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Abstract

Application of genetic algorithms to problems where
the fitness landscape changes dynamically is a
challenging problem. Genetic algorithms for such
environments must maintain a diverse population that
can adapt to the changing landscape and locate better
solutions dynamically. A niching genetic algorithm
suitable for locating multiple solutions in a multimodal
landscape is applied. The results show the suitability of
such approach to locate and maintain solutions in a
dynamic landscape.

1. Dynamic L andscapes

In this paper we examine the behavior of a niching
algorithm on a multimodal dynamic landscgpe. A
multimodal dynamic landscape is a seach spacewhere
the locations and heights of pedks change with time. A
superior solution (i.e., a pe&k) at time t, could become
an inferior solution at time t; . An example of such a
landscagpe occurs in stock markets where parameters
influencing the price of stocks are wnstantly changing.
In order to oktain the best return for the money invested,
a stock broker must continually monitor these
parameters and move the money so that the best payoff
at that time is redized. Investment solutions that were
not optimal at one time ould pdentialy bewmme
optimal at some other time. In such a landscepe,
keeping a set of possble investment strategies is smart
and necessary.

Multimodal dynamic landscepes, such as the one
described above, present a challenging problem to any
seach technique. First, the heights and widths are
constantly changing. Seocond, new pe&s that are
constantly emerging must be locaed quickly to avoid
missng solutions that could paentialy be useful. Third,
old pe&s that were found useful have since been
flattened. Finaly, solutions that have been found
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previousy must be re-evaluated after some time to
maintain an acaurate value of itsfitness

A tedhnique for multimodal dynamic landscgpes must
be &le to med these challenges by locaing multiple
optima, existing ones and new ones, and maintaining
them. Additionally, it must minimize the number of
function re-evaluations for solutions found thus far
without affeding the mnvergence properties of the
technique. Later, we will see how the Multi-Niche
Crowding (MNC) Genetic Algorithm (GA) (Cedefio,
1995 acmompli shes these tasks.

2. Background

There have been many attempts to apply GAs to
dynamic landscgpes. None of them considered applying
a niching technique to such problems. In one of the
approaches part of the population is re-initialized
(Eshelman, 1991 Grefenstette, 1992 after it has
converged. In this approac it is very hard for the newly
introduced solutions to establish themselves when the
population contains highly fit individuals. Maresky et.
al. (1995 introduced an operator cdled selectively
destructive re-start that improves the previous approach
by reinitiaizing the dromosome in a solution with
certain probability. The probability is determined by a
combination of fadors sich as population size
improvement of the best-in-generation individual, and
the number of function evaluations. The main difficulty
with this approach is to find the gpropriate re-
initi ali zation probability for the problem at hand.

In another work, Cobb and Grefenstette (1993
compared a partial re-start of the population with two
approaches that manipulate the mutation rate of the GA.
In the first approach the mutation probability is =t at a
higher value than in a standard GA . In the second
approad, cdled triggered hypermutation, the mutation
rate is dynamicdly changed to high values when the
time-averaged performance of the GA deteriorates. It
was down that mutation based approaches worked



better than population re-initiali zation for environments
without abrupt changes. Some of the drawbadks are the
reduction in the performance of the GA, in terms of the
improvement to the average fitness of the population.
Addtiondly, the mutation rate seleded affeds the
performance of the GA grealy when applied to rapidly
changing environments.

Some other approaches used sophisticaed
chromosome encoding schemes, such as including the
previous history of the individual (Goldberg and Smith,
1987 Ng and Wong, 1995. In these studies the
chromosomes are encoded using genome structures, like
diploid or trialelic schemes, that are &le to preserve
genetic information that will be beneficial if the
environment changes. In a separate study Dasgupta and
McGregor (1992 used a treestructure representation of
the population. In this approach, cdled the sGA
(structured GA) nodes at a higher level in the tree
reguated the adivation and deadivation of genes at
lower levels in the tree These gproaces were shown
to work well i n a landscape where the solution seems to
oscillate between two peds. It is unclea if these
approaches will work on problems with many pe&ks.

In al of these gproaches the main focus was on
increassing the population diversity. Increassing the
diversity allows the GA to discover new pess while &
the same time preserving the good solutions found thus
far. Our MNC GA exhibits both of these properties
implicitly. Solutions from multi ple pegks are maintained
while & the same time dlowing a subset of the
individuals in the population to explore other regions of
the seach space In the sedions below we will show
how nicdy the MNC GA solves problems in a dynamic
landscape.

3. The Multi-Niche Crowding GA

The aility of organisms to evolve and adapt to their
environment by means of natural seledion has provided
mother nature with a diverse set of spedes. This
foundation, which is part of modern evolutionary
thinking, was laid by Charles Darwin after the
publication of his work “On the Origin of Spedes by
Means of Natural Seledion”. Only organisms well
adapted to their environment can survive from one
generation to the next, transferring on the traits that
made them succesdul to their off spring. Competiti on for
resources between organisms and the ever changing
environment drives me spedesto extinction and at the
same time others evolve to maintain the deli cate balance
in neture. It is through this interadion between reture
and organisms, that spedes possessng favorable traits
for a given environment emerge. In this work we gply
the same principlesin the MNC GA, a genetic dgorithm
that evolves a population of mathematicd solutions

containing different caegories of solutions adapted to
niches in a multimodal environment.

MNC GA isa computational metaphor to the survival
of spedes in ewmlogicd niches in the face of
competition. The MNC GA maintains dable
subpopulations of solutions in multiple niches in
multimodal landscgpes. Each mode or pe& is
considered to be aniche. The dgorithm introduces the
concept of crowding selection to promote mating among
members with similar traits while dlowing many
members of the population to participate in mating. The
algorithm uses worst among most similar replacement
(WAMS) pdicy to promote @mpetition among
members with similar traits while dlowing competition
among members of different niches as well.

The benefits of an approach that can locate multiple
optima axd maintain them throughout the seach are
many. Consider, for example, a dynamic environment
where the optima ae @nstantly changing. A technique
that can locate and maintain multiple optima can inform
the user when the aurrent configuration is no longer the
best based on the parameters in the environment. In
other cases abnormal situations may require dhanges in
the aurrent configuration. Having viable dternatives at
hand can alow for a smocther transition to the new
configuration. An approach that can use a set of
solutions to locate multiple optima is more pradicd for
these types of environments. Additionally, there eist
many problems where the locaion of the best K optima
are nealed in order to compare different answers and
point out further experimentation. The benefits of the
MNC GA have been arealy shown in applicaions to
problems in DNA mapping (Cedefio, Vemuri, and
Slez&, 1995, digtributed databases (Cedefio and
Vemuri 1996, and aquifer management (Cedefio and
Vemuri, 1996).

Figure 1 shows an overview of the MNC GA.
Initially, al the individuals in the population (sizen) are
creaed at random and evaluated in parallel. Once the
initial population is creaed, the operations of seledion,
mating and mutation, and replaceament are gplied for a
given number of generations. In ead generation
individuals in the population are seleded sequentially
for mating, one & a time, and their mates are chosen
using crowding seledion. Then ead pair participates in
mating producing 2 offspring. The 2 dffspring urdergo
mutation and those that are diff erent to their parents are
allowed to participate in replacament. The off spring left
are then inserted, one & a time, into the population
using WAMS replacement. These steps are repeded for
the spedfied number of generations.

- CGenerate initial
at random

popul ati on of size n



- Bvaluate initial population.
- For gen = 1 to MAX_CENERATI ONS
For individual =1 to n

- Use crowding selection to find mate
for individual

- Mate and nutate of fspring

- Insert offspring in popul ation
usi ng WAMS r epl acement

Figure 1. Overview of the Multi-Niche Crowding GA.

In the MNC GA bath the seledion and replacement
steps are modified with some type of crowding (De
Jong, 1975. The idea is to eliminate the seledion
presare caised by fithess propartionate reproduction
(FPR) and allow the population to maintain diversity
throughout the search. This objedive is achieved in part
by encouraging mating and replacement within the
members of the same niche while dlowing some
competition for the population slots among the niches.
The result is an agorithm that (a8) maintains gable
subpopulations within different niches, (b) maintains
diversity throughout the seach, and (c) converges to
different locd optima. No prior knowledge of the search
spaceis neaded and no restrictions are imposed during
seledion and replacament thus al owing exploration of
other areas of the seach spacewhile wnverging to the
best solutions in the diff erent niches.

3.1 Crowding Selection

In MNC, the FPR seledion is replaced by what we
cdl crowding selection. In crowding seledion most
individuals in the population get a chance for mating in
every generation. Application of this €ledion rule is
done in two steps. First, an individua from the
population is £leded as a parent for mating. Seoond, its
mate is sleded, not from the entire population, but
from a small group of individuals of size Cs (crowding
seledion group size), picked uniformly at random (with
replacement) from the population. The mate thus chosen
must be the one who is most “similar” to the seleaed
individual. The similarity metric used here is not a
genotypic metric such as the Hamming distance, but a
suitably defined phenotypic distance metric. The
Euclidean distance between two padnts is sich a metric
when the MNC GA is applied to function optimization.

Crowding seledion promotes mating among members
having simil ar traits and alows many of the members of
the population to participate in mating. This allows
members of the same niche to perticipate in mating
more often and preserve those traits that define their
spedes. At the same time mating between different
spedes may occur giving rise to new spedes. Unlike
mating restriction (Deb and Goldberg, 1989 that only

allows individuals from the same niche to mate,
crowding seledion alows me anount of exploration
to occur while & the same time looking for the best
individual in ead niche.

3.2 Worst Among Most Similar Replacement

During the replacement step, MNC wuses a
replacement policy cdled worst among most similar
(WAMYS). The goa of this dep isto pick an individual
from the population for replacement by an offspring.
Implementation of this palicy foll ows these steps. First,
C: “crowding fador groups’ are aeaed by picking
uniformly at random (with replacement) s (crowding
group size) individuals per group from the population.
Seoond, one individual from ead goup that is most
similar to the offspring is identified. This gives C;
individuals that are candidates for replacement by virtue
of their similarity to the offspring. The offspring will
replace one of them. From this group of most similar
candidates, we pick the one with the lowest fitnessto
die and bereplacel by the off spring.

After the off spring becomes part of the population it
competes for survival with other individuals when the
next offspring is inserted in the population. In WAMS
replacament offspring are likely to replacelow fitness
individuals from the same niche. It can also happen that
it replaces a high fitnessindividual from the same niche
or an individual from another niche. This allows a more
diverse population to exist throughout the search. At the
same time it promotes competition between members of
the same niche axd between members belonging to
different niches. A similar technique was used hy
Goldberg (1989 in clasdfier systems, but in that work
the most similar individual out of a group of low fitness
candidates was replace.

Worst among most similar replacement promotes
competition among members with similar traits
belonging to the same niche while dl owing competition
among members of different niches. This replacement
technigue acomplishes two things. First, by promoting
competition among members of the same spedes in a
niche it applies the survival of the fittest rule that is ©
prevalent in neture. Only those that are fit to their
environment can survive for many generations, thus
allowing the spedes to evolve to their best potential
within their niche. Semnd, by alowing competition
between different spedes, those spedes that are abetter
fit for their environment tend to occupy more slots in
the overall population.

Both the seledion and replacament steps in the MNC
are primarily based on asimilarity metric. Fitnessis also
considered during replacement to promote competition
among members of the same niche. Competition among
members of diff erent niches occurs naturaly.



4. Test Function Used

In this section we describe a multimodal test function
with dynamically changing peaks that was used to test
the performance of the MNC GA. We also describe the
parameter settings for the MNC GA. The test function
used here is based on

P
F(xy) = 3 Hi /T+W[(x = X)? +(y-¥)?]
i=1

where P indicates the number of pe&ks in the function,
(%, Y;) the ordinates of pe&k i, H; the height of pe&k
i, and W, determines the width at the base of ped i.
Note that the lower the value of W, the wider the base of
the pe&k. We want to test three caes with this function.
Thefirst caseis based on alandscgpe where the number
of peeks (or optima) at the beginning of the run is the
same @& when the run ends, but the location and
properties of the pe&k (width and height) are different.
For this case we generate 10 peeks (with different width
and height) at random. We start the run with the first set
of 5 pe&ks completely manifested in the landscape.
Then we dynamicdly deaease the height of these pesks
while & the same time increase the height of the second
set of 5 pedks. Toward the completion of the run al the
pe&ks in the first set have disappeared and the pe&ks in
the second set are fully manifested.

The second case is smilar to the first case, but here
we start with 2 pedks in the first set and dynamicdly
change to the second set containing 8 pe&ks. Thiscaseis
more dallenging since the MNC GA must be ale to
dynamicdly locae and spread the individuas in the
population to ather pe&ksin the landscape.

The third and final case is a mirror image of the
semnd case. We start with an initial set of 8 pess and
dynamicdly change them to a second set containing 2
pe&ks. This case was done for completeness only, since
success in the seoond case, described above, will
provide some results indicating the expeded behavior in
this smpler case.

In al three caes we used the 10 pe&ks (generated
randomly) shown in Table 1. Case 1 contains pe&ks 1 to
5 in the first set and peaks 6 to 10in the second set.
Case 2 contains peaks 1 and 2 in the first set and pe&ks
3to 10in the second set. Finally, case 3 contains pe&ks
1to 8in the first set and pesks 9 and 10in the second
Set.

The landscgpe is formed from the @ntribution of
ead set of pedks to the total value of the function. The
contribution of ead set of peaks is incresed or
deaeased by 10% every g generations. In our tests we
used values of g equal to 10and 20 generations. To be

Table 1: Parameters for the 10 pedks used for all tests.

P Peak Location W dt h Hei ght
1 (8.37208, 64.8927) | 3.81693 63. 0384
2 (50.1509, 13.6573) | 3.54459 96. 1568
3 (51.1377, 28.8592) | 1.6538 68. 0674
4 (51.712, 9.99087) 4.32051 89. 004
5 (9.3263, 19.3406) 1. 92525 27.3985
6 (30.6667, 55.8088) | 4.41471 73.3882
7 (47.7256, 38.3194) | 0.91631 90. 1156
8 (28.3306, 12.1417) | 4.93385 85. 6341
9 (25.8438, 50.7668) | 0.20225 13. 2312
10 | (11.7122, 30.492) 1. 02969 82.9828

more exad, let hy(x,y) be the function, similar to F, with
pesks defined from set 1. Let hy(x,y) be the function,
similar to F, with pe&s defined from set 2. The fitness
value f(x,y) of an individual in generation K is given by
the foll owing equation:

f(x,y) = (1= 01 m (x,y) + 01 o (x.Y)

Due to the steady state nature of the MNC GA,
individuals that survive for many generations (here a
generation is defined as the gplicaion of n seledion
steps) must be re-evaluated to properly adjust their
fitness For these tests we re-evaluated all individuals
that have been in the population for more than 10
generations.

5. Resultsand Discussion

The simulations were done in a 48633 MHz PC with
an applicaion developed using the “ANSI C” language.
The genome for ead individua is comprised of two
chromosomes x and y representing the cordinates of
the test functions. Each coordinate, 0 < x, y < 65535
was encoded using a 32 kit chromosome. The genome
for ead individual will then consist of a 64 bt string.
The individuals in the initial population were generated
at random.

The qossover operator used during mating is cdled
interval crossover. In interval crossover only one
offspring is generated. For ead par of parent
chromosomes, x; and X,, (asume without loss of
generdity that the cadinal value of binary string x; is
less than the cadinal vaue of binary string x,), the
off spring’s chromosome is €leded at random from the
interval [x;-€/2, X+€/2]. The value for € isusually small,
less than 0.001% of the highest cardinal vaue for the
binary string. This all ows the off spring to move outside
the boundaries delineaed by their parents. The usual bit
mutation was appli ed to the off spring after crossover.



The crossover probability (x) was set at 1.0 with € =
2000. The mutation probability (1) was set at 0.003.
Similarity between two individuals was determined by
adding the distance (using the chromosome decimal
value) between all chromosomes in the genome. For
example, for two individuals I, and |, with genomes (x4,
y1) and (%o, Yo) respectively, we have the similarity
between them given by the sum [x; - Xo| + [y1 - V2| This
metric is equivalent to using the phenotype values of the
chromosomes. The MNC GA was executed for 120
generations in each run. All other parameters for the
MNC GA were set as follows;

Population size (n): 200

Crowding selection size (Cs): 20
Crowding factor (C;): 4
Crowding group size (s): 40

These values were selected to allow mating among
individuals from different peaks more often and to
increase replacement of less fit individuals from the
same peak. They may not (with a high probability) be
the optimal values for these tests.

The results are very promising. In al test cases the
MNC GA was able to locate the new peaks emerging at
different locations of the landscape. Moreover, the niche
count adjusted dynamically among the peaks as their
height and width changed. The maximum fitness of the

Niche Count
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Figure 2: Niche count (top) and niche maximum fitness (bottom) for test case 2 using avalue of g = 10.



highest pess was found and maintained dynamicaly
during the run.

Figure 2 shows the niche cunt and the niche
maximum fitness for test case 2. We can observe the
algorithm converging to the first two pe&ksin the initial
generations. As the other pe&s emerge they were
locaed and al peaks maintained in parallel. After
generation 100the initial two peéks disappeaed and so
did the individuals in the niche. From the niche
maximum fitness graph, in the same figure, we can
observe the steps for ead peék. It indicaes how the
MNC GA was able to locate the maxima in the highest
pe&ks, maintain them during the run, and adjust to the
changes dynamicdly. Asthe pe&ksin set 1 (pe&s 1 and
2) deaeassed so dd their niche ount. Between
generations 50 and 60 when both sets of pesks
contributed equally to the total fitness we can see @
the lines coming together in the darts. After this point
the pe&ksin the second set took over the population.

Other tests can be done to determine with more
certainty the goplicability of the MNC GA to dynamic
environments. For example, we can use a landscape
where dl pe&ks are changing independently of eat
other and new pe&ks are aeded at random. Such an
environment is more pradicd and is an areawhere more
reseach is needed. Nevertheless the test cases used
here have shown the aility of the MNC GA to adapt
well to such environments. It locaes and maintains the
different pedks dynamicdly without the need of
restarting the population, using a higher mutation rate,
or using spedal encoding for the chromosomes.

6. Summary

The properties exhibited by the MNC GA are very
encouraging. The gproach succesgully locaes multiple
optima and maintains dable subpopulations in ead
pe&. The formation of different subpopulations in the
niches evolve naturally thus maintaining a very hedthy
diversity throughout the seach. It is this equili brium
between exploration and exploitation of the seach
spacethat makes the MNC GA a very good technique
for complex problems in static or dynamic
environments. A more rigorous analysis must be made
before we can claim the successof the dgorithm when
applied to ather problems. The aility to seach a
complex space in an effedive manner and locae
multiple optima will be useful in many areas where
current optimization techniques do not work well. The
same properties make the MNC GA applicable to
problems where the seach space is changing
dynamicdly.
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