
Computational Intelligence in Strategy Games

V Rao Vemuri

Department of Applied Science, University of California, Davis
rvemuri@ucdavis.edu

Abstract - Presented are issues in designing smart, believable
software agents capable of playing strategy games, with
particular emphasis on the design of an agent capable of playing
Cyberwar XXI, a complex war game. The architecture of a
personality-rich, advise-taking game playing agent that learns to
play is described. The suite of computational-intelligence tools
used by the advisers include evolutionary computation and
neural nets.

I. CONFLICT SIMULATIONS

Strategy games, in general, and conflict simulations in
particular, offer a fertile ground to study the power of
computational intelligence (CI). Board games like Chess or
Checkers are widely studied strategy games because the
environment in which the user interacts with the game is not a
simulation of the problem domain; it is the problem domain.
As a result, many vexing problems like imperfect effectors
and sensors, incomplete or uncertain data, ill-defined goal
states can be bypassed. However, games like Chess are only
highly stylized abstractions of realistic conflicts. Evolutionary
computational methods have been proved to be highly
successful in handling these problems [1] [2] [3].

Simulations of warfare, hereafter referred to as conflict
simulations, serve as excellent testbeds for studying the
learning behavior and decision making capabilities of
intelligent, game-playing agents because of the following
reasons:
• They represent more realistic situations of practical

significance
• Large amounts of crucial background knowledge is already

available
• Diversity of the underlying scenarios offer a challenge to

the design process
• Utility of intelligent computer opponents for military

training and strategic decision-making
• Scalability of the system

In broad strokes, the decisions made by an agent during

conflict simulations are not too unlike the actions taken by a
human player at a board game like Monopoly and
Backgammon or a card game like Bridge. Whoever "controls
more points" are essentially "in charge" of the situation.
However war games differ from stylized games like Chess
and Checkers in many ways:

• The rules are much more complex than in Chess
• The games are typically multiplayer games; each player

representing an individual, a nation, a group, or a
coalition

• The ultimate goal in playing these new generation war
games is not so much to win the game; rather, it is to
study a variety of "what if" scenarios in order to
develop decision making capabilities.

The gaming environments in war games pose a

number of problems at the strategic, interface and the run-
time environment levels. Although the later two are also
important, treatment of the strategic-level is the primary
target of this paper. It can involve the selection of
strategies, translation of strategies into move sequences and
responding to opponent's actions and so on.

The war game taken up for study is Cyberwar XXI, a

board game designed by Joe Miranda of Hexagon
Interactive [4]. The game would provide users with some
predictive capability to project the effects of high-tech
weapons. The game's rules are based on the concept that
modern warfare occurs simultaneously on four primary
levels of conflict:

• "Battle Level" is where conventional ground and sea

forces clash.
• "AirSystem Level" is where air power is pitted against

national infrastructure.
• "Infowarfare Level" is where cybernetic, intelligence

and special operations forces conduct combat using
computer viruses, electronic warfare, and media
manipulation.

• "Economic Level" is where information about the
financial transactions of the opponents are tracked to
gain better insights on the participants or where actions
like sanctions are used to coax the opponent to a
different point of view.

The design connects all these levels with cascading effects
– that is, the propagation of effects caused by actions at one
level to other levels.

The game is played in turns. Each turn is divided into
segments called phases. The various phases through which
the game progresses are depicted in Figure 1. Without

delving into the details of the game, suffice it to say that
the players of the game in question are required to make
several different types of decisions in different phases of
the game. These decision points are summarized below:

• The selection of a InfoWar Squares, which in turn

determines the number of Strategy Cards that are
available to a player in each phase of the game. A
"strategy card" gives a player certain combination of
military assets and certain number of opportunities to
use those assets. (A sample card is shown in Figure 2.)

• The selection of the prescribed number of (say M)
strategy cards, from a deck of N, for each phase of the
game. Given a limited number of strategy cards, each
player has to decide on the optimum mix of assets to
accomplish his/her goal.

• The selection of missions in each phase from the set of
allowed missions, and deciding how many of the
available resources to allocate to each mission.

1. Chaotic Events Phase
No decisions by CI. Random factors control events.

2. Initiative Determination
No decisions by CI. Who plays first is decided here.

3. Mobilization (Selection of Strategy Cards)
Each agent selects some of strategy cards (SC) to use.
3.1 Parameters: (number of cards that may be chosen,
list of legal cards to choose from, game state that
influences the value of the selected card)
3.2 Considerations: (actions/impulses granted by the
card and in what space, reinforcements received,
limitations on the placement of reinforcements,
cascading effects, Information Warfare cost incurred,
history of opponent SC selection, etc.)
3.3 Heuristics: Do not select cards whose requirements
cannot be met. Select cards with the intention of using
them in a specific way. Consider look-ahead planning
at this stage.
3.4 CI Ideas: Assess the value for each potential card
combination and action/impulse sequence, develop a
set of rules to guide the selection of cards.

4. InfoSpace Warfare Phase
…
5. AirSystems Space Warfare Phase
…
6. BattleSystems Space Warfare Phase
…
7. Economic Conflict Phase
…
8. Reconstitution Phase

 FIGURE 1. PHASES IN A TURN

 These selections are to be made with the intention of
"maximizing" one's own perceived "value" or utility.

Although this perceived utility may differ from individual to
individual, experience suggests that a "safe" way of playing
the game is to work toward the goal of maximizing the
overall InfoWar points one can control, in terms of gaining
information dominance at the InfoWar level. So a hypothesis
one might posit is that maximal InfoWar point gain with a
least loss in units is a desirable outcome. Whether or not this
strategy leads to a desired political goal is an issue that can be
studied with this simulation.

STRATEGY CARD (BattleSpace)
Name: AirLand Battle
Actions: The player can initiate three Impulses on
the BattleSpace level.
Reinforcements: None.
Modifiers: Gain a +1 die roll modifier for all the
player's Maneuver attacks.
Cascading Effects: Normal.
Infrastructure Requirement. C4I Infrastructure
required.
IW Cost: Lose 20 IW Points
Chaos Level: Raise Chaos Level by 1 die roll
upon play.
Other: Only the United States can play this card.
May not be combined with any other BattleSpace
or Aerial

FIGURE 2. A SAMPLE STRATEGY CARD

II. COMPUTATIONAL INTELLIGENCE AND
COGNITIVE MODELS

 There is no well-developed theory to solve the problem
outlined in Section I. The purpose of this paper is to explore
the role of interactive simulations of specially designed "war
games" to study decision-making aspects of conflicts. In these
interactive games human players will be pitted against
believable software agents that come close to mimicking the
capabilities of humans.

 The goal in developing software agents is not so much

in creating lifelike animations using physical laws and bio-
mechanical modeling techniques. Rather, the goal is to
achieve realism in cognitive modeling, a step beyond
behavior modeling. The agents should react appropriately to
perceived environmental stimuli and exhibit goal directed
behavior. The cognitive models govern what an agent knows,
how that knowledge is acquired, and how it can be used to
plan actions. These agents are vulnerable to common human
foibles like emotion and stress [5]. The objective is in
achieving increased realism in the cognitive and emotional
behavior of the game-playing agents and in capturing social
situations. Finally the agents interact with each other to
facilitate the simulation of group behavior. Such cognitive
models are capable of directing the new breed of highly
autonomous, intelligent agents that are beginning to find use
in interactive computer games.

 The design emphasis is on human-like behavior in a
decision-making environment, not just on speed of the
computer or the application of sheer computational power.

 The essence of conventional implementations of game
playing on computers is search. The most straightforward
way of selecting the best move is to explore all possible
consequences (exhaustive search) of any action that can be
taken in a given state. On a 3 x 3 board of tic-tac-toe, for
example, with two players, this results in the need to explore
9! = 362,880 variations - not a formidable number for a
computer. If one can think of the operations in Cyberwar
XXI's Battle Space as a board game resembling tic-tac-toe on
a 100 x 100 grid, then 10,000! variations would result - surely
a challenge even to the fastest of the computers.

It is true that classical AI search methods do not do an

exhaustive search; they are lot smarter than that. For example,
inherent symmetries in the problem can be exploited to
reduce the search burden. In complicated and realistic games
this may not be possible. Other ingenious tricks and
compromises are possible. In any event, the strength of
classical search techniques hinges on one's ability to perform
a depth analysis and on the quality of static evaluation
function chosen.

In minimax search, for example, player A associates a

"value" to each possible state of the game and then seeks to
minimize this value while player B seeks to maximize the
same evaluation function. This approach suffers from two
drawbacks:

• Assigning values to states is not a trivial exercise; needless

to state that the search result depends on how these
values are assigned.

• The assumption that B is a rational player whose value

system is the same as that of A, and therefore always
chooses the "best" defense as A interprets it.

 In games simulating asymmetric conflicts (terrorism is an
example of asymmetric conflict), this may not be a valid
assumption [4]. One way to overcome this difficulty is to
make the evaluation function of B different from that of A.
Indeed modeling the opponent's evaluation function is in
itself a research topic. A natural way to do this is to observe a
player's behavior during the course of a game and use it in
conjunction with any prior knowledge about the player.
 There are other issues that need further attention. An
action by one player may lead to alternative states - each with
a different probability of occurrence. That is, the evaluation
function will attain its value only with a certain probability.
This forces one to consider the issue of using probability
distributions to describe the consequences of a move.
Classical game theory techniques can be invoked to some
extent to address this problem.

IV. STRUCTURE OF THE AGENT(S)

An examination of the rules of the Cyberwar XXI
revealed that the decision problem is fairly complex. As
decision making by humans is not always rational, believable
decision making behavior is not always rational behavior.
This characteristic makes it difficult to depend on a rational
agent or an agent that depends on systematic search methods
to locate a goal state. Furthermore, given the potentially large
number of players, the large number of options available to
each and the fact that the "opponents" actions are not only
hidden from general view but also they may include random
actions makes the alpha-beta approach less attractive.

In addition to these considerations, there is a need to

operationally decompose agent architecture in terms of some
primitive capabilities. These constituent parts, when
composed together, should give a variety of agent behaviors.

These considerations called for a design that is

flexible, modular and scalable. Instead of having a centralized
agent that does some sort of search to find the correct
response, we decided to make the central agent very simple
(mostly just a multiplexer) and delegate the processing to a
bank of Advisors. The advisors would be comprised of
relatively simple programs that compute a narrow aspect of
the games, and each advisor would pass back to the agent an
advice on what it thinks the agent should do. It would then be
up to the agent to decide which advice to take (see Figure 3).
This is not too unlike a couple of schemes published in the
literature [7] [8].

The game-playing agent described here is comprised of a

"head" agent assisted by a bank of advisors. The Head Agent
is the main interface between the game simulation and the
rest of the CI component (although the game's Database/Data
structures may also be accessed by other components of the
CI engine). The Head Agent receives requests from the main
simulation loop whenever there is a need for decision-making
assistance from the CI side of the game. This request should
include the context (the stage of the simulation where a
decision is to be made) of the simulation. Upon receiving this
information the head agent will ask the bank of advisors for
suggestions on what to do. For instance, if the head agent
receives a signal requesting assistance in picking the strategy
cards for the game, the head agent will pass this signal to all
the advisors. The strategy cards will then be picked
considering the suggestions of all advisors.

Each game-playing agent will have a panel of advisors
for each task involved in the decision-making process.
Therefore one can visualize the possible subset of advisors by
looking at the tasks the agent has to perform in order to make
the overall decision.

For example, the panel of advisors supporting the

Infowarfare Level will have to make the following decisions:

• Strategy card selection
• Play space selection
• Mission selection
− Decide on targets
− Decide on missions
− Decide on Units to carry out missions

High-level advisors (Staff Advisors), at least three

within each of the Levels, perform oversight operations. The
Staff Advisors typically perform the following tasks:

• Looks at the list of advice, and deletes items that would be

overly detrimental to their space (example: if one of the
Battle-Level advisors suggests a card that would have a
large negative impact on the Information-Level, the IW
high level advisor to the Battle-Level sub-agent would
delete that action from the proposal list)

• Looks at the list of possible actions before the low
 level advisors remove any objectionable ones.
• Looks at the Game Information (Database and/or Data

Structures).

Within this design there is great deal of flexibility, both in
terms of the scope of problems it can handle, and in terms of
development. By forcing the advisors to focus on small
enough areas, they should be efficient enough to run within
the lifetime of the universe. The combination of their advice
(by using the trust values) will generate a fairly realistic (but
probably not optimal) agent.

V. PERSONALITY AND EMOTION

The CI agent is expected to simulate the effects of
stressful inputs on emotional states of the players and the
potential impact of these emotional states on the quality of
decision-making [9]. Critically, the simulation can capture not
merely the actions of the real world players, but also can
provide mechanisms for understanding their underlying
maneuvers and objectives. It does so by quantifying factors
such as political support and the "chaos" of transnational
target audiences.

In order to capture the personality aspects of the

players, a Personality Engine (PE) is being designed (see
Figure 4). Modeling behavior and personality are admittedly
very complex and this is one ares evolutionary computing
ideas can play a useful role [5]. Until the design is complete,
one of the Staff Advisors plays the role of a PE. The PE
works in two phases: (a) pruning options available to the
agent before they are considered by the agent's static
evaluation function. This is tantamount to an agent not even
considering an option due to its emotional state. (b)
modifying the weights assigned by the agent's evaluation
function.

Personality is being modeled using two of the major
psychological theories that describe human personality: (a)
Trait theory and (b) Needs-motivation approach. The
structure of the PE consists of four main modules: Traits
module, Needs-Motivation module, Physical module, and
Learning module. The traits module emulates personality by
assigning the agent a value within the range defined for each
of a set of opposed traits and having these traits influence the
agent's decisions. The needs-motivation module works by
assigning the agent certain values of need for a number of
defined factors (i. e., economic, religious, political, etc.).
These values influence the agent's decisions by motivating it
to satisfy its needs within the World State of the given game.
The physical module models the physical state of the agent
viewed as a human being. This feature will allow the agent's
physical state (tired, angry, stressed, etc.) to influence its
decisions. The learning module analyzes past game situations
and predicts the opponent's personalities and strategies and
uses feedback in the decision-making process.

III. LEARNING AND EVOLUTIONARY GAME
PLAYING

 In view of the discussion in Section II, unless the
evaluation function predicts the state values reliably, the
search has to be carried deep into the search tree with the
attendant cost of computation. Ways to reduce this cost is
through instruction, advice taking, pattern recognition and
generalization; in short, via learning. What cannot be
captured through precise rules can possibly be learned from
examples.

One design that was actually implemented, on a trial

basis, is a Battle Space advisor that evolves a neural net along
the lines suggested by Fogel [1]. This paper compares the
effectiveness of the mutation, crossover, and combination
operators in evolving specific checkers strategies. The focus
is on short-tem evolution, that is, the initial generations of
evolution.

ACKNOWLEDGEMENT.

Thanks to Tony Zalewsky, Joe Miranda of Hexagon
Interactive for introducing Cyberwar XXI and supporting
the effort with a SBIR passthrough AFOSR contact. My
students Daniel Castaneda, Chris Marsh, and Leland So
contributed to various facets of the design. Dustin Pium of
Contra Costa College wrote an experimental code to evolve
a neural network capable of learning strategies on a
simplified version of the Battle Space by using the method
described in reference [1]. Discussions with Sunil Vemuri
of Media Labs, MIT helped us to develop a focus. Daniel
Castaneda is designing the Personality Engine. Peter von
Kleinsmid, an independent consultant, is designing the
Game Engine. At the time of this writing the game is not

completely debugged as such no simulation results are
shown. Finally thanks to the anonymous reviewers for
making many valuable suggestions to improve the paper.

References

[1] Fogel, D. B., (2000) "Evolving a Checkers Player Without Relying
on Human Expertise," Intelligence, pp 21-27. http: www.natural-
selection.com

[2] Chellapilla, K. and D. B. Fogel, (1999a) "Evolving Neural
Networks to Play Checkers without Expert Knowledge," IEEE Trans.
Neural Networks, Vol. 10:6, pp. 1382-1391.

[3] Chellapilla, K. and D. B. Fogel, (1999b) "Evolution, Neural
Networks, Games, and Intelligence," Proc. IEEE, Vol. 87:9, Sept., pp.
1471-1496.

[4] J. Miranda and S. Marsella, CYBERWAR XXI: Advanced War
ighting Concepts, Final Report to AFOSR, Hexagon Interactive, 6750
Wedgewood Place, Los Angeles, CA 90068, 1999.

[5] V. W. Porto and L. J. Fogel, "Evolution of Intelligently Interactive
behaviors for Simulated Forces," Sixth International Conference, EP97,
Indianapolis, IN pp 419-429, Lecture Notes in Computer Science, No.
1213, Springer, New York, April 1997.

[6] G. Tesauro, "Temporal difference learning in TD-Gammon,"
Comm. ACM, Vol. 38, No. 3, pp 58-68, 1995.

[7] S. L. Epstein, "For the Right Reasons: The FORR architecture for
learning in a skill domain," Cognitive Science, 18(3): 479-511, 1994.

[8] A. F. R. Rahman and M. C. Fairhurst, "Multiple expert
classification: a new methodology for parallel decision fusion," Intl.
Journal of Document Analysis and Recognition, Vol. 3, pp 40-55,
2000.

[9] I. Wilson, The Artificial Emotion Engine: Driving Emotional
Behavior, http://artificial-emotion.com

Game Simulation Head Agent
Turn, phase

Move

Font &
Strategy

cards
selector
Agent

Info.
Level
Agent

Sys.
Level
Agent

Battle
Level
Agent

Ec.
Level
Agent

Advisors Advisors Advisors Advisors Advisors

Staff
Advisors

Suite of AI tools
(Search, Neural Nets, etc...)

Necessary
Info.

Game Information
(Data structures and/

or Databases)

Current
simulation

Info.

General
Game
Info.

Player Info. & views
of other players

Rules, missions, etc...

FIGURE. 3. AGENT ARCHITECTURE DIAGRAM.

FIGURE. 4. PERSONALITY ENGINE ARCHITECTURE DIAGRAM.

PE Head

Learn ing
module

Tra its
module

N eeds-
M otiv.

moduleG am e
elem ents'

tra it vectors

C urrent em otional state
(traits, needs, physical)

Trait
relation
m atrix

Fixed
(norm al)

personality
tra its vector

PE
Feedback

eng ine

AgentG am e
softw are

E vents that w ill a ffect
the em otional state

G am e softw are
D atabase/

D atastructures

A gent's
database and/or
D ata structures

P ossib le decisions,
atom ic decisions

PERSO NALITY ENG INE

G am e
elem ents'

need
vectors
Fixed

personality
needs
vector

P ast
actions

database
O ther

player's
personality

guess
database

S tate
change
function

P rediction
engine

Physica l
sta te

module

P hysical
state

P hysical
factors
vector

D atabase of
w hat and
how each

event affects
the current

state

S atisfaction
vector

D efault
physical
vector

P hysical
change
engine

