ECS-150, Fall 2007, Programming Assignment #2

Due date: 11:59 p.m., November 12th, 2007

Total 18% (4% penalty if turned in before the end of November 16th, 6% penalty by the end of November 19th, and no homework accepted after.)

Lottery Scheduling in the FreeBSD 5.x Kernel
This assignment is related the “lottery scheduling” algorithm in FreeBSD 5.4 kernel. Please make sure that you follow a good coding convention. You need to provide a Makefile and a README.txt. And, most importantly, you will need to develop some test programs to demonstrate the effects of lottery scheduling.

Modify the FreeBSD 5.x kernel such that the users can give different amount of lottery tickets to each “user” process. Please note that you do not need to worry about “lottery ticket sharing” case – just the simplest form of lottery scheduling. We still maintain different levels of priorities as in FreeBSD, but you need to implement TWO different options:

(1). The lottery mechanism will be placed ONLY in the time sharing scheduling class (i.e., priorities 160~223).

(2). The lottery mechanism will be placed also in higher scheduling classes (i.e., priorities 0~223). In other words, you need to give kernel classes more tickets to start with such as 256 (lower kernel), 64 (high kernel), 16 (real-time), 4 (time-share), 1 (otherwise).

In programming assignment #1, you have added one new attribute “int tickets” into “struct proc” defined in “/usr/src/sys/sys/proc.h”, and one global variable “int lottery_mode” in “/usr/src/sys/kern/kern_switch.c”. And, you have added the following four system calls:

int setProcessTickets(int pid, int tickets);

int getProcessTickets(int pid);

int setLotteryMode(int mode);

int getLotteryMode(void);

Now, we will complete the implementation of lottery scheduling in HW#2.

First, by default, each user process in the time sharing class has one ticket, while a user program can set the ticket number differently using the setProcessTickets system call. Second, your kernel use “normal BSD scheduling” by default, and the amount of tickets in each process makes no impact to the scheduling behavior. However, when a user process sets the lottery_mode to 1 (via the setLotteryMode system call), the kernel changes its scheduling behavior immediately to “lottery scheduling”.
The original Lottery Scheduling can be found at:

http://www.usenix.org/publications/library/proceedings/osdi/full_papers/waldspurger.pdf
Your team will need to write a few test programs to test whether your implementation distributes CPU cycles to the process according to the lottery scheduling principle. Furthermore, to simplify the task, we assume that all KSEs (or kernel threads) will obtain exactly the same number of tickets being assigned to its process. You also need to submit two test programs with instructions how to run them.
Among possibly others, you will likely to modify a few kernel source files such as:

kern/kern_switch.c

kern/kern_fork.c
But, you MUST use the following file from the class website:

sys/proc.h

In the above file, I will add a new attribute “tickets” to struct proc, and also, a global variable declaration “lottery_mode” to indicate whether the lottery scheduler is on or not (0: off, 1: on).

Interactive Grading policy for HW#2:

03~05: attending the interactive grading session

06~08: compiled kernel and loadable modules

09~10: implemented Lottery scheduling, but kernel crashes/freezes

11~12: occasionally kernel panic/freezing, but lottery scheduling will run in most of the cases

13~14: the effect of lottery scheduling is reasonably clear with good explanation and no kernel panic

15~16: functionally correct for all the requirements, and both your and my test programs will run OK.

17~18: the test programs are "creative and impressive" very nice/smooth demo with some extra ideas/features demonstrated. Furthermore, one or both of your submitted test programs can crash/panic other submitted kernels in some non-trivial way.

Bonus: if your test program can knock down more than half of the submitted kernels (other than yours), you will can one extra bonus point.
