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Summary: Three inverse problems arising in practical applications are presented. 
The first problem pertains to the modeling of San Fernando Valley groundwater 
basin and the primary issue is parameter identification in a quasi-linear parabolic 
partial differential equation. The second problem addresses the question of 
determining the optimal number and location of wells to pump, clean up and 
recharge a contaminated aquifer near the city of Livermore, CA. Results pertaining 
to these two problems have already been published. In contrast, the third problem, 
still in a formulation stage, addresses the question of chemical process identification; 
that is, the task of determining what a chemical factory is producing using 
incomplete and uncertain information gleaned from photographs, type and quantity 
of raw materials purchased, effluents produced and the basic laws of chemistry, 
materials science and common engineering practices. 
 
1. Introduction 
 
Inverse problems frequently arise in experimental situations when one is 
interested in the description of the internal structure of a system given 
indirect noisy data. Estimating the response of a system given a complete 
specification of the internal structure, on the other hand, is the direct or 
forward problem. 
 
There are several flavors to an inverse problem. Perhaps the simplest among 
them arises when one has a mathematical description of the internal structure 
(typically in the form of an equation along with any auxiliary conditions and 
constraints) and the task is only to estimate the values of the unknown 
parameters. This is the parameter estimation problem. A somewhat difficult 
problem, picturesquely described by the phrase “can you hear the shape of a 
drum?” arises when the solution of a partial differential equation (PDE) with 
specified boundary conditions is known and one is asked to find the shape 
and extent of the boundary. This may be termed the boundary identification 
problem. A special case of this problem is the free boundary problem and is 
characterized by the occurrence of frontiers or interfaces whose locations are 
a priori unknown. In the so-called input identification or control problem, 
one is asked to determine an input or control function that will yield a 
specified target solution to the problem. Another difficult problem, the 
modeling problem, arises when one is given noisy data observed over 
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irregular intervals of space and time and is asked to develop a mathematical 
model to fit the observed data. With the advent of high-speed computers and 
artificial intelligence techniques, this modeling problem went through a 
metamorphosis and emerged as the machine learning problem.  
 
This chapter touches upon a few problems in the evolution of these methods 
in the later half of the twentieth century starting first from a point of view 
propounded by Prof. Walter J. Karplus and finally touching upon some of the 
current trends. 
 
Inverse problems are often formulated by assuming that the underlying 
phenomenon is a dynamical system characterized by ordinary or partial 
differential equations, although no such assumption is always essential. In 
the context of remote sensing experiments, a mathematical formulation often 
leads to Fredholm integral equations of the first kind [Vemuri, ??]. In both 
these formulations, often the goal is to build a mathematical model of the 
underlying phenomena. In some contexts a model is only a means to an end. 
Often, the ultimate goal in such cases is to test the validity of a hypothesis. In 
these cases, the model is used as a classifier  (e. g., neural nets, decision 
trees) and it matters little whether the model is parametric or non-parametric; 
the classification accuracy becomes more important. From this point of view 
the entire field of Machine Learning can be treated as an exercise in solving 
inverse problems.  Data Mining, a discipline aimed at finding hidden 
patterns, relations and trends also falls within the scope of inverse problems. 
While inverse problems associated with data mining represent data-rich 
situations, there is a class of inverse problems that are data-poor, such as the 
task of locating hidden structures in an enemy territory. Here the challenge is 
to combine general knowledge represented by models with specific 
knowledge represented by data. 
 
By their very nature, inverse problems are difficult to solve. Some times they 
are ill-posed. A well-posed mathematical problem must satisfy the following 
requirements: existence, uniqueness and stability. The existence problem is 
really a non-issue in many realistic situations because the physical reality 
must be a solution. However, due to noisy and/or insufficient measurement 
data, an accurate solution may not exist. More often, a major difficulty is to 
find a unique solution; this is especially so while solving a parameter 
identification problem. Different combinations of parameter values 
(including boundaries and boundary conditions) may lead to similar 
observations. One useful strategy to handle the non-uniqueness issue is to 
utilize a priori information as additional constraints. These constraints 
generally involve the imposition of requirements such as smoothness on the 
unknown solution or its derivatives, or positivity, or maximum entropy or 
some other very general mathematical property. A more aggressive approach 
would be to use Bayesian approach and incorporate prior knowledge 
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probabilistically. Indeed the well-known Tichanov regularization is a special 
form of Bayesian estimation theory.  Another fruitful approach is via search. 
Given an observed data set, genetic algorithms and genetic programming can 
be used to probabilistically search a hypothesis space.  
 
The quality of a solution to an inverse problem depends on the constraints 
imposed. The best constraints are those that not only seek good mathematical 
properties to the solution but also incorporate prior knowledge about the 
system. In the context of a problem in geophysics, for example, demanding 
non-negative permeability is an example of the former category and 
accommodating abrupt changes in the properties of rock formations (viz., 
discontinuities) would be an example of the later.  It may be difficult indeed 
to accommodate both the smoothness constraints and the discontinuities 
simultaneously. That is to say, regularization may prevent the recovery of 
discontinuities. Recent advances in fractals may eventually provide a natural 
mechanism to incorporate the fractal or multi-scale nature of the structure of 
rocks and soils. 
 
2. Modeling an Aquifer 
 
Inverse problems arising in geophysics are of particular interest in this paper. 
Efficient environmental cleanup of subsurface chemical spills, enhanced oil 
recovery, safe containment of gases and fluids generated by underground 
nuclear tests, underground storage of nuclear waste, accurate characterization 
of water-supply aquifers - all require the modeling and simulation of the flow 
of fluids (air, water, contaminants) through porous media. The mathematical 
equations describing these processes are typically non-linear, non-
homogeneous partial differential equations.  
 
One of the first inverse problems I had the privilege of working is the task of 
estimating two parameters, namely transmissibility T (x, y) and storage 
coefficient S(x, y) of the unconfined aquifer in the San Fernando Valley 
groundwater basin (Figure 1). The starting point was the equation of water 
flow through porous medium: 
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         (1) 

 
where h(x, y, t) is the elevation of the water table above the mean sea level at 
the spatial point (x, y) at time t.  Nonlinearities enter the equation because the 
transmissibility and storage coefficient, the two most important parameters, 
are mildly influenced by the elevation of the water table h, the dependent 
variable in the PDEs [Vemuri and Karplus, '69]. Irregularly sampled values 
of h = h(x, y, t) were made available from historical well logs kept at the 
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Department of Water and Power, City of Los Angeles. These wells were 
located at irregular points in the xy-plane and the well logs were recorded at 
irregular time intervals. The task had been to treat these data points as the 
sampled solution of the above equation.  
 
 

 
Figure 1: Hybrid Computer Modeling of San Fernando Valley Aquifer 

 
What is left is to define the sources and boundary conditions. The aquifer 
was recharged periodically using recharge basins. During periods of surplus, 
water was brought in and allowed to flood large tracts of land, termed 
recharge basins, and the water was allowed to percolate. This information 
served to define a “distributed source.” Fortunately, much of the San 
Fernando Valley is surrounded by hills permitting the assumption that the 
normal derivatives are zero along the impermeable rock formations. 
Admittedly, the quality and reliability of the data was poor and high-quality 
solutions were not expected.  
 
All along, the goal had been to use this problem as a vehicle to test the 
suitability of a newly developed hybrid computer to solve partial differential 
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equations. The hybrid computer, built in Dr. Karplus’ laboratory by some of 
his graduate students, used a hardware subroutine (in this case, a resistance 
network, as depicted Figure 1) to invert matrices. The idea was to discretize 
the PDE in question using the usual finite differencing techniques but use the 
resistance network subroutine to solve the resulting system – rather than 
using the classical tridiagonal algorithm (in the one-dimesional case) or the 
alternating direction method (in higher-dimensional cases). As a resistance 
network relaxes almost instantaneously to its steady state, the solution of the 
linear tridiagonal or block-tridiagonal system can be obtained 
instantaneously – at least, theoretically! 
 
With this computational tool in hand, what remained to be done was to solve 
the parameter identification problem as a multi-point boundary value 
problem on the hybrid computer. This was accomplished by solving Equation 
(1) forward in time for the value of h and its adjoint backward in time for the 
value of v. A gradient method was used to minimize an error defined in terms 
of the inner product <h, v> [Vemuri and Karplus 1969]. As Equation (1) is 
non-linear the implementation required linearization and iteration. 
 
Two major difficulties arose in the above process; one is theoretical and one 
practical. On the theoretical side, it was never clear where the physical 
boundaries of the aquifer were. The visible topographic boundary of the 
valley was clearly not the boundary of the aquifer. At this point, it was 
decided to include the boundary identification problem to be a part of the 
problem statement. An attempt was made to heuristically adjust the 
parameters and the boundary, one at a time, in a systematic manner, although 
in retrospect the results were somewhat lackluster. 
 
One of the causes for disappointment was advancing technology. Although 
the resistance network inverted the matrix in question instantaneously, the 
time it took for serial-to-parallel conversion of data, the mechanical crossbar 
multiplexer to step through the nodes of the resistance network and the 
subsequent re-conversion of the data from the parallel to serial format – not 
to mention the A/D and D/A conversion times - more or less sounded the 
death knell to the hybrid computer. As this work came to an end, solid-state 
multiplexers came into the market making the crossbar switch obsolete. The 
SDC 920 computer with its magnetic tape to store and read the programs 
already looked like a relic in the presence of the newly installed IBM 360 in 
a room down the hall. 
 
3. Controlling Groundwater Contamination 
  
This example is concerned with the remediation of groundwater in 
contaminated aquifers. The aquifer under study is a one square mile region 
once occupied by a petroleum depot in the 1940’s. Due to the seepage of 



V. Rao Vemuri / Inverse Problems 
 
 
 

hydrocarbons from this facility, the aquifer, located some 90 to 180 feet 
beneath the ground surface was polluted. The primary goal was the 
containment of the pollutant.   
 
Remediation is accomplished by pumping the contaminated water out, 
treating it and recharging the aquifer with the treated water. The problem is 
to determine the optimum placement of pumping (and recharge or injection) 
wells and optimum pumping (and recharge) schedules in order to achieve a 
set of objectives [Cedeno and Vemuri, 1996].  
 
Specifically, the problem solved was the determination of the optimum 
location of no more than 10 wells, on a 20 x 21 grid, so that three objectives 
are met. The first objective was to minimize the remediation cost that 
includes the capital cost for facilities, piping, and running costs associated 
with water treatment and day-to-day operations. Cost minimization was 
achieved by picking solutions that stay within a budget. The second objective 
was to maximize the amount of contaminant removed from the aquifer. This 
was straightforward and was obtained from the output of SUTRA code in 
kilograms. The third objective was to prevent unsafe levels of contaminant 
from leaving the site. The goal was to minimize the concentration of 
contaminant leaving the site as much as possible. This measure was also 
obtained from the output of SUTRA in parts per billion (ppb). 
 
This problem was formulated as a multi-objective optimization problem and 
solved using a genetic algorithm (GA). The aquifer dynamics were simulated 
by repeatedly solving the PDEs describing the fluid flow using the U. S. 
Geological Survey’s SUTRA code [Voss, '84]. SUTRA (Saturated, 
Unsaturated TRAnsport) is a 2-D hybrid finite-element/ finite-difference 
model aimed at solving the governing partial differential equations for 
groundwater flow and solute transport. As for boundary conditions, the 
northeast and southeast were treated as no-flow fault zones.  Flux boundaries 
were assumed along the eastern and western edges of the site. A hydraulic 
conductivity of about 10 feet/day was assumed. 
 
The simulation took into account the three "pump, treat and recharge" 
facilities already existing on the western edge of the site and the one facility 
on the eastern edge. Three more "pump, treat and recharge" facilities were 
planned. The task was to find an optimum location for these three new 
facilities. Based on data available, each facility was expected to cost $2.5 
million with a capacity to clean 70 gallons of water per minute by reducing 
the concentration of contaminants from 550 ppb to negligible quantities. 
Thus the scenario described was as realistic as one can make it.  
 
The computational mesh used had a total of 2436 nodes and 2385 elements, 
which covers the extent of the aquifer, which is much bigger than the one 
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square mile region (see Figure 2). Out of this, a sub-region of size 20 x 21 
nodes, covering an area of 5200 ft x 4950 ft. was chosen. Each node in this 
sub-region is considered as a potential pump location. The distance between 
nodes is 260 feet, and there are 420 possible pumping locations. Strictly 
speaking, the decision on where to locate the pumps should be governed by 
considerations such as the concentration of pollutants, pollution gradients, 
feasibility of drilling, and so on.  
 
In this study another consideration, namely the computational burden, 
entered the picture. SUTRA is computationally intensive; it took about 6.5 
minutes of elapsed time for evaluating the suitability of each proposed well 
configuration (called “fitness evaluation” in GA parlance). Each fitness 
evaluation ran SUTRA for 10 time steps, where each step represented one 
year. Any finer resolution meant much more time and adequate 
computational resources could not be mustered to do the job. It was felt that 
some gains in computational time in terms of fitness evaluations could have 
been made by restricting the potential pumping sites to the sub-region of the 
total grid and by using larger time steps. 
 
This knowledge of the flow field, obtained by solving the PDE's using 
SUTRA, constitutes an input to the genetic algorithm. The algorithm's goal is 
to find sets of well locations in the 20 x 21 grid that best meets the 
objectives, subject to the constraint that no more than 10 wells were allowed. 
The algorithm outputs the values of the objective functions for a range of 
values of the decision variables. Each of the objective functions constitutes 
the "modes" of the multi-modal function over which the genetic algorithm 
conducts its search. No explicit fitness function, for use with the GA, was 
defined in this problem. The fitness of each individual solution was 
implicitly given by its objective values and its rank against other solutions. 
 
Table 1 shows a set of solutions for a run of the GA. Only improvements 
from previous generations are shown. Only solutions meeting the regulatory 
limit and having a higher amount of contaminant removed from previous 
generations are shown. The last column ranks the solutions according to their 
cost. Lower rank values indicate lower cost solution. As expected, 
improvements in one objective had a negative impact in other objectives 
during the initial generations.  
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Figure 2: SUTRA nodes and elements in mesh 

 

The last column of Table 1 ranks the solutions according to their cost. Lower 
rank values indicate lower cost solution. As expected, improvements in one 
objective had a negative impact in other objectives during the initial 
generations. The competition by solutions having above average ranking in 
particular objectives was visible again and as a result offspring with good 
ranking in must objectives appeared in later generations. 
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4. Iterative Inversion with Genetic Algorithms 

An interesting problem in geophysics is to obtain information about the 
distribution of material underground. A related problem is that of locating 
hidden structures and facilities involved in clandestine operations. A relevant 
problem of contemporary interest is the task of identifying what, if any, 
chemical warfare agents are being produced at some location. As many 
chemical processes are “dual-use” the same raw ingredients may go into the 
production of a fertilizer or an explosive; the difference is the production 
pathways used by the processes in question. 
 
Consider, for instance, the problem of locating invisible underground 
structures. It is relatively straightforward to gather field data from airborne 
surveys and use this data for inversion purposes. In the so-called model-free 
methods data from gravity or magnetic surveys can be used to find the 
distribution of material that satisfies the observations in a least-square sense. 
In the so-called assumed source methods, the unknown bodies are described 
with simple, regular shapes such as spheres, polyhedra, thin layers, etc., and 
the geometrical parameters of these objects and their locations are the target 
of inversion. 
 
No matter what method is used, solution to a geophysical inversion problem 
is always non-unique. Additional subjective information is often necessary to 
resolve the problem further. Such additional information may be provided in 
the form of, say, (a) a specific starting model, (b) specific parameterization, 
restricting the search to predetermined geometric shapes, or (c) extra 
mathematical requirements by demanding solutions that exhibit some unique 
features (say, the set of all smooth solutions). However this leaves the actual 
extent of the ambiguity domain (i.e., the range of variability within the class 
of acceptable functions) unknown. Indeed, additional “knowledge” 
introduced into the problem in a quest to narrow down the scope of the 
inverse problem may introduce un-intended parameterization that may affect 
the final result. The question to be answered is: Is it possible that two 
radically different hypotheses (representing two completely different 
geological interpretations) satisfy the observed data exactly? In other words, 
how reliable is the inversion?  
 
 
A possible solution to this dilemma is to conduct a systematic search within 
the ambiguity domain and guide this search with expert judgment. Such 
technique can be used to build a prototype and use the prototype model as a 
reference model during inversion. During ambiguity search, for instance, a 
misfit measure can be defined between the prototype and the inversion 
candidate. For example, the misfit could be the squared difference between 
the auto-correlation between the prototype model and the candidate 
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inversion. Utility of a metric such as the above misfit measure may or may 
not be valid for the particular problem at hand. An alternative is to use global 
search using a method such as a genetic algorithm (GA).  
 
In a GA, one starts with the solutions of a family of forward problems. Each 
solution is termed a chromosome.  Problem parameters are genes and a 
concatenation of these parameters is the chromosome. Associated with each 
chromosome is a fitness function that describes how well that solution 
satisfies the requirements of the problem. Fitness functions can be defined in 
terms of subjective judgments and objective measures. Then those 
chromosomes that exhibit high fitness values are selected and a new family 
of solutions is generated through mathematical operations that are 
picturesquely termed mating, crossover and mutation.  
 
5. Inverse Problems in Chemical Process Identification 
 
The purpose of the proposed study is to study a new class of inverse 
problems involving chemical reactions. Our goal is to detect clandestine 
activities by observing and correlating multiple indicators or “signatures.” As 
the best way to conceal an illegal activity is to make it look like a legal 
activity, it is not enough to look at obvious signatures such as components 
and their layout, traces left by testing activity, presence of precursors or 
degradation byproducts in waste streams, and so on. It is also necessary to 
impose regularization constraints derived from prior subjective knowledge. 
Furthermore, each signature has its own precise pathway including the choice 
of technology. This is a difficult problem to solve and requires a careful 
formulation from first principles. 
 
Central to our ability to succeed in this effort is a deeper understanding of the 
reaction pathways. A reaction pathway is nothing but a sequence of 
elementary reactions through which the precursors of a reaction (starting 
reactants) are routed through until the final target state is reached. The 
determination of these pathways entails two phases. The first phase entails 
the identification of all feasible candidate mechanisms and the second phase 
requires the selection of the ultimate pathway. Once an understanding is 
reached, mechanisms for more complex pathways can be determined through 
a synthesis of plausible elementary reactions. If a rigorous algorithmic 
method is available to perform this synthesis (which is known to be difficult 
due to its combinatorial complexity) then that gives us an initial capability to 
explore.  
 
Insight into this problem can be obtained by studying an analogous inverse 
problem associated with compartmental models that are very popular in 
biomedical engineering. In these models, some material enters the system 
from the external world (say food, medicine, etc.) and is transported through 
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various compartments. There is no tangible output or observable other than 
the state of the system (e. g. the health) that can be deduced by observing by-
products and effluents. Various nutrients, water, drugs and oxygen are typical 
inputs to the system and various excrements and carbon dioxide, urine, feces 
are typical effluents and energy is a typical output. Given some 
measurements on these inputs and outputs can we deduce information about 
the functioning of the body? This is what a physician does routinely? This 
task has become routine because of the accumulated knowledge about the 
anatomy and physiology of human body and the fact that the anatomy of a 
human body is fixed. This analogy stops here because there is some room for 
variability in the anatomical configuration of a chemical plant. Nevertheless, 
this would be a useful metaphor to gain an understanding of the problem. 
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