
Matlab Programming

Gerald W. Recktenwald

Department of Mechanical Engineering

Portland State University

gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with
Matlab: Implementations and Applications, by Gerald W. Recktenwald,
c© 2001, Prentice-Hall, Upper Saddle River, NJ. These slides are c©
2001 Gerald W. Recktenwald. The PDF version of these slides may
be downloaded or stored or printed only for noncommercial, educational
use. The repackaging or sale of these slides in any form, without written
consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald.

Version 0.97 August 28, 2001

Overview

• Script m-files

� Creating

� Side effects

• Function m-files

� Syntax of I/O parameters

� Text output

� Primary and secondary functions

• Flow control

� Relational operators

� Conditional execution of blocks

� Loops

• Vectorization

� Using vector operations instead of loops

� Preallocation of vectors and matrices

� Logical and array indexing

• Programming tricks

� Variable number of I/O parameters

� Indirect function evaluation

� Inline function objects

� Global variables

NMM: Matlab Programming page 1

Preliminaries

• Programs are contained in m-files

� Plain text files – not binary files produced by word

processors

� File must have “.m” extension

• m-file must be in the path

� Matlab maintains its own internal path

� The path is the list of directories that Matlab will search

when looking for an m-file to execute.

� A program can exist, and be free of errors, but it will not

run if Matlab cannot find it.

� Manually modify the path with the path, addpath, and
rmpath built-in functions, or with addpwd NMM toolbox

function

� . . . or use interactive Path Browser

NMM: Matlab Programming page 2

Script Files

• Not really programs

� No input/output parameters

� Script variables are part of workspace

• Useful for tasks that never change

• Useful as a tool for documenting homework:

� Write a function that solves the problem for arbitrary

parameters

� Use a script to run function for specific parameters

required by the assignment

Free Advice: Scripts offer no advantage over functions.

Functions have many advantages over scripts.

Always use functions instead of scripts.

NMM: Matlab Programming page 3

Script to Plot tan(θ) (1)

Enter statements in file called tanplot.m

1. Choose New. . . from File menu

2. Enter lines listed below

Contents of tanplot.m:

theta = linspace(1.6,4.6);
tandata = tan(theta);
plot(theta,tandata);
xlabel(’\theta (radians)’);
ylabel(’tan(\theta)’);
grid on;
axis([min(theta) max(theta) -5 5]);

3. Choose Save. . . from File menu

Save as tanplot.m

4. Run it

>> tanplot

NMM: Matlab Programming page 4

Script to Plot tan(θ) (2)

Running tanplot produces the following plot:

2 2.5 3 3.5 4 4.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

θ (radians)

ta
n(

θ)

If the plot needs to be changed, edit the tanplot script and

rerun it. This saves the effort of typing in the commands. The

tanplot script also provides written documentation of how to

create the plot.

Example: Put a % character at beginning of the line

containing the axis command, then rerun the

script

NMM: Matlab Programming page 5

Script Side-Effects (1)

All variables created in a script file are added to the workplace.

This may have undesirable effects because

• Variables already existing in the workspace may be

overwritten

• The execution of the script can be affected by the state

variables in the workspace.

Example: The easyplot script
% easyplot: Script to plot data in file xy.dat

% Load the data
D = load(’xy.dat’); % D is a matrix with two columns
x = D(:,1); y = D(:,2); % x in 1st column, y in 2nd column

plot(x,y) % Generate the plot and label it
xlabel(’x axis, unknown units’)
ylabel(’y axis, unknown units’)
title(’Plot of generic x-y data set’)

NMM: Matlab Programming page 6

Script Side-Effects (2)

The easyplot script affects the workspace by creating three

variables:

>> clear
>> who

(no variables show)
>> easyplot
>> who

Your variables are:

D x y

The D, x, and y variables are left in the workspace. These generic

variable names might be used in another sequence of calculations

in the same Matlab session. See Exercise 10 in Chapter 4.

NMM: Matlab Programming page 7

Script Side-Effects (3)

Side Effects, in general:

• Occur when a module changes variables other than its input

and output parameters

• Can cause bugs that are hard to track down

• Cannot always be avoided

Side Effects, from scripts

• Create and change variables in the workspace

• Give no warning that workspace variables have changed

Because scripts have side effects, it is better to encapsulate any

mildly complicated numerical in a function m-file

NMM: Matlab Programming page 8

Function m-files (1)

• Functions are subprograms:

� Functions use input and output parameters to

communicate with other functions and the command

window

� Functions use local variables that exist only while the

function is executing. Local variables are distinct from

variables of the same name in the workspace or in other

functions.

• Input parameters allow the same calculation procedure (same

algorithm) to be applied to different data. Thus, function

m-files are reusable.

• Functions can call other functions.

• Specific tasks can be encapsulated into functions. This

modular approach enables development of structured

solutions to complex problems.

NMM: Matlab Programming page 9

Function m-files (2)

Syntax:

The first line of a function m-file has the form:

function [outArgs] = funName(inArgs)

outArgs are enclosed in []

• outArgs is a comma-separated list of variable names

• [] is optional if there is only one parameter

• functions with no outArgs are legal

inArgs are enclosed in ()

• inArgs is a comma-separated list of variable names

• functions with no inArgs are legal

NMM: Matlab Programming page 10

Function Input and Output (1)

Examples: Demonstrate use of I/O arguments

• twosum.m — two inputs, no output

• threesum.m — three inputs, one output

• addmult.m — two inputs, two outputs

NMM: Matlab Programming page 11

Function Input and Output (2)

twosum.m

function twosum(x,y)
% twosum Add two matrices
% and print the result
x+y

threesum.m

function s = threesum(x,y,z)
% threesum Add three variables
% and return the result
s = x+y+z;

addmult.m

function [s,p] = addmult(x,y)
% addmult Compute sum and product
% of two matrices
s = x+y;
p = x*y;

NMM: Matlab Programming page 12

Function Input and Output Examples (3)

Example: Experiments with twosum:
>> twosum(2,2)
ans =

4

>> x = [1 2]; y = [3 4];
>> twosum(x,y)
ans =

4 6

>> A = [1 2; 3 4]; B = [5 6; 7 8];
>> twosum(A,B);
ans =

6 8
10 12

>> twosum(’one’,’two’)
ans =

227 229 212

Notes: 1. The result of the addition inside twosum is exposed because the x+y
expression does not end in a semicolon. (What if it did?)

2. The strange results produced by twosum(’one’,’two’) are obtained by
adding the numbers associated with the ASCII character codes for each
of the letters in ‘one’ and ‘two’.
Try double(’one’) and double(’one’) + double(’two’).

NMM: Matlab Programming page 13

Function Input and Output Examples (4)

Example: Experiments with twosum:

>> clear
>> x = 4; y = -2;
>> twosum(1,2)
ans =

3

>> x+y
ans =

2

>> disp([x y])
4 -2

>> who

Your variables are:

ans x y

In this example, the x and y variables defined in the workspace

are distinct from the x and y variables defined in twosum. The x
and y in twosum are local to twosum.

NMM: Matlab Programming page 14

Function Input and Output Examples (5)

Example: Experiments with threesum:

>> a = threesum(1,2,3)
a =

6

>> threesum(4,5,6)
ans =

15

>> b = threesum(7,8,9);

Note: The last statement produces no output because the

assignment expression ends with a semicolon. The

value of 24 is stored in b.

NMM: Matlab Programming page 15

Function Input and Output Examples (6)

Example: Experiments with addmult:

>> [a,b] = addmult(3,2)
a =

5
b =

6

>> addmult(3,2)
ans =

5

>> v = addmult(3,2)
v =

5

Note: addmult requires two return variables. Calling

addmult with no return variables or with one return

variable causes undesired behavior.

NMM: Matlab Programming page 16

Summary of Input and Output Parameters

• Values are communicated through input arguments and

output arguments.

• Variables defined inside a function are local to that function.

Local variables are invisible to other functions and to the

command environment.

• The number of return variables should match the number of

output variables provided by the function. This can be

relaxed by testing for the number of return variables with

nargout (See § 3.6.1.).

NMM: Matlab Programming page 17

Text Input and Output

It is usually desirable to print results to the screen or to a file.

On rare occasions it may be helpful to prompt the user for

information not already provided by the input parameters to a

function.

Inputs to functions:

• input function can be used (and abused!).

• Input parameters to functions are preferred.

Text output from functions:

• disp function for simple output

• fprintf function for formatted output.

NMM: Matlab Programming page 18

Prompting for User Input

The input function can be used to prompt the user for numeric

or string input.

>> x = input(’Enter a value for x’);

>> yourName = input(’Enter your name’,’s’);

Prompting for input betrays the Matlab novice. It is a

nuisance to competent users, and makes automation of

computing tasks impossible.

Free Advice: Avoid using the input function. Rarely is it

necessary. All inputs to a function should be

provided via the input parameter list. Refer to

the demonstration of the inputAbuse function

in § 3.3.1.

NMM: Matlab Programming page 19

Text Output with disp and fprintf

Output to the command window is achieved with either the disp
function or the fprintf function. Output to a file requires the

fprintf function.

disp Simple to use. Provides limited control

over appearance of output.

fprintf Slightly more complicated than disp.
Provides total control over appearance

of output.

NMM: Matlab Programming page 20

The disp function (1)

Syntax:

disp(outMatrix)

where outMatrix is either a string matrix or a numeric matrix.

Examples: Numeric output
>> disp(5)

5

>> x = 1:3; disp(x)
1 2 3

>> y = 3-x; disp([x; y])
1 2 3
2 1 0

>> disp([x y])
1 2 3 2 1 0

>> disp([x’ y])
??? All matrices on a row in the bracketed expression
must have the same number of rows.

Note: The last statement shows that the input to disp must

be a legal matrix.

NMM: Matlab Programming page 21

The disp function (2)

Examples: String output
>> disp(’Hello, world!)
Hello, world!

>> s = ’MATLAB 6 is built with LAPACK’; disp(s)
MATLAB 6 is built with LAPACK

>> t = ’Earlier versions used LINPACK and EISPACK’;
>> disp([s; t])
??? All rows in the bracketed expression
must have the same number of columns.

>> disp(char(s,t))
MATLAB 6 is built with LAPACK
Earlier versions used LINPACK and EISPACK

The disp[s; t] expression causes an error because s has fewer

elements than t. The built-in char function constructs a string

matrix by putting each input on a separate row and padding the

rows with blanks as necessary.

>> S = char(s,t);
>> length(s), length(t), length(S(1,:))
ans =

29
ans =

41
ans =

41

NMM: Matlab Programming page 22

The num2str function (1)

The num2str function is often used to with the disp function to

create a labeled output of a numeric value.

Syntax:

stringValue = num2str(numericValue)

converts numericValue to a string representation of that

numeric value.

Examples:

>> num2str(pi)
ans =
3.1416

>> A = eye(3)
A =

1 0 0
0 1 0
0 0 1

>> S = num2str(A)
S =
1 0 0
0 1 0
0 0 1

NMM: Matlab Programming page 23

The num2str function (2)

Although A and S appear to contain the same values, they are

not equivalent. A is a numeric matrix, and S is a string matrix.

>> clear
>> A = eye(3); S = num2str(A); B = str2num(S);
>> A-S
??? Error using ==> -
Matrix dimensions must agree.

>> A-B
ans =

0 0 0
0 0 0
0 0 0

>> whos
Name Size Bytes Class

A 3x3 72 double array
B 3x3 72 double array
S 3x7 42 char array
ans 3x3 72 double array

Grand total is 48 elements using 258 bytes

NMM: Matlab Programming page 24

Using num2str with disp (1)

Combine num2str and disp to print a labeled output of a

numeric value

>> x = sqrt(2);
>> outString = [’x = ’,num2str(x)];
>> disp(outString)
x = 1.4142

or, build the input to disp on the fly

>> disp([’x = ’,num2str(x)]);
x = 1.4142

NMM: Matlab Programming page 25

Using num2str with disp (2)

The

disp([’x = ’,num2str(x)]);

construct works when x is a row vector, but not when x is a

column vector or matrix

>> z = y’;
>> disp([’z = ’,num2str(z)])
??? All matrices on a row in the bracketed expression
must have the same number of rows.

Instead, use two disp statements to display column of vectors or

matrices

>> disp(’z = ’); disp(z)
z =

1
2
3
4

NMM: Matlab Programming page 26

Using num2str with disp (3)

The same effect is obtained by simply entering the name of the

variable with no semicolon at the end of the line.

>> z (enter z and press return)
z =

1
2
3
4

NMM: Matlab Programming page 27

The format function

The format function controls the precision of disp output.

>> format short
>> disp(pi)

3.1416

>> format long
>> disp(pi)

3.14159265358979

Alternatively, a second parameter can be used to control the

precision of the output of num2str

>> disp([’pi = ’,num2str(pi,2)])
pi = 3.1

>> disp([’pi = ’,num2str(pi,4)])
pi = 3.142

>> disp([’pi = ’,num2str(pi,8)])
pi = 3.1415927

NMM: Matlab Programming page 28

The fprintf function (1)

Syntax:

fprintf(outFormat,outVariables)
fprintf(fileHandle,outFormat,outVariables)

uses the outFormat string to convert outVariables to strings

that are printed. In the first form (no fileHandle) the output is

displayed in the command window. In the second form, the

output is written to a file referred to by the fileHandle (more

on this later).

Notes to C programmers:

1. The Matlab fprintf function uses single quotes to define

the format string.

2. The fprintf function is vectorized. (See examples below.)

Example:

>> x = 3;
>> fprintf(’Square root of %g is %8.6f\n’,x,sqrt(x));

The square root of 3 is 1.732051

NMM: Matlab Programming page 29

The fprintf function (2)

The outFormat string specifies how the outVariables are

converted and displayed. The outFormat string can contain any

text characters. It also must contain a conversion code for each

of the outVariables. The following table shows the basic

conversion codes.

Code Conversion instruction

%s format as a string

%d format with no fractional part (integer format)

%f format as a floating-point value

%e format as a floating-point value in scientific notation

%g format in the most compact form of either %f or %e

\n insert newline in output string

\t insert tab in output string

NMM: Matlab Programming page 30

The fprintf function (3)

In addition to specifying the type of conversion (e.g. %d, %f, %e)
one can also specify the width and precision of the result of the

conversion.

Syntax:

%wd
%w.pf
%w.pe

where w is the number of characters in the width of the final

result, and p is the number of digits to the right of the decimal

point to be displayed.

Examples:

Format String Meaning

%14.5f use floating point format to convert a numerical
value to a string 14 characters wide with 5 digits
after the decimal point

%12.3e use scientific notation format to convert numerical
value to a string 12 characters wide with 3 digits
after the decimal point. The 12 characters for the
string include the e+00 or e-00 (or e+000 or e-000

on WindowsTM)

NMM: Matlab Programming page 31

The fprintf function (4)

More examples of conversion codes

Value %8.4f %12.3e %10g %8d

2 2.0000 2.000e+00 2 2

sqrt(2) 1.4142 1.414e+00 1.41421 1.414214e+00

sqrt(2e-11) 0.0000 4.472e-06 4.47214e-06 4.472136e-06

sqrt(2e11) 447213.5955 4.472e+05 447214 4.472136e+05

NMM: Matlab Programming page 32

The fprintf function (5)

The fprintf function is vectorized. This enables printing of

vectors and matrices with compact expressions. It can also lead

to some undesired results.

Examples:

>> x = 1:4; y = sqrt(x);
>> fprintf(’%9.4f\n’,y)

1.0000
1.4142
1.7321
2.0000

The %9.4f format string is reused for each element of y. The
recycling of a format string may not always give the intended

result.

>> x = 1:4; y = sqrt(x);
>> fprintf(’y = %9.4f\n’,y)
y = 1.0000
y = 1.4142
y = 1.7321
y = 2.0000

NMM: Matlab Programming page 33

The fprintf function (6)

Vectorized fprintf cycles through the outVariables by

columns. This can also lead to unintended results

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> fprintf(’%8.2f %8.2f %8.2f\n’,A)
1.00 4.00 7.00
2.00 5.00 8.00
3.00 6.00 9.00

NMM: Matlab Programming page 34

How to print a table with fprintf (1)

Many times a tabular display of results is desired.

The boxSizeTable function listed below, shows how the fprintf
function creates column labels and formats numeric data into a

tidy tabular display. The for loop construct is discussed later in

these slides.

function boxSizeTable
% boxSizeTable Demonstrate tabular output with fprintf

% --- labels and sizes for shiping containers
label = char(’small’,’medium’,’large’,’jumbo’);
width = [5; 5; 10; 15];
height = [5; 8; 15; 25];
depth = [15; 15; 20; 35];
vol = width.*height.*depth/10000; % volume in cubic meters

fprintf(’\nSizes of boxes used by ACME Delivery Service\n\n’);
fprintf(’size width height depth volume\n’);
fprintf(’ (cm) (cm) (cm) (m^3)\n’);
for i=1:length(width)
fprintf(’%-8s %8d %8d %8d %9.5f\n’,...

label(i,:),width(i),height(i),depth(i),vol(i))
end

Note: length is a built-in function that returns the number

of elements in a vector. width, height, and depth
are local variables in the boxSizeTable function.

NMM: Matlab Programming page 35

How to print a table with fprintf (2)

Example: Running boxSizeTable gives

>> boxSizeTable

Sizes of boxes used by ACME Delivery Service

size width height depth volume
(cm) (cm) (cm) (m^3)

small 5 5 15 0.03750
medium 5 8 15 0.06000
large 10 15 20 0.30000
jumbo 15 25 35 1.31250

NMM: Matlab Programming page 36

The fprintf function (3)

File Output with fprintf requires creating a file handle with the

fopen function. All aspects of formatting and vectorization

discussed for screen output still apply.

Example: Writing contents of a vector to a file.

x = ... % content of x
fout = fopen(’myfile.dat’,’wt’); % open myfile.dat
fprintf(fout,’ k x(k)\n’);
for k=1:length(x)

fprintf(fout,’%4d %5.2f\n’,k,x(k));
end
fclose(fout) % close myfile.dat

NMM: Matlab Programming page 37

Flow Control (1)

To enable the implementation of computer algorithms, a

computer language needs control structures for

• Repetition: looping or iteration

• Conditional execution: branching

• Comparison

We will consider these in reverse order.

Comparison
Comparison is achieved with relational operators. Relational

operators are used to test whether two values are equal, or

whether one value is greater than or less than another. The

result of a comparison may also be modified by logical operators.

NMM: Matlab Programming page 38

Relational Operators (1)

Relational operators are used in comparing two values.

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

~= not equal to

The result of applying a relational operator is a logical value, i.e.

the result is either true or false.

In Matlab any nonzero value, including a non-empty string, is

equivalent to true. Only zero is equivalent to false.

Note: The <=, >=, and ~= operators have “=” as the second

character. =<, => and =~ are not valid operators.

NMM: Matlab Programming page 39

Relational Operators (2)

The result of a relational operation is a true or false value.

Examples:

>> a = 2; b = 4;
>> aIsSmaller = a < b
aIsSmaller =

1

>> bIsSmaller = b < a
bIsSmaller =

0

Relational operations can also be performed on matrices of the

same shape, e.g.,

>> x = 1:5; y = 5:-1:1;
>> z = x>y
z =

0 0 0 1 1

NMM: Matlab Programming page 40

Logical Operators

Logical operators are used to combine logical expressions (with

“and” or “or”), or to change a logical value with “not”

Operator Meaning

& and

| or

~ not

Examples:

>> a = 2; b = 4;
>> aIsSmaller = a < b;
>> bIsSmaller = b < a;
>> bothTrue = aIsSmaller & bIsSmaller
bothTrue =

0

>> eitherTrue = aIsSmaller | bIsSmaller
eitherTrue =

1

>> ~eitherTrue
ans =

0

NMM: Matlab Programming page 41

Logical and Relational Operators

Summary:

• Relational operators involve comparison of two values.

• The result of a relational operation is a logical (True/False)

value.

• Logical operators combine (or negate) logical values to

produce another logical value.

• There is always more than one way to express the same

comparison

Free Advice:

• To get started, focus on simple comparison. Do not be afraid

to spread the logic over multiple lines (multiple comparisons)

if necessary.

• Try reading the test out loud.

NMM: Matlab Programming page 42

Conditional Execution

Conditional Execution or Branching:

As the result of a comparison, or another logical (true/false)

test, selected blocks of program code are executed or skipped.

Conditional execution is implemented with if, if...else, and
if...elseif constructs, or with a switch construct.

There are three types of if constructs

1. Plain if

2. if...else

3. if...elseif

NMM: Matlab Programming page 43

if Constructs

Syntax:

if expression

block of statements

end

The block of statements is executed only if the expression

is true.

Example:

if a < 0
disp(’a is negative’);

end

One line format uses comma after if expression

if a < 0, disp(’a is negative’); end

NMM: Matlab Programming page 44

if. . . else

Multiple choices are allowed with if. . . else and if. . . elseif
constructs

if x < 0
error(’x is negative; sqrt(x) is imaginary’);

else
r = sqrt(x);

end

NMM: Matlab Programming page 45

if. . . elseif

It’s a good idea to include a default else to catch cases that

don’t match preceding if and elseif blocks

if x > 0
disp(’x is positive’);

elseif x < 0
disp(’x is negative’);

else
disp(’x is exactly zero’);

end

NMM: Matlab Programming page 46

The switch Construct

A switch construct is useful when a test value can take on

discrete values that are either integers or strings.

Syntax:

switch expression

case value1,
block of statements

case value2,
block of statements
...

otherwise,
block of statements

end

Example:

color = ’...’; % color is a string
switch color

case ’red’
disp(’Color is red’);

case ’blue’
disp(’Color is blue’);

case ’green’
disp(’Color is green’);

otherwise
disp(’Color is not red, blue, or green’);

end

NMM: Matlab Programming page 47

Flow Control (3)

Repetition or Looping

A sequence of calculations is repeated until either

1. All elements in a vector or matrix have been processed

or

2. The calculations have produced a result that meets a

predetermined termination criterion

Looping is achieved with for loops and while loops.

NMM: Matlab Programming page 48

for loops

for loops are most often used when each element in a vector or

matrix is to be processed.

Syntax:

for index = expression

block of statements

end

Example: Sum of elements in a vector

x = 1:5; % create a row vector
sumx = 0; % initialize the sum
for k = 1:length(x)

sumx = sumx + x(k);
end

NMM: Matlab Programming page 49

for loop variations

Example: A loop with an index incremented by two

for k = 1:2:n
...

end

Example: A loop with an index that counts down

for k = n:-1:1
...

end

Example: A loop with non-integer increments

for x = 0:pi/15:pi
fprintf(’%8.2f %8.5f\n’,x,sin(x));

end

Note: In the last example, x is a scalar inside the loop. Each

time through the loop, x is set equal to one of the

columns of 0:pi/15:pi.

NMM: Matlab Programming page 50

while loops (1)

while loops are most often used when an iteration is repeated

until some termination criterion is met.

Syntax:

while expression

block of statements

end

The block of statements is executed as long as expression

is true.

Example: Newton’s method for evaluating
√

x

rk =
1

2

(
rk−1 +

x

rk−1

)

r = ... % initialize
rold = ...
while abs(rold-r) > delta

rold = r;
r = 0.5*(rold + x/rold);

end

NMM: Matlab Programming page 51

while loops (2)

It is (almost) always a good idea to put a limit on the number of

iterations to be performed by a while loop.

An improvement on the preceding loop,

maxit = 25;
it = 0;
while abs(rold-r) > delta & it<maxit

rold = r;
r = 0.5*(rold + x/rold);
it = it + 1;

end

NMM: Matlab Programming page 52

while loops (3)

The break and return statements provide an alternative way to

exit from a loop construct. break and return may be applied to

for loops or while loops.

break is used to escape from an enclosing while or for loop.

Execution continues at the end of the enclosing loop construct.

return is used to force an exit from a function. This can have

the effect of escaping from a loop. Any statements following the

loop that are in the function body are skipped.

NMM: Matlab Programming page 53

The break command

Example: Escape from a while loop

function k = breakDemo(n)
% breakDemo Show how the "break" command causes
% exit from a while loop.
% Search a random vector to find index
% of first element greater than 0.8.
%
% Synopsis: k = breakDemo(n)
%
% Input: n = size of random vector to be generated
%
% Output: k = first (smallest) index in x such that x(k)>0.8
x = rand(1,n);
k = 1;
while k<=n

if x(k)>0.8
break

end
k = k + 1;

end
fprintf(’x(k)=%f for k = %d n = %d\n’,x(k),k,n);

% What happens if loop terminates without finding x(k)>0.8 ?

NMM: Matlab Programming page 54

The return command

Example: Return from within the body of a function

function k = returnDemo(n)
% returnDemo Show how the "return" command
% causes exit from a function.
% Search a random vector to find
% index of first element greater than 0.8.
%
% Synopsis: k = returnDemo(n)
%
% Input: n = size of random vector to be generated
%
% Output: k = first (smallest) index in x
% such that x(k)>0.8
x = rand(1,n);
k = 1;

while k<=n
if x(k)>0.8

return
end
k = k + 1;

end

% What happens if loop terminates without finding x(k)>0.8 ?

NMM: Matlab Programming page 55

Comparison of break and return

break is used to escape the current while or for loop.

return is used to escape the current function.

function k = demoBreak(n)

...

while k<=n
 if x(k)>0.8
 break;
 end
 k = k + 1;
end

function k = demoReturn(n)

...

while k<=n
 if x(k)>0.8
 return;
 end
 k = k + 1;
end

jump to end of enclosing
“while ... end” block

return to calling
function

NMM: Matlab Programming page 56

Vectorization

Vectorization is the use of vector operations (Matlab

expressions) to process all elements of a vector or matrix.

Properly vectorized expressions are equivalent to looping over

the elements of the vectors or matrices being operated upon. A

vectorized expression is more compact and results in code that

executes faster than a non-vectorized expression.

To write vectorized code:

• Use vector operations instead of loops, where applicable

• Pre-allocate memory for vectors and matrices

• Use vectorized indexing and logical functions

Non-vectorized code is sometimes called “scalar code” because

the operations are performed on scalar elements of a vector or

matrix instead of the vector as a whole.

Free Advice: Code that is slow and correct is always better

than code that is fast and incorrect. Start
with scalar code, then vectorize as needed.

NMM: Matlab Programming page 57

Replace Loops with Vector Operations

Scalar Code

for k=1:length(x)
y(k) = sin(x(k))

end

Vectorized equivalent

y = sin(x)

NMM: Matlab Programming page 58

Preallocate Memory

The following loop increases the size of s on each pass.

y = ... % some computation to define y
for j=1:length(y)

if y(j)>0
s(j) = sqrt(y(j));

else
s(j) = 0;

end
end

Preallocate s before assigning values to elements.

y = ... % some computation to define y
s = zeros(size(y));
for j=1:length(y)

if y(j)>0
s(j) = sqrt(y(j));

end
end

NMM: Matlab Programming page 59

Vectorized Indexing and Logical Functions (1)

Thorough vectorization of code requires use of array indexing
and logical indexing.

Array Indexing:

Use a vector or matrix as the “subscript” of another matrix:

>> x = sqrt(0:4:20)
x =

0 2.0000 2.8284 3.4641 4.0000 4.47210

>> i = [1 2 5];
>> y = x(i)
y =

0 2 4

The x(i) expression selects the elements of x having the indices

in i. The expression y = x(i) is equivalent to

k = 0;
for i = [1 2 5]

k = k + 1;
y(k) = x(i);

end

NMM: Matlab Programming page 60

Vectorized Indexing and Logical Functions (2)

Logical Indexing:

Use a vector or matrix as the mask to select elements from

another matrix:

>> x = sqrt(0:4:20)
x =

0 2.0000 2.8284 3.4641 4.0000 4.47210

>> j = find(rem(x,2)==0)
j =

1 2 5

>> z = x(j)
z =

0 2 4

The j vector contains the indices in x that correspond to

elements in x that are integers.

NMM: Matlab Programming page 61

Vectorized Indexing and Logical Functions (3)

Example: Vectorization of Scalar Code
We just showed how to pre-allocate memory in the code snippet:

y = ... % some computation to define y
s = zeros(size(y));
for j=1:length(y)

if y(j)>0
s(j) = sqrt(y(j));

end
end

In fact, the loop can be replaced entirely by using logical and

array indexing

y = ... % some computation to define y
s = zeros(size(y));
i = find(y>0); % indices such that y(i)>0
s(y>0) = sqrt(y(y>0))

If we don’t mind redundant computation, the preceding

expressions can be further contracted:

y = ... % some computation to define y
s = zeros(size(y));
s(y>0) = sqrt(y(y>0))

NMM: Matlab Programming page 62

Vectorized Copy Operations (1)

Example: Copy entire columns (or rows)

Scalar Code

[m,n] = size(A); % assume A and B have
% same number of rows

for i=1:m
B(i,1) = A(i,1);

end

Vectorized Code

B(:,1) = A(:,1);

NMM: Matlab Programming page 63

Vectorized Copy Operations (2)

Example: Copy and transform submatrices

Scalar Code

for j=2:3
B(1,j) = A(j,3);

end

Vectorized Code

B(1,2:3) = A(2:3,3)’

NMM: Matlab Programming page 64

Deus ex Machina

Matlab has features to solve some recurring programming

problems:

• Variable number of I/O parameters

• Indirect function evaluation with feval

• In-line function objects (Matlab version 5.x)

• Global Variables

NMM: Matlab Programming page 65

Variable Input and Output Arguments (1)

Each function has internal variables, nargin and nargout.

Use the value of nargin at the beginning of a function to find

out how many input arguments were supplied.

Use the value of nargout at the end of a function to find out

how many input arguments are expected.

Usefulness:

• Allows a single function to perform multiple related tasks.

• Allows functions to assume default values for some inputs,

thereby simplifying the use of the function for some tasks.

NMM: Matlab Programming page 66

Variable Input and Output Arguments (2)

Consider the built-in plot function

Inside the plot function

nargin nargout

plot(x,y) 2 0

plot(x,y,’s’) 3 0

plot(x,y,’s--’) 3 0

plot(x1,y1,’s’,x2,y2,’o’) 6 0

h = plot(x,y) 2 1

The values of nargin and nargout are determined when the

plot function is invoked.

Refer to the demoArgs function in Example 3.13

NMM: Matlab Programming page 67

Indirect Function Evaluation (1)

The feval function allows a function to be evaluated indirectly.

Usefulness:

• Allows routines to be written to process an arbitrary f(x).

• Separates the reusable algorithm from the problem-specific

code.

feval is used extensively for root-finding (Chapter 6),

curve-fitting (Chapter 9), numerical quadrature (Chapter 11)

and numerical solution of initial value problems (Chapter 12).

NMM: Matlab Programming page 68

Indirect Function Evaluation (2)

>> fsum(’sin’,0,pi,5)
ans =

2.4142

>> fsum(’cos’,0,pi,5)
ans =

0

NMM: Matlab Programming page 69

Use of feval

function s = fsum(fun,a,b,n)
% FSUM Computes the sum of function values, f(x), at n equally
% distributed points in an interval a <= x <= b
%
% Synopsis: s = fsum(fun,a,b,n)
%
% Input: fun = (string) name of the function to be evaluated
% a,b = endpoints of the interval
% n = number of points in the interval

x = linspace(a,b,n); % create points in the interval
y = feval(fun,x); % evaluate function at sample points
s = sum(y); % compute the sum

function y = sincos(x)
% SINCOS Evaluates sin(x)*cos(x) for any input x
%
% Synopsis: y = sincos(x)
%
% Input: x = angle in radians, or vector of angles in radians
%
% Output: y = value of product sin(x)*cos(x) for each element in x

y = sin(x).*cos(x);

NMM: Matlab Programming page 70

Inline Function Objects

Matlab version 5.x introduced object-oriented programming

extensions. Though OOP is an advanced and somewhat subtle

way of programming, in-line function objects are simple to use

and offer great program flexibility.

Instead of

function y = myFun(x)
y = x.^2 - log(x);

Use

myFun = inline(’x.^2 - log(x)’);

Both definitions of myFun allow expressions like

z = myFun(3);

s = linspace(1,5);
t = myFun(s);

Usefulness:

• Eliminates need to write separate m-files for functions that

evaluate a simple formula.

• Useful in all situations where feval is used.

NMM: Matlab Programming page 71

Global Variables

workspace
» x = 1
» y = 2
» s = 1.2
» z = localFun(x,y,s)

function d = localFun(a,b,c)
...

d = a + b^c

localFun.m
(x,y,s) (a,b,c)

z d

Communication of values via input and output variables

workspace
» x = 1;
» y = 2;
» global ALPHA;
» ...
» ALPHA = 1.2;
» z = globalFun(x,y)

function d = globalFun(a,b)
...
global ALPHA
...
d = a + b^ALPHA;

globalFun.m

(x,y) (a,b)

z d

Communication of values via input and output variables
and global variables shared by the workspace and function

Usefulness:

• Allows bypassing of input parameters if no other mechanism

(such as pass-through parameters) is available.

• Provides a mechanism for maintaining program state (GUI

applications)

NMM: Matlab Programming page 72

