Homework Assignment 2. (Due 14 October 2004)

Programming assignment (35 points)

1. (20 pts) Consider the functions e^{x} and $|\mathrm{x}|$.
a. Plot on $[-1 .+1]$ the Lagrange interpolation polynomials of degree N for
$\mathrm{N}=2,4,6,8,10$ of these functions with $x_{i}=-1+\frac{2 i}{N}, i=0,1, \ldots, N$ (overlay your plots)
b. Plot on $[-1 .+1]$ the Hermite interpolation polynomials of degree N for $\mathrm{N}=3$, 5 of these functions with $x_{i}=-1+\frac{2 i}{N}, i=0,1, \ldots, N$
2. (15 pts) Show that the interpolation polynomials of $f(x)=\frac{1}{1+x}$ on $[0,1]$ at the points $x_{i}=i / N, \mathrm{i}=0,1, \ldots, \mathrm{~N}$ converges to f by plotting the interpolation polynomials for $\mathrm{N}=10,20$.

Paper and Pencil assignment (65 points)

3. (15 pts) Interpolation on product spaces: Suppose every linear interpolation problem stated in terms of functions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ has a unique solution

$$
\Phi(x)=\sum_{i=0}^{N} \alpha_{i} \varphi_{i}(x)
$$

with $\Phi\left(x_{k}\right)=f_{k}, k=0,1,2, \ldots, N$ for prescribed support arguments $x_{0}, x_{1}, \ldots, x_{N}$ with $x_{i} \neq x_{j}, i \neq j$. Show the following. If $\psi_{0}, \psi_{1}, \ldots, \psi_{M}$ is also a set of functions for which every linear interpolation problem has a unique solution, then for every choice of abscissas

$$
\begin{aligned}
& x_{0}, x_{1}, \ldots, x_{N} ; x_{i} \neq x_{j}, i \neq j \\
& y_{0}, y_{1}, \ldots, y_{M} ; y_{i} \neq y_{j}, i \neq j
\end{aligned}
$$

and support ordinates

$$
f_{i k}, i=0,1, \ldots, N ; k=0,1, \ldots, M
$$

there exists a unique function of the form

$$
\Phi(x, y)=\sum_{v=0}^{N} \sum_{\mu=0}^{M} \alpha_{v \mu} \varphi_{v}(x) \psi_{\mu}(y)
$$

with $\Phi\left(x_{i}, y_{k}\right)=f_{i k}, i=0,1,2, \ldots, N ; k=0,1, \ldots, M$.
4. (15 pts) Continuation of Hw\#1, Problem \#10 (Bessel function problem). Compare the result obtained in (10b) of HW\#1, with the behavior of the error

$$
\max _{0 \leq x \leq 1}\left|S_{\Delta_{N}}(x)-J_{0}(x)\right|
$$

as $N \rightarrow \infty$, where $S_{\Delta_{N}}$ is the interpolating spline function with the knot set $\Delta_{N}=\left\{x_{i}^{N}\right\}$ and $S_{\Delta_{N}}^{\prime}(x)=J_{0}^{\prime}(x)$, for $\mathrm{x}=0,1$.
5. (15 pts) On page 68 of the text, carry out the missing steps leading to Eq (1.6-2) and Eq. (1.6-3).
6. (20 points) Define the spline function S_{j} for equidistant knots $x_{i}=a+i h, h>0, i=0,1, \ldots, N$ by

$$
S_{j}\left(x_{k}\right)=\delta_{j k} ; j, k=0,1, \ldots, N \text { and } S_{j}^{\prime \prime}\left(x_{0}\right)=S_{j}^{\prime \prime}\left(x_{N}\right)=0
$$

Verify that the moments $m_{1}, m_{2}, \ldots, m_{N-1}$ of S_{j} are:

$$
\begin{aligned}
& m_{i}=-\frac{1}{\rho_{i}} m_{i+1}, i=0,1, \ldots, j-2 \\
& m_{i}=-\frac{1}{\rho_{N-i}} m_{i-1}, i=j+2, \ldots, N-1 \\
& m_{j}=-\frac{6}{h^{2}} \frac{2+\left(1 / \rho_{j-1}\right)+\left(1 / \rho_{N-j-1}\right)}{4-\left(1 / \rho_{j-1}\right)-\left(1 / \rho_{N-j-1}\right)}, \quad j \neq 0,1, N-1, N \\
& m_{j-1}=-\frac{1}{\rho_{j-1}}\left(6 h^{-2}-m_{j}\right), \\
& m_{j+1}=-\frac{1}{\rho_{N-j-1}}\left(6 h^{-2}-m_{j}\right),
\end{aligned}
$$

where the numbers ρ_{j} are recursively defined by

$$
\begin{aligned}
& \rho_{1}:=4 \\
& \rho_{i}:=4-\frac{1}{\rho_{i-1}}, i=2,3, \ldots
\end{aligned}
$$

Hint: To get you started, you may wish to consult the text book. At the beginning of the derivation, the book noted that the second derivative of the spline function
coincides with a linear function in each sub-interval $\left[x_{j}, x_{j+1]}, j=0, \ldots N-1\right.$, in terms of the moments. Indeed, the second derivative evaluated at the grid point x_{j} is the moment m_{j}. You follow the derivation in the book until you get the tridiagonal matrix. The solution of that should match the above equations.

