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Abstract 
 

 This paper demonstrated that neural network 
(NN) techniques can be used in detecting intruders 
logging onto a computer network when computer 
users are profiled accurately. Next, the paper 
compares the performance of the five neural 
network methods in intrusion detection. 
 The NN techniques used are the gradient 
descent back propagation (BP), the gradient 
descent BP with momentum, the variable learning-
rate gradient descent BP, the conjugate gradient 
BP, and the quasi-Newton method. 

 
 
 

I. Introduction 
 

In recent times, artificial intelligent (AI) 
techniques in general and neural network (NN) in 
particular have been used widely in solving 
problem like optimization, adaptive filtering, digital 
signal processing, and pattern recognition and 
classification.  Indeed the discipline of neural 
networks is one of the earliest areas of AI that was 
introduced in the 1950s and now has gained 
momentum due to the many successes.  Neural 
network techniques aim to construct useful 
“computers” to carry out useful computations while 

solving real-world problems of classification.  It is 
this philosophy that has attracted much interest.   

Information assurance is a field that deals with 
protecting information on computers or computer 
networks from being compromised.  Intrusion 
detection is a major part of information assurance 
that deals with detecting unauthorized users from 
accessing the information on those computers.   
Current intrusion detection techniques can not 
detect new and novel attacks; instead the consensus 
solution seems to be those that detect known 
intrusion detection techniques.  New intruding 
techniques are usually passed as authorized traffic. 

The relevance of NN in intrusion detection 
becomes apparent when one views the intrusion 
detection problem as a pattern classification 
problem.  By building profiles of authorized 
computer users [1], one can train the NN to classify 
the incoming computer traffic into authorized 
traffic or not authorized traffic (i.e. intrusion 
traffic). 

This paper is organized as follows.  Section II 
defines the intrusion detection problem.  Next, a 
brief introduction to relevant aspects of neural 
networks is presented in section III.  Section IV 
delves into the gradient descent BP method and 
discusses the gradient descent BP with momentum, 
the variable learning rate gradient descent with 
momentum, the conjugate gradient descent, and the 
quasi Newton methods.  Section V discusses the 
test data used.  Section VI presents the results of the 



five back propagation methods in detecting 
intruders.  Section VII summarizes the performance 
of the five BP methods.  Section VIII offers a 
conclusion and points to future research. 

 
 

II. Problem Definition  
 

The task of intrusion detection is to construct a 
model that captures a set of user attributes and 
determine if that user’s set of attributes belongs to 
the authorized user or those of the intruder.  The 
input attribute set consists of the unique 
characteristics of the user [1] logging onto a 
computer network.  The output set is of two types – 
authorized user and intruder.   
 Thus, the problem now has been reduced to a 
pattern recognition problem.   Mathematically 
speaking, the problem can be stated as: 

Given a data set S 
 

 
Where:  
x = input vector consisting a user’s attributes 
y = {authorized user, intruder} 
 
We want to map the input set x to an output 

class y. 
The solution to the above problem is to find a 

mapping function from the p-dimensional input 
space to the 1-dimensional output space [2]. 

From a modeling perspective, we seek a model 
that provides the best fit to training data and the 
best prediction on future data while minimizing 
model complexity.  The resulting model would be 
employed to predict output values y’ for future 
observed inputs x’ where only the inputs x’ would 
be available. 
 To accomplish the above objective, we need to 
come up with a model and train it prior to using that 
model for intrusion detection.  During the training 
phase, for each input data vector x, we already 
know the associated output y and the desired 
outpupt d.  This desired output is compare with the 
actual network output y.  That is, 
 

 d = desired output 
y = actual output 

Thus, the error of our model is: 
 
                      e  =  d - y 

 

In an ideal situation, ‘e’ is equal to zero.  Our 
objective is to minimize the error term ‘e’ to 
improve our model.  In all the five methods 
described in this paper, the network first undergoes 
training from a set of training data.  From the 
knowledge learned during the training, the methods 
then classify new input with the minimum error 
possible. 
 
 

III. Solving the Intrusion Detection 
Problem Using The Back 
Propagation Class of Neural 
Networks 

 
The back propagation method is a technique 

used in training multilayer neural networks in a 
supervised manner.  The back propagation method, 
also known as the error back propagation 
algorithm, is based on the error-correction learning 
rule [3].  It consists of two passes through the 
different layers of the network: a forward pass and 
a backward pass.  In the forward pass, an activity 
pattern is applied to the input nodes of the network, 
and its effect propagates through the network layer 
by layer.  Finally, a set of outputs is produced as the 
actual response of the network.  During the forward 
pass the synaptic weights of the networks are all 
fixed.  During the backward pass, the synaptic 
weights are all adjusted in accordance with an 
error-correction rule.  The actual response of the 
network is subtracted from a desired response to 
produce an error signal.  This error signal is then 
propagated backward through the network.  The 
synaptic weights are adjusted to make the actual 
response of the network move closer to the desired 
response in a statistical sense.  The weight 
adjustment is made according to the generalized 
delta rule [4] to minimize the error. An example of 
a multilayer perceptron with two hidden layers is 
shown in Figure 1. 

 

 
 
Two commonly used neuron activation 

functions for the neuron in Figure 1 are sigmoidal 
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Figure 1: Multilayer Perceptron with
Two Hidden Layers

( ){ } ,..,1,,:, miRiypRiiyiS =∈∈= xx



and tansig functions.  Both functions are 
continuously differentiable everywhere and 
typically have the following mathematical form:  

 

 
 

IV. The Different Methods of Back 
Propagation Neural Networks 

 
Following is a description of each of the BP 

methods used in this investigation. 
 
Gradient Descent BP (GD) 
 This method updates the network weights and 
biases in the direction of the performance function 
that decreases most rapidly, i.e. the negative of the 
gradient.  The new weight vector wk+1 is adjusted 
according to: 

 
The parameter α is the learning rate and gk is the 

gradient of the error with respect to the weight 
vector.  The negative sign indicates that the new 
weight vector wk+1 is moving in a direction opposite 
to that of the gradient. 

 
Gradient Descent BP with Momentum (GDM) 
 Momentum allows a network to respond not 
only to the local gradient, but also to recent trends 
in the error surface.  Momentum allows the network 
to ignore small features in the error surface.  
Without momentum a network may get stuck in a 
shallow local minimum.  With momentum a 
network can slide through such a minimum [5].  
 Momentum can be added to BP method learning 
by making weight changes equal to the sum of a 
fraction of the last weight change and the new 
change suggested by the gradient descent BP rule.  
The magnitude of the effect that the last weight 
change is allowed to have is mediated by a 
momentum constant, µ, which can be any number 
between 0 and 1.  When the momentum constant is 
0 a weight change is based solely on the gradient.  
When the momentum constant is 1 the new weight 
change is set to equal the last weight change and 
the gradient is simply ignored. The new weight 
vector wk+1 is adjusted as: 
 

 
 
Variable Learning Rate BP with Momentum 
(GDX) 
 The learning rate parameter is used to determine 
how fast the BP method converges to the minimum 
solution.  The larger the learning rate, the bigger the 
step and the faster the convergence.  However, if 
the learning rate is made too large the algorithm 
will become unstable.  On the other hand, if the 
learning rate is set to too small, the algorithm will 
take a long time to converge.  To speed up the 
convergence time, the variable learning rate 
gradient descent BP utilizes larger learning rate α 
when the neural network model is far from the 
solution and smaller learning rate α when the 
neural net is near the solution.  The new weight 
vector wk+1 is adjusted the same as in the gradient 
descent with momentum above but with a varying 
αk.  Typically, the new weight vector wk+1 is defined 
as: 
 
 

 
Conjugate Gradient BP (CGP) 
 The basic BP algorithm adjusts the weights in 
the steepest descent direction.  This is the direction 
in which the performance function is decreasing 
most rapidly.  Although the function decreases 
most rapidly along the negative of the gradient, this 
does not necessarily produce the fastest 
convergence.  In the conjugate gradient algorithms 
a search is performed along conjugate directions, 
which produces generally faster convergence than 
steepest descent directions.  In the conjugate 
gradient algorithms the step size is adjusted at each 
iteration.  A search is made along the conjugate 
gradient direction to determine the step size which 
will minimize the performance function along that 
line.  The conjugate gradient used here is proposed 
by Polak and Ribiere [6].  The search direction at 
each iteration is determined by updating the weight 
vector as: 
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Quasi-Newton BP (BFGS) 
 Newton’s method is an alternative to the 
conjugate gradient methods for fast optimization. 
Newton’s method often converges faster than 
conjugate gradient methods.  The weight update for 
the Newton’s method is: 

 
Ak is the Hessian matrix of the performance index at 
the current values of the weights and biases.  When 
Ak is large, it is complex and time consuming to 
compute wk+1.  Fortunately, there is a class of 
algorithms based on the works of Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) [4,7] that 
are based on Newton’s method but which don’t 
require intensive calculation. This new class of 
method is called quasi-Newton method.  The new 
weight wk+1 is computed as a function of the 
gradient and the current weight wk. 
 
 

V. The Test Data 
 

In our previous work [1], we showed that users 
in the UNIX OS environment could be profiled via 
four attributes – command, host, time, and 
execution time.  In that work, we discovered two 
important results.  First, each computer user has a 
unique UNIX command set, works a regular 
schedule, logs onto a regular host, and his 
commands running time do not vary much.  
Secondly, user profile drift occurs over time [1,8]. 

For simplicity in testing the back propagation 
methods, we decided to generate a user profile data 
file without profile drift. The generated data used 
here was organized into two parts.  The first part is 
for training the BP methods.  Each training input 
data came with a desired output.  Here, ninety 
percent (90%) of the input data was generated as 
authorized traffic and ten percent (10%) as 
intrusion traffic.  The second part is for testing the 

performance of the five BP methods in intrusion 
detection.  In this part, we generated ninety eight 
percent (98%) of the traffic to be authorized traffic 
and two percent (2%) of the traffic to be intrusion 
traffic.   

In both parts of the training and testing data 
section, several bursts of intrusion data are inserted 
into the authorized data stream. Each of the 
generated input data file has 7000 samples.  The 
first 5000 samples are the training data, and the 
next 2000 samples are the test data. We denoted 
class positive one as authorized traffic and class 
negative one as intrusion traffic.  Figure 2 
illustrates the construct of the generated data files. 

  
 

 
 
In Figure 2, an input sample is defined as set of 

data being fed into the neural network at one time.  
A command unit (CU) is defined as a set of four 
elements – the UNIX command, the login host, the 
time of login, and the execution time of the 
command.  From these two definitions, we know 
that one sample can have many CUs. 

Our objective is to test the neural networks for 
detecting intrusion traffic with the fewest number 
of intrusion samples.  With that objective, we 
generated three files for testing – File1, File2, and 
File3.  File1 consists of 5 CUs in each of the input 
sample.  Likewise, File2 consists of 6 CUs in an 
input sample, and File3 consists of 7 CUs in an 
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input sample.  Since each CU has 4 elements, the 
total element for each input file is summarized in 
Table 1. 

 
 

 File1 File2 File3 
Train Data 100,000 120,000 140,000 
Test Data 40,000 48,000 56,000 

Total 140,000 168,000 196,000 
Table 1: Total Element of the Three Test Files 

 
 

VI. Performance Comparison 
 

The five BP methods that we used are the 
gradient descent (GD), the gradient descent with 
momentum (GDM), the variable learning rate 
gradient descent with momentum (GDX), the 
Polak-Ribiere [6] conjugate gradient descent 
(CGP), and the quasi-Newton (BFGS). 

The following notations specify the 
characteristics of each BP methods.  Topology 
specifies the neural network architecture.  In all 
cases a three-layer neural networks is used.  For 
instance a topology of {20,10,1} indicates a 20-
input, 10 hidden neurons, and one output 
architecture neural network.  The parameters α, µ, 
indicate the learning rate and the momentum 
constants respectively of the BP, β indicates the 
change in learning rate for the GDX method.  As 
defined earlier: 

 
The mean square error (MSE) is the condition to 

terminate training of all the BP methods.  MSE is 
originally set at exp(-5), however, these BP 
methods can also stop once the training exceeds the 
number of epoch set.  Nbr Epoch is set at 1000 
originally.  The number of computation that each 
method required to run is specified in Nbr Flops 
(number of floating operations).  The error 
percentage indicates the error in classifying the 
traffic into intrusion or authorized traffic.  The 
results are summarized in Tables 2, 3, and 4. 

  
 
 
 
 
 
 
 

 
Gradient Descent (GD) 
Topology: {20,10,1} Nbr Epoch = 1000 
α = 0.01 Nbr Flops = 5 GFlops 
MSE =4.5 exp(-5) Error Percentage = 0 
GD with Momentum (GDM) 
Topology: {20,10,1} Nbr Epoch = 1000 
α = 0.05, µ = 0.75 Nbr Flops = 5 GFlops 
MSE = 60 Error Percentage = 100 
Variable Learning Rate GD with Momentum (GDX) 
Topology: {20,10,1} Epoch = 1000 
α = 0.05, µ = 0.75,  
β = 0.7 & 1.05 

Nbr Flops = 8.4 GFlops 

MSE = 4.5 exp(-4) Error Percentage = 0 
Conjugate Gradient Descent (CGP) 
Topology: {20,6,1} Nbr Epoch = 35 
                                         Nbr Flops = 0.23 GFlops 
MSE = exp(-5) Error Percentage = 0 
Quasi-Newton (BFGS) 
Topology: {20,6,1} Nbr Epoch = 20 
                                         Nbr Flops = 0.2 GFlops 
MSE = 1.2exp(-6) Error Percentage = 0 

Table 2: Result when Input is File1 
 
 

Gradient Descent (GD) 
Topology: {24,10,1} Nbr Epoch = 1000 
α = 0.01 Nbr Flops =  5.8 GFlops 
MSE = 1.1 exp(-4) Error Percentage = 0 
GD with Momentum (GDM) 
Topology: {24,10,1} Nbr Epoch = 1000 
α = 0.05, µ = 0.75 Nbr Flops = 5.8 GFlops 
MSE = 2.28 exp(-4) Error Percentage = 0 
Variable Learning Rate GD with Momentum (GDX) 
Topology: {24,10,1} Epoch = 1000 
α = 0.05, µ = 0.75,  
β = 0.7 & 1.05 

 Nbr Flops = 1.5 GFlops 

MSE = 5.1 exp(-4) Error Percentage = 0 
Conjugate Gradient Descent (CGP) 
Topology: {24,6,1} Nbr Epoch = 1000 
 Nbr Flops = 1.5GFlops 
MSE = exp(-5) Error Percentage = 0 
Quasi-Newton (BFGS) 
Topology: {24,6,1} Nbr Epoch = 45 
  Nbr Flops = 0.6 GFlops 
MSE = exp(-5) Error Percentage = 0 

Table 3: Result when Input is File2 
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Gradient Descent (GD) 
Topology: {28,16,1} Nbr Epoch = 1000 
α = 0.01 Nbr Flops = 21 GFlops 
MSE = 2.3 exp(-5) Error Percentage = 0 
GD with Momentum (GDM) 
Topology: {28,18,1} Nbr Epoch = 1000 
α = 0.05, µ = 0.75 Nbr Flops = 15 GFlops 
MSE = 2.3 exp(-4) Error Percentage = 0 
Variable Learning Rate GD with Momentum (GDX) 
Topology: {28,12,1} Nbr Epoch = 1000 
α = 0.05, µ = 0.75,  
β = 0.7 & 1.05 

Nbr Flops = 7.5 GFlops 

MSE = exp(-3) Error Percentage = 0 
Conjugate Gradient Descent (CGP) 
Topology: {28,10,1} Nbr Epoch = 45 
 Nbr Flops = 0.6 GFlops 
MSE = 1.9exp(-3) Error Percentage = 0 
Quasi-Newton (BFGS) 
Topology: {28,8,1} Nbr Epoch = 30 
                                         Nbr Flops = 0.6 GFlops 
MSE = exp(-5) Error Percentage = 0 

Table 4: Result when Input is File3 
 
 

Table 2 summarized the result obtained when 
the input was File1.  Table 3 summarized the result 
obtained when the input was File2.  Table 4 
summarized the result obtained when File3 was 
used as input.  In achieving the results in Tables 2 – 
4, we made the following discoveries: 

First, the gradient descent with momentum 
method was not as good in detecting the intrusion 
traffic from the authorized traffic as the gradient 
descent method.  We varied the learning rate α  to 
value in the range [0.05, 0.25] and momentum 
constant µ to value in the range [0.7, 0.95].  When 
File1 was used as input, the gradient descent 
method with momentum was not able to classify 
the intrusion traffic from the authorized traffic at 
all.  On the other hand, the gradient descent method 
was able to classify the intrusion traffic from the 
authorized traffic.  When File2 and File3 were used 
as inputs, the gradient descent with momentum 
methods were able to classify intrusion traffic from 
authorized traffic but with higher MSE values. 

 Second, the number of samples used as inputs 
affected the performance of the classification of the 
data.  Of the three input files: File1, File2, and 
File3, the output values for the intrusion and 
authorized traffics are listed in Table 5. 

 
 

Output File1 File2 File3 
Intrusion 

Data 
-1 + 0.1 -1 + 0.02 -1 + 0.05 

Authorized 
Data 

1 + 0.1 1 + 0.02 1 + 0.05 

Table 5: Output Values of the Two Classes 
 
 

Third, the gradient descent, the gradient descent 
with momentum and the variable rate gradient 
descent with momentum method could not 
converge to a MSE = exp(-5).  These three methods 
converged to a MSE = exp(-3).  Nevertheless, they 
were able to classify the intrusion traffic from the 
authorized traffic. 

Fourth, the conjugate gradient descent and the 
quasi Newton BP methods have the best 
performance.  These two methods required the least 
amount of computation measurement in the number 
of epochs for convergence.  For the same input file, 
these two methods required simpler NN topology.  
For instance a NN topology of {20,6,1} and 
{24,6,1} were used for File1 and File2 inputs, and a 
NN topology of {28,8,1} and {28,10,1} were 
needed for File3 input.  The quasi Newton method 
had a slightly better performance than the conjugate 
gradient descent. 

Fifth, the input sample that yielded the best 
performance for all five methods contained 6 CUs 
(i.e. when the input is File2).   

Finally, the number of neurons used at the 
hidden layer depended on the number of CUs in the 
input samples.  In these cases, the NN topology of 
{24,10,1} yielded the best results for the gradient 
descent, the gradient descent with momentum and 
the variable learning rate gradient descent methods.  
Similarly the NN topology of {24,6,1} yielded the 
best results for the conjugate gradient descent and 
the quasi Newton methods. 
 
 

VII. Summary 
 

In this paper, we defined the problem of 
computer network intrusion detection as a 
classification problem.  We then applied five 
different BP neural network methods to solve this 
problem. 

For the purpose of assuring that the BP methods 
here are capable of detecting intruders, we 
generated test data without profile drift to test these 
BP techniques.  We demonstrated that all five BP 
methods were able to detect intruders logging onto 
a computer network. 

We listed the performance of the five BP 
methods in detecting intrusion traffic in Tables 2, 3, 
and 4.  We found that the conjugate gradient 
descent and the quasi-Newton BP methods yielded 
the best performance in classifying intrusion traffic 
from the authorized traffic. 

As summarized in Table 5, when the input data 
files were File1 and File3 (i.e. input sample consists 



of 5 or 7 CUs), we did not get good results compare 
to the case when the input is File2.  We think that 
when the input is File1, too little information about 
the user is presented at the input.  In this case, our 
neural networks methods were not able to fit the 
training data to generalize the test data.  Likewise 
when the input is File3, too much information is 
presented at the input.  In this case, the neural 
networks methods fitted the data too closely and a 
condition of overfitting might have occurred.  
When the input is File2, the information content in 
the input sample is just right.  The neural networks 
methods were able to generalize the training to 
classify the intrusion traffic apart from the 
authorized traffic.  
 
 

VIII. Conclusion and Future Work 
 

This paper showed that neural network 
techniques could be used in intrusion detection of 
controlled input data files.  With the generated data, 
the conjugate gradient descent BP and the quasi 
Newton BP can detect the intruders in real time.  
These two methods only required an average of 6 
CUs (command inputs).  The performance of the 
BP methods depend on the neural networks 
topology.  Thus with a given input data file, one 
should experiment with different topology to get 
the best performance. 

In future work we plan to accomplish these next 
three action items.  First, we need to take into 
account the profile drift of the users.  Second, there 
are other BP techniques (besides the BP methods 
discussed in this paper) that we could use in solving 
problems in intrusion detection.  Third, besides the 
BP methods, there also are other neural networks 
methods like the radial basis function (RBF) that 
we can implement to detect the intruders.  These 
methods will be studied next. 
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