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Abstract— Using the 1998 DARPA BSM data set collected at
MIT’s Lincoln Labs to study intrusion detection systems, the
performance of robust support vector machines (RVSMs) was
compared with that of conventional support vector machines
and nearest neighbor classifiers in separating normal usage
profiles from intrusive profiles of computer programs. The results
indicate the superiority of RSVMs not only in terms of high
intrusion detection accuracy and low false positives but also in
terms of their generalization ability in the presence of noise and
running time.
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I. I NTRODUCTION

The rapid increase in connectivity and accessibility of
computer systems has resulted in frequent opportunities for
intrusions and attacks. Anomaly detection and misuse de-
tection are two general approaches to computer intrusion
detection. Unlike misuse detection, which generates an alarm
when a known attack signature is matched, anomaly detection
identifies activities that deviate from the normal behavior of
the monitored system (or users) and thus has the potential to
detect novel attacks [1].

Over the past decade many anomaly detection techniques,
including neural networks [2][3], support vector machines
(SVMs) [4], data mining [5] and so on, have been proposed to
capture the system or user’s normal usage pattern and classify
new behavior as either normal or abnormal. These techniques
can be further categorized asgenerativeor discriminative
approaches. A generative approach (e.g., [6]) builds a model
solely based on normal training examples and evaluates each
testing case to see how well it fits the model. A discriminative
approach (e.g., [4]), on the other hand, attempts to learn the
distinction between the normal and abnormal classes. Both
normal and attack examples (attack examples are usually very
rare) are used in training for discriminative approaches.

Regardless of the approach used, most methods currently
in use are based on the assumption that the training samples
used by the intrusion detector are untainted and trustable, i.e.,
the labels of training examples are 100% correct. However,
in practice, the data set obtained from real-world audit trials
of systems is hardly the case. First of all, clean data is

not always easy to obtain. The training examples may be
mislabelled when there is no clear distinction between normal
and anomalous behavior. More importantly, there is usually
an initial training period for an anomaly detector to learn
the monitored system’s behavior and data collected from this
training phase is assumed normal. As normal behavior changes
over time, new examples are periodically incorporated into
the training data and the anomaly detector undergoes frequent
retraining. If an attack occurred during the training process, the
undesired, intrusive behavior could get established as a part of
the anomaly detector’s model of normal behavior and thus un-
dermine its ability to detect subsequent occurrences [1] [7] [8].
Machine learning techniques used for anomaly detection, such
as neural networks and support vector machines, are sensitive
to noise in the training samples. The presence of mislabelled
data can result in highly nonlinear decision surface and over-
fitting of the training set. This leads to poor generalization
ability and classification accuracy.

In this paper, we present a new approach, based on Robust
Support Vector Machines (RSVMs) [9], to anomaly detection
over noisy data. RSVMs effectively address the over-fitting
problem introduced by the noise in the training data set. With
RSVMs, the incorporation of an averaging technique in the
standard support vector machines makes the decision surface
smoother and controls the amount of regularization automat-
ically (see Appendix for details.). Moreover, the number of
support vectors of RSVMs is significantly less compared to
those of standard SVMs. Therefore, RSVMs have a faster
testing time.

We evaluate this method with the 1998 DARPA BSM data.
We compare RSVMs with the standard SVMs and thek-
Nearest Neighbor classifier (kNN). Our experiments show the
superiority of RSVMs not only in terms of high intrusion
detection accuracy and low false positives but also in terms of
their their generalization ability in the presence of noise and
running time.

The rest of this paper is organized as follows. In Section
II we review some related work. Section III describes the
method of RSVMs for anomaly detection over DAPAR data
set from MIT Lincoln laboratory. Finally, we will summarize
and discuss our work in Section IV. In appendix section, A



brief mathematical description of SVMs and how they differ
from RSVMs is presented.

II. RELATED WORK

The idea of anomaly detection in computer security could
date back to Anderson’s paper [10]. Since then, various
anomaly detection approaches have been implemented by
establishing statistical models for user [11]-[14], program [15]-
[18] or network behavior [4] [5]. The goal of using machine
learning techniques for anomaly detection is to develop a
generalization capability from limited training data and to be
able to correctly classify future data as normal or abnormal.
Clean training data is usually assumed.

More recently Eskin and others [8] [19] proposed unsu-
pervised anomaly detection algorithms with unlabelled data,
based on the assumption that number of normal instances
is significantly larger than the number of anomalies and
anomalies appear as outliers in the data.

Forrest et al. introduced the idea of building program
profiles with short sequences of system calls issued by running
programs for intrusion detection [15]. The underlying premise
is that the sequences of system calls during an intrusion are
noticeably different from normal sequences of system calls.
Lee et al. [16] extended the work of Forrest’s group and
applied RIPPER, a rule learning program, to the program
execution audit data. Warrender et al. [6] introduced a new
data modelling method, based on Hidden Markov Model
(HMM), and compared it with RIPPER and simple enumera-
tion method. Ghosh and others [17] employed artificial neural
network techniques to learn normal sequences of system calls
for specific UNIX system programs using the 1998 DARPA
BSM data. Liao et al. [18] drew an interesting analogy between
a text document and the sequence of all system calls issued by
a program. System call frequencies, instead of short sequences
of system calls, were used to represent program behavior. Then
thek-nearest neighbor classifier was employed to classify new
program behavior as normal or intrusive.

This paper extends the work of Liao et al. and compares
the intrusion detection performance of RSVMs, the standard
SVMs and thekNN classifier over the clean training data of
program behavior profiles. More importantly, we deliberately
form noisy training data and show the robustness of RSVMs.

III. RSVM S WITH DARPA DATA SET

A. An Introduction to RSVMs and SVMs

A brief mathematical description of SVMs and how they
differ from RSVMs is presented in the appendix. More elab-
orate tutorial papers can be found in the literature [20] [21]
[22] .

In simple terms a SVM is a perceptron-like neural network
and is ideally suitable for binary pattern classification of
patterns that are linearly separable. A perceptron-solution,
however, is not unique because one can draw a number of
possible hyperplanes between the two classes. The main idea
of the SVM is to derive a unique separating hyperplane that
maximizes the separating margin between the two classes. The

feature vectors that lie on the boundary defining this separating
margin, in the jargon of linear algebra, are called ”support
vectors”. Classifiers that exploit this property are therefore
called support vector machines.

Since the introduction of the original idea, several modifi-
cations and improvements are made: hard-margin SVMs for
separable cases, soft-margin SVMs for non-separable cases
and robust SVMs that exhibit good generalization properties
while handling noisy, that is, mis-labelled data. The mathe-
matical differences in these three formulations are pointed out
in the appendix.

In order to test the properties of the RSVMs, it is necessary
that training data sets are carefully prepared with ”noise”
explicitly incorporated into them. Using DARPA data as a
starting point such noisy data sets are prepared as described
next.

B. Pre-processing DARPA Data

The 1998 DARPA Intrusion Detection System Evaluation
program provides a large corpus of computer attacks embed-
ded in normal background traffic [23]. The TCPDUMP and
BSM (Basic Security Module) audit data were collected on a
simulation network that simulated the traffic of an Air Force
Local Area Network. It consisted of 7 weeks of training data
and 2 weeks of testing data. We used the BSM audit data
collected from a victim Solaris machine. The BSM audit logs
contain information on system calls produced by programs
running on the Solaris machine. The data were labelled
with session numbers. Each session corresponds to a TCP/IP
connection between two computers. On each simulation day
about 500 sessions were recorded by the BSM tool of the
Solaris machine.

The pre-processing of the BSM audit data was described in
[18]. For the sake of completeness, we outline the procedure
here. The names of system calls were extracted for every
session from the BSM audit logs. Each session usually consists
of one or more processes. A complete ordered list of system
calls was generated for each process. A buffer overflow attack
session, namedEject [24], and the list of system calls of
one of its processes are shown in Table I.

The numbers of occurrences of individual system calls
during the execution of a process were counted. Liao et al. [18]
used two text weighting techniques, namely frequency weight-
ing andtf ·idf weighting, to transform the process into a vector.
The dimension of a process vector was equal to the number
of unique system calls. We adopted the frequency weighting
method, which simply assigns the number of occurrences of
a system call during the process execution to a vector entry.

C. Clean and Noisy Data

A careful study of the 1998 DARPA BSM data revealed
that there are 5 simulation days that are free of attacks during
the seven-week training period. We picked 4 days of data out
of those 5 days as normal samples for training. There are 606
distinct processes drawn from over 2000 sessions during these
4 days. Our training normal data set contains 300 out of the



TABLE I

(A)AN INTRUSIVE SESSION(EJ E C T) SAMPLE AND THE CORRESPONDING PROCESSES. (B) THE LIST OF SYSTEM CALLS ASSOCIATED WITH THE PROCESS

P W D

Session:Eject
telnetd
login
tcsh
quota
cat
mail
cat
gcc
cpp
cc1
as
ld
ejectexploit
pwd

Process name:pwd
close close close close
open close close execve
open mmap open mmap

mmap munmap mmap close
open mmap mmap munmap

mmap mmap close open
mmap mmap munmap mmap
close open mmap close
open mmap mmap munmap

mmap close close munmap
pathdonf stat stat open

close open open ioctl
lstat lstat close close

close close close exit
(a) (b)

606 processes.1 The other simulation day, the third day of the
seventh training week, was chosen for normal testing examples
as no attack was launched on this day. It contains 412 sessions
and 5285 normal processes (We did not require the testing
processes to be distinct in order to count false alarms for one
day).

We carefully selected 28 distinct intrusive processes for
training (12 of them are the same as the ones used in
[18]) from 55 intrusion sessions in the seven-week training
data. These 28 processes cover most attack types of the
DARPA training data, including the most clearly malicious
processes, such asejectexploit , formatexploit ,
ffbexploit and so on. In an intrusive session, only a
small part of activities are intrusive. For example, the session
Eject in Table I cosists of 14 processes. We only selected
the processejectexploit as an intrusive sample. We used
22 intrusive sessions from the two-week testing data as the
intrusive samples for testing purpose.

To demonstrate the robust property of RSVM, we prepared
two different training data sets, as illustrated in Table II. For
the noisy data set, 16 out of the original 28 intrusive training
processes were disguised as normal and incorporated into the
300 truely normal examples, while the testing subset remains
the same.

TABLE II

CLEAN AND NOISY DATA SETS

clean data noisy data

300 normal processes 316 normal processes
training (16 mislabelled)

28 intrusive processes 12 intrusive processes
testing 5285 normal processes, 22 intrusion sessions

D. RSVMs with Clean Data

In intrusion detection, the Receiver Operating Characteristic
(ROC) curve is usually used to measure the performance of

1The reason that we chose 300 processes is to mitigate the unbalance
between normal and intrusive examples.

an intrusion detection method. The ROC curve is a plot of
intrusion detection accuracy against the false positive proba-
bility. In our experiments, individual processes are classified as
normal or intrusive. When a process is categorized as intrusive,
the session that the process is associated with is classified
as an attack session. The intrusion detection accuracy is then
calculated as the rate of detected attacks. The false positive
probability, on the other hand, is defined as the rate of mis-
classified normal processes [18].

Figure 1 (a) shows the performance of the RSVMs, SVMs
andkNN expressed in ROC curves with the clean training data
set. RSVMs and SVMs were implemented with the RBF kernel
function. The curves were obtained by varying the regulation
parameters.

ThekNN algorithm was described in [18]. The cosine sim-
ilarity is used to measure the distance between two processes
in the form of vectors. Each testing process is compared to the
intrusive training processes first. Whenever there is a perfect
match, i.e., the cosine similarity is equal to 1.0, the new
process is labelled as intrusive behavior. Otherwise, the testing
process is compared with each normal training process. If the
similarity score of one normal training process is equal to
1, the new process would be classified as a normal process
immediately. Otherwise, We calculate the average similarity
value of itsk nearest neighbors (with highest similarity scores)
and set a threshold. Only when the average similarity value
is above the threshold, is the new process considered normal.
Here we setk’s value to 5 and varied the threshold to get the
ROC curve.

As depicted in Figure 1 (a), the attack detection rate of
RSVMs was 74.7% with zero false positive rate. The detection
rate reached 100% rapidly and the false positive rate remained
as low as 3%. SVMs could detect nearly 50.0% attack sessions
with 0% false positive rate and the detection rate reached 100%
with a false positive rate of 14.2%. ThekNN method gave
relatively poor performance. It obtained a low attack detection
rate (13.6%) at zero false positives. The attack detection rate
reached 100% with a false positive rate of 8.6%.



(a) (b)

Fig. 1. Performance of RSVMs, SVMs andkNN expressed in ROC curves over (a) clean training data; (b) noisy training data.

TABLE III

ATTACK DETECTION RATE OFRSVMS, SVMS AND kNN METHODS OVER

THE CLEAN TRAINING DATA SET WHEN FALSE POSITIVE RATE IS LESS

THAN 1%.

Attack detection Rate False Positive Rate

RSVMs 81.8% < 1%
SVMs 81.8% < 1%
kNN 63.6% < 1%

An intrusion detection system is typically aimed at a false
positive rate of 1%, as too many false alarms would make
the system useless. Table III shows the attack detection rates
of RSVMs, SVMs andkNN methods over the clean training
data set with the stipulation that the false positive rate does
not exceed 1%. Both RSVMs and SVMs showed competitive
results (attack detection rate> 80%).

E. RSVMs with Noisy Data

Figure 1 (b) presents the ROC curves of RSVMs, SVMs
andkNN methods over the noisy training data. RSVMs only
showed slight decline of performance in the presence of noise.
The attack detection rate of RSVMs was50.0% at zero
false positives. It reached 100% with a false positive rate
of 8%. Meanwhile, SVMs experienced severe performance
deterioration due to the noisy training data. Although they
could detect54% attacks with zero false positive rate, the
attack detection rate could not reach 100% until the false
positive rate approached 100%. These results indicate that
RSVMs effectively suppressed the effect introduced by the 16
mislabelled training examples, while the conventional SVMs
gave poor generalization ability because of the noise.

The kNN method did not manifest any decline in the false
positive rate. This is not surprising considering the fact that
by taking the average of thek neighbors nearest to the testing
process, it can smooth out the impact of isolated noisy training
examples. However, one testing process happened to match
one of the 16 mislabelled intrusive processes. It was classified

as normal immediately without finding itsk nearest neighbors.
This testing process was the only process of the testing attack
session. Therefore, this attack session could not be detected
with our kNN classifier, and the attack detection rate never
reached 100%.

TABLE IV

COMPARISON OF THE NUMBER OF SUPPORT VECTORS AND THE

EXPERIMENTAL RATIO OF RUNNING TIME OFRSVMS AND SVMS FOR

CLEAN AND NOISY TRAINING DATA SETS.

RSVMs SVMs RSVMs /SVMs

Clean Data 1 30 45 71 %
Noisy Data 2 15 40 42 %

Besides the classification accuracy, another problem that
needs to be addressed is the running time of the intrusion
detector. The computational complexity of RSVMs/SVMs is
of linear proportion to the number of support vectors when
classifying new examples. As shown in the Appendix, the
number of support vectors of RSVMs can be much less
than those of the standard SVMs. Therefore, RSVMs require
less running time. Table IV shows the number of support
vectors of RSVMs/SVM with clean/noisy data and the ratio
of experimental testing time for the 5285 normal testing
processes. The number of support vectors of the RSVMs was
significantly less compared to that of the standard SVMs.
In the clean training data case, RSVMs’ number of support
vectors was one-third less (30 vs 45) and its testing time was
71% of that of SVM. In the noisy data case, the testing time
of RSVMs was only 42% of that of SVM due to the greater
difference of their decision surfaces. For thekNN classifier,
the cost of classifying new examples can be much higher than
that of RSVMs and SVMs. This is due to the fact that nearly
all computation takes place at classification time.

IV. CONCLUSION

In this paper, we have proposed a new approach, based
on Robust Support Vector Machines, to anomaly detection in



computer security. Experiments with the 1998 DARPA BSM
data set show that RSVMs can provide good generalization
ability and effectively detect intrusions in the presence of
noise. The running time of RSVMs can also be significantly
reduced as they generate fewer support vectors than the
conventional SVMs.

Future work involves quantitatively measuring the robust-
ness of RSVMs over the noisy training data and addressing the
fundamental issue of the unbalanced nature between normal
and intrusive training examples for discriminative anomaly
detection approaches.
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APPENDIX: SVM VS RSVM

The main idea of Support Vector Machines (SVMs) is to
derive a hyperplane that maximizes the separating margin
between two classes — the positive and the negative [22].
A tutorial introduction to SVM can be found in [20]. The
promising property of SVM is that it is an approximate
implementation of the Structure Risk Minimization principle
based on statistical learning theory rather than the Empirical
Risk Minimization method, in which the classification function
is derived by minimizing the Mean Square Error over the
training data set.

One of the main assumptions of SVM is that all samples in
the training set are independently and identically distributed
(i.i.d.). However, in practice, the training data are often con-
taminated with noise. The noisy data makes the validity of
this i.i.d. assumption questionable. The standard SVM training
algorithm will make the decision surface deviate from the
optimal position in thefeature space. When mapped back
to the input space, it results in a highly nonlinear decision
boundary. Therefore the standard SVM is sensitive to noise,
leading to poor generalization ability.

Consider the training samples

(x1, y1), · · · , (x`, y`), yi ∈ {−1, +1} , i = 1, ..., ` (1)

where {(xi, yi)} i = 1, ..., ` are feature vectors andyi ∈
{−1, +1} , i = 1, ..., ` are the corresponding labels. Pos-
itive class represents normal behavior and negative class
represents anomalous behavior. Now the classification problem
can be posed as a constrained optimization problem. The
primal problems of SVM and Robust SVM are shown in Table
V, wherew is the weight vector of the decision hyperplane.
The other terms in the table are explained below.

Vapnik [22] proposed the initial idea of SVM for the
separablecase (hard margin SVM) in which the positive
and negative samples can be definitely separated by a unique
optimal hyperplane with the largest margin. However, this
algorithm will find no feasible solution when applied to the

non-separablecase. Cortes and Vapnik [21] extended this
idea to thenon-separablecase (soft margin SVM or the so
called standard SVM) by introducing positive slack variables
{ξi} i = 1, ..., `. “One must admit some training errorsξi

to find the best tradeoff between training error and margin
by choosing the appropriate constantC associated with slack
value” [21] . This error-tolerant property of soft margin SVM
makes it very useful in many applications due to its good
generalization ability. However, when trained with noisy data,
the decision hyperplane might deviate from optimal position
(without maximized separating margin) because of the slack
term (sum of misclassification errors

∑
ξi) in the objective

function of soft margin SVM. This leads to a complicated
decision surface. which is known as the over-fitting problem.
Song et al [9] proposed the Robust SVM which is aimed
at address this over-fitting problem by only minimizing the
margin of the weightw instead of minimizing the margin
and the sum of misclassification errors. A new slack term
λD2(xi,x∗yi

) is introduced in place of{ξi} i = 1, ..., ` in the
soft margin SVM. Hereλ ≥ 0 is a pre-selected regularization
parameter measuring the influence of averaged information
(distance to the class center), andD2(xi,x∗yi

) represents the
normalized distance between data pointxi and the center of
the respective classes, (x∗yi

, yi ∈ {+1,−1}), in the feature
space. That is,

D2(xi,x∗yi
) =

∣∣φ(xi) − φ(x∗yi
)
∣∣2 /D2

max

= [(φ(xi) · φ(xi) − 2φ(xi) · φ(x∗yi
)

+φ(x∗yi
) · φ(x∗yi

)]/D2
max

= [k(xi,xi) − 2k(xi,x∗yi
)

+k(x∗yi
,x∗yi

)]/D2
max

(2)

where {φ(xi)}, i = 1, · · · , ` denotes a set of nonlinear
transformations from the input space to the feature space2;
k(xi,xj) = φ(xi) · φ(xj) represents the inner-product kernel
function;Dmax = max(D(xi,x∗yi

)) is the maximum distance
between the center and training data of the respective classes
in the feature space;k(xi,x∗) = φ(xi) · φ(x∗) is the kernel
function in the feature space. Figure 2 illustrates the meanings
of these terms for the case of a linear separating hyperplane
in the non-separable case. In this figure, the situations ofξi

i = 1, ..., `, the distance|Φ(x) − Φ(x∗)| of (2) from a point
in solid dot class to its class center and threshold valueb of
decision function (3) are summarized schematically.

The formulas discussed above are in theprimal space. The
solution can be obtained by solving this optimization problem
in the dual space— the space of Lagrange multipliersαi,
i = 1, · · · , `. Table VI shows the dual problems of SVM
and Robust SVM, which are Quadratic Programming (QP)
optimization problems. The decision function now can be

2In class +1, φ(x∗yi
) = φ(x∗+1) = 1

n+

∑
yj=+1

φ(xj) , n+ is

the number of data in class +1, in class -1,φ(x∗yi
) = φ(x∗−1) =

1
n−

∑
yj=−1

φ(xj) , n− is the number of data in class -1.



TABLE V

PRIMAL PROBLEMS OFSTANDARD SVM AND ROBUST SVM

Objective Function Constrains

Hard margin SVM Φ(w) = 1
2
wT w yif(xi) ≥ 1

Soft margin (standard) SVM Φ(w) = 1
2
wT w + C

∑̀
i=1

ξi yif(xi) ≥ 1− ξi

Robust SVM Φ(w) = 1
2
wT w yif(xi) ≥ 1− λD2(xi,x

∗
yi

)

Fig. 2. Linear separating hyperplane for non-separable case. The Star point
represents the center of solid points class. The points which are circled are
support vectors.

given by the values ofαi, i = 1, · · · , ` and computing the
sign of

f(x) =
∑

Support Vectors

αiyiK(xi,x) + b (3)

whereb is the threshold value of decision function. The sample
data with the corresponding Lagrange multipliesαi > 0 are
calledsupport vectors.

¿From Table VI, we can see that the dual problem as-
sociated with hard margin SVM is identical to the Robust
SVM except the additional termγi = 1 − λD2(xi,x∗yi

) in
the maximization functionalW (α). We can justify the slack
variableλD2(xi,x∗yi

) by taking it into account as part of the
margin. For each data point, the separation margin can be
thought of as1 − λD2(xi,x∗yi

) which is more adaptive than
the margin1 − ξi in soft margin SVM algorithm. Suppose
a data point is an outlier that is located on the wrong side
and far away from the separable hyperplane. The distance
between this point and the center of the class is longer than that
of the other normal point in the same class. The augmented
termλD2(xi,x∗yi

) is relatively large. Therefore, the inequality
constraint shown in Table V of Robust SVM is satisfied and
the coefficientαi associated with the data point moves toward
zero (This result can be derived from the Karush-Kuhn-Tucker
condition of the dual form. see reference [9] for details). This
data point, therefore, may not become a support vector. Thus

the number of support vectors in the RSVM algorithm will be
reduced and the decision boundary will be smoother.
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