
A Performance Comparison of Different Back Propagation Neural
Networks Methods in Computer Network Intrusion Detection

Vu N.P. Dao 1
dao1@llnl.gov

Rao Vemuri 1, 2
rvemuri@ucdavis.edu

[1] Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551
[2] University of California, Davis, One Shields Ave., Davis, CA 95616

Abstract

 This paper demonstrated that neural network
(NN) techniques can be used in detecting intruders
logging onto a computer network when computer
users are profiled accurately. Next, the paper
compares the performance of the five neural
network methods in intrusion detection.
 The NN techniques used are the gradient
descent back propagation (BP), the gradient
descent BP with momentum, the variable learning-
rate gradient descent BP, the conjugate gradient
BP, and the quasi-Newton method.

I. Introduction

In recent times, artificial intelligent (AI)
techniques in general and neural network (NN) in
particular have been used widely in solving
problem like optimization, adaptive filtering, digital
signal processing, and pattern recognition and
classification. Indeed the discipline of neural
networks is one of the earliest areas of AI that was
introduced in the 1950s and now has gained
momentum due to the many successes. Neural
network techniques aim to construct useful
“computers” to carry out useful computations while

solving real-world problems of classification. It is
this philosophy that has attracted much interest.

Information assurance is a field that deals with
protecting information on computers or computer
networks from being compromised. Intrusion
detection is a major part of information assurance
that deals with detecting unauthorized users from
accessing the information on those computers.
Current intrusion detection techniques can not
detect new and novel attacks; instead the consensus
solution seems to be those that detect known
intrusion detection techniques. New intruding
techniques are usually passed as authorized traffic.

The relevance of NN in intrusion detection
becomes apparent when one views the intrusion
detection problem as a pattern classification
problem. By building profiles of authorized
computer users [1], one can train the NN to classify
the incoming computer traffic into authorized
traffic or not authorized traffic (i.e. intrusion
traffic).

This paper is organized as follows. Section II
defines the intrusion detection problem. Next, a
brief introduction to relevant aspects of neural
networks is presented in section III. Section IV
delves into the gradient descent BP method and
discusses the gradient descent BP with momentum,
the variable learning rate gradient descent with
momentum, the conjugate gradient descent, and the
quasi Newton methods. Section V discusses the
test data used. Section VI presents the results of the

five back propagation methods in detecting
intruders. Section VII summarizes the performance
of the five BP methods. Section VIII offers a
conclusion and points to future research.

II. Problem Definition

The task of intrusion detection is to construct a
model that captures a set of user attributes and
determine if that user’s set of attributes belongs to
the authorized user or those of the intruder. The
input attribute set consists of the unique
characteristics of the user [1] logging onto a
computer network. The output set is of two types –
authorized user and intruder.
 Thus, the problem now has been reduced to a
pattern recognition problem. Mathematically
speaking, the problem can be stated as:

Given a data set S

Where:
x = input vector consisting a user’s attributes
y = {authorized user, intruder}

We want to map the input set x to an output

class y.
The solution to the above problem is to find a

mapping function from the p-dimensional input
space to the 1-dimensional output space [2].

From a modeling perspective, we seek a model
that provides the best fit to training data and the
best prediction on future data while minimizing
model complexity. The resulting model would be
employed to predict output values y’ for future
observed inputs x’ where only the inputs x’ would
be available.
 To accomplish the above objective, we need to
come up with a model and train it prior to using that
model for intrusion detection. During the training
phase, for each input data vector x, we already
know the associated output y and the desired
outpupt d. This desired output is compare with the
actual network output y. That is,

 d = desired output
y = actual output

Thus, the error of our model is:

 e = d - y

In an ideal situation, ‘e’ is equal to zero. Our
objective is to minimize the error term ‘e’ to
improve our model. In all the five methods
described in this paper, the network first undergoes
training from a set of training data. From the
knowledge learned during the training, the methods
then classify new input with the minimum error
possible.

III. Solving the Intrusion Detection
Problem Using The Back
Propagation Class of Neural
Networks

The back propagation method is a technique

used in training multilayer neural networks in a
supervised manner. The back propagation method,
also known as the error back propagation
algorithm, is based on the error-correction learning
rule [3]. It consists of two passes through the
different layers of the network: a forward pass and
a backward pass. In the forward pass, an activity
pattern is applied to the input nodes of the network,
and its effect propagates through the network layer
by layer. Finally, a set of outputs is produced as the
actual response of the network. During the forward
pass the synaptic weights of the networks are all
fixed. During the backward pass, the synaptic
weights are all adjusted in accordance with an
error-correction rule. The actual response of the
network is subtracted from a desired response to
produce an error signal. This error signal is then
propagated backward through the network. The
synaptic weights are adjusted to make the actual
response of the network move closer to the desired
response in a statistical sense. The weight
adjustment is made according to the generalized
delta rule [4] to minimize the error. An example of
a multilayer perceptron with two hidden layers is
shown in Figure 1.

Two commonly used neuron activation

functions for the neuron in Figure 1 are sigmoidal

: :
:

:
Input
Signal

Output
Signal

Figure 1: Multilayer Perceptron with
Two Hidden Layers

(){ } ,..,1,,:, miRiypRiiyiS =∈∈= xx

and tansig functions. Both functions are
continuously differentiable everywhere and
typically have the following mathematical form:

IV. The Different Methods of Back
Propagation Neural Networks

Following is a description of each of the BP

methods used in this investigation.

Gradient Descent BP (GD)
 This method updates the network weights and
biases in the direction of the performance function
that decreases most rapidly, i.e. the negative of the
gradient. The new weight vector wk+1 is adjusted
according to:

The parameter α is the learning rate and gk is the

gradient of the error with respect to the weight
vector. The negative sign indicates that the new
weight vector wk+1 is moving in a direction opposite
to that of the gradient.

Gradient Descent BP with Momentum (GDM)
 Momentum allows a network to respond not
only to the local gradient, but also to recent trends
in the error surface. Momentum allows the network
to ignore small features in the error surface.
Without momentum a network may get stuck in a
shallow local minimum. With momentum a
network can slide through such a minimum [5].
 Momentum can be added to BP method learning
by making weight changes equal to the sum of a
fraction of the last weight change and the new
change suggested by the gradient descent BP rule.
The magnitude of the effect that the last weight
change is allowed to have is mediated by a
momentum constant, µ, which can be any number
between 0 and 1. When the momentum constant is
0 a weight change is based solely on the gradient.
When the momentum constant is 1 the new weight
change is set to equal the last weight change and
the gradient is simply ignored. The new weight
vector wk+1 is adjusted as:

Variable Learning Rate BP with Momentum
(GDX)
 The learning rate parameter is used to determine
how fast the BP method converges to the minimum
solution. The larger the learning rate, the bigger the
step and the faster the convergence. However, if
the learning rate is made too large the algorithm
will become unstable. On the other hand, if the
learning rate is set to too small, the algorithm will
take a long time to converge. To speed up the
convergence time, the variable learning rate
gradient descent BP utilizes larger learning rate α
when the neural network model is far from the
solution and smaller learning rate α when the
neural net is near the solution. The new weight
vector wk+1 is adjusted the same as in the gradient
descent with momentum above but with a varying
αk. Typically, the new weight vector wk+1 is defined
as:

Conjugate Gradient BP (CGP)
 The basic BP algorithm adjusts the weights in
the steepest descent direction. This is the direction
in which the performance function is decreasing
most rapidly. Although the function decreases
most rapidly along the negative of the gradient, this
does not necessarily produce the fastest
convergence. In the conjugate gradient algorithms
a search is performed along conjugate directions,
which produces generally faster convergence than
steepest descent directions. In the conjugate
gradient algorithms the step size is adjusted at each
iteration. A search is made along the conjugate
gradient direction to determine the step size which
will minimize the performance function along that
line. The conjugate gradient used here is proposed
by Polak and Ribiere [6]. The search direction at
each iteration is determined by updating the weight
vector as:

11 −
+−=

+ kkkk
wgww µα

kkk
gww α−=

+ 1





<
>

=

=
+

−
+

+
−=

+

error) (old 1.04 error new if 1.05
error) (old 1.04 error new if 0.7

1

111

β

αβα

µα

kk

kkkkk
wgww

0 b&),tanh()(:Tansig

 0 ,
)exp(1

1
)(:Sigmoidal

>=

>
−+

=

abxaxf

a
ax

xf

Quasi-Newton BP (BFGS)
 Newton’s method is an alternative to the
conjugate gradient methods for fast optimization.
Newton’s method often converges faster than
conjugate gradient methods. The weight update for
the Newton’s method is:

Ak is the Hessian matrix of the performance index at
the current values of the weights and biases. When
Ak is large, it is complex and time consuming to
compute wk+1. Fortunately, there is a class of
algorithms based on the works of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) [4,7] that
are based on Newton’s method but which don’t
require intensive calculation. This new class of
method is called quasi-Newton method. The new
weight wk+1 is computed as a function of the
gradient and the current weight wk.

V. The Test Data

In our previous work [1], we showed that users
in the UNIX OS environment could be profiled via
four attributes – command, host, time, and
execution time. In that work, we discovered two
important results. First, each computer user has a
unique UNIX command set, works a regular
schedule, logs onto a regular host, and his
commands running time do not vary much.
Secondly, user profile drift occurs over time [1,8].

For simplicity in testing the back propagation
methods, we decided to generate a user profile data
file without profile drift. The generated data used
here was organized into two parts. The first part is
for training the BP methods. Each training input
data came with a desired output. Here, ninety
percent (90%) of the input data was generated as
authorized traffic and ten percent (10%) as
intrusion traffic. The second part is for testing the

performance of the five BP methods in intrusion
detection. In this part, we generated ninety eight
percent (98%) of the traffic to be authorized traffic
and two percent (2%) of the traffic to be intrusion
traffic.

In both parts of the training and testing data
section, several bursts of intrusion data are inserted
into the authorized data stream. Each of the
generated input data file has 7000 samples. The
first 5000 samples are the training data, and the
next 2000 samples are the test data. We denoted
class positive one as authorized traffic and class
negative one as intrusion traffic. Figure 2
illustrates the construct of the generated data files.

In Figure 2, an input sample is defined as set of

data being fed into the neural network at one time.
A command unit (CU) is defined as a set of four
elements – the UNIX command, the login host, the
time of login, and the execution time of the
command. From these two definitions, we know
that one sample can have many CUs.

Our objective is to test the neural networks for
detecting intrusion traffic with the fewest number
of intrusion samples. With that objective, we
generated three files for testing – File1, File2, and
File3. File1 consists of 5 CUs in each of the input
sample. Likewise, File2 consists of 6 CUs in an
input sample, and File3 consists of 7 CUs in an

kkkk
gAww 1

1
−−=

+

T
k

T
k

T
k

k
T
k

k
T
k

k

kkkk

kkk

11 and

11

1

1
 :where

1

−
−=−∆

−−

−
∆

=

−
+−=

+=
+

ggg

gg

gg

pgp

pww

β

β

α

training data
(5000 samples)

testing data
(2000 samples)

Figure 2: Construction of The Generated Data

Authorized
Data

Intrusion
Data

CU1 CU3CU2 ...

command host time exe time

input sample. Since each CU has 4 elements, the
total element for each input file is summarized in
Table 1.

 File1 File2 File3
Train Data 100,000 120,000 140,000
Test Data 40,000 48,000 56,000

Total 140,000 168,000 196,000
Table 1: Total Element of the Three Test Files

VI. Performance Comparison

The five BP methods that we used are the
gradient descent (GD), the gradient descent with
momentum (GDM), the variable learning rate
gradient descent with momentum (GDX), the
Polak-Ribiere [6] conjugate gradient descent
(CGP), and the quasi-Newton (BFGS).

The following notations specify the
characteristics of each BP methods. Topology
specifies the neural network architecture. In all
cases a three-layer neural networks is used. For
instance a topology of {20,10,1} indicates a 20-
input, 10 hidden neurons, and one output
architecture neural network. The parameters α, µ,
indicate the learning rate and the momentum
constants respectively of the BP, β indicates the
change in learning rate for the GDX method. As
defined earlier:

The mean square error (MSE) is the condition to

terminate training of all the BP methods. MSE is
originally set at exp(-5), however, these BP
methods can also stop once the training exceeds the
number of epoch set. Nbr Epoch is set at 1000
originally. The number of computation that each
method required to run is specified in Nbr Flops
(number of floating operations). The error
percentage indicates the error in classifying the
traffic into intrusion or authorized traffic. The
results are summarized in Tables 2, 3, and 4.

Gradient Descent (GD)
Topology: {20,10,1} Nbr Epoch = 1000
α = 0.01 Nbr Flops = 5 GFlops
MSE =4.5 exp(-5) Error Percentage = 0
GD with Momentum (GDM)
Topology: {20,10,1} Nbr Epoch = 1000
α = 0.05, µ = 0.75 Nbr Flops = 5 GFlops
MSE = 60 Error Percentage = 100
Variable Learning Rate GD with Momentum (GDX)
Topology: {20,10,1} Epoch = 1000
α = 0.05, µ = 0.75,
β = 0.7 & 1.05

Nbr Flops = 8.4 GFlops

MSE = 4.5 exp(-4) Error Percentage = 0
Conjugate Gradient Descent (CGP)
Topology: {20,6,1} Nbr Epoch = 35
 Nbr Flops = 0.23 GFlops
MSE = exp(-5) Error Percentage = 0
Quasi-Newton (BFGS)
Topology: {20,6,1} Nbr Epoch = 20
 Nbr Flops = 0.2 GFlops
MSE = 1.2exp(-6) Error Percentage = 0

Table 2: Result when Input is File1

Gradient Descent (GD)
Topology: {24,10,1} Nbr Epoch = 1000
α = 0.01 Nbr Flops = 5.8 GFlops
MSE = 1.1 exp(-4) Error Percentage = 0
GD with Momentum (GDM)
Topology: {24,10,1} Nbr Epoch = 1000
α = 0.05, µ = 0.75 Nbr Flops = 5.8 GFlops
MSE = 2.28 exp(-4) Error Percentage = 0
Variable Learning Rate GD with Momentum (GDX)
Topology: {24,10,1} Epoch = 1000
α = 0.05, µ = 0.75,
β = 0.7 & 1.05

 Nbr Flops = 1.5 GFlops

MSE = 5.1 exp(-4) Error Percentage = 0
Conjugate Gradient Descent (CGP)
Topology: {24,6,1} Nbr Epoch = 1000
 Nbr Flops = 1.5GFlops
MSE = exp(-5) Error Percentage = 0
Quasi-Newton (BFGS)
Topology: {24,6,1} Nbr Epoch = 45
 Nbr Flops = 0.6 GFlops
MSE = exp(-5) Error Percentage = 0

Table 3: Result when Input is File2





<
>

=
error) (old 1.04 error new if 1.05
error) (old 1.04 error new if 0.7

β

Gradient Descent (GD)
Topology: {28,16,1} Nbr Epoch = 1000
α = 0.01 Nbr Flops = 21 GFlops
MSE = 2.3 exp(-5) Error Percentage = 0
GD with Momentum (GDM)
Topology: {28,18,1} Nbr Epoch = 1000
α = 0.05, µ = 0.75 Nbr Flops = 15 GFlops
MSE = 2.3 exp(-4) Error Percentage = 0
Variable Learning Rate GD with Momentum (GDX)
Topology: {28,12,1} Nbr Epoch = 1000
α = 0.05, µ = 0.75,
β = 0.7 & 1.05

Nbr Flops = 7.5 GFlops

MSE = exp(-3) Error Percentage = 0
Conjugate Gradient Descent (CGP)
Topology: {28,10,1} Nbr Epoch = 45
 Nbr Flops = 0.6 GFlops
MSE = 1.9exp(-3) Error Percentage = 0
Quasi-Newton (BFGS)
Topology: {28,8,1} Nbr Epoch = 30
 Nbr Flops = 0.6 GFlops
MSE = exp(-5) Error Percentage = 0

Table 4: Result when Input is File3

Table 2 summarized the result obtained when
the input was File1. Table 3 summarized the result
obtained when the input was File2. Table 4
summarized the result obtained when File3 was
used as input. In achieving the results in Tables 2 –
4, we made the following discoveries:

First, the gradient descent with momentum
method was not as good in detecting the intrusion
traffic from the authorized traffic as the gradient
descent method. We varied the learning rate α to
value in the range [0.05, 0.25] and momentum
constant µ to value in the range [0.7, 0.95]. When
File1 was used as input, the gradient descent
method with momentum was not able to classify
the intrusion traffic from the authorized traffic at
all. On the other hand, the gradient descent method
was able to classify the intrusion traffic from the
authorized traffic. When File2 and File3 were used
as inputs, the gradient descent with momentum
methods were able to classify intrusion traffic from
authorized traffic but with higher MSE values.

 Second, the number of samples used as inputs
affected the performance of the classification of the
data. Of the three input files: File1, File2, and
File3, the output values for the intrusion and
authorized traffics are listed in Table 5.

Output File1 File2 File3
Intrusion

Data
-1 + 0.1 -1 + 0.02 -1 + 0.05

Authorized
Data

1 + 0.1 1 + 0.02 1 + 0.05

Table 5: Output Values of the Two Classes

Third, the gradient descent, the gradient descent
with momentum and the variable rate gradient
descent with momentum method could not
converge to a MSE = exp(-5). These three methods
converged to a MSE = exp(-3). Nevertheless, they
were able to classify the intrusion traffic from the
authorized traffic.

Fourth, the conjugate gradient descent and the
quasi Newton BP methods have the best
performance. These two methods required the least
amount of computation measurement in the number
of epochs for convergence. For the same input file,
these two methods required simpler NN topology.
For instance a NN topology of {20,6,1} and
{24,6,1} were used for File1 and File2 inputs, and a
NN topology of {28,8,1} and {28,10,1} were
needed for File3 input. The quasi Newton method
had a slightly better performance than the conjugate
gradient descent.

Fifth, the input sample that yielded the best
performance for all five methods contained 6 CUs
(i.e. when the input is File2).

Finally, the number of neurons used at the
hidden layer depended on the number of CUs in the
input samples. In these cases, the NN topology of
{24,10,1} yielded the best results for the gradient
descent, the gradient descent with momentum and
the variable learning rate gradient descent methods.
Similarly the NN topology of {24,6,1} yielded the
best results for the conjugate gradient descent and
the quasi Newton methods.

VII. Summary

In this paper, we defined the problem of
computer network intrusion detection as a
classification problem. We then applied five
different BP neural network methods to solve this
problem.

For the purpose of assuring that the BP methods
here are capable of detecting intruders, we
generated test data without profile drift to test these
BP techniques. We demonstrated that all five BP
methods were able to detect intruders logging onto
a computer network.

We listed the performance of the five BP
methods in detecting intrusion traffic in Tables 2, 3,
and 4. We found that the conjugate gradient
descent and the quasi-Newton BP methods yielded
the best performance in classifying intrusion traffic
from the authorized traffic.

As summarized in Table 5, when the input data
files were File1 and File3 (i.e. input sample consists

of 5 or 7 CUs), we did not get good results compare
to the case when the input is File2. We think that
when the input is File1, too little information about
the user is presented at the input. In this case, our
neural networks methods were not able to fit the
training data to generalize the test data. Likewise
when the input is File3, too much information is
presented at the input. In this case, the neural
networks methods fitted the data too closely and a
condition of overfitting might have occurred.
When the input is File2, the information content in
the input sample is just right. The neural networks
methods were able to generalize the training to
classify the intrusion traffic apart from the
authorized traffic.

VIII. Conclusion and Future Work

This paper showed that neural network
techniques could be used in intrusion detection of
controlled input data files. With the generated data,
the conjugate gradient descent BP and the quasi
Newton BP can detect the intruders in real time.
These two methods only required an average of 6
CUs (command inputs). The performance of the
BP methods depend on the neural networks
topology. Thus with a given input data file, one
should experiment with different topology to get
the best performance.

In future work we plan to accomplish these next
three action items. First, we need to take into
account the profile drift of the users. Second, there
are other BP techniques (besides the BP methods
discussed in this paper) that we could use in solving
problems in intrusion detection. Third, besides the
BP methods, there also are other neural networks
methods like the radial basis function (RBF) that
we can implement to detect the intruders. These
methods will be studied next.

IX. References

[1] V. Dao, R. Vemuri, S. Templeton, “Profiling

Users in the UNIX OS Environment”,
International Computer Science Conventions
Conference, Dec. 2000.

[2] M. Shin, C. Park, A Radial Basis Function
Approach to Pattern Recognition and Its
Applications, ETRI Journal, Vol. 22, No. 2,
June 2000.

[3] J. Principe, N. Euliano, W. Lefebvre, Neural
and Adaptive System – Fundamentals Through
Simulations, Wiley, 2000.

[4] S. Haykin, Neural Networks – A
Comprehensive Foundation, 2nd Edition,
Prentice Hall, 2000.

[5] ––––, Neural Network Toolbox, Version 3, The
Math Works Inc., 1998.

[6] E. Dennis, R. Schnabel, Numerical Methods
for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[7] M. Hagen, H. Demuth, and M. Beale, Neural
Network Design, Boston, MA., PWS
Publishing, 1996.

[8] T. Lane, C. Brodley, “Temporal Sequence
Learning and Data Reduction for Anomaly
Detection”,
http://mow.ecn.purdue.edu/~terran/facts/resear
ch.html, 1998.

