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What are they?

• A tool for reasoning probabilistically.

• A way of compactly representing joint
probability functions.

• A graph over a set of random variables,
along with a bunch of conditional
probabilities.
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Random Variables

• A random variable is a function from
outcomes to real numbers.  (But we’ll be
sloppy.)

• Think of a random variables as indicators.

• In our examples:
– H will indicate whether or not I’m happy.

– F will indicate whether or not I got a free lunch.
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Joint Probability Distributions
• A joint probability distribution is an

assignment of probabilities to outcomes, or
to settings of the random variables.
– Example : P(H=y, F=y) = 2/8

• Could encode this into a table:

(2/8)(6/8)Total

(5/8)2/83/8Happy = Y

(3/8)03/8Happy = N

TotalFood = YFood = N
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Probabilistic Reasoning

• Queries like:
– If there’s free food, how likely is it that I’m

happy?  P(H=y| F=y)
– If I’m happy, how likely is it that there’s free

food? P(F=y|H=y)
– If there’s food, what’s the most likely state of

my happiness?
– Can already do some basic reasoning straight

from our table (reasoning by enumeration).
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Probabilistic Reasoning

(2/8)(6/8)Total

(5/8)2/83/8Happy = Y

(3/8)03/8Happy = N

TotalFood = YFood = N

P(F=n)    = Σh∈H P(F=n, H=h) = 3/8+3/8 = 3/4
P(F=n | H=y)      = P(F=n, H=y) / P(H=y)

   = P(F=n, H=y) / Σf∈F P(F=f, H=y)
   = 3/8 / (3/8 + 2/8)
   = 3/5
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Why Bayes’ Nets
• Imagine a table over the following random

variables:
– H (whether I’m happy)
– F (whether there’s free food)
– G (whether my car has enough gas)
– W (whether the weather is nice)
– And a bunch more…

• Building complete tables won’t work for
distributions – too big!
– Getting enough data to fill all the entries is impractical.
– Even storing the tables themselves is impractical!

• Bayes’ nets can solve this problem by exploiting
independencies.
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Definition

• A Bayes’ Net is a directed, acyclic graph
over a set of random variables.

• For each variable X, parents(X) are the
variables which point to X in the graph.

• For each variable X, we have a conditional
probability table (CPT) which specifies
P(X|parents(X)).
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First Bayes’ Net

H

0.5Yes

0.5No

Happy

Bayes’ Net over H Full table over H

0.5Yes

0.5No

Happy

CPT for P(H)

P(H)P(H)

10

Second Bayes’ Net

H

Bayes’ Net over {F, H} Table over {F, H}

F

1/2Yes

1/2No

Happy

1/4Yes

3/4No

Food

Yes

No

H/F

3/8

3/8

No

1/8

1/8

Yes

The BN here says that H
and F are independent!  If
so, we save space over the
table.

P(F) P(H)

P(F,H) = P(F)P(H) P(F,H)
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Trivial Reasoning

We can immediately answer queries like:
P(F|H=y) = P(F) =

Since in this model, F and H are independent,
reasoning is trivial.

Note that by assuming independence, we lose the
ability to represent some distributions (like the
correct one where free food makes me happy!)

Yes

No

3/4

1/4
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Third Bayes’ Net

F

Bayes’ Net over {F, H} Table over {F, H}

H

1/4Yes

3/4No

Food

1/2

1/2

F=No

1Yes

0No

F=YesHappy

Happy

Food

Yes

No

3/8

3/8

No

2/8

0

Yes

Here, we didn’t save
any space, we just
ended up saying writing
the table another way.P(F) P(H|F)

P(F,H) = P(F)P(H|F) P(F,H)
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Some Reasoning Examples
If we ask for P(H|F=y), life is easy, we have the

answer sitting in our CPT:

If we ask for P(F|H=y), life is harder.  We have to
send the information in the “wrong” direction.
We can simplify matters by asking for P(F,H=y)
instead:  (Why?)
P(F, H=y) = P(H=y|F)P(F) =

      =

1Yes

0No

1Yes

1/2No

1/4Yes

3/4No

2/8Yes

3/8No
Pointwise
product
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Reasoning In General
• In general, reasoning is of the form:

– P(Q|E) where
• Q is a set of query variables.
• E is a set of evidence variables (with their values!)
• Also, we have Y, the set of all remaining variables

– What do we want then?
• A |Q|-dimensional table giving the probability distribution

P(Q|E)

• We can always break P(Q|E) into:
• Finding P(Q,E)  (which is a table)
• Finding P(E)      (which is just a number)
• Dividing the table pointwise by P(E)
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Fourth Bayes’ Net

H

Bayes’ Net over {F, H} Table over {F, H}

F

5/8Yes

3/8No

Happy

0

1

H=No

2/5Yes

3/5No

H=YesFood

Happy

Food

Yes

No

3/8

3/8

No

2/8

0

Yes

How is this different from
the last BN?  Note that
arrows mean dependence,
not necessarily causation!P(H) P(F|H)

P(F,H) = P(H)P(F|H) P(F,H)
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What the BN Means

• A Bayes’ Net is an encoding of a joint
distribution.

• The arrows encode which variables can
depend directly on which other variables.

• The arrows are not necessarily causal, but
it’s often useful to think of them that way.



9

17

Fifth Bayes’ Net

Bayes’ Net over {O, H, F} O = Other people happy.

P(O,H,F) = P(F)P(H|F)P(O|F)

F

H

1/4Yes

3/4No

Food

1/2

1/2

F=No

1Yes

0No

F=YesHappy

P(F) P(H|F)

1/4

3/4

F=No

1/2Yes

1/2No

F=YesOthers

O

P(O|F)
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Fifth Bayes’ Net
• In this network,

– O and H are not independent: If I’m happy, that’s
evidence that there’s free food which influences the
happiness of others.

– However, once I know whether there’s free food, my
happiness is just a random process that has nothing to
do with others’ happiness.

• Notationally,
– O and H are not (necessarily) independent, so we do not

have I(O;H)
– I(O;H|F) … O and H are conditionally independent

given a value for F.
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Sixth Bayes’ Net

Bayes’ Net over {S, H, F} S = I got to sleep in.

P(S,H,F) = P(F)P(S)P(H|F,S)

F

H

1/4Yes

3/4No

Food

3/4

1/2

F=No

1S=Yes

1S=No

F=Yes

P(F) P(H=1|F,S)

S

1/8Yes

7/8No

Sleep

P(S)

20

Sixth Bayes’ Net

• In this network,
– If you know nothing about my happiness, then S and F

are independent.  They don’t depend on each other in
any way.  We have I(S;F)

– However, if you find out that I’m happy, it increases
your belief that I got free food, and also increases your
belief that I got to sleep in.  Moreover, given F=y,
knowing S does change the distribution over F (see next
slide).  Thus, we don’t have I(S;F|H).

– Something to ponder:  In a given network, how can you
tell what the independence relations are?
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Explaining Away

• One interested kind of reasoning which Bayes’ nets
support is intercausal reasoning.  For example, in the last
network:
– Before we know anything about H, P(F=y) = 1/4 and P(S=y) = 1/8.
– If we know H=y, then P(F=y|H=y) goes up to .3855 and

P(S=y|H=y) goes up to .1566
– If we then discover that S=y, then P(F=y|H=y,S=y) drops to .3077

• This is often referred to as explaining away because once
we find an explanation for an observation, the observation
is partially explained and competing explanations become
less likely.
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Factorizations and BNs
• Given some set of random variables {A,B,C,D..} we can

always write:
P(A,B,C,D,..) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)…

• Or we can write:
P(A,B,C,D,..) = P(D)P(B|D)P(C|D,B)P(A|D,B,C)…

• If we pick a good order to factorize, we can exploit
independencies:
P(S,F,H) = P(S) P(F|S) P(H|F,S) is just

P(S,F,H) = P(S) P(F) P(H|F,S) since I(F;S)

• Different orders and independences give us different BNs.
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Factorizations and BNs

• Any distribution can be encoded in a BN like:

• There’s only a savings over a complete table if
there are useful independencies to exploit, such as:

A
B

C
D

E

What factorization does
this correspond to?

A B C D E

24

Seventh Bayes’ Net

Bayes’ Net over {S, H, F, O}

P(S,H,F,O) = P(F)P(S)P(H|F,S)P(O|F)

F

H

1/4Yes

3/4No

Food

3/4

1/2

F=No

1S=Yes

1S=No

F=Yes

P(F) P(H=Yes|F,S)

S

1/8Yes

7/8No

Sleep

P(S)
1/4

3/4

F=No

1/2Yes

1/2No

F=YesOthers

O

P(O|F)
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Applications

• Consumer modeling
– Amazon customers / recommending purchases
– TV viewers / Nielsen demographics

• User interfaces
– NASA mission control

• Reasoning systems
– Medical diagnosis
– Microsoft help wizards

26

37th Bayes’ Net

Age

Sex

ChestPain RestBP

Cholesterol

BloodSugar ECG

MaxHeartRate

Angina

OldPeak

STSlope

Vessels

Thal

Outcome

Heart disease
Accuracy = 85%
Data source
UCI repository
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Law & Order

Frasier

NBC Monday
Night Movies

Mad about you

Beverly Hills 90210

Seinfeld Friends

Melrose Place

Models Inc.

Nielsen data:
Portion of learned BN

28
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What’s Ahead?

• We want to be able to:
– Answer queries for BNs.

• Many algorithms for doing this, we’ll discuss one
called variable elimination.

– Figure out what independence relations hold
inside a BN.

• The key notion is d-separation and lets us tell what
nodes in a BN are necessarily independent of what
other nodes given a certain evidence set.

30

Bayes’ Nets II

CS121 Winter 2000-2001
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Bayes’ Nets II

• Naïve Bayes as a Bayes’ Net

• Recap: How a BN encodes a joint distribution

• Two reasoning algorithms
– Enumeration

– Variable Elimination
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NB for Text Categorization

• We have a random variable C for the category of a document, whose
values are document categories.

• We have a random variable W for each word in the document, whose
values are the words in our vocabulary.

• We want to know the most likely class given the words:
c = argmaxc P(C| W1, W2, .. Wn)

• It’s enough to find:
c = argmaxc P(C, W1, W2, .. Wn)

• But we can’t store or estimate P(C, W1, W2, .. Wn) directly.
• So we assume I(Wi, Wj | C)
• This lets us factorize P(C, W1, W2, .. Wn) as 

P(C)P(W1|C)P(W2|C)…P(Wn| C)
• We can estimate each P(Wi|C) much more easily.

Why?
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The BN for NB

P(C,W1,W2,…Wn) = P(C)P(W1|C)P(W2|C)…P(Wn|C)

C

Wn

3/4Business

1/4Sports

Category

P(C)

………

1/501/1000stock

1/10

1/100

C=Sports

1/10the

1/1000goal

C=BusnWord x W1

P(Wx|C)

W2  . . . .
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Burglary Network
Bayes’ Net over {B, E, A, J, M}

P(B,E,A,J,M) = P(B)P(E)P(A|B,E)P(J|A)P(M|A)

B

A.01Yes

.99No

Burglary

.29

.001

B=No

.95E=Yes

.94E=No

B=Yes

P(B)

P(A=Yes|B,E)

E

.001Yes

.999No

Earthquake

.05

.95

A=No

.90Yes

.10No

A=YesJohnCalls

J

P(J|A)

M

P(E)

.01

.99

A=No

.90Yes

.10No

A=YesMaryCalls

P(M|A)
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Finding an entry of the joint

• Let’s say we want to know how likely the “perfect day” is:

P(B=n,E=n,A=n,M=y,J=y) =

ΠX P(X|parents(X)) =

P(B=n)P(E=n)P(A=n|B=n,E=n)P(J=y|A=n)P(M=y|A=n) =

.99*.999*.999*.05*.01 ≈ .0049

36

Answering a Query by Enumeration

• Let’s say we want to know how likely is it that there’s a
burglary given that both Mary and John call.

• This is the query P(B=y|M=y, J=y).

• We first find P(B=y, M=y, J=y)

• This is the sum of all the matching entries in the joint…
 P(B=y, M=y, J=y) = Σe,a P(B=y, e, a, M=y, J=y)

… so we have to sum 4 terms from the joint, one for each
setting of the variables not in our query.  If there are n
binary variables, this means 2n time just to sum them!  (But
it works.)

• How many entries to sum to find P(M=y, J=y)?
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Answering queries faster!

• Take a simple chain BN:

• Consider the query P(A|E=y).  As usual, we’ll break this
up into P(A, E=y) and P(E=y).

– Question: is there a quick way to figure out P(E=y) once we know P(A, E=y)?

• We can write this as:
P(A=a,E=y) = Σb,c,d P(a,b,c,d,E=y)

= Σb,c,d P(a) P(b|a) P(c|b) P(d|c) P(E=y|d)

= P(a) Σb,c,d P(b|a) P(c|b) P(d|c) P(E=y|d)

= P(a) Σb P(b|a) Σc P(c|b) Σd P(d|c) P(E=y|d)

P(A,B,C,D,E) = P(A)P(B|A)P(C|B)P(D|C)P(E|D)

A B C D E

38

The resulting computation…

A
y n

B
y n

B
y n

C
y n

D D

C
y n

D D

C
y n

D D

C
y n

D D

P(a)

y n

E E

y n

E E

y n

E E

y n

E E

P(b|a)

P(c|b,a)

P(d|c,b,a)

P(e=y|d,c,b,a)
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…with independences marked…

A
y n

B
y n

B
y n

C
y n

D D

C
y n

D D

C
y n

D D

C
y n

D D

P(a)

y n

E E

y n

E E

y n

E E

y n

E E

P(b|a)

P(c|b)

P(e=y|d)

P(d|c)
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…and some redundant work circled

A
y n

B
y n

B
y n

C
y n

D D

C
y n

D D

C
y n

D D

C
y n

D D

P(a)

y n

E E

y n

E E

y n

E E

y n

E E

P(b|a)

P(c|b)

P(e=y|d)

P(d|c)
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Variable Elimination

• The main idea of variable elimination is to
never do work twice.

• We do the work bottom-up, or inside-out,
rather than top-down.

• We store results that we will need again in
tables called factors.

• We will create one factor per variable at the
time we eliminate that variable.

42

The Variable Elimination Algorithm
start off with one factor for each CPT

while there is some (childless) variable
pick any (childless) variable X
take all factors {Fi} which mention X
create a new factor G by

combining the Fi

Create a table with a dimension for each 
variable in mentioned {Fi}, and fill in each
entry by pointwise multiplication.

if X is evidence, remove all entries in the table which 
don’t match the observed value of X

if X is a query variable, do nothing
if X is an “other” variable, sum out over X

remove the factors {Fi}, add the factor G
if the conditional is desired, normalize the final factor
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Chain BN Example
• Let’s go back to our chain network:

• We can write P(A,E=y) as
P(a) Σb P(b|a) Σc P(c|b) Σd P(d|c) P(e=y|d)

P(A,B,C,D,E) = P(A)P(B|A)P(C|B)P(D|C)P(E|D)

A B C D E

determined by d

determined by c

determined by b

determined by a

the answer!
determined by a

P(e=y|d)

P(e=y|c)

P(e=y|b)

P(e=y|a)

P(e=y,a)
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Chain BN Example

• To make life easier, get rid of node C:

• Initial factors (one per node):

P(A) =     P(B|A) =

P(D|B) =     P(E|D) =

1/4n

3/4y

P(a)A

P(A,B,D,E) = P(A)P(B|A)P(D|B)P(E|D)

A B D E

1/2

1/2

P(b|A=y)

2/3n

1/3y

P(b|A=n)B

1/3

2/3

P(d|B=y)

3/4n

1/4y

P(d|B=n)D

3/4

1/4

P(e|D=y)

1/2n

1/2y

P(e|D=n)E

Let’s say:

A is I set my alarm

B is I wake up in time

D is I get to work in time

E is I have to work late
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Chain BN Example
• Eliminating E:

– Take all factors mentioning E and combine them pointwise:

P(E|D)

– Since E is an evidence variable, select the portion of the result
which fits the evidence:

P(E=y|D)

– Remove the original factor from the factor list.

3/4

1/4

P(d|D=y)

1/2n

1/2y

P(d|D=n)E
Just one, so no
multiplications to
do!

1/4

P(d|D=y)

1/2y

P(d|D=n)E

Factors after:

P(A)

P(B|A)

P(D|B)

P(E|D)

P(E=y|D)
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Chain BN Example
• Eliminating D

– Take all factors mentioning D and combine them pointwise:

P(E=y|D)         P(D|B)                  P(E=y,D|B)

- Since D is neither evidence nor a query variable, we sum it out:

P(E=y,D|B) P(E=y|B)

– And we remove the input factors from the list.

1/4

P(e|D=y)

1/2y

P(e|D=n)E

1/3

2/3

P(d|B=y)

3/4n

1/4y

P(d|B=n)D

y

y

E

_*1/3 = 1/6

_*2/3 = 1/6

P(e,d|B=y)

_*3/4 = 3/8n

_*_ = 1/16y

P(e,d|B=n)D

y

y

E

1/6

1/6

P(e,d|B=y)

3/8n

1/16y

P(e,d|B=n)D

1/6+1/6 = 1/3

P(e|B=y)

1/16+3/8 = 7/16y

P(e|B=n)E

Factors after:

P(A)

P(B|A)

P(D|B)

P(E=y|D)

P(E=y|B)
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Chain BN Example
• Eliminating B

– Take all factors mentioning B and combine them pointwise:

P(E=y|B)              P(B|A)                  P(E=y,B|A)

- Since B is neither evidence nor a query variable, we sum it out:

P(E=y,B|A) P(E=y|A)

– And we remove the input factors from the list.

y

y

E

7/16*1/2=7/32

1/3*1/2 = 1/6

P(e,b|A=y)

7/16*2/3=7/24n

1/3*1/3=1/9y

P(e,b|A=n)B

1/6+7/32= 37/96

P(e|A=y)

1/9+7/24= 29/72y

P(e|A=n)E

1/3

P(e|B=y)

7/16y

P(e|B=n)E

1/2

1/2

P(b|A=y)

2/3n

1/3y

P(b|A=n)B

y

y

E

7/32

1/6

P(e,b|A=y)

7/24n

1/9y

P(e,b|A=n)B

Factors after:

P(A)

P(B|A)

P(E=y|B)

P(E=y|A)
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Chain BN Example
• Eliminating A

– Take all factors mentioning A and combine them pointwise:

P(E=y|A)         P(A)                  P(E=y,A)

- Since A is a query variable, we do not sum it out.

- We delete the original factors.

- There are no variables left to eliminate, and we are left with a
single factor which contains P(E=y,A).

- We can normalize it to add to one,

 giving us P(A|E=y).

y

y

E

29/72*1/4 = .10

37/96*3/4 = .29

P(e,a)

n

y

A

37/96

P(e|A=y)

29/72y

P(e|A=n)E

1/4n

3/4y

P(a)A

y

y

E

.1/(.29+.1) = .27

.29/(.29+.1) = .73

P(a|e)

n

y

A

I’m probably working late then, if
I forget to set the alarm!

Factors after:

P(A)

P(E=y|A)

P(E=y,A)
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Next Time

• Next time, we’ll do another example, with a loop:

• And discuss d-separation.

D

A

B C

50

Bayes’ Nets III

CS121 Winter 2000-2001
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Bayes’ Nets III

• Variable Elimination

• d-Separation

• Loose ends

52

Variable Elimination

• We want P(Q|e):
– Start with CPTs
– Process each variable
– End up with a factor which represents P(Q,e)
– Normalize to get P(Q|e)

• Remember: factors
– Store results so we don’t have to do an work twice.
– Are tables, not just single numbers.
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The Variable Elimination Algorithm
start off with one factor for each CPT

while there is some (childless) variable
pick any (childless) variable X
take all factors {Fi} which mention X
create a new factor G by

combining the Fi

Create a table with a dimension for each 
variable in mentioned {Fi}, and fill in each
entry by pointwise multiplication.

if X is evidence, remove all entries in the table which 
don’t match the observed value of X

if X is a query variable, do nothing
if X is an “other” variable, sum out over X

remove the factors {Fi}, add the factor G
if the conditional is desired, normalize the final factor
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Loop Example

D

B

A C

.99n

.01y

P(b)B

Let’s say:

B is a burglary

A is my alarm goes off

C is a neighbor calls the
police

D is the police show up

.6

.4

P(c|B=y)

.9n

.1y

P(c|B=n)C

.2

.8

P(a|B=y)

.99n

.01y

P(a|B=n)A

.3

.7

P(d|A=y,C=n)

.01

.99

P(d|A=y,C=y)

.1

.9

P(d|A=n,C=y)

.99n

.01y

P(d|A=n,C=n)D



28

55

Loop Example

• Query: P(B|D=y)
– Note that we already know the prior P(B)
– We expect P(B=y|D=y) >> P(B=y)

• Initial factors:
– P(B)
– P(A|B)
– P(C|B)
– P(D|A,C)

.99n

.01y

P(b)B
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Loop Example

• Elimination order: D,A,C,B (arbitrary)

• Eliminating D
– Take all factors mentioning D (so just P(D|A,C)) and combine:

– D is evidence so restrict the result to the entries consistent with the
evidence:

Factors after:

P(B)

P(A|B)

P(C|B)

P(D|A,C)

P(D=y|A,C)

Factors to start:

P(B)

P(A|B)

P(C|B)

P(D|A,C)

.3

.7

P(d|A=y,C=n)

.01

.99

P(d|A=y,C=y)

.1

.9

P(d|A=n,C=y)

.99n

.01y

P(d|A=n,C=n)D

.7

P(d|A=y,C=n)

.99

P(d|A=y,C=y)

.9

P(d|A=n,C=y)

.01y

P(d|A=n,C=n)D

P(D=y|A,C)
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Loop Example

• Eliminating A
– Take all factors mentioning A and combine:

Factors after:

P(B)

P(A|B)

P(C|B)

P(D=y|A,C)

P(D=y|B,C)

Factors before:

P(B)

P(A|B)

P(C|B)

P(D=y|A,C)

.7

P(d|A=y,C=n)

.99

P(d|A=y,C=y)

.9

P(d|A=n,C=y)

.01y

P(d|A=n,C=n)D

.2

.8

P(a|B=y)

.99n

.01y

P(a|B=n)A

y

y

D

.2*.01 = .002

.8*.7 = .56

P(d,a|B=y,C=n)

.2*.9 = .18

.8*.99 = .792

P(d,a|B=y,C=y)

.99*.9 = .891

.01*.99 = .0099

P(d,a|B=n,C=y)

.99*.01 = .0099n

.01*.7 = .007y

P(d,a|B=n,C=n)A

P(A|B) P(D=y|A,C)

P(D=y,A|B,C)
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Loop Example

• Still eliminating A
– Since A is a hidden (non-evidence, non-query) variable, sum it out:

Factors after:

P(B)

P(A|B)

P(C|B)

P(D=y|A,C)

P(D=y|B,C)

Factors before:

P(B)

P(A|B)

P(C|B)

P(D=y|A,C)

P(D=y,A|B,C)

y

D

.56+.002 = .562

P(d|B=y,C=n)

.792+.18 = .972

P(d|B=y,C=y)

.0099+.891 = .901

P(d|B=n,C=y)

.007+.0099 = .0169

P(d|B=n,C=n)

P(D=y|B,C)

y

y

D

.2*.01 = .002

.8*.7 = .56

P(d,a|B=y,C=n)

.2*.9 = .18

.8*.99 = .792

P(d,a|B=y,C=y)

.99*.9 = .891

.01*.99 = .0099

P(d,a|B=n,C=y)

.99*.01 = .0099n

.01*.7 = .007y

P(d,a|B=n,C=n)A
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Loop Example

• Eliminating C
– Take all factors mentioning C and combine:

Factors after:

P(B)

P(C|B)

P(D=y|B,C)

P(D=y|B)

Factors before:

P(B)

P(C|B)

P(D=y|B,C)

y

y

D

.9*.0169 = .01521

.1*.901 = .0901

P(d,c|B=n)

.6*.562 = .3372

.4*.972 = .388

P(d,c|B=y)

n

y

C

P(C|B) P(D=y|B,C)

P(D=y,C|B)

y

D

.562

P(d|B=y,C=n)

.972

P(d|B=y,C=y)

.901

P(d|B=n,C=y)

.0169

P(d|B=n,C=n)

.6

.4

P(c|B=y)

.9n

.1y

P(c|B=n)C
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Loop Example

• Still eliminating C
– Since C is a hidden (non-evidence, non-query) variable, sum it out:

y

D

.0901+.01521 = .10531

P(d|B=y)

.388+.3372 = .7252

P(d|B=y)

P(D=y|B)

y

y

D

.01521

.0901

P(d,c|B=n)

.3372

.388

P(d,c|B=y)

n

y

C

P(D=y,C|B)

Factors after:

P(B)

P(C|B)

P(D=y|B,C)

P(D=y|B)

Factors before:

P(B)

P(C|B)

P(D=y|B,C)
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Loop Example

• Eliminating B
– Take all factors mentioning B and combine:

Factors after:

P(B)

P(D=y|B)

P(D=y,B)

Factors before:

P(B)

P(D=y|B)

y

y

D

.99*.10531 = .1052

.01*.7252 = .007252

          P(d,b)

n

y

B

P(B) P(D=y|B)

P(D=y,B)

.99n

.01y

P(b)B

y

D

.10531

P(d|B=y)

.7252

P(d|B=y)
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Loop Example
• Still eliminating B

– Since B is a query variable, do nothing.

• Normalizing at the end:
– Sum up the entries of P(D=y,B) to get P(D=y)

.007252/.1125 = .064y

n

B

.1052/.1125 = .936

P(b|D=y)

P(B|D=y)

P(D=y,B)

Factors after:

P(B)

P(D=y|B)

P(D=y,B)

Factors before:

P(B)

P(D=y|B)

y

y

D

.1052

.007252

P(d,b)

n

y

B sum
.007252+.1052 = .1125

P(D=y)

normalize

The
answer!
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Loop Example

• Now we know P(B|D=y) and we’ve known P(B) all along:

• Knowing that the police came makes it six times as likely
that there was a burglary, but since the influences are so
weak (they probably wouldn’t be for real) and since the
prior chance of a burglary is low, even when the police
show, it’s still probably not because of a burglary!

.064y

n

B

.936

P(b|D=y)

P(B|D=y)P(B)

.99n

.01y

P(b)B
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Another Elimination Order

• Let’s do the order {B,C,A,D}, no numbers this time.

• Eliminate B first:

Initital factors: P(B) P(A|B)     P(C|B)       P(D|C,A)

P(B), P(A|B), P(C|B) combine to P(A,C,B)

Factors after B: P(A,C,B) P(D|C,A)

Combine on B

B is query,
do nothing

E
li

m
in

at
in

g 
B



33

65

Another Elimination Order

• Eliminate C next:

Initital factors: P(A,C,B) P(D|C,A)

P(A,C,B) and P(D|C,A) combine to P(A,B,C,D)

P(A,B,C,D) summed out over C gives P(A,B,D)

Factors after C: P(A,B,D)

Combine on C

C is hidden,
sum out C

E
li

m
in

at
in

g 
C
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Another Elimination Order
• Eliminate A next:

Initital factors: P(A,B,D)

Nothing to do!  Just P(A,B,D)

P(A,B,D) summed out over A gives P(B,D)

Factors after A: P(B,D)

Combine on A

A is hidden,
sum out A

E
li

m
in

at
in

g 
A
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Another Elimination Order
• Eliminate D last:

Initital factors: P(B,D)

Nothing to do!  Just P(B,D)

P(B,D) restricted to D=y gives P(B,D=y)

Factors after D: P(B,D=y)

Combine on D

D is evidence,
restrict on D

E
li

m
in

at
in

g 
D
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Another Elimination Order

• We end up with P(B,D=y) again.

• Normalize to get P(B|D=y).

• We will get the same answer!

• But we do more work this way:
– We had to create the entire joint P(A,B,C,D) this time.

– We didn’t get to restrict to our evidence until the end this time.

• Different orders can result in different amounts of work,
but not different results.
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Influence

• Finding out that D=y changed our belief distribution over
B (not a surprise!).

• However, nowhere in our BN does it say that A and D are
dependent.

• We want to be able to tell when evidence will or will not
influence other variables.

• In particular, we want to know whether variables X and Y
are (necessarily) independent given a set E of evidence
variables… in other words I(X;Y|E).
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Paths of Influence

• In the chain network:

– Every variable can influence every other variable via
the intervening variables.

• For example, A will not (generally) be independent of E.

– If we observe a variable between A and E, then they
become independent.

• For example, I(A;E|D) if observing A has any effect on our
beliefs about E, it is only because observing A changed our
beliefs about D.  There’s no other dependence from A to E
than the one mediated by D, so A and E are separated by the
evidence D

A B C D E
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Paths of Influence

• In general, evidence of a variable X can influence the
distribution over a variable Y if there’s an active path
between them.

• In the loop network:
– As we saw, evidence about D can

influence B (in our example, P(B)
was not the same as P(B|D=y))

– This influence can flow either along
B → A → D or B → C → D.  So
observing A doesn’t by itself make B
and D independent, but observing
C and A does.

D

B

A C
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Paths of Influence

• There may be a lot of (undirected) paths p connecting two
variables X and Y.

• We say that a path p between X and Y is an active path
(given evidence E) if influence can flow along p (given E).
If there are no active paths between X and Y (given E),
then we will know that I(X;Y|E).

• Active paths are symmetric, i.e., influence can’t flow only
one way along a given path.

• As we have seen, whether or not a path is active does
depend on the given evidence.
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d-Separation

• If, given E, there is no active path between X and Y, we
say that E d-separates X and Y, or d-sep(X;Y|E).

• Think “data” or “direction-dependent” separation for d-separation!

• You can prove that if d-sep(X;Y|E) then I(X;Y|E).
• But not the other direction!

• Now we have to be able to figure out if two nodes are d-
separated by evidence.
– We can check each path to see if it’s active.

– To check a path, we only have to check each “link” in the path.
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Types of Paths
• There are four kinds of “links” in a path:

A B C

A
B C

A

B

C

A

B

C

D

Here, influence flows from A to
C through B.  If B is unobserved,
then this link is active.  If B is
observed, it breaks this link.

Here, influence cannot normally
flow between A and C.  They are
two causes of a common effect B.
However, once we observe B (or
any descendant D of B), the causes
“compete” and this path activates.
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The Easy Three

• Three of the link types are intuitively simple:

• In each case, A can influence C via B.  If B is not evidence,
then this link is active.  If B is evidence, then A can no
longer influence C via B and the link is no longer active.
– Classic Example:  (which case(s) does this correspond to above?)

• Smoking causes cancer but only because of tar build-up in the lungs.
• If you know that someone has tar in their lungs, it doesn’t matter how

it got there as far as lung cancer goes (maybe they work in a tar
plant).

• Whether or not they smoke is now irrelevant to whether or not they
get cancer.

A B C A
B C

A

B

C
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v-Structures
• The fourth case is less obvious:

– A-B-C is called a v-structure.
– v-structures work roughly backwards from

 the other three cases.

• Here, A and C are causes of the same effect.
– If we do not know anything about B, then A and C won’t influence

each other… this link starts off inactive.
• Burglaries and earthquakes both set off my alarm, but if I know

nothing about the alarm, then burglaries an earthquakes are
independent events.

– If we do know something about B, then A and C can compete as
explanations of our knowledge about B, and this link activates.

• Once the alarm goes off, a burglary and an earthquake compete to
explain the alarm.

• B does not itself have to be observed, and descendent D of B will do.

A

B

C

D
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d-Separation Example
• In this network:

– Given no evidence
• Is I(A;C)?

– Is the A-B-C path active?
– Is the A-D-C path active?

• Is I(A;F)?

– Given B
• Is I(A;C|B)?

– Given D and B
• Is I(A;C|D,B)?

– Some more to try:
• What evidence sets separate B and F?
• What evidence sets separate B and E?
• What evidence sets separate C and E?

D

B

A C

E F

B is burglary
A is alarm
C is neighbors call police
D is police at my door
E is alarm company calls
F is a report gets filed
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Loose Ends

• What do BNs get us?
– A compact way of specifying a joint distribution.

– We specify simple and local behavior of variables but
then we get to reason about global interactions!

– A uniform, well-founded, well-understood framework
for combining arbitrary evidence and performing
arbitrary queries.

• Bayes’ Nets and Learning

• Dynamic Bayes’ Nets, HMMs, etc.


