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Abstract� The simpleBayesian classi
er is known to be optimal when attributes are independent
given the class� but the question of whether other su�cient conditions for its optimality exist has
so far not been explored� Empirical results showing that it performs surprisingly well in many
domains containing clear attribute dependences suggest that the answer to this question may be
positive� This article shows that� although the Bayesian classi
er�s probability estimates are only
optimal under quadratic loss if the independence assumption holds� the classi
er itself can be
optimal under zero
one loss �misclassi
cation rate� even when this assumption is violated by a
wide margin� The region of quadratic
loss optimality of the Bayesian classi
er is in fact a second

order in
nitesimal fraction of the region of zero
one optimality� This implies that the Bayesian
classi
er has a much greater range of applicability than previously thought� For example� in this
article it is shown to be optimal for learning conjunctions and disjunctions� even though they
violate the independence assumption� Further� studies in arti
cial domains show that it will often
outperformmore powerful classi
ers for common training set sizes and numbers of attributes� even
if its bias is a priori much less appropriate to the domain� This article�s results also imply that
detecting attribute dependence is not necessarily the best way to extend the Bayesian classi
er�
and this is also veri
ed empirically�

Keywords� Simple Bayesian classi
er� naive Bayesian classi
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ca
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�� Introduction

In classi�cation learning problems� the learner is given a set of training examples
and the corresponding class labels� and outputs a classi�er� The classi�er takes
an unlabeled example and assigns it to a class� Many classi�ers can be viewed
as computing a set of discriminant functions of the example� one for each class�
and assigning the example to the class whose function is maximum �Duda � Hart�
���	
� If E is the example� and fi�E
 is the discriminant function corresponding
to the ith class� the chosen class Ck is the one for which�

fk�E
 � fi�E
 � i �� k� ��


Suppose an example is a vector of a attributes� as is typically the case in classi�
�cation applications� Let vjk be the value of attribute Aj in the example� P �X

denote the probability of X� and P �Y jX
 denote the conditional probability of Y
given X� Then one possible set of discriminant functions is
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fi�E
 � P �Ci

aY

j��

P �Aj�vjkjCi
� �



The classi�er obtained by using this set of discriminant functions� and estimating
the relevant probabilities from the training set� is often called the naive Bayesian
classi�er� This is because� if the �naive� assumption is made that the attributes
are independent given the class� this classi�er can easily be shown to be optimal�
in the sense of minimizing the misclassi�cation rate or zero�one loss� by a direct
application of Bayes� theorem� as follows� If P �CijE
 is the probability that example
E is of class Ci� zero�one loss is minimized if� and only if� E is assigned to the class
Ck for which P �CkjE
 is maximum �Duda � Hart� ���	
� In other words� using
P �CijE
 as the discriminant functions fi�E
 is the optimal classi�cation procedure�
By Bayes� theorem�

P �CijE
 �
P �Ci
P �EjCi


P �E

� �	


P �E
 can be ignored� since it is the same for all classes� and does not a�ect the
relative values of their probabilities� If the attributes are independent given the
class� P �EjCi
 can be decomposed into the product P �A� � v�kjCi
 � � �P �Aa �
vakjCi
� leading to P �CijE
 � fi�E
� as de�ned in Equation 
� Q�E�D�
In practice� attributes are seldom independent given the class� which is why this

assumption is �naive�� However� the question arises of whether the Bayesian clas�
si�er� as de�ned by Equations � and 
� can be optimal even when the assumption
of attribute independence does not hold� and therefore P �CijE
 �� fi�E
� In these
situations� the Bayesian classi�er can no longer be said to compute class proba�
bilities given the example� but the discriminant functions de�ned by Equation 

may still minimize misclassi�cation error� The question of whether these situations
exist has practical relevance� since the Bayesian classi�er has many desirable prop�
erties �simplicity� low time and memory requirements� etc�
� and thus may well be
the classi�er of choice for such situations �i�e�� it will be chosen over other clas�
si�ers that are also optimal� but di�er in other respects
� However� even though
the Bayesian classi�er has been known for several decades� to our knowledge this
question has so far not been explored� the tacit assumption has always been that
the Bayesian classi�er will not be optimal when attribute independence does not
hold�
In spite of this restrictive view of its applicability� in recent years there has been

a gradual recognition among machine learning researchers that the Bayesian clas�
si�er can perform quite well in a wide variety of domains� including many where
clear attribute dependences exist� Evidence of the Bayesian classi�er�s surprising
practical value has also led to attempts to extend it by increasing its tolerance of
attribute independence in various ways� but the success of these attempts has been
uneven� This is described in more detail in the next section�
This article derives the most general conditions for the Bayesian classi�er�s opti�

mality� giving a positive answer to the question of whether it can still be optimal
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when attributes are not independent given the class� A corollary of these results
is that the Bayesian classi�er�s true region of optimal performance is in fact far
greater than that implied by the attribute independence assumption� and that its
range of applicability is thus much broader than previously thought� This tolerance
of attribute dependence also helps to explain why extending the Bayesian classi�
�er by attempting to reduce it will not necessarily lead to signi�cant performance
improvements�
The remainder of the article elaborates on these ideas� Section 
 reviews previous

empirical results on the Bayesian classi�er in the machine learning literature� and
recent attempts to extend it� Section 	 describes an empirical study showing that
the Bayesian classi�er outperforms several more sophisticated approaches on a large
number of data sets� and that this is not due to the absence of attribute dependences
in those data sets� Section � presents a simple example that illustrates some of the
key points to be made subsequently� Section � derives necessary and su�cient
conditions for the local optimality of the Bayesian classi�er �i�e�� its optimality for
any given example
� and computes how often these conditions will be satis�ed�
Section � generalizes the previous results to a necessary and su�cient condition
for the Bayesian classi�er�s global optimality �i�e�� its optimality for any given data
set
� It also shows that the Bayesian classi�er has some fundamental limitations�
but is optimal for learning conjunctions and disjunctions� Section � formulates some
hypotheses as to when the Bayesian classi�er is likely to outperform more �exible
ones� even if it is not optimal� and reports empirical tests of these hypotheses�
Section � veri�es empirically that attempting to reduce attribute dependence is not
necessarily the best approach to improving the Bayesian classi�er�s accuracy� The
paper concludes with discussion and directions for future work�

�� The simple Bayesian classi�er in machine learning

Due to its perceived limitations� the simple Bayesian classi�er has traditionally
not been a focus of research in machine learning�� However� it has sometimes been
used as a �straw man� against which to compare more sophisticated algorithms�
Clark and Niblett �����
 compared it with two rule learners and a decision�tree
learner� and found that it did surprisingly well� Cestnik �����
 reached similar
conclusions� Kononenko �����
 reported that� in addition� at least one class of
users �doctors
 �nds the Bayesian classi�er�s representation quite intuitive and easy
to understand� something which is often a signi�cant concern in machine learning�
Langley� Iba� and Thompson ����

 compared the Bayesian classi�er with a decision
tree learner� and found it was more accurate in four of the �ve data sets used�
Pazzani� Muramatsu� and Billsus �����
 compared several learners on a suite of
information �ltering tasks� and found that the Bayesian classi�er was the most
accurate one overall�
John and Langley �����
 showed that the Bayesian classi�er�s performance can

be much improved if the traditional treatment of numeric attributes� which assumes
Gaussian distributions� is replaced by kernel density estimation� This showed that
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the Bayesian classi�er�s limited performance in many domains was not in fact in�
trinsic to it� but due to the additional use of unwarranted Gaussian assumptions�
Dougherty� Kohavi� and Sahami �����
 reached similar conclusions by instead dis�
cretizing numeric attributes� and found the Bayesian classi�er with discretization
slightly outperformed a decision�tree learner in �� data sets� on average�

Although the reasons for the Bayesian classi�er�s good performance were not
clearly understood� these results were evidence that it might constitute a good
starting point for further development� Accordingly� several authors attempted to
extend it by addressing its main perceived limitation�its inability to deal with
attribute dependences�

Langley and Sage �����
 argued that� when two attributes are correlated� it
might be better to delete one attribute than to assume the two are conditionally
independent� They found that an algorithm for feature subset selection �forward
sequential selection
 improved accuracy on some data sets� but had little or no
e�ect in others� In a related approach� Kubat� Flotzinger� and Pfurtscheller ����	

found that using a decision�tree learner to select features for use in the Bayesian
classi�er gave good results in the domain of EEG signal classi�cation�

Kononenko �����
 proposed successively joining dependent attribute values� using
a statistical test to judge whether two attribute values are signi�cantly dependent�
Experimental results with this method were not encouraging� On two domains� the
modi�ed Bayesian classi�er had the same accuracy as the simple Bayesian classi�er�
and on the other two domains tested� the modi�ed version was one percent more
accurate� but it is not clear whether this di�erence was statistically signi�cant�
Pazzani �����
 proposed joining attributes instead of attribute values� Rather
than using a statistical test� as in Kononenko �����
� Pazzani�s algorithm used
cross�validation to estimate the accuracy of a classi�er with each possible join� and
made the single change that most improved accuracy� This process was repeated
until no change resulted in an improvement� This approach substantially improved
the accuracy of the Bayesian classi�er on several arti�cial and natural data sets�
with the largest improvements in accuracy occurring in data sets where the Bayesian
classi�er is substantially less accurate than decision�tree learners�

The simple Bayesian classi�er is limited in expressiveness in that it can only
create linear frontiers �Duda � Hart� ���	
� Therefore� even with many training
examples and no noise� it does not approach ���� accuracy on some problems�
Langley ����	
 proposed the use of �recursive Bayesian classi�ers� to address this
limitation� In his approach� the instance space is recursively divided into subregions
by a hierarchical clustering process� and a Bayesian classi�er is induced for each
region� Although the algorithm worked on an arti�cial problem� it did not provide
a signi�cant bene�t on any natural data sets� In a similar vein� Kohavi �����

formed decision trees with Bayesian classi�ers at the nodes� and showed that it
tended to outperform either approach alone� especially on large data sets�

Friedman� Geiger� and Goldszmidt �����
 compared the simple Bayesian classi�er
with Bayesian networks� a much more powerful representation that has the Bayesian
classi�er as a special case� and found that the latter approach tended to produce no
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improvements� and sometimes led to large reductions in accuracy� This led them
to attempt a much more limited extension� allowing each attribute to depend on
at most one other attribute �in addition to the class
� This conservative approach
achieved the best overall results� Sahami �����
 proposed a related scheme� and�
in a similar spirit� Singh and Provan ������ ����
 obtained good results by forming
Bayesian networks using only a subset of the attributes�
In summary� the Bayesian classi�er has repeatedly performed better than ex�

pected in empirical trials� but attempts to build on this success by relaxing the
independence assumption have had mixed results� Both these observations seem to
con�ict with the current theoretical understanding of the Bayesian classi�er� This
article seeks to resolve this apparent contradiction�

�� Empirical evidence

Whenever theoretical expectations and empirical observations disagree� either could
be at fault� On the empirical side� two potential sources of error can be readily
identi�ed� The results of previous authors could be a �uke� due to unusual char�
acteristics of the data sets used �especially since� in several cases� the number of
data sets used was relatively small
� Alternatively� these data sets might contain
no signi�cant attribute dependences� and in this case the Bayesian classi�er would
indeed be expected to perform well� In order to test both these hypotheses� we con�
ducted an empirical study on 
� data sets� comparing the Bayesian classi�er with
other learners� and measuring the degree of attribute dependence in the data sets�
The learners used were state�of�the art representatives of three major approaches
to classi�cation learning� decision tree induction �C��� release �� Quinlan� ���	
�
instance�based learning �PEBLS 
��� Cost � Salzberg� ���	
 and rule induction
�CN
 version ���� Clark � Boswell� ����
� A simple Bayesian classi�er was imple�
mented for these experiments� Three main issues arise here� how to handle numeric
attributes� zero counts� and missing values� We deal with each in turn�

� Numeric attributes were discretized into ten equal�length intervals �or one per
observed value� whichever was least
� Although Dougherty et al� �����
 found
this approach to be slightly less accurate than a more informed one� it has the
advantage of simplicity� and is su�cient for verifying that the Bayesian classi�er
performs as well as� or better than� other learners� A version incorporating the
conventional assumption of Gaussian distributions was also implemented� for
purposes of comparison with the discretized one�

� Zero counts are obtained when a given class and attribute value never occur
together in the training set� and can be problematic because the resulting zero
probabilities will wipe out the information in all the other probabilities P �Aj�
vjkjCi
 when they are multiplied according to Equation 
� A principled solution
to this problem is to incorporate a small�sample correction into all probabilities�
such as the Laplace correction �Niblett� ����
� If nijk is the number of times



� P� DOMINGOS AND M� PAZZANI

class Ci and value vjk of attribute Aj occur together� and ni is the total number
of times class Ci occurs in the training set� the uncorrected estimate of P �Aj�
vjkjCi
 is nijk�ni� and the Laplace�corrected estimate is P �Aj � vjkjCi
 �
�nijk � f
��ni � fnj
� where nj is the number of values of attribute Aj �e�g��

 for a Boolean attribute
� and f is a multiplicative factor� Following Kohavi�
Becker� and Sommer�eld �����
� the Laplace correction was used with f � ��n�
where n is the number of examples in the training set�

� Missing values were ignored� both when computing counts for the probability
estimates and when classifying a test example� This ensures the Bayesian clas�
si�er does not inadvertently have access to more information than the other
algorithms� and if anything biases the results against it�

Twenty�eight data sets from the UCI repository �Merz� Murphy � Aha�����

were used in the study� Twenty runs were conducted for each data set� randomly
selecting �

� of the data for training and the remainder for testing� Table � shows
the average accuracies obtained� As a baseline� the default accuracies obtained by
guessing the most frequent class are also shown� Con�dence levels for the observed
di�erences in accuracy between the �discretized
 Bayesian classi�er and the other
algorithms� according to a one�tailed paired t test� are also reported��

The results are summarized in Table 
� The �rst line shows the number of domains
in which the Bayesian classi�er was more accurate than the corresponding classi�er�
versus the number in which it was less� For example� the Bayesian classi�er was
more accurate than C��� in �� domains� and less in �� The second line considers only
those domains where the accuracy di�erence was signi�cant at the �� level� using
a one�tailed paired t test� For example� the Bayesian classi�er was signi�cantly
more accurate than C��� in �
 data sets� According to both these measures� the
Bayesian classi�er wins out over each of the other approaches� The third line shows
the con�dence levels obtained by applying a binomial sign test to the results in the
�rst line� and results in high con�dence that the Bayesian classi�er is more accurate
than C��� and CN
� if this sample of data sets is assumed to be representative�
The fourth line shows the con�dence levels obtained by applying the more sensitive
Wilcoxon test �DeGroot� ����
 to the 
� average accuracy di�erences obtained� and
results in high con�dence that the Bayesian classi�er is more accurate than each of
the other learners� The �fth line shows the average accuracy across all data sets�
and again the Bayesian classi�er performs the best� The last line shows the average
rank of each algorithm� computed for each domain by assigning rank � to the most
accurate algorithm� rank 
 to the second best� and so on� The Bayesian classi�er is
the best�ranked of all algorithms� indicating that when it does not win it still tends
to be one of the best�

The comparative results of the discretized and Gaussian versions also con�rm
the advantage of discretization� although on this larger ensemble of data sets the
di�erence is less pronounced than that found by Dougherty et al� �����
� and the
Gaussian version also does quite well compared to the non�Bayesian learners�
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Table �� Classi
cation accuracies and sample standard deviations� averaged over �� random train

ing�test splits� �Bayes� is the Bayesian classi
er with discretization and �Gauss� is the Bayesian
classi
er with Gaussian distributions� Superscripts denote con
dence levels for the di�erence in
accuracy between the Bayesian classi
er and the correspondingalgorithm� using a one
tailed paired
t test� � is ������ � is ���� � is ������ � is ���� � is ���� and � is below ����

Data Set Bayes Gauss C��� PEBLS CN� Def�

Audiology �������� ��������� ��������� ��������� ��������� ����
Annealing �������� ��������� ��������� ��������� ��������� ����
Breast cancer �������� ��������� ��������� ��������� ��������� ����
Credit �������� ��������� ��������� ��������� ��������� ����
Chess endgames �������� ��������� ��������� ��������� ��������� ����
Diabetes �������� ��������� ��������� ��������� ��������� ����
Echocardiogram �������� ��������� ��������� ��������� ��������� ����
Glass �������� ��������� ��������� ��������� ��������� ����
Heart disease �������� ��������� ��������� ��������� ��������� ����
Hepatitis �������� ��������� ��������� ��������� ��������� ����
Horse colic �������� ��������� ��������� ��������� ��������� ����
Hypothyroid �������� ��������� ��������� ��������� ��������� ����
Iris �������� ��������� ��������� ��������� ��������� ����
Labor �������� ���������� ��������� ��������� ��������� ����
Lung cancer ��������� ���������� ���������� ���������� ���������� ����
Liver disease �������� ��������� ��������� ��������� ��������� ����
LED �������� ��������� ��������� ��������� ��������� ���
Lymphography �������� ��������� ��������� ��������� ��������� ����
Post
operative �������� ��������� ��������� ��������� ��������� ����
Promoters �������� ��������� ��������� ��������� ��������� ����
Primary tumor �������� ��������� ��������� ��������� ��������� ����
Solar �are �������� ��������� ��������� ��������� ��������� ����
Sonar �������� ��������� ��������� ��������� ��������� ����
Soybean ��������� ���������� ��������� ���������� ��������� ����
Splice junctions �������� ��������� ��������� ��������� ��������� ����
Voting records �������� ��������� ��������� ��������� ��������� ����
Wine �������� ��������� ��������� ��������� ��������� ����
Zoology �������� ��������� ��������� ��������� ��������� ����

Table �� Summary of accuracy results�

Measure Bayes Gauss C��� PEBLS CN�

No� wins 
 ��
� ��
� ��
�� ��
�
No� signif� wins 
 �
� ��
� ��
� ��
�
Sign test 
 ���� ���� ���� ����
Wilcoxon test 
 ���� ���� ���� ����
Average ���� ���� ���� ���� ����
Rank ���� ���� ���� ���� ����



� P� DOMINGOS AND M� PAZZANI

In summary� the present large�scale study con�rms previous authors� observa�
tions on smaller ensembles of data sets� in fact� the current results are even more
favorable to the Bayesian classi�er� However� this does not by itself disprove the
notion that the Bayesian classi�er will only do well when attributes are indepen�
dent given the class �or nearly so
� As pointed out above� the Bayesian classi�er�s
good performance could simply be due to the absence of signi�cant attribute depen�
dences in the data� To investigate this� we need to measure the degree of attribute
dependence in the data in some way� Measuring high�order dependencies is di��
cult� because the relevant probabilities are apt to be very small� and not reliably
represented in the data� However� a �rst and feasible approach consists in measur�
ing pairwise dependencies �i�e�� dependencies between pairs of attributes given the
class
� Given attributes Am and An and the class variable C� a possible measure
of the degree of pairwise dependence between Am and An given C �Wan � Wong�
����� Kononenko� ����
 is

D�Am� AnjC
 � H�AmjC
 �H�AnjC
�H�AmAnjC
� ��


where AmAn represents the Cartesian product of attributes Am and An �i�e�� a
derived attribute with one possible value corresponding to each combination of
values of Am and An
� and for all classes i and attribute values k�

H�AjjC
 �
X
i

P �Ci

X
k

�P �Ci �Aj�vjk
 log�P �Ci �Aj�vjk
� ��


The D�Am� AnjC
 measure is zero when Am and An are completely independent
given C� and increases with their degree of dependence� with the maximum occur�
ring when the class and one attribute completely determine the other��

D was computed for all classes and attribute pairs in each data set� using uni�
form discretization as before� ignoring missing values� and excluding pairings of an
attribute with itself� The results appear in Table 	�� For comparison purposes� the
�rst column shows the Bayesian classi�er�s rank in each domain �i�e�� � if it was the
most accurate algorithm� 
 if it was the second most accurate� etc�� ignoring the
Gaussian version
� The second column shows the maximum value of D observed in
the data set� The third column shows the percentage of all attributes that exhib�
ited a degree of dependence with some other attribute of at least ��
� The fourth
column shows the average D for all attribute pairs in the data set�
This table leads to two important observations� One is that the Bayesian classi�er

achieves higher accuracy than more sophisticated approaches in many domains
where there is substantial attribute dependence� and therefore the reason for its
good comparative performance is not that there are no attribute dependences in
the data� The other is that the correlation between the average degree of attribute
dependence and the di�erence in accuracy between the Bayesian classi�er and other
algorithms is very small �R� � ���� for C���� ������ for PEBLS� and ����
 for
CN

� and therefore attribute dependence is not a good predictor of the Bayesian
classi�er�s di�erential performance vs� approaches that can take it into account�
Given this empirical evidence� it is clear that a new theoretical understanding of
the Bayesian classi�er is needed� We now turn to this�
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Table �� Empirical measures of attribute dependence�

Data Set Rank Max� D � D���� Avg� D

Breast cancer � ����� ���� �����
Credit � ����� ���� �����
Chess endgames � ����� ���� �����
Diabetes � ����� ���� �����
Echocardiogram � ����� ���� �����
Glass � ����� ����� �����
Heart disease � ����� ���� �����
Hepatitis � ����� ���� �����
Horse colic � ����� ����� �����
Hypothyroid � ����� ���� �����
Iris � ����� ����� �����
Labor � ����� ����� �����
Lung cancer � ����� ���� �����
Liver disease � ����� ����� �����
LED � ����� ��� �����
Lymphography � ����� ���� �����
Post
operative � ����� ��� �����
Promoters � ����� ���� �����
Solar �are � ����� ���� �����
Sonar � ����� ����� �����
Soybean � ����� ���� �����
Splice junctions � ����� ��� �����
Voting records � ����� ���� �����
Wine � ����� ����� �����
Zoology � ����� ��� �����

�� An example of optimality without independence

Consider a Boolean concept� described by three attributes A� B and C� Assume
that the two classes� denoted by � and �� are equiprobable �P ��
 � P ��
 � �

� 
�
Given an example E� let P �Aj�
 be a shorthand for P �A� aE j�
� aE being the
value of attribute A in the instance� and similarly for the other attributes� Let A
and C be independent� and let A � B �i�e�� A and B are completely dependent
�
Therefore B should be ignored� and the optimal classi�cation procedure for a test
instance is to assign it to class � if P �Aj�
P �Cj�
�P �Aj�
P �Cj�
� �� to class �
if the inequality has the opposite sign� and to an arbitrary class if the two sides
are equal� On the other hand� the Bayesian classi�er will take B into account
as if it was independent from A� and this will be equivalent to counting A twice�
Thus� the Bayesian classi�er will assign the instance to class � if P �Aj�
�P �Cj�
�
P �Aj�
�P �Cj�
 � �� and to � otherwise�

Applying Bayes� theorem� P �Aj�
 can be reexpressed as P �A
P ��jA
�P ��
� and
similarly for the other probabilities� Since P ��
 � P ��
� after canceling like terms
this leads to the equivalent expressions P ��jA
P ��jC
� P ��jA
P ��jC
 � � for
the optimal decision� and P ��jA
�P ��jC
�P ��jA
�P ��jC
 � � for the Bayesian
classi�er� Let P ��jA
 � p and P ��jC
 � q� Then class � should be selected
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when pq� ��� p
 ��� q
 � �� which is equivalent to q � �� p� With the Bayesian
classi�er� it will be selected when p�q � �� � p
��� � q
 � �� which is equivalent

to q � ���p��

p�	���p�� � The two curves are shown in Figure �� The remarkable fact

is that� even though the independence assumption is decisively violated because
B � A� the Bayesian classi�er disagrees with the optimal procedure only in the two
narrow regions that are above one of the curves and below the other� everywhere
else it performs the correct classi�cation� Thus� for all problems where �p� q
 does
not fall in those two small regions� the Bayesian classi�er is e�ectively optimal� By
contrast� according to the independence assumption it should be optimal only when
the two expressions are identical� i�e� at the three isolated points where the curves
cross� ��� �
� ��� �

�
�
 and ��� �
� This shows that the Bayesian classi�er�s range of

applicability may in fact be much broader than previously thought� In the next
section we examine the general case and formalize this result�

�� Local optimality

We begin with some necessary de�nitions�

Definition � Let C�E
 be the actual class of example E� and let CX�E
 be the
class assigned to it by classi�er X� Then the zero�one loss of X on E� denoted
LX �E
� is de�ned as

LX�E
 �

�
� if CX�E
 � C�E

� otherwise�

��
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Zero�one loss is an appropriate measure of performance when the task is classi�
�cation� and it is the most frequently used one� It simply assigns a cost �loss
 of
one to the failure to guess the correct class� In some situations� di�erent types of
misclassi�cation have di�erent costs associated with them� and the use of a full
cost matrix� specifying a loss value for each �C�E
� CX�E

 pair� will then be ap�
propriate� �For example� in medical diagnosis the cost of diagnosing an ill patient
as healthy is generally di�erent from that of diagnosing a healthy patient as ill�

In practice� it often occurs that examples with exactly the same attribute values

have di�erent classes� This re�ects the fact that those attributes do not contain
all the information necessary to uniquely determine the class� In general� then�
an example E will not be associated with a single class� but rather with a vector
of class probabilities P �CijE
� where the ith component represents the fraction of
times that E appears with class Ci� The zero�one loss or misclassi�cation rate of
X on E is then more generally de�ned as

LX�E
 � �� P �CXjE
� ��


where CX�E
� the class assigned by X to E� is abbreviated to CX for simplicity�
P �CX jE
 is the accuracy of X on E� This de�nition reduces to Equation � when
one class has probability � given E�

Definition � The Bayes rate for an example is the lowest zero�one loss achievable
by any classi�er on that example �Duda � Hart� ��	
��

Definition � A classi�er is locally optimal for a given example i� its zero�one
loss on that example is equal to the Bayes rate�

Definition � A classi�er is globally optimal for a given sample �data set� i� it is
locally optimal for every example in that sample� A classi�er is globally optimal for
a given problem �domain� i� it is globally optimal for all possible samples of that
problem �i�e�� for all data sets extracted from that domain��

The use of zero�one loss for classi�cation tasks should be contrasted with that of
squared error loss for probability estimation� This is de�ned as

SEX �E
 � �P �CjE
� PX�CjE
��� ��


where X is the estimating procedure and C is the variable whose probability �or
probability density
 we seek to estimate� If there is uncertainty associated with
P �CjE
� the squared error loss is de�ned as the expected value of the above expres�
sion� The main point of this article� shown in this section� can now be stated as
follows� When the independence assumption is violated� Equation 
 will in general
be suboptimal as a probability estimating procedure under the squared error loss
function� but combined with Equation � it can nevertheless still be optimal as a
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classi�cation procedure under the zero�one loss function� This result is a direct con�
sequence of the di�ering properties of these two loss measures� Equation 
 yields
minimal squared�error estimates of the class probabilities only when the estimates
are equal to the true values �i�e�� when the independence assumption holds
� but�
with Equation �� it can yield minimal zero�one loss even when the class probability
estimates diverge widely from the true values� as long as the class with highest
estimated probability� CX�E
� is the class with highest true probability�

For instance� suppose there are two classes � and �� and let P ��jE
 � ����
and P ��jE
 � ���� be the true class probabilities given example E� The optimal
classi�cation decision is then to assign E to class � �i�e�� to set CX�E
 � �
�
Suppose also that Equation 
 gives the estimates  P ��jE
 � f	�E
 � ���� and
 P ��jE
 � f��E
 � ����� The independence assumption is violated by a wide
margin� and the squared�error loss is large� but the Bayesian classi�er still makes
the optimal classi�cation decision� minimizing the zero�one loss�

Consider the two�class case in general� Let the classes be � and � as before�
p � P ��jE
� r � P ��


Qa

j��P �Aj � vjkj�
� and s � P ��

Qa

j��P �Aj � vjkj�

�refer to Equation 

� We will now derive a necessary and su�cient condition for
the local optimality of the Bayesian classi�er� and show that the volume of the
Bayesian classi�er�s region of optimality in the space of valid values of �p� r� s
 is
half of this space�s total volume�

Theorem � The Bayesian classi�er is locally optimal under zero�one loss for an
example E i� �p � �

�
� r � s
 � �p � �

�
� r � s
 for E�

Proof� The Bayesian classi�er is optimal when its zero�one loss is the minimum
possible� When p � P ��jE
 � �

� � the minimum loss is � � p� and is obtained by
assigning E to class �� The Bayesian classi�er assigns E to class � when f	�E
 �
f��E
 according to Equation 
� i�e�� when r � s� Thus if p � �

��r � s the Bayesian
classi�er is optimal� Conversely� when p � P ��jE
 � �

� � the minimumzero�one loss
is p� and is obtained by assigning E to class �� which the Bayesian classi�er does
when r � s� Thus the Bayesian classi�er is optimal when p � �

� � r � s� When
p � �

� � either decision is optimal� so the inequalities can be generalized as shown�

Note that this is not an asymptotic result� it is valid even when the probability
estimates used to compute r and s are obtained from �nite samples�

Corollary � The Bayesian classi�er is locally optimal under zero�one loss in half
the volume of the space of possible values of �p� r� s
�

Proof� Since p is a probability� and r and s are products of probabilities� �p� r� s

only takes values in the unit cube ��� ���� The region of this cube satisfying the
condition in Theorem � is shown shaded in Figure 
� it can easily be seen to occupy
half of the total volume of the cube� However� not all �r� s
 pairs correspond to valid
probability combinations� Since p is unconstrained� the projection of the space U of
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Figure �� Region of optimality of the simple Bayesian classi
er�

valid probability combinations on all planes p � p
 is the same� By Theorem �� the
region of optimality on planes below p
 �

�
�
becomes the region of nonoptimality on

planes above p
 � �
� � and vice versa �i�e�� the optimal region for projections below

p
 � �
� is the photographic negative of the optimal region for projections above
�

Thus� if S is the area of U �s projection and SO is the area of the optimal region for
p
 �

�
� � the area of the optimal region for p
 �

�
� is S�SO � and the total volume of

the region of optimality is �
�SO� �

� �S�SO
 �
�
�S� �Also� since if �r� s
 corresponds

to a valid probability combination then so does �s� r
� the region of optimality is
symmetric about s � r� and therefore SO � �

�S both above and below p
 � �
� �


In contrast� under squared error loss� Equation 
 is optimal as a set of probability
estimates P �CijE
 only when the independence assumption holds� i�e�� on the line
where the planes r � p and s � � � p intersect� Thus the region of optimality of
Equation 
 under squared�error loss is a second�order in�nitesimal fraction of its
region of optimality under zero�one loss� The Bayesian classi�er is e�ectively an
optimal predictor of the most likely class for a broad range of conditions in which the
independence assumption is violated� Previous notions of the Bayesian classi�er�s
limitations can now be seen as resulting from incorrectly applying intuitions based
on squared�error loss to the Bayesian classi�er�s performance under zero�one loss�
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	� Global optimality

The extension of Theorem � to global optimality is immediate� Let p� r and s for
example E be indexed as pE � rE and sE �

Theorem � The Bayesian classi�er is globally optimal under zero�one loss for a
sample �data set� ! i� �E	! �pE �

�

�
� rE � sE
 � �pE � �

�
� rE � sE 
�

Proof� By De�nition � and Theorem ��

However� verifying this condition directly on a test sample will in general not
be possible� since it involves �nding the true class probabilities for all examples in
the sample� Further� verifying it for a given domain �i�e� for all possible samples
extracted from that domain
 will in general involve a computation of size propor�
tional to the number of possible examples� which is exponential in the number of
attributes� and therefore computationally infeasible� Thus the remainder of this
section is dedicated to investigating more concrete conditions for the global opti�
mality of the Bayesian classi�er� some necessary and some su�cient� A zero�one
loss function is assumed throughout�

	��� Necessary conditions

Let a be the number of attributes� as before� let c be the number of classes� let v be
the maximum number of values per attribute� and let d be the number of di�erent
numbers representable on the machine implementing the Bayesian classi�er� For
example� if numbers are represented using �� bits� d � 
�� � ���	��

Theorem � The Bayesian classi�er cannot be globally optimal for more than
dc�av	�� di�erent problems�

Proof� Since the Bayesian classi�er�s state is composed of c�av��
 probabilities�
and each probability can only have d di�erent values� the Bayesian classi�er can
only be in at most dc�av	�� states� and thus it cannot distinguish between more
than this number of concepts�

Even though dc�av	�� can be very large� this is a signi�cant restriction because
many concept classes have size doubly exponential in a �e�g�� arbitrary DNF formu�
las in Boolean domains
� and due to the extremely rapid growth of this function the
Bayesian classi�er�s capacity will be exceeded even for commonly�occurring values
of a� On the other hand� this restriction is compatible with concept classes whose
size grows only exponentially with a �e�g�� conjunctions
�
This result re�ects the Bayesian classi�er�s limited capacity for information stor�

age� and should be contrasted with the case of classi�ers �like instance�based� rule
and decision tree learners
 whose memory size can be proportional to the sample
size� It also shows that the condition in Theorem 
 is satis�ed by an exponentially
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decreasing fraction of all possible domains as a increases� This is consistent with
the fact that local optimality must be veri�ed for every possible combination of
attribute values if the Bayesian classi�er is to be globally optimal for a domain
�De�nition �
� and the probability of this decreases exponentially with a� starting
at ���� for a � �� However� a similar statement is true for other learners� it sim�
ply re�ects the fact that it is very di�cult to optimally learn a very wide class of
concepts� The information storage capacity of the Bayesian classi�er is O�a
� If
e is the training set size� learners that can memorize all the individual examples
�or the equivalent
 have a storage capacity of O�ea
� and therefore can in principle
converge to optimal when e 
 �� However� for any �nite e there is a value of a
after which the fraction of problems on which those learners can be optimal also
starts to decrease exponentially with a�

Let a nominal attribute be de�ned as one whose domain is �nite and unordered� a
feature be de�ned as an attribute with a given value �i�e�� Aj�vjk is a feature
� and a
set of classes be discriminable by a set of functions fi�E
 if every possible example
E can be optimally classi�ed by applying Equation � with this set of functions�
Then the following result is an immediate extension to the general nominal case of
a well�known one for Boolean attributes �Duda � Hart� ���	
�

Theorem � When all attributes are nominal� the Bayesian classi�er is not globally
optimal for classes that are not discriminable by linear functions of the correspond�
ing features�

Proof� De�ne one Boolean attribute bjk for each feature� i�e�� bjk � � if Aj �
vjk and � otherwise� where vjk is the kth value of attribute Aj � Then� by tak�
ing the logarithm of Equation 
� the Bayesian classi�er is equivalent to a lin�
ear machine �Duda � Hart� ���	
 whose discriminant function for class Ci is
logP �Ci
 �

P
j�k logP �Aj � vjkjCi
 bjk �i�e�� the weight of each Boolean fea�

ture is the log�probability of the corresponding attribute value given the class
�

This is not a su�cient condition� because the Bayesian classi�er cannot learn
some linearly separable concepts� For example� it fails for some m�of�n concepts�
even though they are linearly separable� An m�of�n concept is a Boolean concept
that is true if m or more out of the n attributes de�ning the example space are
true� For example� if examples are described by three attributes A
� A� and A��
the concept 
�of�	 is true if A
 and A� are true� or A
 and A� are true� or A� and
A� are true� or all three are true��

Theorem � The Bayesian classi�er is not globally optimal for m�of�n concepts�

Proof� This follows directly from the de�nition of global optimality� and the fact
that there exist m�of�n concepts for which the Bayesian classi�er makes errors� even
when the examples are noise�free �i�e�� an example always has the same class
 and
the Bayes rate is therefore zero �e�g�� 	�of��� Kohavi� ����
�
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Let P �AjC
 represent the probability that an arbitrary attribute A is true given
that the concept C is true� let a bar represent negation� and let all examples be
equally probable� In general� if the Bayesian classi�er is trained with all 
n examples
of an m�of�n concept� and a test example has exactly j true�valued attributes� then
the Bayesian classi�er will make a false positive error if Di��m�n� j
 is positive and
j � m� and it will make a false negative error if Di��m�n� j
 is negative and j � m�
where

Di��m�n� j
 � P �C
 P �AjC
j ��� P �AjC
�n�j

�P �C
 P �AjC
j ��� P �AjC
�n�j

P �C
 �

nX
i�m

�
n
i

�


n

P �C
 �

m��X
i�


�
n
i

�


n

P �AjC
 �

n��X
i�m��

�
n � �
i

�

nX
i�m

�
n
i

�

P �AjC
 �

m��X
i�


�
n� �
i

�

m��X
i�


�
n
i

� �

For example� Di���� 
�� j
 is positive for all j � �� Therefore� the Bayesian
classi�er makes false positive errors for all examples that have � or � attributes
that are true� Similarly� Di����� 
�� j
 is negative for all j � �� and the Bayesian
classi�er makes false negative errors when there are �� and �� attributes that are
true� However� a simple modi�cation of the Bayesian classi�er will allow it to
perfectly discriminate all positive examples from negatives� adding a constant to
the discriminant function for the concept� or subtracting the same constant from
the discriminant function for its negation �Equation �
� We have implemented an
extension to the Bayesian classi�er for two�class problems that �nds the value of the
constant that maximizes predictive accuracy on the training data� In preliminary
experiments� we have observed that this extension achieves ���� accuracy on all
m�of�n concepts when trained on all 
n examples� for n less than ��� Furthermore�
we have tested this extension on the mushroom data set from the UCI repository
with ��� examples� and found that the average accuracy on �� trials signi�cantly
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increased from �	��� without this extension to ���
� with this extension �with
����� con�dence using a one�tailed paired t test
�
Since in nominal domains the basic Bayesian classi�er cannot learn some linearly

separable concepts� in these domains its range of optimality is a subset of the
perceptron�s� or of a linear machine�s �Duda � Hart� ���	
� This leads to the
following result�
Let the Vapnik�Chervonenkis dimension� or VC dimension for short� be de�ned

as in �Haussler� ����
�

Corollary � In domains composed of a nominal attributes� the VC dimension of
the simple Bayesian classi�er is O�a
�

Proof� This result follows immediately from Theorem � and the fact that� given
a attributes� the VC dimension of linear discriminant functions is O�a
 �Haussler�
����
�

Thus� in nominal domains� the PAC�learning guarantees that apply to linear ma�
chines apply also to the Bayesian classi�er� In particular� given a classi�cation
problem for which the Bayesian classi�er is optimal� the number of examples re�
quired for it to learn the required discrimination to within error � with probability
�� � is linear in the number of attributes a�
In numeric domains� the Bayesian classi�er is not restricted to linearly separable

problems� for example� if classes are normally distributed� nonlinear boundaries
and multiple disconnected regions can arise� and the Bayesian classi�er is able to
identify them �see Duda � Hart� ���	
�

	��� Su
cient conditions

In this section we establish the Bayesian classi�er�s optimality for some common
concept classes�

Theorem � The Bayesian classi�er is globally optimal if� for all classes Ci and
examples E � �v�� v�� � � � � va
� P �EjCi
 �

Qa

j�� P �Aj � vj jCi
�

This result was demonstrated in Section �� and is restated here for completeness�
The crucial point is that this condition is su�cient� but not necessary�

Theorem � The Bayesian classi�er is globally optimal for learning conjunctions
of literals�

Proof� Suppose there are n literals Lj in the conjunction� A literal may be
a Boolean attribute or its negation� In addition� there may be a � n irrelevant
attributes� they simply cause each row in the truth table to become 
a�n rows
with the same values for the class and all relevant attributes� each of those rows
corresponding to a possible combination of the irrelevant attributes� For simplicity�
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they will be ignored from here on �i�e�� n � a will be assumed without loss of
generality
� Recall that� in the truth table for conjunction� the class C is � �false

for all but L
 � L� � � � � � Ln � � �true
� Thus� using a bar to denote negation�

P �C
 � �
�n � P �C
 � �n��

�n � P �LjjC
 � �� P �LjjC
 � �� P �LjjC
 � �n��

�n�� �the
number of times the literal is � in the truth table� divided by the number of times

the class is �
� and P �LjjC
 � �n����
�n�� �the number of times the literal is � minus

the one time it corresponds to C� divided by the number of times the class is �
�
Let E be an arbitrary example� and let m of the conjunction�s literals be true in
E� For simplicity� the factor ��P �E
 will be omitted from all probabilities� Then
we have

P �CjE
 � P �C
Pm�Lj jC
 Pn�m�Lj jC
 �

�
�
�n if m � n
� otherwise

and

P �CjE
 � P �C
 Pm�Lj jC
 P
n�m�Lj jC


�

n � �


n

�

n�� � �


n � �

�m�

n��


n � �

�n�m
�

Notice that �n����
�n�� � �

� for all n� Thus� for m � n� P �CjE
 � P �C

�
�n����
�n��

�n
�

P �C
��� 

n � �

�n � P �CjE
� and class � wins� For all m � n� P �CjE
 � � and

P �CjE
 � �� and thus class � wins� Therefore the Bayesian classi�er always makes
the correct decision� i�e�� it is globally optimal�

Conjunctive concepts satisfy the independence assumption for class �� but not
for class �� �For example� if C � A
 � A�� P �A�jC
 � �

� �� P �A�jC�A

 � ��
by inspection of the truth table�
 Thus conjunctions are an example of a class of
concepts where the Bayesian classi�er is in fact optimal� but would not be if it
required attribute independence�
This analysis assumes that the whole truth table is known� and that all examples

are equally likely� What will happen if either of these restrictions is removed"
Consider �rst the case where examples are not distributed uniformly� For m � n�
the Bayesian classi�er always produces the correct class� given a su�cient sample�
For m � n� the result will� in general� depend on the distribution� The more
interesting and practical case occurs when P �C
 � �

�n � and in this case one can
easily verify that the Bayesian classi�er continues to give the correct answers �and�
in fact� is now more robust with respect to sample �uctuations
� It will fail if
P �C
 � �

�n � but this is a very arti�cial situation� in practice� examples of such a
conjunction would never appear in the data� or they would appear so infrequently
that learning the conjunction would be of little or no relevance to the accuracy�
At �rst sight� the Bayesian classi�er can also fail if the probabilities P �LjjC


are such that the product of all n such probabilities is greater than �
�n �or� more
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precisely� greater than P �CjE
�P �C

� P �LjjC
 can be increased by increasing the
frequency with which Lj is � but the class is not �i�e�� at least one of the other literals
in the conjunction is �
� However� doing this necessarily decreases P �C
� leading
to the arti�cial situation just described� Further� because increasing P �LjjC
 also
decreases P �LkjC
 for the Lk that are � when Lj is � and the class is �� it can be
shown that the product can never be greater than �

�n � Thus� a very small P �C
 is
e�ectively the only situation where the Bayesian classi�er will not be optimal� In
short� although distributional assumptions cannot be entirely removed� they can be
relaxed to exclude only the more pathological cases�

The Bayesian classi�er�s average�case behavior for insu�cient samples �i�e�� sam�
ples not including all possible examples
 was analyzed by Langley et al� ����

�
who plotted sample cases and found the rate of convergence to ���� accuracy to be
quite rapid�� Comparing Langley et al��s results with Pazzani and Sarrett�s �����

average�case formulas for the classical wholist algorithm for learning conjunctions
shows that the latter converges faster� which is not surprising� considering that it
was speci�cally designed for this concept class� On the other hand� as Langley et al�
����

 point out� the Bayesian classi�er has the advantage of noise tolerance�

Theorem � The Bayesian classi�er is globally optimal for learning disjunctions of
literals�

Proof� Similar to that for Theorem �� lettingm be the number of the disjunction�s
literals that are false in E�

Conversely� disjunctions satisfy the independence assumption for class � but not
for class �� and are another example of the Bayesian classi�er�s optimality even
when the independence assumption is violated�

As corollaries� the Bayesian classi�er is also optimal for negated conjunctions and
negated disjunctions� as well as for the identity and negation functions� with any
number of irrelevant attributes�

�� When will the Bayesian classi�er outperform other learners�

The previous sections showed that the Bayesian classi�er is� in fact� optimal under
a far broader range of conditions than previously thought� However� even when
it is not optimal� the Bayesian classi�er may still perform better than classi�ers
with greater representational power� such as C���� PEBLS and CN
� with which it
was empirically compared in Section 	� Thus� a question of practical signi�cance
arises� is it possible to identify conditions under which the Bayesian classi�er can
be expected to do well� compared to these other classi�ers" The current state
of knowledge in the �eld does not permit a complete and rigorous answer to this
question� but some elements can be gleaned from the results in this article� and
from the literature�
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It is well known that squared error loss can be decomposed into three additive
components �Friedman� ����
� the intrinsic error due to noise in the sample� the
statistical bias �systematic component of the approximation error� or error for an in�
�nite sample
 and the variance �component of the error due to the approximation�s
sensitivity to the sample� or error due to the sample�s �nite size
� A trade�o� exists
between bias and variance� and knowledge of it can often help in understanding
the relative behavior of estimation algorithms� those with greater representational
power� and thus greater ability to respond to the sample� tend to have lower bias�
but also higher variance�

Recently� several authors �Kong � Dietterich� ����� Kohavi � Wolpert� �����
Tibshirani� ����� Breiman� ����� Friedman� ����
 have proposed similar bias�
variance decompositions for zero�one loss functions� In particular� Friedman �����

has shown� using normal approximations to the class probabilities� that the bias�
variance interaction now takes a very di�erent form� Zero�one loss can be highly
insensitive to squared�error bias in the classi�er�s probability estimates� as Theo�
rem � implies�
 but� crucially� will in general still be sensitive to estimation variance�
Thus� as long as Theorem ��s preconditions hold for most examples� a classi�er with
high bias and low variance will tend to produce lower zero�one loss than one with
low bias and high variance� because only the variance�s e�ect will be felt� In this
way� the Bayesian classi�er can often be a more accurate classi�er than �say
 C����
even if in the in�nite�sample limit the latter would provide a better approximation�
This may go a signi�cant way towards explaining some of the results in Section 	�

This e�ect should be especially visible at smaller sample sizes� since variance de�
creases with sample size� Indeed� Kohavi �����
 has observed that the Bayesian
classi�er tends to outperform C��� on smaller data sets �hundreds to thousands
of examples
� and conversely for larger ones �thousands to tens of thousands
�
PAC�learning theory �e�g�� Corollary 

 also lends support to this notion� even
though it provides only distribution�independent worst�case results� these suggest
that good performance on a small sample by the Bayesian classi�er �or another
limited�capacity classi�er
 should be predictive of good out�of�sample accuracy�
while no similar statement can be made for classi�ers with VC dimension on the
order of C����s� Further� since the VC dimension of a classi�er typically increases
with the number of attributes� the Bayesian classi�er should be particularly fa�
vored when� in addition to being small� the sample consists of examples described
by many attributes�

These hypotheses were tested by conducting experiments in arti�cial domains�
The independent variables were the number of examples n and the number of at�
tributes a� and the dependent variables were the accuracies of the Bayesian classi�er
and C���� Concepts de�ned as Boolean functions in disjunctive normal form �i�e��
sets of rules
 were used� The number of literals in each disjunct �i�e�� the number
of conditions in each rule
 was set according to a binomial distribution with mean
d and variance d�a� d
� this is obtained by including each attribute in the disjunct
with probability d�a �negated or not with equal probability
� The number of dis�
juncts was set to 
d � �� so as to produce approximately equal numbers of positive
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and negative examples� and positive examples were distributed evenly among the
disjuncts� The number of examples n was varied between �� and ������ and a was
varied between �� and ��� A value of d � � was used� re�ecting a bias for concepts
of intermediate complexity �d � � would produce the simplest concepts� and d � a
the most complex ones
� One hundred di�erent domains were generated at ran�
dom for each �n� a
 pair� For each domain� n examples were generated for training�
and ���� for testing� Test�set accuracy was then averaged across domains� The
C���RULES postprocessor� which converts decision trees to rules and thus better
matches the target concept class� was used� and found to indeed increase accuracy�
by as much as ��� for larger n� All the results reported are for C���RULES�

The results appear graphically in Figure 	� All accuracy di�erences are signi�cant
with ����� con�dence using a one�tailed paired t test�� For this broad class of
domains� the Bayesian classi�er is indeed more accurate than C��� at smaller sample
sizes �up to ����� which includes many practical situations
� and the crossover point
increases with the number of attributes� as does the Bayesian classi�er�s accuracy
advantage up to that point� These results are especially remarkable in light of
the fact that C���RULES�s learning bias is far more appropriate to these domains
than the Bayesian classi�er�s� and illustrate how far variance can dominate bias
as a source of error in small to medium data sets� This can be seen as follows�
Since the Bayes rate is zero for these domains� the only components of the error
are bias and variance� If bias is taken to be the asymptotic error �i�e�� the error
for an in�nite sample
� and variance the di�erence between total error for a given
sample size and the bias �i�e�� the ��nite sample penalty�
� then C����s bias is zero�
since its accuracy asymptotes at ����� and the Bayesian classi�er has a high bias
�approximately 	�#	��� depending on the number of attributes
� On the other
hand� C����s variance� which approaches ��� for the smaller sample sizes� is much
higher than the Bayesian classi�er�s� and thus the sum of bias and variance for C���
is greater than that for the Bayesian classi�er up to the crossover point�

Other authors have veri�ed by Monte Carlo simulation that �choosing a simple
method of discrimination is often bene�cial even if the underlying model assump�
tions are wrong� �Flury� Schmid� � Narayanan �����
 for quadratic discriminant
functions� Russek� Kronmal� � Fisher ����	
 for the Bayesian classi�er vs� multi�
variate Gaussian models
� In general� the amount of structure that can be induced
for a domain will be limited by both the available sample and the learner�s rep�
resentational power� When the sample is the dominant limiting factor� a simple
learner like the Bayesian classi�er may be better� However� as the sample size in�
creases� the Bayesian classi�er�s capacity to store information about the domain
will be exhausted sooner than that of more powerful classi�ers� and it may then
make sense to use the latter� Of course� the Bayesian classi�er may still outper�
form other classi�ers at larger samples sizes� if its learning bias happens to be more
appropriate for the domain�

The Bayesian classi�er�s exact degree of sensitivity to variance will depend on
the di�erence r � s� for r and s �see Section �
 estimated from an in�nite sample�
If this di�erence is large� errors in r and s due to small sample size will tend to
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Figure �� Accuracy of the Bayesian classi
er and C���RULES as a function of the number of
examples� given �� attributes �upper�� �� attributes �middle�� and �� attributes �lower�� Error
bars have a height of two standard deviations of the sample mean� All accuracy di�erences are
signi
cant with ����� con
dence using a one
tailed paired t test�
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leave the sign of r � s unchanged� and thus have no e�ect� On the other hand�
if r 
 s� even small errors can cause the sign to change� If p and the in�nite�
sample values of r and s satisfy the preconditions of Theorem �� this will lead to
classi�cation errors� Conversely� if they do not� this will lead to a reduction in
the misclassi�cation rate� because incorrect classi�cations will be �ipped to correct
ones� Thus an increase in variance can sometimes lead to a reduction in zero�one
loss� Overall� Ben�Bassat� Klove� and Weil �����
 have shown that the Bayesian
classi�er is quite robust with respect to errors in probability estimates due to small
sample size� this is not surprising� since it can be attributed to the same factors
that make it robust with respect to violations of the independence assumption�


� How is the Bayesian classi�er best extended�

One signi�cant consequence of the Bayesian classi�er�s optimality even when strong
attribute dependences are present is that detecting these is not necessarily the best
way to improve performance� This section empirically tests this claim by comparing
Pazzani�s �����
 extension with one that di�ers from it solely by using the method
for attribute dependence detection described in �Kononenko� ����
 and �Wan �
Wong� ����
� In each case� the algorithm �nds the single best pair of attributes
to join by considering all possible joins� Two measures for determining the best
pair were compared� Following Pazzani �����
� the �rst measure was estimated
accuracy� as determined by leave�one�out cross validation on the training set� In
the second measure� Equation � was used to �nd the attributes that had the largest
violation of the conditional independence assumption�
To conduct an experiment to compare these two approaches� a method is also re�

quired to decide when to stop joining attributes� Rather than selecting an arbitrary
threshold� experiments were conducted in two ways�

� Joining only a single pair of attributes using each evaluation measure �provided
the change appeared bene�cial to the measure
�

� With the cross�validation measure� joining of attributes stopped when no further
joining resulted in an improvement� With Equation �� the optimal stopping
criterion was assumed to be given by an oracle� This was implemented by
selecting the threshold that performed best on the test data�

Two arti�cial concepts were used to compare the approaches� exclusive OR with
two relevant attributes and six irrelevant attributes� and parity with six relevant
attributes and six irrelevant attributes� Experiments on UCI data sets were also
carried out� to determine whether the methods work on problems that occur in
practice as well as in arti�cial concepts� In this set of experiments� a multiplica�
tive factor of � was used for the Laplace correction �see Section 	
� and numeric
attributes were discretized into �ve equal intervals� instead of ten� This causes
the Cartesian product of two discretized attributes to have 
� values� instead of
���� and leads to substantially more reliable probability estimates� given that the
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Table 	� A comparison of two approaches to extending the Bayesian classi
er�

Data Set Training Bayes Accuracy Entropy Accuracy Entropy
Size Once Once Repeated Optimal

Exclusive OR ��� ���� ����� ����� ����� �����
�
parity ��� ���� ���� ���� ���� ����
Chess endgames ��� ���� ���� � ���� ���� � ����
Credit ��� ���� ���� ���� ���� ����
Diabetes ��� ���� ���� ���� ���� ����
Glass ��� ���� ���� � ���� ���� � ����
Horse colic ��� ���� ���� ���� ���� ����
Iris ��� ���� ���� ���� ���� ����
Mushroom ��� ���� ���� � ���� ���� � ����
Voting records ��� ���� ���� ���� ���� ����
Wine ��� ���� ���� ���� ���� ����
Wisconsin cancer ��� ���� ���� ���� ���� ����

training set sizes are in the hundreds� The domains and training set sizes appear
in the �rst two columns of Table �� The remaining columns display the accuracy
of the Bayesian classi�er and extensions� averaged over 
� paired trials� and found
by using an independent test set consisting of all examples not in the training set�

In Table �� Accuracy Once shows results for the backward stepwise joining algo�
rithm of Pazzani �����
� forming at most one Cartesian product as determined by
the highest accuracy using leave�one�out cross validation on the training set� En�
tropy Once is the same algorithm except it creates at most one Cartesian product
with the two attributes that have the highest degree of dependence� In this table�
a paired t test between these two algorithms is used to determine which method
has the highest accuracy when making a single change to the Bayesian classi�er� A
��� indicates that using one method is signi�cantly more accurate than another�
Both algorithms do well on exclusive OR� In this case the joining of the two rele�
vant attributes is clearly distinguished from others by either method� The results
indicate that estimating accuracy on the training data is signi�cantly better on
three data sets and never signi�cantly worse than using a measure of conditional
independence�

The column labeled Accuracy Repeated gives results for the backward sequential
joining algorithm� in contrast� Entropy Optimal repeats joining the pair of attributes
that have the highest degree of dependence� stopping when the dependences fall
below the optimal threshold to maximize accuracy on the test set� Paired t tests
indicate that the accuracy estimation approach is often signi�cantly better than
using entropy to determine which attributes to join� and is never signi�cantly worse�

To further explore whether the degree of dependence is a reasonable measure for
predicting which attributes to join� an additional experiment was performed on the
UCI data sets in which Cartesian product attributes were bene�cial� we formed
every possible classi�er with a single pair of joined attributes �and all remaining
attributes
� and measured the test�set accuracy� the accuracy estimated by leave�
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Figure 	� Upper� The relationship between accuracy on the test set and using accuracy estimation
on the training set to decide which Cartesian product attribute to form� plotted for all pairs of
attributes in the chess data set �R� � ������� Lower� The relationship between accuracy on the
test set and using entropy to decide which Cartesian product attribute to form �R� � �������

one�out cross validation on the training set� and the degree of dependence� Figure �
plots the accuracy of these classi�ers on the test set as a function of the other
two measures �averaged over 
� trials
 for the domain with the largest number of
attributes� chess endgames� The graphs show that cross�validation accuracy is a
better predictor of the e�ect of an attribute join than the degree of dependence
given the class� The value of R� for this domain was ����� for cross�validation
accuracy� vs� ����� for degree of dependence� For the voting domain� the values of
R� were respectively ���	� and ��
�
� for the glass domain ��
�
 and ������ and for
mushroom ����� and ������
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These experiments demonstrate that joining attributes to correct for the most
serious violations of the independence assumption does not necessarily yield the
most accurate classi�er� To illustrate the reason for this �nding� we constructed
examples of an arti�cial concept with six variables� The concept is true whenever
two or more of A�� A�� and A� are true and two or more of A�� A�� and A� are true�
We generated examples in which A� had a ��� chance of being true� an all other
attributes Ai had a probability ��i of having the same value as A�� Otherwise� the
value was selected randomly with a ��� chance of being true� Therefore� attributes
A� and A� were the most dependent� To avoid problems of estimating probabilities
from small samples� we ran each algorithm on ��� examples generated as described
above and tested on a set of ��� examples generated in the same manner� We ran 
�
trials of this procedure� Using this methodology� the simple Bayesian classi�er was
only �
��� accurate on this problem� When using the entropy�based approach to
�nding a pair of attributes to join� A� and A� were always chosen� and the classi�er
was signi�cantly less accurate at ������ In contrast� when using cross�validation
accuracy to determine which two attributes to join� A� and A� were always chosen�
These are the two least dependent attributes in the data� yet thhe accuracy of the
Bayesian classi�er constructed in this manner was signi�cantly higher� at ������
This occurs because on this problem the representational bias of the simple Bayesian
classi�er presents more di�culties than the independence assumption�

The experiments in this section show that the simple Bayesian classi�er can be
productively extended� However� correcting the largest violation of the indepen�
dence assumption does not necessarily result in the largest improvement� Rather�
since under zero�one loss the Bayesian classi�er can tolerate some signi�cant vio�
lations of the independence assumption� an approach that directly estimates the
e�ect of the possible changes on this loss measure resulted in a more substantial
improvement�

�� Conclusions and future work

In this article we veri�ed that the Bayesian classi�er performs quite well in practice
even when strong attribute dependences are present� We also showed that this
follows at least partly from the fact that� contrary to previous assumptions� the
Bayesian classi�er does not require attribute independence to be optimal under
zero�one loss� We then derived some necessary and some su�cient conditions for
the Bayesian classi�er�s optimality� In particular� we showed that the Bayesian
classi�er is an optimal learner for conjunctive and disjunctive concepts� even though
these violate the independence assumption� We hypothesized that the Bayesian
classi�er may often be a better classi�er than more powerful alternatives when the
sample size is small� even in domains where its learning model is not the most
appropriate one� and veri�ed this by means of experiments in arti�cial domains�
We also veri�ed that searching for attribute dependences is not necessarily the best
approach to improving the Bayesian classi�er�s performance�
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Ideally� we would like to have a complete set of necessary and su�cient conditions
for the optimality of the Bayesian classi�er� e�ciently veri�able on real problems�
In Section � we began the work towards this goal� Another important area of
future research concerns �nding conditions under which the Bayesian classi�er is
not optimal� but comes very close because it makes the wrong prediction on only a
small fraction of the examples� This should also shed further light on the discussion
in Section �� Much work remains to be done in the continuation of this section�
further elucidating the conditions that will favor the Bayesian classi�er over other
classi�ers� Another useful extension of the present work would be to apply a similar
analysis to loss functions employing a full cost matrix �see Section �
�

In summary� the work reported here demonstrates that the Bayesian classi�er
has much broader applicability than previously thought� Since it also has advan�
tages in terms of simplicity� learning speed� classi�cation speed� storage space and
incrementality� its use should perhaps be considered more often�
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Notes

�� If there is a tie� the class may be chosen randomly�

�� This article will not attempt to review work on the Bayesian classi
er in the pattern recognition
literature� Journals where this work can be found include IEEE Transactions on Pattern
Analysis and Machine Intelligence� Pattern Recognition Letters� and Pattern Recognition�

�� These con
dence levels should be interpreted with caution� due to the t test�s assumption of
independentlydrawn samples� Thus� a ��� level for a data set means the Bayesian classi
er can
be expected with high con
dence to outperform the corresponding algorithm on training sets
drawn at random from that data set� since the accuracy results were obtained by independently
drawing training sets from the data set� This is useful for cross
checking the results of this study
with previous ones on the same data sets� However� no conclusions can be drawn regarding
di�erent data sets drawn at random from the same domain as the UCI data set� because
with respect to the domain the training sets used here are not independent� being overlapping
subsets of the same data set� See Dietterich ������ for more on this issue�

�� For any two attributes� Equations � and � implicitly marginalize over all other attributes� In
particular� they ignore that two dependent attributes could become independent given another
attribute or combination of attributes�

�� The annealing� audiology� and primary tumor domains are omitted because some of the relevant
entropies H�� � �� could not be computed� Due to a combination of missing values and rare

classes� for these data sets there exist Ci and Aj such that
P

k
�P �Ci �Aj�vjk� � � �� �P �Ci��

causing the entropy measure to become unde
ned�



�� P� DOMINGOS AND M� PAZZANI

�� More generally� some attributes may be irrelevant� i�e�� anm
of
n conceptmay be de
ned using
only n � a attributes� where a is the total number of attributes describing the examples� and
one must then specify which attributes are the n relevant ones� This article considers only the
more restricted case� but the results can be trivially generalized�

�� The ���� asymptote implies optimality� but the authors did not remark on this fact�

�� Notice that Theorem � is valid for any classi
er employing estimates r and s of the class
probabilities� not just the Bayesian classi
er�

�� This includes points where the error bars overlap� which is possible because the t test is paired�
Also� note that these con
dence levels apply to the accuracy di�erence in the entire domain
class studied� not just a particular data set� since the training sets were drawn independently
from the domain class�
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