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Abstract

Anomaly detection techniques hold great potential for com-
bating novel intrusions, malicious insiders and fast spreading
worms. A widely acknowledged challenge in anomaly detec-
tion is how to accurately model a subject’s normal behavior
in the presence of concept drift. This paper presents a new
adaptive anomaly detection framework that aims to adapt
to normal behavior changes while still recognizing anoma-
lies. Evolving connectionist systems are employed to learn
a subject’s behavior in an online, adaptive fashion without
a priori knowledge of the underlying data distributions.

1 Introduction

As one of the two general approaches to intrusion
detection, anomaly detection has been under intensive
study for the last two decades [1]. Unlike the alternative
approach, misuse detection, which generates an alarm
when a known attack signature is matched, anomaly
detection tries to identify activities that deviate from
the normal behavior of the monitored system, network
or users. Anomaly detection techniques hold great
potential for combating novel intrusions and malicious
insiders as well as fast and wildly spreading worms.

A number of anomaly detection methodologies have
been developed over the years. These techniques can
be further categorized as generative or discriminative
approaches. A generative approach (e.g., [2-4]) builds
a model solely based on the set of normal training
examples and evaluates each testing instance to see
how well it fits the model. A discriminative approach
(e.g., [9]), on the other hand, attempts to learn the
distinction between the normal and abnormal classes.
Both normal and attack examples are used in training
for discriminative approaches. Generative approaches
are more realistic due to the fact that attack examples
are usually very rare in practice.

Regardless of the approach used, most previous
work did not address the issue of concept drift, which
refers to the process that a subject’s normal behavior
patterns change over time in a continuous manner. In
a practical environment, however, system and network
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activities as well as user behavior can change for bona
fide reasons. Modeling a subject’s normal behavior in
the presence of concept drift is a challenging task be-
cause the underlying data distribution is not known a
priori, unexpected changes may happen at any time,
and therefore the normal behavior may not be strictly
predictable in the long term. The key to this difficult
problem is adaptive learning. An effective anomaly de-
tection system should be capable of adapting to normal
behavior changes while still recognizing anomalous ac-
tivities. Otherwise, large amount of false alarms would
be generated if the model failed to change adaptively to
accommodate the new patterns [6]. A seemingly obvi-
ous solution is to update the training corpus with each
new set of audit data and re-build the normal behav-
ior model. However, it is not computationally feasible
for most existing methods (e.g., [5] [7] [8]) because they
are expensive to generate a model and not suitable for
incremental, adaptive learning.

In this paper, we present a general adaptive
anomaly detection framework that is applicable to host-
based and network-based intrusion detection without a
priori knowledge of the underlying data distributions.
Our framework employs unsupervised evolving connec-
tionist systems to learn system, network or user behav-
ior in an online, adaptive fashion. The evolving con-
nectionist systems are designed for modeling evolving
processes [9]. They are stable enough to retain patterns
learned from previously observed data while being flex-
ible enough to learn new patterns from new incoming
data. The structure of the intelligent connectionist sys-
tems evolves in time. New input data, including new
features and new patterns, are naturally accommodated
through efficient local element tuning.

2 Adaptive Anomaly Detection Framework

In addressing the problem of adaptive anomaly detec-
tion two fundamental questions arise: (a) How to gener-
ate a model or profile that can concisely describe a sub-
ject’s normal behavior, and more importantly, can it be
updated efficiently to accommodate new behavior pat-
terns? (b) How to select instances to update the model
without introducing noise and incorporating abnormal



patterns as normal? Our adaptive anomaly detection
framework addresses these issues through the use of on-
line unsupervised learning methods, under the assump-
tion that normal instances cluster together in the input
space, whereas the anomalous activities correspond to
outliers that lie in sparse regions of the input space. Our
framework is general in that the underlying clustering
method can be any online unsupervised evolving con-
nectionist system and it can be used for different types
of audit data. Without loss of generality, we assume
the audit data that is continuously fed into the adaptive
anomaly detection system has been transformed into a
stream of input vectors after pre-processing, where the
input features describe the monitored subject’s behav-
ior.

Adaptive learning and evolving connectionist sys-
tems are an active area of artificial intelligence research.
Evolving connectionist systems are artificial neural net-
works that resemble the human cognitive information
processing models. They operate continuously in time
and adapt their structure and functionality through a
continuous interaction with the environment [9]. Due
to their self-organizing and adaptive nature, they pro-
vide powerful tools for modeling evolving processes and
knowledge discovery. They can learn in unsupervised,
supervised or reinforcement learning modes. The on-
line unsupervised evolving connectionist systems pro-
vide one-pass clustering of an input data stream, where
there is no predefined number of different clusters that
the data belong to.

A simplified diagram of an evolving connectionist
system for online unsupervised learning is given in Fig-
ure 1 (some systems may have an additional fuzzy in-
put layer, which represents the fuzzy quantization of
the original inputs with the use of membership func-
tions [10]). A typical unsupervised evolving connection-
ist system consists of two layers of nodes: an input layer
that reads the input vectors into the system continu-
ously, and a pattern layer (or cluster layer) representing
previously learned patterns. Each pattern node corre-
sponds to a cluster in the input space. Each cluster is in
turn represented by a weight vector. Then the subject’s
normal behavior profile is conveniently described as a
set of weight vectors that represent the clustering of the
previous audit data.

A distance measure has to be defined to measure
the mismatch between a new instance (i.e., a new
input vector) and existing patterns. Based on the
distance measure, the system either assigns an input
vector to one of the existing patterns and updates the
pattern weight vector to accommodate the new input,
or otherwise creates a new pattern node for the input.
The details of clustering vary with different evolving
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Figure 1: A simplified diagram of an evolving connec-
tionist system for unsupervised learning.

connectionist systems.

In order to reduce the risk of false alarms (classi-
fying normal instances as abnormal), we define three
states of behavior patterns (i.e., the pattern nodes of
the evolving connectionist system): normal, uncertain
and anomalous. Accordingly, each instance is labeled as
either normal, uncertain or anomalous. In addition, the
alarm is differentiated into two levels: Level 1 alarm and
Lewvel 2 alarm, representing different degrees of anomaly.
As illustrated in Figure 2, a new instance is assigned to
one of the existing normal patterns and labeled normal
if the similarity between the input vector and the normal
pattern is above a threshold (the wigilance parameter).
Otherwise, it is uncertain. The uncertain instance is ei-
ther assigned to one of the existing uncertain patterns if
it is close enough to that uncertain pattern, or becomes
the only member of a new uncertain pattern. A Level
1 alarm is triggered whenever a new uncertain pattern
is created as the new instance is different from all the
learned patterns and thus deserves special attention. At
this point, some preliminary security measures need to
be taken. However, one can not draw a final conclusion
yet. The new instance can be truly anomalous or merely
the beginning of a new normal behavior pattern, which
will be determined by the subsequent instances. After
the processing of a certain number (the Ny qscn parame-
ter) of the subsequent instances in the same manner, if
the number of members of an uncertain pattern reaches
a threshold value (the Min ,unt parameter), the uncer-
tain pattern becomes a normal pattern and the labels of
all its members are changed from wuncertain to normal.
This indicates that a new behavior pattern has been de-
veloped and incorporated into the subject’s normal be-
havior profile as enough instances have shown the same
pattern. On the other hand, after N4t subsequent in-
stances, any uncertain pattern with less than Mincount
members will be destroyed and all its members are la-
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Figure 2: Adaptive anomaly detection framework.

beled anomalous. This will make sure that anomalous
patterns, corresponding to the sparse regions in the in-
put space, will not be included into the normal profile.
A Level 2 alarm is issued when an instance is labeled
anomalous and further response actions are expected.
The main tunable parameters of an adaptive
anomaly detection system are summarized as follows:

e Vigilance. This threshold controls the degree of
mismatch between new instances and existing pat-
terns that the system can tolerate.

o Learning rate. It determines how fast the system
should adapt to a new instance when it is assigned
to a pattern.

® Nyaten- It is the period that the system will
wait before making a decision on a newly created
uncertain pattern.

o Mincount, the minimum number of members that
an uncertain pattern should have in order to be
recognized as a normal pattern.

Our framework does not require a priori knowledge
of the number of input features. When a new input
feature is presented, the system simply adds a new input
node to the input layer and connections from this newly
created input node to the existing pattern nodes. This
can be very important when the features that describe a

subject’s behavior grow over time and can’t be foreseen
in a dynamic environment. Similarly, accommodation
of a new pattern is efficiently realized by creating a new
pattern node and adding connections from input nodes
to this new pattern node. The rest of the structure
remains the same.

With the framework, the learned normal profile
is expressed as a set of weight vectors representing
the coordinates of the cluster centers in the input
space. These weight vectors can be interpreted as a
knowledge presentation that can be used to describe
the subject’s behavior patterns, and thus they can
facilitate understanding of the subject’s behavior. The
weight vectors are stored in the long term memory
of the connectionist systems. Since new instances are
compared to all previously learned patterns, recurring
activities would be recognized easily.

3 Related Work

Among the few adaptive anomaly detection systems,
NIDES [11] is probably the best known. The statistical
component of NIDES generates user profiles that are
constantly aged by multiplying them by an exponential
decay factors. This method of aging creates a moving
time window for the profile data, so that the new
behavior is only compared to the most recently observed
behaviors that fall into the time window. One drawback
of NIDES is that a user’s recurring behavior can cause



frequent and unnecessary updates of the profile, let
alone its complex statistical model.

Teng et al. [12] used inductively generated sequen-
tial patterns to perform adaptive real time anomaly de-
tection. Lane and Brodley [13] proposed an nearest
neighbor classifiers based online learning scheme and
examined the issues of incremental updating of system
parameters and instance selection. Mixture models were
employed in [14] and [15] to generate adaptive proba-
bilistic models and detect anomalies within a dataset.
Cannady [16] demonstrated the use of a reinforcement
learning method that uses feedback from the protected
system. Fan [17] used ensembles of classification models
to adapt existing models in order to detect newly estab-
lished patterns. Hossain and Bridges [18] proposed a
fuzzy association rule mining architecture for adaptive
anomaly detection.

Compared to previous statistical or rule-learning
based adaptive anomaly detection systems, our frame-
work does not require a priori knowledge of the under-
lying data distributions. Through the use of evolving
connectionist systems, it provides efficient adaptation to
new patterns in a dynamic environment. Unlike other
neural networks that have been applied to intrusion de-
tection (e.g., [3] [19]) as “black boxes”, our evolving con-
nectionist systems can provide knowledge to “explain”
the learned normal behavior patterns.

Our approach also falls into the category of unsu-
pervised anomaly detection [20-22] as it does not re-
quire the knowledge of data labels. However, our al-
gorithms assign each instance into a cluster in an on-
line, adaptive mode. No distinction between training
and testing has to be made. Therefore the period of
system initialization during which all behaviors are as-
sumed normal is not necessary.

4 Discussion

There are certain limitations with our adaptive anomaly
detection framework. Our approach assumes that the
number of normal instances vastly outnumbers the num-
ber of anomalies, and the anomalous activities appear as
outliers in the data. This approach would miss the at-
tacks or masquerades if the underlying assumptions do
not hold. Furthermore, it is possible that one can delib-
erately cover his malicious activities by slowly changing
his behavior patterns without triggering a level2 alarm.
However, a levell alarm is issued whenever a new pat-
tern is being formed. It is then the security officer’s
responsibility to identify the user’s intent in order to dis-
tinguish malicious from non-malicious anomalies, which
is beyond the scope of this paper.

5 Conclusion

This paper has presented a new adaptive anomaly de-
tection framework, based on the use of evolving con-
nectionist systems, to address the issue of concept drift.
A subject’s normal behavior patterns are discovered by
online, adaptive learning.

Future work is in progress to explore automated
determination of the parameters and empirically test
our adaptive anomaly detection framework using evolv-
ing connectionist systems such as Fuzzy Adaptive Res-
onance Theory (ART) [23] and evolving self-organizing
maps.
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