EAD210A- Numerical Methods _ Rao Vemuri

## Homework Assignment 1. (Due 7 October 2004)

Programming Problem.

1. (10 pts) Do Problem 1 in Section 1.9, page 104 of the text. Use Matlab, if necessary, to plot the curves. (10 pts)
Paper-Pencil Problems
2. Verify the validity of Eq. (1.2-2a) on page 29
3. Prove the inequality (1.2-7) on page 35
4. Do Problem 3 on page 104.
5. Let $\prod_{\mathrm{N}}([a, b])$ is the set of all polynomials of degree N or less than N . Show that $\Pi_{\mathrm{N}}([\mathrm{a}, \mathrm{b}])$ is a vector space of dimension N
6. (5 pts) Given, for $\mathrm{N}=2$

| $\mathrm{x}_{\mathrm{i}}$ | 0 | 1 | 3 |
| :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{i}}$ | 1 | 3 | 2 |

Find $\mathrm{P}(2)$ where $\mathrm{P} \varepsilon \prod_{2}$ and $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{i}}$, for $\mathrm{i}=0,1,2$.
7. Let $\mathrm{L}_{\mathrm{i}}(\mathrm{x})$ be the Lagrange polynomials defined on page 29 .

Let $\mathrm{c}_{\mathrm{i}}:=\mathrm{L}_{\mathrm{i}}(0)$
Show that

$$
\sum_{i=0}^{N} c_{i} x_{i}^{j}=\left\{\begin{array}{c}
1, \text { for }-j=0 \\
0, \text { for }-j=1,2, \ldots, N \\
(-1)^{N} x_{0} \ldots x_{N}, \text { for }-j=(N+1)
\end{array}\right.
$$

8. Estimate the error in the approximation of $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ with $x_{i}=\frac{\pi i}{10}, i=0,1,2,3,4,5$. $\mathrm{N}=5$.
9. (a) Interpolate the function $\ln (x)$ by a quadratic polynomial at $x=10,11,12$.
(b) Estimate the error committed at $\mathrm{x}=11.1$
10. (a) $(10+5 \mathrm{pts})$ The Bessel function of order zero

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin t) d t
$$

is to be tabulated at equidistant arguments $x_{i}=x_{0}+i h, \mathrm{I}=0,1,2, \ldots$ How small must the increment $h$ be chosen so that the interpolation error remains below $10^{-6}$, if linear interpolation is used?
(b) What is the behavior of the maximal interpolation error

$$
\max _{0 \leq x \leq 1}\left|P_{N}(x)-J_{0}(x)\right|
$$

as $\mathrm{n} \rightarrow \infty$, if $\mathrm{P}_{\mathrm{N}}(\mathrm{x})$ interpolates $\mathrm{J}_{0}(\mathrm{x})$ at $x=x_{i}^{N}:=i / N, i=0,1, \ldots, N$ ? Hint: It suffices to show that $\left|J_{0}^{k}(x)\right| \leq 1$ for $\mathrm{k}=0,1, \ldots$

