar bugs for 496540 and 496540 because the calls made in Number.toFixed() changed

extensively enough to disrupt trace similarity. To reduce our FP and FN rates, we plan to inves-

tigate object-sensitive dynamic slicing and automatic α-renaming which, given trace alignment,

renames symbols, here method names, in order of their appearance. To handle FNs like those

caused by the interleaving of new calls such as logging, we intend to evaluate trace embedding,

i.e. determining whether one trace a subsequence of another, as an additional distance metric.

3.4.2 How Useful are the Results?

In this section, we show how OSCILLOSCOPE can help a programmer fix a bug by identifying

bugs similar to that bug. To do so, we issue a suffix query for each bug. The query Suffix-query

SELECT bug FROM ALL WHERE

SUBSET ?(tbug [50], bug[50], 30)

returns a distance-ranked result set for tbug. We used trace suffixes of length 50 because OSCIL-

LOSCOPE performed best at this length (Section 3.4.1). We then manually examined the target bug

and the bug in the result set with the smallest distance from the target bug, using our experimental

64

procedure.

As a degenerate case of bug similarity, OSCILLOSCOPE effectively finds duplicate bug reports

and helps keep a bug database clean. OSCILLOSCOPE reported 33 clusters of duplicate bug re-

ports, 28 of which the project developers had themselves classified as duplicates. We manually

examined the remaining five and confirmed that they are in fact duplicates that had been missed.

We have reported these newly-discovered duplicates to the project maintainers. So far, one of

them, (JXPATH-128, 143), has been confirmed and closed by the project maintainers. We have

yet to receive confirmations on the other four: Configuration-30 and 256, Collections-100 and

128, BeanUtils-145 and 151, and Rhino-559012 and 573410. Next, we discuss a selection of

interesting, similar bugs returned by Suffix-query.

OSCILLOSCOPE is particularly effective at finding API misuse bugs. From the BeanUtils

project, Suffix-query identified as similar BeanUtils-42, 117, 332, 341, and 372, which all in-

correctly try to use BeanUtils in conjunction with non-public Java beans. Upon seeing a fix for

one of these, even a novice could fix the others. Configuration-94 and 222 describe bugs that

happen when a new file is created without checking for an existing file. Configuration-94 occurs

in AbstractFileConfiguration.save() and 222 in the PropertiesConfiguration constructor.

Their fixes share the same idea: check whether a file exists before creating it. Lang-118 and 131 vi-

olate preconditions of StringEscapeUtils unescapeHtml()} Lang-118 found that StringEscapeUtils

does not handle hex entities (prefixed with ’0x’), while 131 concerns empty entities. Both fixes

check the input: seeing one, a developer would know to write the other. Lang-59 (resolved) and

Lang-654 (unresolved) describe the problem that DataUtils.truncate does not work with day-

light savings time. Studying Lang-564, we found its cause was a partial (i.e. bad) fix of Lang-59.

Developers of Lang confirmed this finding. BeanUtils-115 is the problem that properties from a

DynaBean are not copied to a standard Java bean. In BeanUtils-119, NoSuchMethodException is

thrown when setting value to a property with name ”aRa”. The root cause for both bugs is the

passing of a parameter that violates Java bean naming conventions: when the second character of

65

a getter/setter method is uppercase, the first must also be. Again, from a fix for either, the fix for

the other is immediate.

In addition to identifying bug pairs such as those we just discussed, OSCILLOSCOPE effi-

ciently clusters unresolved bugs. In Rhino, OSCILLOSCOPE clustered seven unresolved bugs —

444935, 443590, 359651, 389278, 543663, 448443, and 369860. These bugs all describe problems

with regular expressions. The project developers themselves deemed some of these bugs similar.

Problems in processing XML trees causes Rhino-567484, 566181 and 566186. When processing

strings, Rhino throws a StackOverflowException in both Rhino-432254 and 567114.

Although we found interesting, similar bugs comparing only suffix traces, we also learned

some of the deficiencies of this strategy. When a bug produces erroneous output and does not

throw an exception, the location of the error is usually not at the end of the execution trace. Suffix

queries produce FPs on such bugs, especially when they share a prefix because their test cases are

similar. The bug Configuration-6, improper handling of empty values, and Configuration-75,

the incorrect deletion of XML subelements, formed one such FP. Suffix comparison can miss simi-

lar bugs when a bug occurs in different contexts. The incorrect implementation of ConfigurationUtils.copy()

caused Configuration-272, 283 and 323. These three bugs differ only in the location of their call

to this buggy method. The suffix operator alone failed to detect these bugs as similar, because the

context of each call is quite different.

3.4.3 Scalability

Our central hypothesis, that unique bugs are rare against the backdrop of all bugs, means that

OSCILLOSCOPE will become ever more useful as its database grows, since it will become ever

more likely to find bugs similar to a target bug. This raises performance concern: how much time

will it take to process a query against millions of traces. To gain insight into how the size of bug

database and Hadoop cluster settings impact the query time, we conducted a two-dimension stress

66

Database Size Time to completion (s)

(million) 1, 4(GB), 4(CPU) 1, 6, 8 2, 10, 12 3, 14, 16 4, 16, 20 5, 144, 38

1 38.2 28.6 23.1 21.1 18.9 14.2
2 72.3 41.3 32.8 24.2 22.5 18.3
3 104.7 53.8 48.4 34.6 28.6 20.2
4 140.7 70.1 58.4 49.4 35.2 25.7
5 171.3 81.2 64.5 53.5 47.9 28.0

Table 3.3: Measures of OSCILLOSCOPE’s query processing time against different sizes of
databases with different Hadoop cluster settings; The Hadoop cluster setting “x, yGB zCPU”
denotes a cluster with x nodes, a total of y GB of memory, and z CPUs.

testing. In the first dimension, we fix the database size and increase Hadoop cluster resources. In

the second dimension, we fix the Hadoop cluster and vary the database size. We replicated our

877 traces to create a database with millions of traces. We used the Suffix-query as the candidate

query in the experiment. For each setting, we issued Suffix-query five times and computed the

average time to completion. Table 3.3 depicts the results. The first column lists the database size,

which ranges from one to five million traces. The rest of the columns show the time to process

the query for each each cluster configuration. The Hadoop cluster setting is expressed as the

following: “x, yGB zCPU” denotes a cluster with x nodes, a total of y GB of memory, and z CPUs.

The settings we used were

Cluster 1 1, 4GB 4CPU

Cluster 2 1, 6GB 8CPU

Cluster 3 2, 10GB 12CPU

Cluster 4 3, 14GB 16CPU

Cluster 5 4, 16GB 20CPU

Cluster 6 5, 144GB 38CPU

Figure 3.4.1 shows that the query processing times grow linearly with the increase of database

size for all the settings, the expected result which confirms that all the nodes in the cluster were

used. Figure 3.4.1 also shows that query times drop more dramatically for large database sizes than

67

Figure 3.4.1: The effect of database size and Hadoop cluster on query time; The six Hadoop
cluster settings vary in number of hosts, total memory and number of CPUs, as described in the
text.

for small ones. This is because the performance gain gradually overcomes the network latency as

the workload grows. Figure 3.4.1 clearly demonstrates that OSCILLOSCOPE’s query processing

will take less time as a function of the nodes in its Hadoop cluster.

3.4.4 Execution Trace Search Accuracy

Execution traces accurately capture program behavior, but are expensive to harvest and store.

To show this cost is worth paying, we compare the execution trace search accuracy against the

accuracy of vector and stack trace searches.

Vector Researchers have proposed a vector space model (VSM) to measure the similarity of

execution traces [88]. To compare the VSM metric against OSCILLOSCOPE’s use of edit distance

over execution traces, we repeated the Rhino experiment in Section 3.4.1 using VSM. The VSM

68

approach transforms execution traces to vectors, then computes their distance1. In the experiment,

we tuned two parameters, trace length and distance threshold of the VSM algorithm to optimize

the respr and relrecall results. We varied the trace lengths using suffixes of length 25, 50, 100,

200, and unbounded. For the distance threshold, we tried [0.5,1.0] in increments of 0.1. Suffix

length 50 and distance threshold 0.9 was the sweet spot of the VSM metric where it achieved

0.85 respr and 0.90 relrecall, for an F-score of 0.87. At suffix of length 50 and edit distance 10,

OSCILLOSCOPE outperforms VSM, with 0.93 respr and 0.94 relrecall for and 0.93 F-score. We

hypothesize the reason is that the VSM model does not consider the temporal order of method

invocations. The search for similar bugs requires two operations, search and insertion. VSM

requires the recomputation of the vector for every trace in the database whenever an uploaded

trace introduces a new method, but it can amortize this insertion cost across searches, which are

relatively efficient because they can make use of vector instructions. In contrast, insertion is free

for OSCILLOSCOPE, but search operations require edit distance computations.

Are Execution Traces Necessary? The OSCILLOSCOPE database contains both stack and

execution traces. Execution traces are more precise than stack traces, but more expensive to

harvest. Stack traces are cheaper to collect, but not always available and less precise. For example,

a stack trace is usually not available when a program runs to completion but produces incorrect

output; they are less precise because they may not capture the program point at which a bug

occurred or when they do, they may capture too little of its calling context. Here, we quantify this

difference in the precision to shed light on when the effort to harvest execution traces might be

justified.

70 Rhino bugs in our database have stack traces. 33/70 bugs are similar to at least one other

bug, under our experimental procedure. In the experiment, we issued OSCILLOSCOPE queries to

search for these similar bug pairs, one restricted to stack traces and the other to execution traces.

1Users of OSCILLOSCOPE, who wish to use VSM’s distance function, can implement it as a custom distance
function.

69

The stack trace query was

SELECT b1, b2 FROM Rhino WHERE SUBSET ?(

PROJ(b1 , stack), PROJ(b2 , stack)).

In the query, PROJ(b1, stack) extracts the stack trace of a bug. We ranked each result set in

ascending order by distance. We deemed the closest 50 to “match” under OSCILLOSCOPE, since

manually examining the 50 pairs was tractable and each of the 70 bugs appears in at least one of

these 50 pairs in both result sets. We examined each of these 50 bug pairs to judge whether it is a

TP or an FP. Of the remaining pairs, which we deemed non-matches, we examined all the FN.

The stack trace result set contains 26 TP, 24 FP (the 50 that OSCILLOSCOPE matched), and 6

FN (from among the remaining pairs). The fact that most stack traces are similar accounted for

nearly half the FPs. The largest distance over all 50 pairs is only 5, compared with 35 for the

execution traces. We examined the stack traces of the 6 FNs. The distance between Rhino-319614

and 370231 is large because the bugs belong to different versions of Rhino between which the

buggy method was heavily reformulated. Both Rhino-432254 and 567114 throw stack overflow

exceptions whose traces differ greatly in length. Because Rhino-238699’s stack trace does not

contain the error-triggering point, Compile.compile(), it does not match 299539. The other three

FN have distances 8, 14, and 14, so FPs crowd them out of the top 50 pairs.

The execution trace result set contains 41 TP, 9 FP, and 1 FN. False positives appear when the

edit distance exceeds 20. The only FN is the pair Rhino-319614 and 370231, which is also a FN in

the stack trace result set and for the same reason: the relevant methods were extensively rewritten.

The stack trace result set matched similar bugs with 0.52 respr, 0.81 relrecall (See Sec-

tion 3.4.1) and 0.63 F-score; the execution trace result set achieved 0.82 respr, 0.98 relrecall,

and 0.89 F-score. These results make clear that the cost of instrumenting and running executable

to collect execution traces can pay off, especially as a fallback strategy when queries against stack

traces are inconclusive.

70

3.4.5 Threats to Validity

We face two threats to the external validity of our results. First, we evaluated OSCILLOSCOPE

against bugs collected from the Rhino and Apache Commons projects, which might not be represen-

tative. Second, most of the bug reports we gathered from these projects lack bug-triggering test

cases. Without test cases, we were unable to produce traces for almost 70% of the bugs in these

projects. Our evaluation therefore rests on the remaining 30%. It may be that those bugs whose

reports contain a test case are not representative. These two threats combine to shrink the number

of traces over which OSCILLOSCOPE operates.

Nonetheless, our results are promising. We have conjectured that unique bugs are rare, in

the limit, as a trace database contains all bug traces. The fact that we have already found useful

examples of similar bugs in a small population lends support to our conjecture. Not only is the

population small, but it contains only field bugs. In particular, it lacks predeployment bugs, which

are resolved during initial development. We contend that these bugs are more likely to manifest

common misunderstandings and be more similar than field defects.

Our evaluation is also subject to two threats to its construct validity. First, one cannot know

JbK in general. We described how we manually approximated JbK in our experimental procedure

above. Project developers identified 43% of these bugs as similar to another bug. For the re-

maining 57%, as with any manual process involving non-experts, our assessments may have been

incorrect. Second, our database currently contains method, not instruction, granular traces. To

the extent to which a method-level trace fails to capture bug semantics, our measurements are

inaccurate. Our evaluation data is available at http://bql.cs.ucdavis.edu.

3.5 Related Work

This section opens with a discussion of work that, like OSCILLOSCOPE, leverages program-

ming knowledge. Often, one acquires this knowledge to automate debugging, which we discuss

71

http://bql.cs.ucdavis.edu

next. We close by discussing work on efficiently analyzing traces.

Reuse of Programmer Knowledge Leveraging past solutions to recurrent problems promises to

greatly improve programmer productivity. Most solutions are not recorded. However, the volume

of those that are recorded is vast and usually stored as unstructured data on diverse systems,

including bug tracking systems, SCM commit messages, and mailing lists. The challenge here is

how to support and process queries on this large and unwieldy set of data sources. Each project

discussed below principally differs from each other, and OSCILLOSCOPE, in their approach to this

problem.

To attack the polluted, semi-structured bug data problem, DebugAdvisor judiciously adds

structure, such as constructing bags of terms from documents, and they define a new sort of query,

a fat query, that unites structured and unstructured query data [2]. In contrast, OSCILLOSCOPE

uses execution traces to query bug data. Thus, our approach promises fewer false positives, but

may miss relevant bugs, while DebugAdvisor will return larger result sets that may require hu-

man processing. Indeed, Ashok et al. note “there is much room for improvement in the quality of

retrieved results.”

When compilation fails, HelpMeOut saves the error message and a snapshot of the source [35].

When a subsequent compilation succeeds, HelpMeOut saves the difference between the failing

and succeeding versions. Users can enter compiler errors into HelpMeOut to search for fixes.

In contrast, OSCILLOSCOPE handles all bug types and compares execution traces, not error mes-

sages. Dimmunix, proposed by Jula et al., prevents the recurrence of deadlock [45]. When a dead-

lock occurs, Dimmunix snapshots the method invocation sequence along with thread scheduling

decisions to form a deadlock signature.

Dimmunix monitors program state. If a program’s state is similar to a deadlock signature,

Dimmunix either rolls back execution or refuses the lock request. Dimmunix targets deadlock

bugs, while OSCILLOSCOPE searches for similar bugs across execution traces of all types of bugs.

Code peers are methods or classes that play similar roles, provide similar functionality, or in-

72

teract in similar ways. A recurring fix is repeatedly applied, with slight modifications, to several

code fragments or revisions. Proposed by Ngueyn et al., FixWizard syntactically finds code peers

in source code, then identifies recurring fixes to recommend the application of these fixes to over-

looked peers [65]. OSCILLOSCOPE uses traces, which precisely capture bug semantics, to search

for similar bugs in a database of existing bugs.

Automated Debugging Detecting duplicate bug reports is a subproblem of finding similar

bugs. Runeson et al. use natural language processing (NLP) to detect duplicates [78]. Comments

in bug reports are often a noisy source of bug semantics, but could complement OSCILLOSCOPE’s

execution trace-based approach. In a recent work, Wang et al. augment the NLP analysis of bug

reports with execution information [88]. They record whether or not a method is invoked during

an execution into a vector. We compare Wang et al.’s approach to ours in Section 3.4.4.

Bug localization and trace explanation aim to find the root cause of a single bug or identify

the likely buggy code for manual inspection [5, 16, 27, 28, 39, 41, 44, 48, 57, 58, 90, 95, 96].

OSCILLOSCOPE helps developers fix a bug by retrieving similar bugs and how they were resolved.

OSCILLOSCOPE and bug localization complement each other. A root cause discovered by bug

localization may lead to the formulation of precise OSCILLOSCOPE queries for similar, resolved

bugs; storing only trace subsequence identified by a root cause can also save space in the database.

Efficient Tracing and Analysis Researchers have proposed query languages over traces for

monitoring or verifying program properties [69, 70]. Goldsmith et al. propose the Program Trace

Query Language (PTQL) for specifying and checking a program’s runtime behaviors [25]. A

PTQL query instruments and runs a program to check whether or not a specified property is satis-

fied at runtime. Martin et al.’s Program Query Language (PQL) defines queries that operate over

event sequences of a program to specify and capture its design rules [60]. PQL supports both static

and dynamic analyses to check whether a program behaves as specified. Olender and Osterweil

propose a parameterized flow analysis for properties over event sequences expressed in Cecil, a

constraint language based on quantified regular expressions (QREs) [66]. These three query lan-

73

guages are designed for analyzing a single, property-specific trace; OSCILLOSCOPE collects raw,

unfiltered traces and tackles the bug similarity problem in the form of trace similarity.

3.6 Discussion and Future Work

Debugging is hard work. Programmers pose and reject hypotheses while seeking a bug’s root

cause. Eventually, they write a fix. To reuse this knowledge about a bug, we must accurately find

semantically similar bugs. We have proposed comparing execution traces to this end. We have

defined and built OSCILLOSCOPE, a tool for searching for similar bugs, and an open infrastructure

— trace collection, a flexible query language BQL, a query engine based on Hadoop, database,

and both a web-based and plugin user interface — to support it. BQL allows a user to 1) define

bug similarity and 2) use that definition to search for similar bugs. We evaluated OSCILLOSCOPE

on a collection of bugs from popular open-source projects. Our results show that OSCILLOSCOPE

accurately retrieves relevant bugs: When querying unresolved bugs against resolved bugs in the

Rhino project it achieves 93% respr, 94% relrecall for an F-score of 0.93 (Section 3.4.1).

OSCILLOSCOPE is an open project. We invite readers to use OSCILLOSCOPE and help us

make it more general. Please refer to our website http://bql.cs.ucdavis.edu for tutorials and

demonstrations.

74

http://bql.cs.ucdavis.edu

Chapter 4

IDEPP: Capturing and Exploiting IDE

Interactions

Integrated development environments (IDEs) dominate the production and maintenance of

software. Developers interact intensively with their IDEs while working. These interactions reflect

a developer’s thought process and work habits. By capturing and exploiting comprehensive, fine-

grained IDE interactions, we can build intelligent IDEs that improve programmer productivity.

This next generation of IDEs will incorporate a general framework to capture and exploit IDE

interactions, and serve as a basis for an ecosystem of user-aware applications. To this end, we have

developed IDE++ on top of the popular Eclipse IDE. We demonstrate comprehensive and granular

interaction capture of IDE++ by successfully replaying the interaction process using interaction

log. We built four applications upon IDE++ to illustrate 1) the need for capturing comprehensive,

fine-grained IDE interactions, and 2) the promise of user-aware applications in IDEs.

75

4.1 Introduction

Development and maintenance dominate the cost of software. 97% of .NET developers use

Microsoft Visual Studio and 73% of Java developers use Eclipse-based IDEs [33]. Thus, increas-

ing the utility and power of IDEs will improve programmer productivity and reduce the cost of

software. Interactions between a developer and her IDE capture how the developer writes a piece

of code and reflect her thought process and work habits. When we monitor a programmer’s IDE

interactions, we can look for patterns in the interaction stream that indicate she needs help and

provide instant assistance. If we detect that a developer is unsure about which API to use, we can

recommend an API and show relevant examples. An IDE can also adapt itself to a programmer’s

work habits: if it detects that a developer habitually runs testcases after an editing session, it could

run relevant tests automatically for her.

We believe the key to building the next generation of IDEs is to transform IDEs from being

order-takers into intelligent, user-aware programs that monitor and reason about how their users

interact with them, like the Office Assistant in Microsoft Office [40]. We envision establishing

an ecosystem of IDE applications and extensions that exploit this awareness to dynamically per-

sonalize their interface, to teach their users how to use them more effectively, to help them follow

best practices, and to point out features that are likely to be relevant to a developer’s current task.

User-aware IDE Applications An ecosystem of behavior-aware IDE applications will ben-

efit the users of IDEs, those who study developers and software processes, and IDE developers.

Programmers are often confronted with unexpected, repetitive tasks, like conflict resolution dur-

ing version control or protocol updates after an API change. A behavior-aware application could

identify these cases and suggest macros. User-aware navigation could infer landmarks from the

user’s behavior, such as frequently returning to a particular class or method, then speed subse-

quent navigation by jumping to those landmarks. An experienced programmer’s interaction log

can teach a novice how best to work with an in-house API, refactor a method, fix a bug, or debug

76

a race condition. When editing an unfamiliar file, a programmer may wish to know which other

files other developers who edited that file had opened and which methods had spent the most time

on screen, presumably being studied. Interaction logs, suitably sanitized, will allow researchers to

investigate questions such as “How do the interaction histories of experienced programmers differ

from those of novices?” and “Are there correlations between IDE interactions and bug introduc-

tion or cost overruns?”. Finally, IDE developers themselves can examine interaction logs to learn

which features users actually use to more rapidly improve their IDE’s UI.

Capturing IDE Interactions Some behavior-aware applications already exist. The Mylyn

Monitor, proposed by Murphy et al., intercepts programmer UI and command interactions to track

Eclipse’s layout and dynamically reconfigure it to support task-focused workflows [63]. Given

its focus, Mylyn Monitor tracks only task-related interactions, such as launches of and switches

between views, (i.e. GUI windows in Eclipse). Indeed, existing user-aware applications monitor

only a very focused and narrow set of IDE interactions: only those necessary for the needs of the

application. Moreover, these applications remain the exception not the rule; most IDE interactions

are not even captured, let alone recorded. In contrast, we advocate and realize the comprehensive

and fine-grained capture of IDE interactions to make it easy to build user-aware applications.

An IDE interaction is an action performed by a developer and the IDE’s response. IDE-

intelligible actions are hardware events, like mouse movement and mouse clicks and keystrokes,

that the operating system forwards to the IDE. If an IDE maps a raw sequence of hardware events

to an action, the IDE responds by performing the specified action and visually (occasionally audi-

torily) notifying the user. Thus, hardware events are the atomic constituents of an IDE interaction,

comprising either IDE-visible input events or IDE-initiated output events. IDE interaction capture

is fine-grained the closer it is to the raw hardware events; it is comprehensive when it intercepts

every hardware event visible to an IDE.

Of course, a developer would describe her interaction with an IDE at a fairly high level of

abstraction relative to the underlying sequence of raw, low-level, hardware events. For instance,

77

Figure 4.1.1: To support user-aware applications, IDE++ captures and republishes interactions
between a user and an IDE.

developers might describe the IDE interactions of a coding session as consisting of a sequence

of editing, browsing, testing, and debugging tasks. The appropriate level of abstraction will vary

with the development task and as technology changes. It is for this reason that we advocate fine-

grained interaction capture: we do wish to preclude any conceivable user-aware IDE application.

That said, we capture and can only react to IDE interactions and what we can infer from them.

When a huge gap occurs between two user commands, we cannot infer why that gap occurred,

nor why a user chose to accomplish a task in a particular order. In short, we do not capture coffee

runs.

We have developed IDE++ on top of Eclipse. It consists of an infrastructure that monitors

fine-grained programmer interactions in Eclipse and tool support to write custom, user-aware ap-

plications. IDE++’s architecture is publish and subscribe, as Figure 4.1.1 shows. IDE++ monitors

and extracts IDE interactions, then publishes them to registered applications.

We developed four applications — DevTime, Sage, Proctor and Localizer — to illustrate the

promise of an ecosytem of user-aware application built on IDE++ and the necessity of capturing

comprehensive, fine-grained interactions. Advocates of the quantified-self movement claim that

one can improve oneself through self-study [85]. The DevTime reports descriptive statistics on a

developer’s activities that facilitate this sort of introspective improvement of one’s use of an IDE.

For instance, users might discover that conditions under which they, personally, are likely to in-

troduce bugs, perhaps right after they have returned from a coffee break. DevTime summarizes all

78

of a developer’s IDE interactions; its utility rests on comprehensive event capture. Sage teaches

novices how to use Eclipse’s built-in features to be more productive; the opportunity to use some

of these features can only be detected by fine-grained event capture, such as of the keystrokes

that comprise manual commenting. Proctor helps to identify which methods programmers should

consider testing after an editing session; it collates events from the test UI and editor and demon-

strates the need for comprehensive capture. The Localizer uses fine-grained code edits to help

programmers determine where their unit test cases to fail.

This research makes the following main contributions:

• We advocate the systematic capture and utilization of IDE interactions as the basis of a new

class of user-aware IDE applications;

• We present the IDE++ monitoring infrastructure, built for Eclipse, that comprehensively

captures and republishes fine-grained programmer interactions; and

• To demonstrate the promise of the ecosystem of user-aware IDE applications that IDE++

makes possible, we built four applications that require and exploit IDE++’s comprehensive,

fine-grained IDE interactions.

The early feedback on IDE++ has been positive and is evidence for its potential for supporting

useful customized applications. We have released IDE++ to the Eclipse marketplace. Tutorials

and downloads are available at http://idepp.cs.ucdavis.edu.

The rest of the chapter is structured as follows. Section 4.2 presents Sage, an application

that illustrates the promise of user-aware applications that IDE++ makes possible. In Section 4.3,

we specify which interactions we capture and the methodology we use to identify them. Next,

Section 4.3 describes the design and implementation of IDE++. In general, it is difficult for one

person to flawlessly mimic another. To demonstrate that IDE++’s interaction capture is compre-

hensive and fine-grained, Section 4.4 shows that one programmer is able to fully replay the IDE

79

http://idepp.cs.ucdavis.edu

Figure 4.2.1: Sage records how often a programmer could have used a built-in feature, but did not.

session of another programmer, then illustrates the ease of writing applications in IDE++. Finally,

Section 4.5 discuss the related work and Section 4.6 concludes.

4.2 Illustrative Example

An IDE is a complicated program, with a lengthy learning curve. Novice IDE users are of-

ten unaware of shortcuts. Even programmers who have mastered an IDE may use their IDE

inefficiently. For example, a programmer who does not know that Eclipse’s Organize-Import fea-

ture (hotkey: Shift+Ctrl+O) automatically inserts import statements, must manually type import

statements. Although these features are well documented, searching for and reading that docu-

mentation often distracts from a developer’s current task.

An efficient learning strategy is to have an expert who looks over your shoulder and tells you

how to accomplish a task more efficiently. The Sage acts as this angel. It monitors a programmer’s

80

IDE interactions and pops up a tip showing the functionality that would have been faster. For

example, Sage pops up a tip teaching the user about the Toggle-Comment feature (hotkey: Ctrl+/),

if it detects that a programmer is manually commenting several lines of code. Sage also records

the number of times a user could have used a feature but did not. A programmer who uses mouse

clicks to switch editors could examine its output in Figure 4.2.1 and see that using Eclipse’s

Backward and Forward commands might be more efficient for him.

Sage is an example of applying a finite-state machine (FSM) to the interaction stream for

self-improvement. To build it, we identified Eclipse features that beginners neglect, manually dis-

covered how to accomplish the task each of these feature speeds up and replaces, then encoded

that feature-bypassing sequence of actions into an FSM. While Eclipse is running, Sage contin-

uously feeds the programmer’s interactions into each supported feature’s automaton. When an

automaton reaches a final state, Sage displays the related tip notification. Currently, Sage supports

11 features, shown in Figure 4.2.1. These features are spread across different domains such as

editing, refactoring, and browsing; their use saves keystrokes and can improve productivity

4.3 Design and Implementation of IDE++

We integrated IDE++ into Eclipse because it is the dominant IDE for Java programmers. We

first describe the methodology we used to realize our goal of comprehensive and fine-grained

interaction capture in IDE++. We then describe IDE++’s architecture, how its clients can subscribe

to its events and extend it to capture events from new plug-ins.

4.3.1 Methodology

Programmers interact with IDEs through GUI windows called views. Every interaction is tied

to a view. Components group views with the same purpose. As an example, Table 4.1 lists all

the components, and their constituent views, in Eclipse’s default configuration. Different views

81

Component Views

General Bookmarks, Console, Error Log, Markers, Navigator, Outline,
Problems, Progress, Project Explorer, Properties, Search, Tasks,
Templates

Development Code editor, Call Hierarchy, Declaration, Hierarchy, Javadoc,
Package Explorer

Browsing Members, Packages, Projects, Types

Debug Breakpoints, Debug, Display, Expressions, Memory, Modules,
Registers, Variables

Testing Unit testing

Table 4.1: The components and their views of the default configuration of Eclipse.

define disjoint sets of interactions. Programmers can edit code in the editor view, not a search

view. A programmer interacts with an IDE in one view at one time. He can switch to another

view by performing a special interaction view switch such as opening the JUnit view or issuing

the Previous-View command. Sometimes view switching is implicit: running a test case after

editing a program switches the view from editing to testing.

To ensure IDE++ captures comprehensive and fine-grained interactions, we first sought to

identify all Eclipse views, then, for each view, all interactions defined by that view. In both cases,

we systematically studied the Eclipse GUI, its documentation, and, finally, its source code. In

particular, when seeking to identify all the interactions in a view, we reasoned from first principles,

asking ourselves what interactions a particular view must have in order to achieve the goal for

which it was designed. We began our search for Eclipse interaction with the GUI components in

Eclipse’s default configuration.

Take Code editor view as an example. The most fine-grained interactions we capture are file

buffer changes: inserting or removing one character in a file. Some fine-grained interactions

might construct a high level interaction. For example, code changes also reflect language-specific

semantics, such as AST changes. In Java language, a bunch of code inserting interactions might

82

form up adding a field in a class. Our model also capture this high level of changes as interactions.

Eclipse’s JUnit framework provides support for running tests inside of Eclipse. After sys-

tematically analyzing it as described above, we determined it would be best to extend their

TestRunListener class. This notifies us of the user starting and ending a JUnit test session, along

with notifications each time a test case starts and finishes. Components supported in Eclipse is a

moving target. Currently, we support all the views in default configuration for Java development.

Of course, we cannot know the set of IDE interactions precisely, both because of differences

among IDEs and because, as technological advances, IDEs will acquire new features that define

new actions and views. For this reason, we have taken pains to make sure it easy to extend IDE++

to new plug-in and view, as described in Section 4.4.2.

4.3.2 The Architecture of IDE++

At its core, IDE++ realizes the publish and subscribe model on two levels. In the context

of Eclipse, its host IDE, IDE++ is itself a subscriber that listens for both incoming, IDE-visible

events and IDE responses to those events. It is with respect to these events that IDE++ strives

to be comprehensive and fine-grained. IDE++ then republishes these events to the ecosystem of

user-aware applications that it enables; from the perspective of its clients, IDE++ is a publisher

to which they subscribe. IDE++ collects IDE interactions in three ways: For view switching, it

extends Mylyn Monitor; to capture edits, it directly instruments the Eclipse editor; for the rest, it

augments Eclipse’s default interaction collection facilities.

The Mylyn Monitor, given its focus on supporting task-oriented workflows, monitors all view-

switch interactions (exposed in IPartListener in Eclipse) and we used their listener MonitorUi

directly. However, for user selection interactions, it provides only one event for all kinds of selec-

tions which is not comprehensive. To get fine-grained interactions, IDE++ refactored the listener

by splitting single method into sets of methods. As an example, IDE++ refactored handleWorkbenchPartSelection

83

into structuredSelection, the method textSelection, and otherSelection to specialize them

for different selection contents. When capturing an interaction, IDE++ also extracts associated

information, such as the name of an opened view.

The most challenging interactions to capture are editing interactions. The Eclipse JDT plug-in

manages Java editor events in a decentralized way: it provides listeners in different modules to

capture mixed of fine- and coarse-grained change notifications. For example, IElementChangedListener

publishes AST changes and IDocumentListener notifies file buffer changes. Besides, the support

is not comprehensive. For example, it fails to provide refactoring notifications. We aimed to

provide more consistent, meaningful and fine-grained change types including the low-level ed-

itor buffer change and high-level language semantic changes such as refactoring. To capture

fine grained text editing interactions, we implemented two listeners. First, we implemented the

IFileBufferListener interface to signal the opening or closing of a text file buffer. Once we

know a text file buffer has been opened, we get its backing document and attach an IDocumentListener

to capture DocumentEvent instances. A document event contains the offset, the length of the

change, and the text of the change if it is an insertion. Eclipse’s support for attaching a listener

to refactoring interactions is poor. For instance, when a user performs a copy or rename refactor

operation, a refactoring event is fired to RefactoringExecutionEvent listeners. However, this

event does not give enough information to fully determine the changes that will be performed. To

solve this problem, we built modules that participate in the refactoring process and determine the

changes that will be done from the information passed to them.

Eclipse provides hooks to allow developers to register interaction monitors; users need to im-

plement listeners exposed. For example, to monitor how users change a class in Java development,

IDE++ need to implement IElementChangedListener, which shows when a change was made to

a class such as adding a new field. However, some listeners do not support comprehensive inter-

actions. The IElementChangedListener fails to notify all class changes, for example, renaming

a field. For some events, the monitoring process in Eclipse is centralized: it provides one listener

84

1 2012 -03 -28 18:16:56 ,090| main |35|95|p

2 2012 -03 -28 18:16:56 ,650| main |35|96|u

3 2012 -03 -28 18:16:56 ,762| main |35|97|b

4 2012 -03 -28 18:17:01 ,002| main |36|97|1

5 2012 -03 -28 18:17:01 ,711| main |36|96|1

6 2012 -03 -28 18:17:01 ,961| main |35|96|r

7 2012 -03 -28 18:17:01 ,995| main |35|97|i

8 2012 -03 -28 18:17:02 ,137| main |35|98|v

9 2012 -03 -28 18:17:02 ,153| main |35|99|a

10 2012 -03 -28 18:17:02 ,165| main |35|100|t

11 2012 -03 -28 18:17:02 ,170| main |35|101|e

12 2012 -03 -28 18:17:04 ,172| main |28| Save

Figure 4.3.1: Sample interaction log recorded by IDE++

for all the events in different views. CommandMonitor is an example; it monitors all the com-

mand events from all the views. To be comprehensive, we refactored listener to have one listener

for each view. For example, we have DebugCommandListener for all commands in Debug view:

Resume, Suspend, Step-into, and etc.

IDE++ extensively instruments Eclipse to intercept interactions. Generally, instrumenting pro-

grams vastly slows them down, and often imposes an unacceptable performance penalty. The

instrumentation IDE++ adds, however, is unique in that it is confined to IO with a human. Hu-

mans are glacially slow compared to computers; relative to human reaction time which average

190ms [92], IDE++’s overhead is imperceptible.

4.3.3 Interaction History

The syntax of a single interaction captured by IDE++ contains four fields: time stamp, thread

id, type, and content. The type field, recorded as an integer, identifies an interaction, such as

a view-selection or a edit. Currently, IDE++ supports 44 kinds of interactions, documented at

http://idepp.cs.ucdavis.edu. Some interactions have associated content. For instance, an

editing interaction includes the characters that have been typed; these characters are stored in the

85

http://idepp.cs.ucdavis.edu

content field.

Figure 4.3.1 shows an example of interactions captured by IDE++. Type 35 denotes keystroke

and type 36 denotes a Backspace keystroke. The numbers (95-101) after the type information of

the interactions record the offset of the edits in the file. The characters that were typed follow the

offset. The last interaction (type 28) tells that the user performed “Save” command. The sample

log records the following actions performed by a user: He begins to create a public field. Then he

decides to change it to private. So he removes “ub”, types “rivate” and clicks “Save”.

IDE++ interaction logs grow quickly. To save space and minimize performance overhead,

we store only required information and use buffered writers to write into the log files in order to

minimize performance overhead. Recall that, as note above, the instrumentation IDE++ adds to

capture IDE interaction is on the very slow path to a human. We exploit this fact to perform online

event-filtering that would otherwise be prohibitively expensive and relegated to postprocessing.

For this reason, IDE++ guards all its republishing events with tests that check whether any listener

is been registered for that event.

4.3.4 Subscribing to IDE++ Events

IDE++ supports both online and offline analysis of interaction information. The online anal-

ysis is a prerequisite for building “smart” IDEs that know what a programmer is doing and offer

live assistance. It will form the basis of an ecosystem of user-aware IDE applications. The offline

analysis allows retrospective analysis a programmer’s interactions. The IDE++ infrastructure en-

ables any plug-in to subscribe to its interaction information. Internally, IDE++ sets up monitors

when Eclipse launches and receives events while Eclipse remains open. It provides a set of listener

APIs to which applications can subscribe to receive interactions.

Currently, IDE++ offers six listener interfaces. The first listener, DebugBreakpointListener,

captures breakpoint interactions; DocumentChangesListener captures changes in documents; JavaLaunchListener

86

1 notifyAdded(IJavaElement element);

2 notifyCodeChanged(IJavaElement element);

3 notifyCopied(

4 IJavaElement element , IJavaElement from ,

5 IJavaElement to

6);

7 notifyMoved(IJavaElement from , IJavaElement to);

8 notifyRemoved(IJavaElement element);

9 notifyRenamed(IJavaElement from , IJavaElement to);

10 notifySignatureChanged(IJavaElement element);

11 notifySuperTypesChanged(IType type);

Figure 4.3.2: API methods in JavaModelListener.

captures program launch information; JavaModelListener captures editing interactions; JUnitListener

captures JUnit interactions; and, the final listener, UserActivityListener, captures UI and com-

mand interactions. Figure 4.3.2 shows the API methods in JavaModelListener. Developers only

need to implement listeners that capture the interactions they want. To lower the burden on devel-

opers, IDE++ provides adapters with do-nothing implementations of the listener interfaces. These

adapters allow developers to to focus on their application’s logic instead of littering their code

with irrelevant methods.

To persist a programmer’s interactions, IDE++ leverages its own framework of listeners: The

log file is produced by a meta-listener that implements and registers with all of IDE++’s listeners.

This listener then echos incoming events into the log file. There are two main concerns regard-

ing log files: 1) log files might become very large and 2) programmers do not want sensitive

information such as source code and author information to leak to unauthorized applications. The

measures IDE++ takes to handle log size are addressed above in Section 4.3.3. IDE++ is designed

to support local IDE plug-ins. Thus, IDE++ handles privacy concerns in the same way Microsoft

Excel does — viz. share nothing by default and instead leave the management of the log files to

the discretion of the user. In addition, users can choose to hash the concrete information such as

the source code edits to prevent it from being leaked.

87

To help developers build plug-ins, we have published documentation, tutorials and examples

showing how to use the IDE++ infrastructure at http://idepp.cs.ucdavis.edu.

4.3.5 Extending IDE++

The set of IDE interactions is a moving target. New plug-ins will introduce new interactions.

IDE++ has an open design that allows integration of new interactions easily. Integrating a new

interaction requires two steps: 1) extending the subscriber to monitor the new plug-in to get

change notifications and 2) adding a new listener in the publisher side to allow client to retrieve

interactions. We illustrate the two steps using the EGit plug-in as an example.

To subscribe to change notifications from a new plug-in, we need to find out the listeners it

provides. As an example, EGit provides an IndexChangedListener that is notified when the Git

index changes. While Eclipse is running, IDE++ will receive notifications from EGit and then

publish them to the the IDE++ listeners.

The remaining step is to allow other applications to receive the new interactions from the

new publisher side. First, we need to parse the notification object to retrieve or determine useful

information. In this example, we decide to retrieve the Repository object from the notification. We

then call the relevant notifyIndexChanged method on the IDE++ listeners and pass the repository

as a parameter. Other applications can now implement the listener and register it with IDE++ to

get access to this piece of the interaction stream.

The subscriber and publisher architecture makes monitoring and exploiting interactions straight-

forward. Often, IDE++ needs only to subscribe to a plug-in’s interactions then republish them to

other applications. When this is not the case, it should be easy for a developer who is familiar

with the plug-in export its interaction to IDE++. Finally, extending a new plug-in is a one time

task that opens the door to IDE++’s ecosystem of user-aware applications.

88

http://idepp.cs.ucdavis.edu

Edit Browse Test Debug Total

Task Min. IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn IDE++ Mylyn

RPNCalculator 32 1,367 12 98 98 25 2 39 28 1,529 140
String 23 888 10 142 142 12 1 9 1 1,051 154
Repeat-Until 44 3,211 26 144 144 64 3 23 7 3,442 180
Array 94 8,233 47 246 246 81 3 24 13 8,584 309
Boundary 25 720 8 165 165 40 2 11 3 936 178
Every 40 3,020 25 228 228 5 1 3 1 3,256 255

Table 4.2: A comparison of the interactions captured by IDE++ and Mylyn Monitor.

4.4 Evaluation

Our evaluation objective is two-fold: to demonstrate that IDE++ comprehensively captures

fine-grained IDE interactions, and to show the promise of that information as the basis of an

ecosystem of user-aware IDE applications.

4.4.1 Comprehensiveness and Granularity

To be the basis of a vibrant ecosystem of user-aware applications, IDE++ must effectively

realize the goal of comprehensive and fine-grained interactions capture. Here, we present two

experiments that measure the degree to which we succeeded. The first experiment shows that we

are able to fully replay a nontrivial sequences of IDE interaction from IDE++’s interaction history.

The second experiment quantifies IDE++’s event capture, using Mylyn Monitor as a baseline.

IDE Interaction Replay In this experiment, IDE++ records the actions of Programmer A as he

performs some programming tasks. Then we show that, given the same initial environment as A

had and using A’s interaction log, programmer B can redo exactly what A did and produce the

same output.

Table 4.2 lists the six programming tasks we used in this experiment. The RPNCalculator task

requires a programmer to write a reverse polish notation calculator and provide JUnit testcases to

89

Task Participant Time (min)

RPNCalculator Student A 21
String Student A 15
Repeat-Until Student B 33
Array Student B 61
Boundary Student C 21
Every Student C 33

Table 4.3: Time used for participants to replay the interactions for each task.

ensure correctness. An undergraduate course in our department assigned programming tasks that

involved adding support for syntactic constructions to a pedagogical language E by translating

them into C. The five constructs were Strings, Repeat-Until, Arrays, Array Boundary check, and

Every, a loop construct similar to a foreach. One of the authors completed these tasks while

IDE++ recorded his interactions. The second column records the time he used to finish each task.

IDE++’s raw output is not easy for human to parse, so we postprocessed it to separate user ac-

tions from Eclipse’s responses and to map file offsets into a line number and column. Figure 4.4.1

shows postprocessed output. For the replay experiment, the participant simply follows the user

actions in the log.

We invited three students to participate in the experiment. All of them had moderate coding

experience and were familiar with the Eclipse IDE. Each participant performed the replay exper-

iment for two of the six assignments in Table 4.2. Table 4.3 shows the time taken to replay the

interactions for each programming task. We diffed their source code files against the target files

and confirmed that they match. To make sure the entire process was replayed, we also compared

the logs produced by the participants with the author’s logs and confirmed that the interactions

recorded are the same with the exception of the time stamps.

Mylyn Monitor Comparison Like IDE++, Murphy et al.’s Mylyn Monitor captures IDE inter-

actions; its focus is capturing those interactions needed to understand and support task-oriented

90

User Ac�on Eclipse Response

Open (Scanner.java)

Set focus on (Scanner.java)

Insert code at (12,5): gcprint()

Run command: Save

Select (TestEToC.java)

Run command: JUnit‐Run

Launch JUnitSession TestEToC

Start TestEToC.testFunc()

End TestEToC.testFunc (Success)

Figure 4.4.1: Sample natural language interaction sequence diagram.

workflows. In contrast, IDE++ seeks to be a general purpose framework for a new class of user-

aware IDE applications. Although the two projects differ in focus, Mylyn Monitor is a mature,

well-engineered project. Thus, we use it as a baseline against which to understand the scope and

detail of IDE++’s interaction capture.

To enable the comparison of interaction logs between IDE++ and the Mylyn Monitor, we

normalized the both project’s interactions into atomic actions performed by a user, such as a mouse

click. We categorized the actions into four categories, editing, browsing, testing, and debugging,

and compared the number of actions recorded for each group.

Table 4.2 shows the number of actions captured by both monitors for each category. It is clear

that IDE++ captures far more editing interactions than the Mylyn Monitor does. This is because

91

IDE++ captures all of the fine-grained interactions including cursor movement, keystrokes, and

related commands, while the Mylyn Monitor records only coarse-grained file change events and

commands. Browsing actions include selecting structured content and switching views; the Mylyn

Monitor was designed for this task and IDE++ builds on and inherits from it, as the data makes

clear. For the testing category, the Mylyn Monitor records only that the Run-Test command was

performed, while IDE++ also includes which testcases have been run and their results (success or

failure). For debugging, IDE++ records when a user enables, disables, or changes a breakpoint,

the debugging commands a user uses, such as Step-Into and Step-Over, which variables he has

inspected while his program was paused, and the stack frames he selected. The Mylyn Monitor

records only the commands run and that a variable or stack frame was selected, but no data about it.

Table 4.2 clearly shows that IDE++ successfully captures a wide range of fine-grained interactions

and provides data from the Mylyn Monitor as baseline for comparison.

4.4.2 User-aware IDE Applications

To demonstrate the necessity of comprehensive and fine-grained interaction information and

the promise of an ecosystem of user-aware applications built on IDE++, we introduce, in addition

to Sage (introduced in Section 4.2), three IDE++ applications: DevTime, Proctor, and Localizer.

These applications help programmers edit, test, and debug. We show the source code of a simple

yet meaningful application to illustrate how easy it is to write an application using IDE++.

DevTime After finishing a task, a programmer may want to review what he did to track a

project’s progress or file a daily working report. Typically, he would review those changes in

his version control system (VCS). However, VCS history is a coarse record of what he actually

did: it does not reflect the time he spent browsing code or running regression tests. If he made sev-

eral changes in a single location to the source in his editor, VCS can capture only those changes

actually committed to its history. DevTime has two reports: a summary of task performed by

92

Figure 4.4.2: The Summary Report application shows a programmer how he has interacted with
Eclipse.

category, shown in Figure 4.4.2, and a timeline visualization in Figure 4.4.3.

Proctor A good software engineering practice is to test a method while the method and changes

made to it are still fresh in a programmer’s mind. The longer the gap between editing and testing,

the harder it is for a programmer to find and fix a bug he introduced. After a series of edits, a

programmer implicitly builds a testing plan. If he knows which methods have been edited and

tested recently, it will be much easier for him to remember what needs to be tested.

Proctor helps programmers build testing plans by tracking which methods have been edited

and tested recently. It monitors the editing interactions to get the list of methods that have been

93

Figure 4.4.3: IDE++ draws a timeline of a user’s interactions for the most recent session.

changed and JUnit test interactions to get the list of run test cases. By scanning the source code

of the test methods, the Proctor knows which methods have been tested and whether they passed

the test or not. It organizes the edited methods into three categories and presents them to the

programmer: methods that have not been tested yet, methods that have been tested and passed,

and methods that have been tested but failed. Figure 4.4.4 shows example output.

Localizer Bug localization is an active research area. Researchers have proposed various ap-

proaches to localizing bugs: statistical models, code history, program slicing, etc. [44, 46, 57, 59,

95]. Many techniques apply sophisticated analysis to an entire program.

The IDE++ Localizer introduces a new approach: localizing bugs by searching the recent

editing history. Programmers run regression test cases routinely to ensure that recent edits have

not adversely affected existing functionality. When a test case fails, it is likely that a recent edit

94

Figure 4.4.4: Proctor tracks editing and testing interactions to remind the user which methods
have not been tested yet.

Figure 4.4.5: Programmer’s
code change.

Figure 4.4.6: Call Graph of test
case methods.

Figure 4.4.7: The Localizer re-
sult.

Figure 4.4.8: How Localizer works: (a) A programmer changes both sayHello and sum (marked
gray in (b)). (b) testSum fails when the test cases were run (marked red). (c) Localizer suggests
that changes in sum might have caused the failure.

caused the failure. Using this heuristic and the program’s call graph, the IDE++ Localizer lists

recently edited methods that might have caused a JUnit test failure. Since this approach requires

only recent editing history, it is light-weight and provides live feedback.

Consider the example shown in Figure 4.4.8. A programmer changed both the sum and

sayHello methods in Calculator during the current session. When he ran the test cases, testSum

failed. Although both sum and sayHello were changed, since the call graph of testSum shows

that only sum affects it, the Localizer tells the programmer that sum is the candidate method that

95

1 class RunningAverage {

2 int count;

3 double average;

4 RunningAverage(double a) {

5 count = 1; average = a;

6 }

7 }

8 JavaLaunchListener l = new JavaLaunchListener () {

9 private Map <IType , Long > launched =

10 new HashMap <IType , Long >();

11 private Map <IType , Long > runningAverages =

12 new HashMap <IType , RunningAverage >();

13 public void programLaunched(IType mainType) {

14 launched.put(

15 mainType , System.currentTimeMillis ()

16);

17 }

18 public void programTerminated(IType mainType) {

19 Long started = launched.remove(mainType);

20 if (started != null) {

21 long runTime =

22 System.currentTimeMillis () - started;

23 RunningAverage rAve = runningAverages.get(mainType);

24 if (rAve == null) {

25 runningAverages.put(

26 mainType , new RunningAverage(runTime);

27);

28 }

29 else {

30 rAve.average *= rAve.count;

31 rAve.average += runTime;

32 rAve.average /= ++rAve.count;

33 }

34 }

35 }

36 };

37 IDEPPPlugin.addListener(l);

Figure 4.4.9: Instrumenting program launch interactions.

caused the failure.

Localizer illustrates the use of a particular kind of interaction; it monitors only the JUnit launch

and editing interactions, and is triggered by a a test failure. First, it builds the set of the methods

called by the test method. Then it extracts the set of methods edited during the recent sessions

from IDE++’s interaction history. The intersection of these two sets forms the set of candidates.

Finally, Localizer presents these candidates to the programmer. Since the edits triggering the

error might not have occurred in the most recent session, Localizer can search the edit history of

previous sessions. By default, Localizer searches the last three sessions. The programmer can

override this default.

96

LOC

Application Interaction Total

DevTime 20 972
Sage 278 2,123
Proctor 69 889
Localizer 130 874

Table 4.4: Line of code (LOC) of the four applications.

Writing IDE++ Applications

Table 4.4 displays the lines of code (LOC) of the four applications we built. The third column

lists the total LOC; second column shows the LOC related to receiving and processing IDE inter-

actions from IDE++. DevTime retrieves interactions directly from IDE++ log files, so its LOC for

interactions is only 20. Because Sage monitors every available interaction and parses the argu-

ments to get information, it requires the most logic to handle interactions. Additionally, it contains

many different automata that check for different patterns, explaining why it is much larger than

the other three plug-ins. Comparing the second and third columns, we see that developers need to

write very little code to retrieve and utilize interaction information from IDE++.

We use a simple, albeit, real example to illustrate how easy it is to build an IDE++ appli-

cation. Assume a developer wants to track the average running time of the programs run dur-

ing an Eclipse session. For this application, the developers needs only implement and register

JavaLaunchListener to intercept program launch interactions. In Figure 4.4.9, the developer

puts the bulk of the time-averaging logic in handleTerminated and stores the results in launched.

Although it is quite short, the code demonstrates a complete use of the IDE++ infrastructure.

97

4.5 Related Work

Many IDEs, Eclipse among them, support rudimentary user monitoring [84]. They provide

hooks that allow developers to implement their own listeners. However, the support for capturing

interactions is ad hoc and cumbersome. For example, Eclipse only partially captures UI interac-

tions, since it does not capture mouse actions; when a programmer issues a command, Eclipse

does not report whether the programmer typed a hotkey or clicked a button in the tool bar or a

menu. In contrast, IDE++ comprehensively captures and republishes IDE interactions in a stan-

dard, easily parsed format.

Code evolution dominates the software life cycle. Developers use a version control system

(VCS) to track code evolution. To support collaborative development, VCS allows users to write

and commit code to a shared repository. IDE++ also tracks code evolution, but at a finer granular-

ity: we capture every edit interaction, as the changes in an buffer between two idle periods of at

least one second. When a developer is editing, he might make several changes at the same loca-

tion in the source before committing it. IDE++ captures all of the edits while a VCS captures only

the difference between commits. By capturing these granular edits instead of file saves, IDE++

comes closer to capturing a developer’s thought process. For example, a tricky problem might

cause a developer to navigate back and forth between files, make and unmake a change, before he

reaching a decision.

Murphy et al.’s Mylyn Monitor was an important step in the capture of IDE interactions [63].

Indeed, many recent IDE applications, which we discuss next, depend on the Mylyn Monitor.

IDE++ continues the Mylyn Monitor’s pioneering work along three dimensions — comprehen-

siveness, ease-of-use and granularity. IDE++ seeks to intercept all IDE interactions, as identified

by the phases of the software life cycle. The set of IDE interactions is a moving target, so at any

instance in time, especially when a new plugin gains traction, IDE++ will fall short of this goal.

Thus, IDE++ has been designed to make it easy for programmers to extend it to new classes of

98

interactions.

Robbes and Lanza proposed Spyware an IDE monitor that captures fine-grained editing in-

teractions [73]. Like IDE++, Spyware is a framework on which to build applications. Unlike

IDE++, Spyware exclusively intercepts edits, ignoring other IDE interactions. Vakilian et al.’s

CodingSpectator and CodingTracker aim to capturing low-level code refactoring changes [86].

Yoon et al. present Fluorite that captures low-level editing interactions [94]. The above work all

focus on a subset of interactions, while our work advocate systematic monitoring all kinds of

interactions.

4.5.1 Applications

Program comprehension is an important part of the software engineering process. Researchers

have applied interaction information to aid program comprehension. Fritz et al. proposed a model

using interactions captured by the Mylyn Monitor to judge a programmer’s knowledge of code [23].

Kersten and Murphy use the Mylyn Monitor to produce a recommender for the next method to

edit using their degree of interest (DOI) measure, which is derived from a database of interac-

tion traces [47]. Guzzi et al. proposed a new type of interaction, collective code bookmark to

summarize source code to help programmers understand software artifacts [31]. Guzzi et al. also

presented a micro-blogging technique: group a series of interactions and attach a message to de-

scribe the interactions to enhance program comprehension [32]. Ko et al. studied the relationship

between interactive aspects of IDEs and program understanding [52]. IDE++ can complement

these applications by providing more information in the form of finer-grained interactions and

additional classes of interactions, such a debugging interactions. For example, the sequence of

debugging commands a programmer issues might indicate his degree of knowledge of some code.

A large body of work on in-program assistative agents for general purpose applications exists.

The Lumiere project, which culminated in the Office Assistant in Microsoft Office, is one notable

99

example [40]. Lumiere’s focus is Bayesian learning, but also internally abstracts the event stream

to explicitly represent repetition and inter-event gaps, with which we intend to experiment. A

more recent example is Ekstrand et al.’s work, where the researchers are interested in marrying

free-form text query to in-program context sensitivity [19].IDE++ can be seen as the specialization

of this line of work to the IDE domain; We believe its ecosystem of user-aware applications will

quickly grow to encompass those that apply Machine Learning to its stream of interactions.

Brun et al. proposed speculative analysis that leverages idle multicores to anticipate what a

user may next wish to do, such as compile or run JUnit, and kick off these tasks in the back-

ground, shifting them to the foreground if the guess is correct [8]. For instance, they speculatively

apply Eclipse’s quick fix tips in the background, then tell users which ones worked. For version

control interactions, they speculatively merge a developer’s current branch in the background to

report how many conflicts would arise [9]. IDE++ allows the extension of speculation to other

programmer interactions. For example, by monitoring editing interactions, the IDE could run

relevant test methods in the background, and notify the programmer about failures.

Researchers have also employed interaction history for prediction. Robbes et al. used Mylyn

Monitor interaction logs to improve program change prediction [75]. Robbes and Lanza used edit

history to improve IDE code completion [74]. Lee et al. described a set of micro interaction met-

rics, such as how much time a programmer spends in one file and how many selection operations

he makes to predict bugs [54]. Purandare et al. present a general framework for optimizing the

monitoring of loops [71]. IDE++’s fine-grained interaction information provides more data as

input to predictors. As an example, Lee’s bug prediction model could include editing interactions:

A file that has been changed many times is likely to contain bugs. IDE++ allows the construction

of prediction models for new classes of development activities, such as running a test.

100

4.6 Discussion and Future Work

The interactions between programmers and their IDEs contain valuable information, much of

which currently goes to waste. Systematically recorded into an easy-to-use format, these interac-

tions will usher in new, highly personalized, user-aware applications with the potential to improve

programming productivity. In this chapter, we have introduced IDE++, an IDE interaction moni-

tor, and four applications — DevTime, Sage, Proctor, and Localizer — to demonstrate the promise

and utility of the new ecosystem of applications IDE++ creates. We plan to extend IDE++ to sup-

port more interactions, such as support for compiler warning and collaboration plug-ins such as

EGit and Subclipse. We have published these applications as well as the IDE++ infrastructure

onto the Eclipse Marketplace. We welcome users to try it.

Programmer interaction histories are good candidates for using data mining techniques to dis-

cover previously unknown patterns. Experienced programmers’ interactions facilitate knowledge

reuse and provide new educational opportunities. Of course, sharing the interaction information

raises privacy concerns. We intend apply existing techniques, such as CQual [22], taint analy-

sis [64], and sanitization [89], to IDE++ to protect contributors.

Our monitoring infrastructure is an open framework. We welcome other developers to build

applications upon it. Tutorials, documentation, tool downloads, and updates are available at http:

//idepp.cs.ucdavis.edu.

101

http://idepp.cs.ucdavis.edu
http://idepp.cs.ucdavis.edu

Chapter 5

CONCLUSION

This dissertation has proposed three research efforts that aim to ease the debugging process.

Each of these efforts focuses on a different stage of debugging. Oscilloscope leverages knowledge

from existing bugs to help developers fix new bugs, and targets the first stage: understanding and

fixing a bug. Once a bug is fixed, Fixation helps developers verify the bug fix to avoid the bad

fix problem. It targets the stage of testing and validating bug fixes. IDEPP, an infrastructure

for monitoring and capturing developer activities, helps understand how developers debug and

build applications to aid debugging. It is applicable throughout the software development life

cycle. This chapter concludes the dissertation by briefly discussing interesting future work on

OSCILLOSCOPE and IDEPP.

OSCILLOSCOPE is an open infastructure, and its database will grow from our activities and

the contributions from others. With more and more bugs in its database, it will become a valuable

resource for empirical software engineering. We will use it to study questions such as “Can we

quantify the precision-scale trade-off of varying trace granularity?”, “What proportion of bugs

can only be captured at statement granularity?”, and “Which parts of the system do few buggy

traces traverse?” We also plan to add the traces of correct executions to OSCILLOSCOPE’s

database, which currently contains only buggy executions and compare them. We intend to ex-

102

plore adding call contexts to produce execution trees. Because OSCILLOSCOPE is a general and

flexible framework, adding this support requires only modifying the instrumentation component

and defining a distance measure over execution trees. In short, we intend to enhance and further

experiment with our framework to gain additional insights into “What makes bugs similar?”

IDEPP serves as a basis for an ecosystem of user-aware applications. The future work of

IDEPP can be categorized into two directions: applications and empirical research. First, it en-

ables developers to build intelligent IDEs and applications to improve programming productivity.

We will continue building more useful applications based on IDEPP and improving the infrastruc-

ture to enable other developers to contribute. Second, the systematic and fine-grained interactions

can be used to study how programmers work and how projects evolve. As our interaction database

grows, we will use it to study questions such as “How do the interaction histories of experienced

programmers differ from those of novices?”, “Do programmers from the same project share com-

mon interaction patterns?”, and “Does interaction history correlate with measures such as program

complexity and bug density?”

103

Bibliography

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proceedings of the 28th

international conference on Software engineering, pages 361–370, New York, NY, USA,

2006. ACM.

[2] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala. Debugadvisor:

a recommender system for debugging. In Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The foun-

dations of software engineering, pages 373–382, New York, NY, USA, 2009. ACM.

[3] T. Ball and S. K. Rajamani. The slam project: debugging system software via static analysis.

In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 1–3, New York, NY, USA, 2002. ACM.

[4] C. Barrett and C. Tinelli. Cvc3. In Proceedings of the 19th international conference on

Computer aided verification, pages 298–302, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining counterexamples

using causality. In Proceedings of the 21st International Conference on Computer Aided

Verification, pages 94–108, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. What makes

104

a good bug report? In Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of software engineering, pages 308–318, New York, NY, USA, 2008. ACM.

[7] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating tests

from counterexamples. In Proceedings of the 26th International Conference on Software

Engineering, pages 326–335, Washington, DC, USA, 2004. IEEE Computer Society.

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative analysis: exploring future

development states of software. In Proceedings of the FSE/SDP workshop on Future of

software engineering research, pages 59–64, New York, NY, USA, 2010. ACM.

[9] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collaboration con-

flicts. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European confer-

ence on Foundations of software engineering, pages 168–178, New York, NY, USA, 2011.

ACM.

[10] Bugzilla. http://www.bugzilla.org/.

[11] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: a powerful approach to weakest

preconditions. In Proceedings of the 2009 ACM SIGPLAN conference on Programming

language design and implementation, pages 363–374, New York, NY, USA, 2009. ACM.

[12] J. S. Collofello and S. N. Woodfield. Evaluating the effectiveness of reliability-assurance

techniques. J. Syst. Softw., 9(3):191–195, Mar. 1989.

[13] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining static checking and testing. In

Proceedings of the 27th international conference on Software engineering, pages 422–431,

New York, NY, USA, 2005. ACM.

[14] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher: A hybrid analysis tool for bug finding.

ACM Trans. Softw. Eng. Methodol., 17(2):8:1–8:37, May 2008.

105

http://www.bugzilla.org/

[15] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution for efficient state-space ex-

ploration of object-oriented programs. In Proceedings of the 2007 international symposium

on Software testing and analysis, pages 50–60, New York, NY, USA, 2007. ACM.

[16] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha. Debugging model-transformation failures

using dynamic tainting. In Proceedings of the 24th European conference on Object-oriented

programming, pages 26–51, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] E. W. Dijkstra. A Discipline of Programming. October 1976.

[18] J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a sat solver. In Proceedings

of the the 6th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pages 195–204, New

York, NY, USA, 2007. ACM.

[19] M. Ekstrand, W. Li, T. Grossman, J. Matejka, and G. Fitzmaurice. Searching for software

learning resources using application context. In Proceedings of the 24th annual ACM sym-

posium on User interface software and technology, UIST ’11, pages 195–204, New York,

NY, USA, 2011. ACM.

[20] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: a general

approach to inferring errors in systems code. In Proceedings of the eighteenth ACM sympo-

sium on Operating systems principles, pages 57–72, New York, NY, USA, 2001. ACM.

[21] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Ex-

tended static checking for java. In Proceedings of the ACM SIGPLAN 2002 Conference on

Programming language design and implementation, pages 234–245, New York, NY, USA,

2002. ACM.

[22] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In Proceedings of

106

the ACM SIGPLAN 1999 conference on Programming language design and implementation,

pages 192–203, New York, NY, USA, 1999. ACM.

[23] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s activity indicate knowledge of

code? In Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software engineering,

pages 341–350, New York, NY, USA, 2007. ACM.

[24] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In Pro-

ceedings of the 2005 ACM SIGPLAN conference on Programming language design and im-

plementation, pages 213–223, New York, NY, USA, 2005. ACM.

[25] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over program traces. In

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, pages 385–402, New York, NY, USA, 2005.

ACM.

[26] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical study

of regression test selection techniques. ACM Trans. Softw. Eng. Methodol., 10(2):184–208,

Apr. 2001.

[27] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with distance metrics.

Int. J. Softw. Tools Technol. Transf., 8(3):229–247, June 2006.

[28] A. Groce and W. Visser. What went wrong: explaining counterexamples. In Proceedings

of the 10th international conference on Model checking software, pages 121–136, Berlin,

Heidelberg, 2003. Springer-Verlag.

[29] Z. Gu, E. T. Barr, and Z. Su. Bql: capturing and reusing debugging knowledge. In Proceed-

107

ings of the 33rd International Conference on Software Engineering, pages 1001–1003, New

York, NY, USA, 2011. ACM.

[30] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-

tational Biology. Cambridge University Press, 1997.

[31] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. v. Deursen. Collective code bookmarks

for program comprehension. In Proceedings of the 2011 IEEE 19th International Conference

on Program Comprehension, pages 101–110, Washington, DC, USA, 2011. IEEE Computer

Society.

[32] A. Guzzi, M. Pinzger, and A. van Deursen. Combining micro-blogging and ide interactions

to support developers in their quests. In Proceedings of the 2010 IEEE International Con-

ference on Software Maintenance, pages 1–5, Washington, DC, USA, 2010. IEEE Computer

Society.

[33] J. S. Hammond. IDE usage trends, 2008.

[34] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon,

and A. Gujarathi. Regression test selection for java software. In Proceedings of the 16th

ACM SIGPLAN conference on Object-oriented programming, systems, languages, and ap-

plications, pages 312–326, New York, NY, USA, 2001. ACM.

[35] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other program-

mers do: suggesting solutions to error messages. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 1019–1028, New York, NY, USA, 2010.

ACM.

[36] H. He and N. Gupta. Automated debugging using path-based weakest preconditions. In

Fundamental Approaches to Software Engineering, Springer, LNCS, pages 267–280, 2004.

108

[37] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 58–70, New York, NY, USA, 2002. ACM.

[38] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast. In

Proceedings of the 10th international conference on Model checking software, pages 235–

239, Berlin, Heidelberg, 2003. Springer-Verlag.

[39] K. J. Hoffman, P. Eugster, and S. Jagannathan. Semantics-aware trace analysis. In Proceed-

ings of the 2009 ACM SIGPLAN conference on Programming language design and imple-

mentation, pages 453–464, New York, NY, USA, 2009. ACM.

[40] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The lumire project:

Bayesian user modeling for inferring the goals and needs of software users. In Proceedings of

the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 256–265. Morgan

Kaufmann, 1998.

[41] E. W. Host and B. M. Ostvold. Debugging method names. In Proceedings of the 23rd

European Conference on ECOOP 2009 — Object-Oriented Programming, pages 294–317,

Berlin, Heidelberg, 2009. Springer-Verlag.

[42] IBM. T.J. Watson libraries for analysis. http://wala.sf.net.

[43] IDC. A Telecom and Networks market intelligence firm. http://www.idc.com.

[44] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault

localization. In Proceedings of the 24th International Conference on Software Engineering,

pages 467–477, New York, NY, USA, 2002. ACM.

[45] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity: enabling systems

to defend against deadlocks. In Proceedings of the 8th USENIX conference on Operating

109

http://wala.sf.net
http://www.idc.com

systems design and implementation, pages 295–308, Berkeley, CA, USA, 2008. USENIX

Association.

[46] M. Kamkar, N. Shahmehri, and P. Fritzson. Bug localization by algorithmic debugging

and program slicing. In Proceedings of the 2nd International Workshop on Programming

Language Implementation and Logic Programming, pages 60–74, London, UK, UK, 1990.

Springer-Verlag.

[47] M. Kersten and G. C. Murphy. Using task context to improve programmer productivity. In

Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software

engineering, pages 1–11, New York, NY, USA, 2006. ACM.

[48] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In Proceedings of

the 14th ACM SIGSOFT international symposium on Foundations of software engineering,

pages 35–45, New York, NY, USA, 2006. ACM.

[49] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults from cached

history. In Proceedings of the 29th international conference on Software Engineering, pages

489–498, Washington, DC, USA, 2007. IEEE Computer Society.

[50] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July

1976.

[51] A. J. Ko and B. A. Myers. A framework and methodology for studying the causes of software

errors in programming systems. J. Vis. Lang. Comput., 16(1-2):41–84, Feb. 2005.

[52] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study of how

developers seek, relate, and collect relevant information during software maintenance tasks.

IEEE Trans. Softw. Eng., 32(12):971–987, Dec. 2006.

110

[53] J. R. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN 1999 conference on

Programming language design and implementation, pages 259–269, New York, NY, USA,

1999. ACM.

[54] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction metrics for defect prediction.

In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering, pages 311–321, New York, NY, USA, 2011. ACM.

[55] V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals (in

Russian). 1965.

[56] B. Liblit. Cooperative bug isolation. Springer-Verlag, Berlin, Heidelberg, 2007.

[57] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via remote program sampling.

In Proceedings of the 2003 ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2003.

[58] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation.

In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design

and implementation, pages 15–26, New York, NY, USA, 2005. ACM.

[59] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical model-based bug local-

ization. In Proceedings of the 10th European software engineering conference held jointly

with 13th ACM SIGSOFT international symposium on Foundations of software engineering,

pages 286–295, New York, NY, USA, 2005. ACM.

[60] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws us-

ing pql: a program query language. In Proceedings of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications, pages

365–383, New York, NY, USA, 2005. ACM.

111

[61] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, 2(4),

1976.

[62] S. McCamant and M. D. Ernst. Predicting problems caused by component upgrades. In

Proceedings of the 9th European software engineering conference held jointly with 11th

ACM SIGSOFT international symposium on Foundations of software engineering, pages

287–296, New York, NY, USA, 2003. ACM.

[63] G. C. Murphy, M. Kersten, and L. Findlater. How are java software developers using the

eclipse ide? IEEE Softw., 23(4):76–83, July 2006.

[64] J. Newsome and D. X. Song. Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commodity software. In NDSS, 2005.

[65] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen. Recurring

bug fixes in object-oriented programs. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 1, pages 315–324, New York, NY, USA,

2010. ACM.

[66] K. M. Olender and L. J. Osterweil. Cecil: A sequencing constraint language for automatic

static analysis generation. IEEE Trans. Softw. Eng., 16(3):268–280, Mar. 1990.

[67] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems.

pages 241–251, 2004.

[68] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic execu-

tion. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations

of software engineering, pages 226–237, New York, NY, USA, 2008. ACM.

[69] G. Pothier and E. Tanter. Summarized trace indexing and querying for scalable back-in-time

112

debugging. In Proceedings of the 25th European conference on Object-oriented program-

ming, pages 558–582, Berlin, Heidelberg, 2011. Springer-Verlag.

[70] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient debugging. In Proceedings of

the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems and

applications, pages 535–552, New York, NY, USA, 2007. ACM.

[71] R. Purandare, M. B. Dwyer, and S. Elbaum. Monitor optimization via stutter-equivalent loop

transformation. In Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, pages 270–285, New York, NY, USA,

2010. ACM.

[72] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person,

and M. Pape. Combining unit-level symbolic execution and system-level concrete execution

for testing nasa software. In Proceedings of the 2008 international symposium on Software

testing and analysis, pages 15–26, New York, NY, USA, 2008. ACM.

[73] R. Robbes and M. Lanza. Spyware: a change-aware development toolset. In Proceedings of

the 30th international conference on Software engineering, pages 847–850, New York, NY,

USA, 2008. ACM.

[74] R. Robbes and M. Lanza. Improving code completion with program history. volume 17,

pages 181–212, Hingham, MA, USA, June 2010. Kluwer Academic Publishers.

[75] R. Romain, P. Damien, and L. Michele. Replaying IDE interactions to evaluate and improve

change prediction approaches. In MSR, 2010.

[76] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE Trans.

Softw. Eng., 22(8):529–551, Aug. 1996.

113

[77] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM

Trans. Softw. Eng. Methodol., 6(2):173–210, Apr. 1997.

[78] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports using

natural language processing. In Proceedings of the 29th international conference on Software

Engineering, pages 499–510, Washington, DC, USA, 2007. IEEE Computer Society.

[79] B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In Proceedings

of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, pages 46–53, New York, NY, USA, 2001. ACM.

[80] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold. Test-suite

augmentation for evolving software. In Proceedings of the 2008 23rd IEEE/ACM Interna-

tional Conference on Automated Software Engineering, pages 218–227, Washington, DC,

USA, 2008. IEEE Computer Society.

[81] A. Schröter, N. Bettenburg, and R. Premraj. Do stack traces help developers fix bugs? In

Proceedings of the 7th IEEE Working Conference on Mining Software Repositories, 2010.

[82] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In Pro-

ceedings of the 10th European software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of software engineering, pages 263–272,

New York, NY, USA, 2005. ACM.

[83] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In Proceedings

of the 2005 international workshop on Mining software repositories, pages 1–5, New York,

NY, USA, 2005. ACM.

[84] The Eclipse Foundation. Eclipse instrumentation framework.

114

http://dev.eclipse.org/viewcvs/viewvc.cgi/platform-ui-home/instrumentation/inde x

.html?revision=1.12.

[85] The Economist. The quantified self: Counting every moment. The Economist Magazine,

2012.

[86] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, R. Zilouchian Moghaddam, and R. E.

Johnson. The need for richer refactoring usage data. In Proceedings of the 3rd ACM SIG-

PLAN workshop on Evaluation and usability of programming languages and tools, pages

31–38, New York, NY, USA, 2011. ACM.

[87] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation with Java PathFinder. In

ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software

testing and analysis, 2004.

[88] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate bug

reports using natural language and execution information. In Proceedings of the 30th inter-

national conference on Software engineering, pages 461–470, New York, NY, USA, 2008.

ACM.

[89] G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection

vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, pages 32–41, New York, NY, USA, 2007. ACM.

[90] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using

genetic programming. In Proceedings of the 31st International Conference on Software

Engineering, pages 364–374, Washington, DC, USA, 2009. IEEE Computer Society.

[91] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. Predicting effort to fix software bugs.

In Proceedings of the 9th Workshop Software Reengineering, May 2007.

115

[92] Wikipedia. Mental chronometry. http://en.wikipedia.org/wiki/Mental_

chronometry, 2012.

[93] J. Wloka, E. Hoest, and B. G. Ryder. Tool support for change-centric test development.

IEEE Software, 99(PrePrints), 2009.

[94] Y. Yoon and B. A. Myers. Capturing and analyzing low-level events from the code editor. In

Proceedings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of program-

ming languages and tools, pages 25–30, New York, NY, USA, 2011. ACM.

[95] A. Zeller. Yesterday, my program worked. today, it does not. why? In Proceedings of

the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 253–267, London,

UK, UK, 1999. Springer-Verlag.

[96] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate switching.

In Proceedings of the 28th international conference on Software engineering, ICSE ’06,

pages 272–281, New York, NY, USA, 2006. ACM.

116

http://en.wikipedia.org/wiki/Mental_chronometry
http://en.wikipedia.org/wiki/Mental_chronometry

	1 Introduction
	2 FIXATION: Has the Bug Really Been Fixed?
	2.1 Introduction
	2.2 Illustrative Example
	2.3 Approach
	2.3.1 The Bad Fix Problem
	2.3.2 Distance-Bounded Weakest Precondition
	2.3.3 Detecting Violations of Coverage
	2.3.4 Detecting Violations of Disruption

	2.4 Empirical Evaluation
	2.4.1 Implementation
	2.4.2 Experimental Setup
	2.4.3 Experimental Results
	2.4.4 Threats to Validity

	2.5 Related Work
	2.5.1 Practical Computation of WP
	2.5.2 Automatic Test Input Generation
	2.5.3 Bug Fixes and Code Changes

	2.6 Discussion and Future Work

	3 OSCILLOSCOPE: Reusing Debugging Knowledge via Trace-based Bug Search
	3.1 Introduction
	3.2 Illustrating Example
	3.3 Design and Realization of Oscilloscope
	3.3.1 User-Level Support
	3.3.2 BQL: A Bug Query Language
	3.3.3 Implementation
	3.3.4 Extending Oscilloscope with New Queries

	3.4 Evaluation
	3.4.1 Can Oscilloscope Find Similar Bugs?
	3.4.2 How Useful are the Results?
	3.4.3 Scalability
	3.4.4 Execution Trace Search Accuracy
	3.4.5 Threats to Validity

	3.5 Related Work
	3.6 Discussion and Future Work

	4 IDEPP: Capturing and Exploiting IDE Interactions
	4.1 Introduction
	4.2 Illustrative Example
	4.3 Design and Implementation of IDE++
	4.3.1 Methodology
	4.3.2 The Architecture of IDE++
	4.3.3 Interaction History
	4.3.4 Subscribing to IDE++ Events
	4.3.5 Extending IDE++

	4.4 Evaluation
	4.4.1 Comprehensiveness and Granularity
	4.4.2 User-aware IDE Applications

	4.5 Related Work
	4.5.1 Applications

	4.6 Discussion and Future Work

	5 CONCLUSION

