
Computational Intelligence in Strategy Games 
 
 

V Rao Vemuri  

Department of Applied Science, University of California, Davis 
rvemuri@ucdavis.edu 

Abstract - Presented are issues in designing smart, believable 
software agents capable of playing strategy games, with 
particular emphasis on the design of an agent capable of  playing 
Cyberwar XXI, a complex war game. The architecture of  a 
personality-rich, advise-taking game playing agent that learns to 
play is described. The suite of computational-intelligence tools 
used by the advisers include evolutionary computation and 
neural nets. 

I. CONFLICT SIMULATIONS 

Strategy games, in general, and conflict simulations in 
particular, offer a fertile ground to study the power of 
computational intelligence (CI). Board games like Chess or 
Checkers are widely studied strategy games because the 
environment in which the user interacts with the game is not a 
simulation of the problem domain; it is the problem domain. 
As a result, many vexing problems like imperfect effectors 
and sensors, incomplete or uncertain data, ill-defined goal 
states can be bypassed. However, games like Chess are only 
highly stylized abstractions of realistic conflicts. Evolutionary 
computational methods have been proved to be highly 
successful in handling these problems [1] [2] [3]. 
 
Simulations of warfare, hereafter referred to as conflict 
simulations, serve as excellent testbeds for studying the 
learning behavior and decision making capabilities of 
intelligent, game-playing agents because of the following 
reasons: 
• They represent more realistic situations of practical 

significance 
• Large amounts of crucial background knowledge is already 

available  
• Diversity of the underlying scenarios offer a challenge to 

the design process 
• Utility of intelligent computer opponents for military 

training and strategic decision-making 
• Scalability of the system 

 
In broad strokes, the decisions made by an agent during 

conflict simulations are not too unlike the actions taken by a 
human player at a board game like Monopoly and 
Backgammon or a card game like Bridge. Whoever "controls 
more points" are essentially "in charge" of the situation. 
However war games differ from stylized games like Chess 
and Checkers in many ways: 

• The rules are much more complex than in Chess 
• The games are typically multiplayer games; each player 

representing an individual, a nation, a group,  or a 
coalition 

• The ultimate goal in playing these new generation war 
games  is not so much to win the game; rather, it is to 
study a variety of "what if" scenarios in order to 
develop decision making capabilities. 
 
The gaming environments in war games pose a 

number of problems at the strategic, interface and the run-
time environment levels. Although the later two are also 
important, treatment of the strategic-level is the primary 
target of this paper. It can involve the selection of 
strategies, translation of strategies into move sequences and 
responding to opponent's actions and so on. 

 
The war game taken up for study is Cyberwar XXI, a 

board game designed by Joe Miranda of Hexagon 
Interactive [4]. The game would provide users with some 
predictive capability to project the effects of high-tech 
weapons. The game's rules are based on the concept that 
modern warfare occurs simultaneously on four primary 
levels of conflict:   

 
• "Battle Level" is where conventional ground and sea 

forces clash.  
• "AirSystem Level" is where air power is pitted against 

national infrastructure. 
• "Infowarfare Level" is where cybernetic, intelligence 

and special operations forces conduct combat using 
computer viruses, electronic warfare, and media 
manipulation. 

• "Economic Level" is where information about the 
financial transactions of the opponents are tracked to 
gain better insights on the participants or where actions 
like sanctions are used to coax the opponent to a 
different point of view.  

 
The design connects all these levels with cascading effects 
– that is, the propagation of effects caused by actions at one 
level to other levels.  
 

The game is played in turns. Each turn is divided into 
segments called phases. The various phases through which 
the game progresses are depicted in Figure 1. Without 



delving into the details of the game, suffice it to say that 
the players of the game in question are required to make 
several different types of decisions in different phases of 
the game. These decision points are summarized below: 

 
• The selection of a InfoWar Squares, which in turn 

determines the number of Strategy Cards that are 
available to a player in each phase of the game. A 
"strategy card" gives a player certain combination of 
military assets and certain number of opportunities to 
use those assets. (A sample card is shown in Figure 2.)  

• The selection of the prescribed number of (say M) 
strategy cards, from a deck of N, for each phase of the 
game. Given a limited number of strategy cards, each 
player has to decide on the optimum mix of assets to 
accomplish his/her goal.  

• The selection of missions in each phase from the set of 
allowed missions, and deciding how many of the 
available resources to allocate to each mission. 

 
1. Chaotic Events Phase 
No decisions by CI. Random factors control events. 
 
2. Initiative Determination 
No decisions by CI. Who plays first is decided here. 
 
3. Mobilization (Selection of Strategy Cards) 
Each agent selects some of strategy cards (SC) to use. 
3.1 Parameters: (number of cards that may be chosen, 
list of legal cards to choose from, game state that 
influences the value of the selected card) 
3.2 Considerations: (actions/impulses granted by the 
card and in what space, reinforcements received, 
limitations on the placement of reinforcements, 
cascading effects, Information Warfare cost incurred, 
history of opponent SC selection, etc.)  
3.3 Heuristics: Do not select cards whose requirements 
cannot be met. Select cards with the intention of using 
them in a specific way. Consider look-ahead planning 
at this stage. 
3.4 CI Ideas: Assess the value for each potential card 
combination and action/impulse sequence, develop a 
set of rules to guide the selection of cards. 
 
4. InfoSpace Warfare Phase 
… 
5. AirSystems Space Warfare Phase 
… 
6. BattleSystems Space Warfare Phase 
… 
7. Economic Conflict Phase 
… 
8. Reconstitution Phase 

  
 FIGURE 1. PHASES IN A TURN  

 
 These selections are to be made with the intention of 
"maximizing" one's own perceived "value" or utility. 

Although this perceived utility may differ from individual to 
individual, experience suggests that a "safe" way of playing 
the game is to work toward the goal of maximizing the 
overall InfoWar points one can control, in terms of gaining 
information dominance at the InfoWar level. So a hypothesis 
one might posit is that  maximal InfoWar point gain with a 
least loss in units is a desirable outcome. Whether or not this 
strategy leads to a desired political goal is an issue that can be 
studied with this simulation.  

 
STRATEGY CARD (BattleSpace) 
Name: AirLand Battle  
Actions: The player can initiate three Impulses on  
the BattleSpace level. 
Reinforcements: None. 
Modifiers: Gain a +1 die roll modifier for all the  
player's Maneuver attacks.  
Cascading Effects: Normal.  
Infrastructure Requirement. C4I Infrastructure  
required.  
IW Cost: Lose 20 IW Points 
Chaos Level: Raise Chaos Level by 1 die roll  
upon play. 
Other: Only the United States can play this card.  
May not be combined with any other BattleSpace  
or Aerial 

 
FIGURE 2. A SAMPLE STRATEGY CARD 

II. COMPUTATIONAL INTELLIGENCE AND 
COGNITIVE MODELS 

 There is no well-developed theory to solve the problem 
outlined in Section I.  The purpose of this paper is to explore 
the role of interactive simulations of specially designed "war 
games" to study decision-making aspects of conflicts. In these 
interactive games human players will be pitted against 
believable software agents that come close to mimicking the 
capabilities of humans.  

 
 The goal in developing software agents is not so much 

in creating lifelike animations using physical laws and bio-
mechanical modeling techniques. Rather, the goal is to 
achieve realism in cognitive modeling, a step beyond 
behavior modeling. The agents should react appropriately to 
perceived environmental stimuli and exhibit goal directed 
behavior. The cognitive models govern what an agent knows, 
how that knowledge is acquired, and how it can be used to 
plan actions. These agents are vulnerable to common human 
foibles like emotion and stress [5]. The objective is in 
achieving increased realism in the cognitive and emotional 
behavior of the game-playing agents and in capturing social 
situations. Finally the agents interact with each other to 
facilitate the simulation of group behavior. Such cognitive 
models are capable of directing the new breed of highly 
autonomous, intelligent agents that are beginning to find use 
in interactive computer games. 
 



 The design emphasis is on human-like behavior in a 
decision-making environment, not just on speed of the 
computer or the application of sheer computational power.  
 
 The essence of conventional implementations of game 
playing on computers is search. The most straightforward 
way of selecting the best move is to explore all possible 
consequences (exhaustive search) of any action that can be 
taken in a given state. On a 3 x 3 board of tic-tac-toe, for 
example, with two players, this results in the need to explore 
9! = 362,880 variations - not a formidable number for a 
computer. If one can think of the operations in Cyberwar 
XXI's  Battle Space as a board game resembling tic-tac-toe on 
a 100 x 100 grid, then 10,000! variations would result - surely 
a challenge even to the fastest of the  computers.  

   
It is true that classical AI search methods do not do  an 

exhaustive search; they are lot smarter than that. For example, 
inherent symmetries in the problem can be exploited to 
reduce the search burden. In complicated and realistic games 
this may not be possible. Other ingenious tricks and 
compromises are possible. In any event, the strength of 
classical search techniques hinges on one's ability to perform 
a depth analysis and on the quality of static evaluation 
function chosen.  

 
In minimax search, for example, player A associates a 

"value" to each possible state of the game and then seeks to 
minimize this value while player B seeks to maximize the 
same evaluation function. This approach suffers from two 
drawbacks:  

 
• Assigning values to states is not a trivial exercise; needless 

to state that the search result depends on how these 
values are assigned.  

 
• The assumption that B is a rational player whose value 

system is the same as that of A, and therefore always 
chooses the "best" defense as A interprets it.  

 
 In games simulating asymmetric conflicts (terrorism is an 
example of asymmetric conflict), this may not be a valid 
assumption [4]. One way to overcome this difficulty is to 
make the evaluation function of B different from that of A. 
Indeed modeling the opponent's evaluation function is in 
itself a research topic. A natural way to do this is to observe a 
player's behavior during the course of a game and use it in 
conjunction with any prior knowledge about the player. 
 There are other issues that need further attention. An 
action by one player may lead to alternative states - each with 
a different probability of occurrence. That is, the evaluation 
function will attain its value only with a certain probability. 
This forces one to consider the issue of using probability 
distributions to describe the consequences of a move. 
Classical game theory techniques can be invoked to some 
extent to address this problem. 

IV. STRUCTURE OF THE AGENT(S) 

An examination of the rules of the Cyberwar XXI 
revealed that the decision problem is fairly complex.  As 
decision making by humans is not always rational, believable 
decision making behavior is not always rational behavior. 
This characteristic makes it difficult to depend on a rational 
agent or an agent that depends on systematic search methods 
to locate a goal state. Furthermore, given the potentially large 
number of players, the large number of options available to 
each and the fact that the  "opponents" actions are not only 
hidden from general view but also they may include random 
actions makes the alpha-beta approach less attractive.  

 
In addition to these considerations, there is a need to 

operationally decompose agent architecture in terms of some 
primitive capabilities. These constituent parts, when 
composed together, should give a variety of agent behaviors.  

 
These considerations called for a design that is 

flexible, modular and scalable. Instead of having a centralized 
agent that does some sort of search to find the correct 
response, we decided to make the central agent very simple 
(mostly just a multiplexer) and delegate the processing to a 
bank of Advisors. The advisors would be comprised of 
relatively simple programs that compute a narrow aspect of 
the games, and each advisor would pass back to the agent an 
advice on what it thinks the agent should do. It would then be 
up to the agent to decide which advice to take (see Figure 3). 
This is not too unlike a couple of schemes published in the 
literature [7] [8]. 

 
The game-playing agent described here is comprised of a 

"head" agent assisted by a bank of advisors. The Head Agent 
is the main interface between the game simulation and the 
rest of the CI component (although the game's Database/Data 
structures may also be accessed by other components of the 
CI engine). The Head Agent receives requests from the main 
simulation loop whenever there is a need for decision-making 
assistance from the CI side of the game. This request should 
include the context (the stage of the simulation where a 
decision is to be made) of the simulation. Upon receiving this 
information the head agent will ask the bank of advisors for 
suggestions on what to do. For instance, if the head agent 
receives a signal requesting assistance in picking the strategy 
cards for the game, the head agent will pass this signal to all 
the advisors. The strategy cards will then be picked 
considering the suggestions of all advisors.  
 

Each game-playing agent will have a panel of advisors 
for each task involved in the decision-making process. 
Therefore one can visualize the possible subset of advisors by 
looking at the tasks the agent has to perform in order to make 
the overall decision.  

 
For example, the panel of advisors supporting the 

Infowarfare Level will have to make the following decisions: 



 
• Strategy card selection 
• Play space selection  
• Mission selection 
− Decide on targets 
− Decide on missions 
− Decide on Units to carry out missions 
 
High-level advisors (Staff Advisors), at least three 

within each of the Levels,  perform oversight operations. The 
Staff Advisors typically perform the following tasks: 

  
• Looks at the list of advice, and deletes items that would be 

overly detrimental to their space (example: if one of the 
Battle-Level advisors suggests a card that would have a 
large negative impact on the Information-Level, the IW 
high level advisor to the Battle-Level sub-agent would 
delete that action from the proposal list) 

• Looks at the list of possible actions before the low 
 level advisors remove any objectionable ones. 
• Looks at the Game Information (Database and/or Data 

Structures). 
 
Within this design there is great deal of flexibility, both in 
terms of the scope of problems it can handle, and in terms of 
development. By forcing the advisors to focus on small 
enough areas, they should be efficient enough to run within 
the lifetime of the universe.  The combination of their advice 
(by using the trust values) will generate a fairly realistic (but 
probably not optimal) agent. 
 

V. PERSONALITY AND EMOTION 

The CI agent is expected to simulate the effects of 
stressful inputs on emotional states of the players and the 
potential impact of these emotional states on the quality of 
decision-making [9]. Critically, the simulation can capture not 
merely the actions of the real world players, but also can 
provide mechanisms for understanding their underlying 
maneuvers and objectives. It does so by quantifying factors 
such as political support and the "chaos" of transnational 
target audiences.  

 
In order to capture the personality aspects of the 

players, a Personality Engine (PE) is being designed (see 
Figure 4). Modeling behavior and personality are admittedly 
very complex and this is one ares evolutionary computing 
ideas can play a useful role [5]. Until the design is complete, 
one of the Staff Advisors plays the role of a PE. The PE 
works in two phases: (a) pruning options available to the 
agent before they are considered by the agent's static 
evaluation function. This is tantamount to an agent not even 
considering an option due to its emotional state. (b) 
modifying the weights assigned by the agent's evaluation 
function.  

 

Personality is being modeled using two of the major 
psychological theories that describe human personality: (a) 
Trait theory and (b) Needs-motivation approach. The 
structure of the PE consists of four main modules: Traits 
module, Needs-Motivation module, Physical module, and 
Learning module. The traits module emulates personality by 
assigning the agent a value within the range defined for each 
of a set of opposed traits and having these traits influence the 
agent's decisions. The needs-motivation module works by 
assigning the agent certain values of need for a number of 
defined factors (i. e., economic, religious, political, etc.). 
These values influence the agent's decisions by motivating it 
to satisfy its needs within the World State of the given game.  
The physical module models the physical state of the agent 
viewed as a human being. This feature will allow the agent's 
physical state (tired, angry, stressed, etc.) to influence its 
decisions. The learning module analyzes past game situations 
and predicts the opponent's personalities and strategies and 
uses feedback in the decision-making process.  

 

III. LEARNING AND EVOLUTIONARY GAME 
PLAYING  

 In view of the discussion in Section II, unless the 
evaluation function predicts the state values reliably, the 
search has to be carried deep into the search tree with the 
attendant cost of computation. Ways to reduce this cost is 
through instruction, advice taking, pattern recognition and 
generalization; in short, via learning. What cannot be 
captured through precise rules can possibly be learned from 
examples. 

 
One design that was actually implemented, on a trial 

basis, is a Battle Space advisor that evolves a neural net along 
the lines suggested by Fogel [1]. This paper compares the 
effectiveness of the mutation, crossover, and combination 
operators in evolving specific checkers strategies.  The focus 
is on short-tem evolution, that is, the initial generations of 
evolution.   
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FIGURE. 3. AGENT ARCHITECTURE DIAGRAM. 

 
FIGURE. 4. PERSONALITY ENGINE ARCHITECTURE DIAGRAM. 
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