Using K-Nearest Neighbor Classifier for Intrusion Detection

Yihua Liao, V. Rao Vemuri
Department of Computer Science
University of California, Davis
One Shields Avenue, Davis, CA 95616
{yhliao, rvemuri}@ucdavis.edu

Abstract

A new approach, based on the k-Nearest Neigh-
bor (kNN) classifier, is used to classify program
behavior as normal and intrusive. Short se-
quences of system calls have been used to char-
acterize a program’s normal behavior. How-
ever, separate databases of short system call se-
quences have to be built for different programs,
and learning program profiles involves time-
consuming training and testing processes. With
the ANN classifier, the frequencies of system
calls are used to describe the program behavior.
Text categorization techniques are adopted to
convert each program execution to a vector and
calculate the similarity between two program
ctivities. Since there is no need to generate
individual program profiles, the calculation in-
volved is largely reduced. Preliminary experi-
ments with 1998 DARPA BSM audit data show
that the ENN classifier can effectively detect in-
trusive attacks and achieve a very low false pos-
itive rate. Timing and scaling properties of this
method are currently under investigation.

1 Introduction

Intrusion detection has always played an im-
portant role in computer security research [1].
Two general approaches to intrusion detection
are currently popular: misuse detection and
anomaly detection. In misuse detection, ba-

sically a pattern matching method, a user’s
activities are compared with the known sig-
nature patterns of intrusive attacks. Those
matched are then labeled as intrusive activi-
ties. That is, misuse detection is essentially a
model-reference procedure. While misuse de-
tection can be effective in recognizing known
intrusion types, it tends to give less than satis-
factory results in detecting novel attacks.

Anomaly detection, on the other hand, looks
for patterns that deviate from the normal(for
example, [2, 3]). In spite of their capability
of detecting unknown attacks, anomaly detec-
tion systems suffer from the basic difficulty in
defining what is “normal”. Methods based on
anomaly detection tend to produce many false
alarms because they are not capable of discrim-
inating between abnormal patterns triggered by
an otherwise authorized user and those trig-
gered by an intruder [4].

Regardless of the approach used, almost all in-
trusion detection methods rely on some sort
of signature tracks of activity left behind by
users. People trying to outsmart an intrusion
detection system can deliberately cover their
tracks by consciously changing their behavior
patterns. Some examples of obvious features
that a user can manipulate are the identity of
the host machine from where an attack origi-
nated, time of log-in and the command set used
[5]. This, coupled with factors emanating from
privacy issues, makes the modeling of user ac-
tivities a less attractive option.

Rao Vemuri

Rao Vemuri
This sentence needs rewriting. Suggest something like -

Text categorization techniques are adopted by representing each program execution behavior as a vector and calculating the similarity between the exceution behaviors of two programs.

Learning program behavior and building pro-
gram profiles is another possibility. Indeed
building program profiles, especially those of
privileged programs, has become a popular al-
ternative to building user profiles in intrusion
detection|[6, 7, 8, 9]. Capturing the system call
history associated with the execution of a pro-
gram is one way of creating the execution pro-
file of a program. Program profiles appear to
have the potential to provide concise and sta-
ble descriptions of intrusion activity. Further-
more, they are less prone to subjectivity than
user behavior profiles because it would be diffi-
cult for attackers to cover their signature tracks
left in system call history. To date, almost all
the research in this area was focused on using
short sequences of system calls generated by in-
dividual programs. The local ordering of these
system call sequences was then examined and
classified as normal and intrusive. There is one
theoretical and one practical problem with this
approach. Theoretically, no justification was
provided for this definition of “normal” behav-
ior. Notwithstanding this theoretical gap, this
procedure is tedious and costly because it is dif-
ficult and time consuming to build and main-
tain profiles to all the programs (i.e., system
programs and application programs). Although
the system programs are not generally updated
as often as the application programs, the execu-
tion traces of system programs are likely to be
dynamic also, thus making it difficult to char-
acterize “normality”.

This paper treats the system calls differently.
Instead of looking at the local ordering of the
system calls, this method uses the frequencies
of system calls to characterize program behav-
ior. This stratagem allows the treatment of
long stretches of system calls as one unit thus
allowing one to bypass the need to build and
maintain separate databases for each program.
Using the text processing metaphor, each sys-
tem call is then treated as a “word” in a long
document and the set of system calls generated
by a process is treated as the “document”.This
analogy makes it possible to bring the full spec-
trum of well-developed text processing methods

[10, 11] to bear on the intrusion detection prob-
lem. One such method is the k-Nearest neigh-
bor classification method.

The rest of this paper is organized as follows.
In Section 2 we review some related work. Sec-
tion 3 is a brief introduction to the ANN text
categorization method. Section 4 describes de-
tails of our experiments with the 1998 DARPA
data, and Section 5 contains our conclusions
and some thoughts on future work.

2 Related Work

Ko et al. at UC Dayvis first proposed to moni-
tor execution of privileged programs using au-
dit trails and detect exploitations of vulnerabil-
ities in those security-critical programs[12]. A
program policy specification language is used to
specify the intended behavior of some privileged
programs (setuid root programs and daemons)
in Unix. Any violation of the specified behavior
is considered “misuse” of privileged programs.
It’s claimed that this specification-based intru-
sion detection approach detects known attacks
as well as unknown vulnerabilities. The main
drawback of this method is the difficulty of
determining the intended behavior and writ-
ing security specifications for all monitored pro-
grams. Despite its disadvantage, this research
opened the door of modeling program behav-
ior for intrusion detection. Uppuluri et al. ap-
plied the specification-based techniques to the
1999 DARPA data using a behavioral monitor-
ing specification language[13].

Forrest’s group at the University of New Mex-
ico introduced the idea of using short sequences
of system calls issued by running programs as
the discriminator for intrusion detection [6].
The Linux program strace was used to capture
system calls. Normal behavior was defined in
terms of short sequences of system calls of a
certain length in a running Unix process, and
a separate database of normal behavior was

built for each process of interest. A simple ta-
ble look-up approach was taken, which scans a
new audit trace, tests for the presence or ab-
sence of new sequences of system calls in the
recorded normal database for a handful of pro-
grams, and thus determines if an attack has
occurred. Lee et al. [8] extended the work
of Forrest’s group and applied RIPPER, a rule
learning program, to the audit data of the Unix
sendmail program. Both normal and abnor-
mal traces were used. Warrender et al. [7] in-
troduced a new data modeling method, based
on Hidden Markov Model (HMM), and com-
pared it with RIPPER and simple enumeration
method. For HMM, the number of states is
roughly the number of unique system calls used
by the program. Although HMM gives compa-
rable results, the training of HMM is compu-
tationally expensive, especially for long audit
traces. Ghosh and others [9] employed artifi-
cial neural network techniques to learn program
behavior profiles for the 1998 DARPA BSM
data. More than 150 program profiles were es-
tablished. For each program, a neural network
was trained and used for anomaly detection.

Wagner et al. proposed to implement intrusion
detection via static analysis[14]. The model of
expected application behavior was built stat-
ically from program source code. During a
program’s execution, the ordering of system
calls was checked for compliance to the pre-
computed model. The main limitation of this
approach is the run-time overhead involved in
building models for individual programs from
lengthy source code.

Unlike most researchers who concentrated on
building individual program profiles, Asaka et
al. [15] introduced a simple method based on
discriminant analysis. Without examining all
system calls, an intrusion detection decision
was made by analyzing only 11 system calls in a
running program and calculating the program’s
Mahalanobis’ distances to normal and intrusion
groups of the training data. Due to its small
size of sample data, however, the feasibility of
this approach still needs to be established.

Ye et al. intended to compare the intrusion
detection performance of using frequency prop-
erty and ordering property of system calls[16].
The names of system calls were extracted from
the audit data of both normal and intrusive
runs, and labeled as normal and intrusive re-
spectively. This work neglected the fact that
both frequency and ordering properties of sys-
tem calls are program dependent, and a sin-
gle system call within an intrusive run might
be perfectly normal. This oversimplification
makes their methodology and results question-
able.

Lastly, it is worth pointing out that our work
differs from [17] in that the k-Nearest neigh-
bor classification is implemented in our work,
whereas in [17] the false alarm rate was used
as a heuristic to classify test data when apply-
ing instance based learning techniques to learn
Unix Shell command sequences.

3 Review of K-Nearest Neighbor
Text Categorization Method

Text categorization is the process of grouping
text documents into one or more predefined cat-
egories based on their content. A number of
statistical classification and machine learning
techniques have been applied to text catego-
rization, including regression models, Bayesian
classifiers, decision trees, nearest neighbor clas-
sifiers, neural networks, and support vector
machines[18].

The first step in text categorization is to trans-
form documents, which typically are strings of
characters, into a representation suitable for the
learning algorithm and the classification task.
The most commonly used document represen-
tation is the so-called vector space model. In
this model, documents are represented by vec-
tors of words. A word-by-document matrix A is
used for a collection of documents, where each
entry represents the occurrence of a word in

a document, i.e., A = (a;;), where a;; is the
weight of word 7 in document £. There are sev-
eral ways of determining the weight a;;. Let
fix be the frequency of word 7 in document £,
N the number of documents in the collection, M
the number of distinct words in the collection,
and n; the total number of times word ¢ occurs
in the whole collection. The simplest approach
is Boolean weighting, which sets the weight a;
to 1 if the word occurs in the document and 0
otherwise. Another simple approach uses the
frequency of the word in the document, i.e.,
ai = fir- A more common weighting approach
is the so-called tf -idf (term frequency - inverse
document frequency) weighting:

N
aik = fik X log <—) (1)
n;
A slight variation [19] of the tf -idf weighting,
which takes into account that documents may
be of different lengths, is the following:

fi N
Qi = \/&T:kilffk x log (n_z) (2)

For matrix A, the number of rows corresponds
to the number of words M, i.e., the size of the
vocabulary, in the document collection. There
could be hundreds of thousands of different
words. In order to reduce the high dimen-
sionality, stop-word (frequent word that car-
ries no information) removal, word stemming
(suffix removal) and additional dimensionality
reduction techniques, feature selection or re-
parameterization, are usually employed.

To classify a class-unknown document vector
X, the k-Nearest Neighbor classifier algorithm
ranks the document’s neighbors among the
training document vectors, and uses the class
labels of the k£ most similar neighbors to predict
the class of the new document. The classes of
these neighbors are weighted using the similar-
ity of each neighbor to X, where similarity is
be measured by Euclidean distance or the co-
sine value between two document vectors. The

cosine similarity is defined as follows:

ZtE(XﬂD')wi X dz'j
. X D frd * .
S’Lm()]) ||X||2 X ||-D]||2 (3)

where X is the test document; D; is the jth
training document; %; is a word shared by X
and Dj; z; is the weight of word ¢; in X; d;; is
the weight of word ¢; in document Dj; || X||o =
\/ac% + 23 + 23 + ... is the norm of X, and || D; |2
is the norm of D;. A cutoff threshold is needed
to assign the new document to a known class.

Compared to other text categorization meth-
ods, kNN doesn’t rely on prior knowledge, and
it is computationally efficient. The main com-
putation is the sorting of training documents in
order to find the & nearest neighbors for the test
document. More importantly, in a dynamic en-
vironment that requires frequent additions to
the training document collection, incorporat-
ing new training documents is easy for the ANN
classifier.

We seek to draw an analogy between a text doc-
ument and the sequence of all system calls is-
sued by a program. Then it is straightforward
to adapt text categorization techniques to mod-
eling program behavior. Table 1 illustrates the
similarity in some respects between text cate-
gorization and intrusion detection when apply-
ing the ENN classifier. There are some advan-
tages to apply text categorization methods to
intrusion detection. First and foremost, the size
of the system-call vocabulary is very limited.
There are only less than 100 distinct system
calls in the DARPA BSM data, while a typi-
cal text categorization problem could have over
15000 unique words[18]. Thus the dimension
of the word-by-document matrix A is signifi-
cantly reduced. It is not necessary to apply any
dimensionality reduction techniques. Secondly,
intrusion detection is a simple binary catego-
rization problem, which makes adapting text
categorization methods very straightforward.

Terms Text categorization Intrusion Detection
N total number of documents total number of processes (programs)
M total number of distinct words total number of distinct system calls
n; number of times ith word occurs number of times ith system call was issued

ik frequency of ¢th word in document &

frequency of ith system call in process k

D; jth training document

jth training process

X test document

test process

Table 1: Analogy between text categorization and intrusion detection when applying the ANN

classifier.

4 Experiments

4.1 Data Set

We applied the k-Nearest Neighbor classifier to
the 1998 DARPA data. The 1998 DARPA In-
trusion Detection System Evaluation program
provides a large sample of computer attacks em-
bedded in normal background traffic[20]. The
TCPDUMP and BSM audit data were collected
on a simulation network that simulates the net-
work traffic of an Air Force Local Area Net-
work. It consists of seven weeks of training data
and two weeks of testing data. There were 38
types of network-based attacks and several real-
istic intrusion scenarios conducted in the midst
of normal background data.

We used the Basic Security Module (BSM) au-
dit data collected from a victim Solaris machine
inside the simulation network. The BSM audit
logs contain information on system calls pro-
duced by programs running on the Solaris ma-
chine. See [21] for a detailed description of BSM
events. We only recorded the names of system
calls. Other information of BSM events, such
as arguments to the system call, object path
and attribute, return value, etc., was not used.

The DARPA data was labeled with session
numbers. Each session corresponds to a
TCP/IP connection between two computers.
There were about 500 sessions recorded by the
BSM tool of the Solaris machine each simula-

tion day. Individual sessions can be program-
matically extracted from the BSM audit data.
Each session consists of one or more processes.
A complete ordered list of system calls is gen-
erated for every process. A sample system call
list is shown below. The first system call issued
by Process 994 was close, execve was the next,
then open, mmap, open and so on. The process
ended with a system call ezit.

Process ID: 99

close erecve open mmap open
mmap mmap MUNMap mmap Mmap
close open mmap close open
mmap MMap munmap mmap close
close munmap open ioctl access
chown ioctl access chmod close
close close close close exit

The numbers of occurrences of individual sys-
tem calls during the execution of a process were
counted. Then text weighting techniques are
ready to transform the process into a vector.
We used formula (2) to encode the processes.

Preselection of processes was conducted during
our off-line data analysis. We only chose the
ones with the ezecve system call. We found
it was an effective way to separate the user-
level processes from the kernel-level processes
in the voluminous BSM logs. In addition, Some
trivial processes that occurred frequently and
yet are not relevant to attacks, such as date,
sleep and ps, were skipped. After preselection,
the number of processes of one simulation day

is somewhere between 2400 and 4000.

4.2 Anomaly Detection

First we implemented intrusion detection based
on normal program behavior. In order to en-
sure that all possible normal program behav-
iors are included, a large training data set is
preferred for anomaly detection. On the other
hand, large training data set means large over-
head in using a learning algorithm to model
program behavior. We arbitrarily chose 3556
processes from the normal background data of
the training period. Our normal data set is
about one simulation day’s load on the victim
Solaris machine. We believe it is a typical data
set. There are 49 distinct system calls observed
from the training data set.

Once we have the training data set for normal
behavior, the kNN text categorization method
can be easily adapted for anomaly detection.
We scan the test audit data and extract the
system call sequence for each new process. The
new process is also transformed to a vector with
the same weighting method. Then the similar-
ity between the new process and each process
in the training normal process data set is calcu-
lated using formula (3). If the similarity score
of one training normal process is equal to 1,
which means the system call lists of the new
process and the training process match per-
fectly, then the new process would be classi-
fied as normal process immediately. Otherwise,
the similarity scores are sorted and the £ near-
est neighbors are chosen to determine whether
the new program execution is normal or not.
We calculate the average similarity value of
the k nearest neighbors (with highest similar-
ity scores) and set a threshold. Only when
the average similarity value is above the thresh-
old, the new process is considered normal. The
pseudo code for the adapted kNN algorithm is
presented in Figure 1.

In intrusion detection, the Receiver Operating

build the training normal data set D;
for each process z in the test data do
if has an unknown system call then
z is abnormal;
else then
for each process D; in training data do
calculate sim(z, Dj);
if sim(z, D;) equals 1.0 then
z is normal and exit;
find k biggest scores of sim(z, D);
calculate sim_avg for k-nearest neighbors;
if sim_avg is greater than threshold then
z is normal;
else then
z is abnormal;

Figure 1: Pseudo code for the kNN classifier
algorithm for anomaly detection.

Characteristic (ROC) curve is usually used to
measure the the performance of the method.
The ROC curve is a plot of intrusion detec-
tion accuracy against the false positive prob-
ability. It can be obtained by varying the de-
tection threshold. We formed a test data set to
evaluate the performance of the NN classifier
algorithm. The BSM data of the first day of the
seventh training week was chosen as part of the
test data set (none of the training processes was
from this day). There was no attack launched
on this day. It contains 456 sessions and 2436
normal processes. The rest of the test data set
consists of 55 intrusive sessions chosen from the
seven-week DARPA training data. There are
42 clear or stealthy attack instances included
in these intrusive sessions (some attacks involve
multiple sessions), representing all types of at-
tacks and intrusion scenarios in the seven-week
training data. Some attack sessions of the same
types are skipped for simplicity. When a pro-
cess is categorized into abnormal class, the ses-
sion that the process is associated with is clas-
sified as an attack session. The intrusion de-
tection accuracy is calculated as the rate of de-
tected attacks. Each attacks counts as one de-
tection, even with multiple sessions. Unlike the
groups who participated in the 1998 DARPA

Intrusion Detection Evaluation program[22], we
define our false positive probability as the rate
of mis-classified processes, instead of of mis-
classified sessions.

The performance of the ENN classifier algo-
rithm also depends on the value of &, the num-
ber of nearest neighbors of the test process.
Usually the optimal value of k is empirically
determined. We varied k’s value from 3 to 20.
Figure 2 shows the ROC curves for different k&
values. Obviously, £ = 5 is a better choice than
other values. For k = 5, the kNN classifier algo-
rithm can detect 64.3% of the attacks with zero
false positive rate and threshold of 0.74. And
the detection rate reaches 100% rapidly when
the threshold is raised to 0.87 and the false pos-
itive rate remains as low as 0.082% . In other
words, all the attacks can be detected at the
cost of only 2 to 3 false alarms per day, consid-
ering the total number of processes is around
3000 per simulation day.

The RSTCORP group [9] gave the best per-
formance during the evaluation of the 1998
DARPA BSM data [22]. Their Elman neural
networks were able to detect 77.3% of all in-
trusions with no false positives, and 100% of
all attacks with about 10% miss-classified nor-
mal sessions, which means 40 to 50 false pos-
itive alarms per day. Compared to the El-
man networks, our kNN classifier has slightly
lower attack detection rate at zero false posi-
tive rate, but the attack detection rate reaches
100% much faster than the Elman nets, and
the number of false alarms can be reduced by
one order of magnitude. This is a significant
improvement.

4.3 Anomaly Detection Combined with
Signature Verification

We have just shown that the ANN classifier al-
gorithm can be implemented for effective abnor-

mality detection. The overall running time of
the kNN method is O(N), where N is the num-

ber of processes in the training data set. The
algorithm of finding %k biggest numbers out of
N numbers is, in the main, responsible for this.
When N is large, this method could still be
computationally expensive for some real-time
intrusion detection systems. In order to detect
attacks more efficiently, the kNN anomaly de-
tection can be easily integrated with signature
verification. The malicious program behavior
can be encoded into the training set of the clas-
sifier. After carefully studying the 42 attack
instances within the seven-week DARPA train-
ing data, we generated a data set of 19 intrusive
processes. This intrusion data set covers most
attack types of the DARPA training data. It
includes the most clearly malicious processes,
including ejectexploit, formatexploit, ffbexploit
and so on.

For the improved kNN algorithm, the training
data set includes 3556 normal processes as well
as the 19 aforementioned intrusive processes.
The 3556 normal processes are the same as the
ones in subsection 4.2. Each new test process
is compared to intrusive processes first. When-
ever there is a perfect match, i.e., the cosine
similarity is equal to 1.0, the new process is
labeled as intrusive behavior. Otherwise, the
abnormal detection procedure in Figure 1 is
performed. Clearly, this method reduces the
calculation further and speeds up the intrusion
detection.

The performance of the improved NN classifier
algorithm was evaluated with 24 attacks within
the two-week DARPA testing audit data. The
DARPA testing data contains some known at-
tacks as well as novel ones. Some intrusive ses-
sions of the same types were not included in the
test data set. Table 2 presents the the attack
detection accuracy for k = 5 and the thresh-
old of 0.87. The false positive rate remains the
same.

The two missed attack instances were a new de-
nial of service attack, called processtable. They
matched with one of training normal processes
exactly, which made it impossible for the ANN

Attack detection rate

0.5 |
/
/
!
04F — - k=3 [+
— k=5
k=10
- k=20
0.3 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

False positive rate(%)

Figure 2: Performance of the kNN classifier method expressed in ROC curves. False positive rate
vs attack detection rate for k = 3, 5, 10 and 20.

Attack Instances | Detected | Detection rate
Known attacks 16 16 100%
Novel attacks 8 6 5%
\ Total [24 | 22 | oL7% |

Table 2: Attack detection rate for DARPA testing data (k = 5 and threshold = 0.87) when
anomaly detection is combined with signature verification.

algorithm to detect. We suspect that these two
instances were at very early stage. Therefore
they didn’t show any abnormality. Among the
other 22 detected attacks, one was captured
with signature verification.

5 Discussion

In this paper we have proposed a new algorithm
for modeling program behavior in intrusion de-
tection, which is based on the R!Nearest Neigh-
bor classifier method, a method that was found
to be very effective in text categorization. Our
preliminary experiments with the 1998 DARPA
BSM audit data have shown that this approach
is able to effectively detect intrusive program
behavior. Compared to other methods using
short system call sequences, the NN classifier
doesn’t have to build separate profiles of short
system call sequences for different programs,
thus the calculation involved with classifying
new program behavior is largely reduced. Our
results also show that the false positive rate can
be decreased by an order of magnitude, which
is a significant improvement. In addition, the
kNN classifier method works well with dynamic
environments that requires frequent updates of
the training data, which makes it attractive for
intrusion detection.

In our current implementation, the audit data
analysis is performed offline. However, the kNN
classifier method is well suitable for real-time
intrusion detection. FEach intrusive attack is
usually conducted within one or more sessions,
and every session contains several processes.
Since the kNN classifier method monitors the
execution of each process, it is very likely that
an attack can be detected while it is in opera-
tion.

The results reported here are preliminary. Fur-
ther research is in progress to address issues
such as reliability, timing and scaling proper-
ties of the kNN classifier method, and quanti-

tative comparison with other machine learning
and statistical techniques.

6 Acknowledgment

We thank Dr. Marc Zissman of Lincoln Labora-
tory at MIT for providing us the DARPA train-
ing and testing data. This work is supported in
part by the AFOSR grant F49620-01-1-0327 to
the Center for Digital Security of the University
of California, Davis.

References
[1] S. Axelsson, “Intrusion Detection
Systems: A Survey and Taxonomy”,

http://citeseer.nj.nec.com/
axelssonQ0intrusion.html, 2000.

[2] H.S. Javitz and A. Valdes, The NIDES
Statistical Component: Description and
Justification, Technical Report, Computer
Science Laboratory, SRI International,
Menlo Park, CA, March 1994.

[3] H.S. Vaccaro and G.E. Liepins, “Detec-
tion of Anomalous Computer Session Ac-
tivity”, Proceedings of 1989 IEEE Sym-
posium on Security and Privacy, 280-289,
1989.

[4] E. Lundin and E. Johnsson, “Anomaly-
based intrusion detection: privacy concern

and other problems”, Computer Networks,
vol. 34, 623-640, 2000.

[5] Dao Vu and V Rao Vemuri, “A Perfor-
mance Comparison of Different Back Prop-
agation Neural Networks Methods in Com-
puter Network Intrusion Detection”, Dif-
ferential Equations and Dynamical Sys-
tems, December 2001 (to appear)

[6] S. Forrest, S. Hofmeyr, A. Somayaji, and
T. Logstaff, “A Sense of Self for Unix pro-

Rao Vemuri

Rao Vemuri
lower case k

[10]

[11]

[12]

[13]

cess”, Proceedings of 1996 IEEE Sympo-
sium on Computer Security and Privacy,
120-128, 1996.

C. Warrender, S. Forrest and B. Pearlmut-
ter, “Detecting Intrusions Using System
Calls: Alternative Data Models”, Proceed-
ings of 1999 IEEE Symposium on Security
and Privacy, 133-145, 1999.

W. Lee, S. J. Stolfo and P. K. Chan,
“Learning Patterns from Unix Process Ex-
ecution Traces for Intrusion Detection”,
Proceedings of AAAI9T Workshop on Al
Methods in Fraud and Risk Management,
1997.

A. K. Ghosh, A. Schwartzbard and A.
M. Shatz, “Learning Program Behavior
Profiles for Intrusion Detection”, Pro-
ceedings of 1st USENIX Workshop on
Intrusion Detection and Network Mon-
itoring, Santa Clara, CA, April 1999,
http://www.rstcorp.com/ anup/.

Y. Yang, An Fwvaluation of Statistical Ap-
proaches to Text Categorization, Technical
Report CMU-CS-97-127, Computer Sci-
ence Department, Carnegie Mellon Univer-
sity, 1997.

Y. Yang, “Expert Network: Effective and
Efficient Learning from Human Decisions
in Text Categorization and Retrieval”,
Proceedings of 17th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval (SI-
GIR’94), 13-22, 1994.

C. Ko, G. Fink and K. Levitt, “Automated
Detection of Vulnerabilities in Privileged
Programs by Execution Monitoring”, Pro-
ceedings of 10th Annual Computer Secu-
rity Applications Conference, Orlando, FL,
Dec, 134-144, 1994.

P. Uppuluri and R. Sekar, “Experiences
with Specification-Based Intrusion Detec-
tion”, Recent Advances in Intrusion Detec-
tion (RAID 2001), LNCS 2212, Springer,
172-189, 2001.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Wagner and D. Dean, “Intrusion De-
tection via Static Analysis”, Proceedings of
IEEE Symposium on Research in Security
and Privacy, Oakland, CA, 2001.

M. Asaka, T. Onabuta, T. Inoue, S.
Okazawa and S. Goto, “A New Intrusion
Detection Method Based on Discriminant
Analysis”, IEEE, TRANS. INF. & SYST.,
Vol. E84-D, No. 5, 570-577, 2001.

N. Ye, X. Li, Q. Chen S. M. Emran and
M. Xu, “Probabilistic Techniques for In-
trusion Detection Based on Computer Au-
dit Data”, IEEE Trans. SMC-A, Vol. 31,
No. 4, 266-274, 2001.

T. Lane and C.E. Brodley, “Temporal se-
quence learning and data reduction for
anomaly detection”, ACM Transactions
on Information and System Security, vol.
2, 295-331, 1999.

K. Aas and L. Eikvil, Text
Categorisation: A Survey,
http://citeseer.nj.nec.com/aas99text.html,
1999.

J. T.-Y. Kwok, “Automatic Text Catego-
rization Using Support Vector Machine”,
Proceedings of International Conference
on Neural Information Processing, 347-
351, 1998.

MIT Lincoln Laboratory,
http://www.ll.mit.edu/IST /ideval/.

Sun Microsystems, SunShield Basic Secu-
rity Module Guide, 1995.

R. Lippmann, D. Fried, I. Graf, J. Haines,
K. Kendall, D. McClung, D. Webber, S.
Webster, D. Wyschograd, R. Cunninghan
and M. Zissan, “Evaluating Intrusion De-
tection Systems: the 1998 DARPA off-line
Intrusion Detection Evaluation”, Proceed-
ings of the DARPA Information Surviv-
ability Conference and FEzxposition, IEEE
Computer Society Press, Los Alamitos,
CA, 12-26, 2000.

