
1

Buttercup: On Network-based Detection of
Polymorphic Buffer Overflow Vulnerabilities

A. Pasupulati, J. Coit, K. Levitt, S. F. Wu S.H. Li, J.C. Kuo, K.P. Fan
Department of Computer Science ITRI
University of California, Davis Hsin-Chu, Taiwan
{pasupula, coit, levitt, wu}@cs.ucdavis.edu {shli, jckuo, kpfan}@itri.org.tw

Abstract
Attack polymorphism is a powerful tool for the attackers in the Internet to evade
signature-based intrusion detection/prevention systems. In addition, new and faster
Internet worms can be coded and launched easily by even high school students anytime
against our critical infrastructures, such as DNS or update servers. We believe that
polymorphic Internet worms will be developed in the future such that many of our current
solutions might have a very small chance to survive. In this paper, we propose a simple
solution called “Buttercup” to counter against attacks based on buffer-overflow exploits
(such as CodeRed, Nimda, Slammer, and Blaster). We have implemented our idea in
SNORT, and included 19 return address ranges of buffer-overflow exploits. With a suite
of tests against 55 TCPdump traces, the false positive rate for our best algorithm is as
low as 0.01%. This indicates that, potentially, Buttercup can drop 100% worm attack
packets on the wire while only 0.01% of the good packets will be sacrificed.

Keywords
Buffer Overflow, Polymorphic Shellcode, Network Intrusion Detection System, Snort.

1. Introduction
Since a signature-based Network Intrusion Detection System (NIDS) identifies an attack
instance by exactly matching attack signatures against the incoming and outgoing data
packets, when the well-known attacks are modified/transformed differently, the NIDS
might fail due to its inability to match them in its signature database. Sometimes, we call
these transformed attacks (but all from one single original attack signature, for the

2

purpose of IDS evasion) “polymorphic attacks”. In this paper, we propose a new solution
to accurately identify one particular type of polymorphic attacks, known as polymorphic
shellcode. Due to the space limitation, solutions for dealing with other types of
polymorphic attacks are discussed in [1].

In polymorphic shellcode attacks, the attacker can choose an unknown
encryption algorithm to encrypt the attack code and include the decryption code as part of
the attack packet. The trick here is to utilize an existing buffer-overflow exploit and to set
the “return” memory address on the over-flowed stack, to the entrance point of the
decryption code module. The attacker can transform every other bit in the packet payload
to avoid being detected by a signature-based NIDS, but a critical constraint exists on the
range of the “return” memory address that can be twisted.

Our solution, Buttercup, is simply to identify the ranges of the possible return
memory addresses for existing buffer-overflow vulnerabilities, and if a packet contains
such addresses, a red/yellow flag might be raised. For the evaluation of false positives,
we have modified SNORT, an open-source signature-based NIDS, and selected 19
exploits to test against 55 different TCPdump traffic files. For one of our range matching
algorithms, the false positive rate is as low as 0.01%, while the rates for other simpler
algorithms are all below 1.13%. Hence, with Buttercup, we can drop all worm packets
based on the known buffer-overflow vulnerabilities, while dropping only 0.01% of the
good packets in the Internet.

The rest of this paper is organized as follows. Section 2 describes buffer
overflows and polymorphic shellcode. Section 3 presents Buttercup, our proposed
solution to detect polymorphic shellcode. The simulation results and analysis are
presented in Section 4. Section 5 presents some of the related work and we finally
conclude and provide suggestions for future work in Section 6.

2. Background

In this section, we briefly describe buffer overflows and polymorphic shellcode.

2.1. Buffer Overflow

On many C implementations, writing past the end of an array causes the execution stack
to get corrupted. The stack is used to dynamically allocate the local variables used in
functions, to pass parameters to functions, and to return values from functions as shown
in Figure 1. It also stores the return addresses for function calls and this is what makes it
vulnerable.

A buffer overflow [5,6] is the result of stuffing more data into a buffer than it
can handle. The data that does not fit into the allocated buffer space overwrites the bytes
after the allocated buffer space in the stack, including the return address. When the stored
return address on the stack gets replaced by some arbitrary value due to a buffer

3

overflow, the function returns and tries to read the next instruction from that address.
This results in a segmentation violation.

Lower memory
addresses

 Higher memory
 addresses

Figure 1: Structure of a stack

By sending a string that overflows a buffer such that it fills the return address on
the stack, with an address where arbitrary code is placed, one could use the buffer
overflow vulnerability to execute one’s own code. Most of the time, it involves spawning
a root shell and then executing commands on it. The hexadecimal representation, of the
commands in machine language, which are used to spawn a shell, is sent as a part of the
string that is used to overflow the buffer. This string is thus called the shell code.
Importance of return address
When a buffer overflow vulnerability is discovered, the most important requirement for
an exploit to work is to get the return address right. A buffer overflow exploit involves
loading shellcode onto the buffer and overwriting the return address variable of the stack
frame so it points back into the buffer. Hence, the address placed in the return address
variable would be a value within the address space allocated for the process i.e., the
shellcode is executed off the stack. If the shellcode occupies a portion of memory other
than the memory space of the program we are trying to exploit, a segmentation violation
occurs.

The problem faced when trying to overflow the buffer of another program is to
figure out at what address the buffer (and thus the exploit code) will be. One possible
solution is to pad the front of the buffer overflow with NOP instructions that perform
NULL operations. If the return address points anywhere in the string of NOPs, they will
just get executed until they reach the shell code. Assuming the stack starts at 0xFF, that S

 .
 .

*str

 sfp

 ret

 buffer

 .
 .

4

stands for shell code, and that N stands for a NOP instruction, the new stack would look
like this:

 bottom of EEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
 memory 123456789AB CDEF 0123 4567 89AB CDEF memory
 buffer sfp ret a b c

 <----- [NNNNSSSSSSS][0xE2][0xE2][0xE2][0xE2][0xE2]
 ^ |
 |____________________|

Figure 2: Structure (horizontal representation) of a buffer overflow exploit.

For remote overflow exploits, the intruder can compile and analyze the service program
on his machine to get a rough idea of the correct address, the exact value of which
depends on the environment variables that the user has set. Hence, in order to increase the
chances of pointing to the exploit code, a string of NOPs are placed, as in local exploits.

2.2. Polymorphic shellcode

Polymorphic shellcode [7] is basically a functionally equivalent form of a buffer
overflow exploit with a different signature on the network. As it hits the target machine,
it reassembles, having eluded the IDS [8].

A well-known tool that generates polymorphic shellcode is a polymorphic
buffer-overflow engine called ADMutate [9]. An attacker feeds the ADMutate a buffer
overflow exploit to generate hundreds or thousands of functionally equivalent exploits
[10]. This is accomplished by using simple encryption techniques, along with the
substitution of functionally equivalent machine-language instructions. This confuses
many IDS tools (including Snort) that search for the familiar NOP sled or the known
machine-language exploit included in buffer overflows, as ADMutate dynamically
modifies these elements.

A buffer overflow attack script consists of three parts, a set of NOPs, the
shellcode, and the return address in the form [NNNN][SSSS][RRRR]. In polymorphic
shellcode, the NOPs are replaced by a random mix of no-effect instructions and the
shellcode is encrypted differently each time, thus making signature-based detection by an
NIDS, that looks for NOPs or certain strings within the shellcode, impossible. Having
generated encoded shellcode and substituted NOPs, ADMutate then places the decoder in
the code. The shellcode is then of the form [NNNN][DDDD][SSSS][RRRR], where “D”
represents the decoder. It is not possible to detect the decoder either since techniques
such as multiple code paths, non-operational pad instructions, out-of-order decoder
generation and randomly generated instructions make it look different each time.

The only part of the script that remains constant through each instance of a
buffer overflow attack is the return address. In fact, even the return address is modified
by modulating its least significant bit, but when this is done, sometimes, the address may

5

no longer be valid when it hits the target. Hence, we intend to use this part of a buffer
overflow attack script in enabling an IDS to detect polymorphic shellcode.

3. ButterCup: an IDS architecture against Attack Polymorphism
As we saw above, one solution to the problem of determining the return address to
exploit a buffer overflow vulnerability is, to pad the front of the shellcode with NOP
instructions. If the return address points anywhere within the NOPs, they will just get
executed till the exploit code is reached. Using this method, the exploit might work for a
certain range of values since the return address could point anywhere within the string of
NOPs.

Hence, for every buffer overflow vulnerability, the return address is overwritten
with a value, which can only lie within a certain range of values (the process’ address
space). By determining the address range for a particular buffer overflow exploit and
looking for values that lie within this range, in incoming packets, we hope to detect the
exploit.
Determination of address range values
Determining a lower limit and an upper limit within which the return address can fall can
reduce the range of values, which need to be checked, further. The lower limit would be
the address at which the buffer starts since the string we send to overflow starts at the
start of the buffer.

Let’s take a look at the example we saw above (Figure 2). In this example, since
the buffer starts at address 0xE1, the lower limit of our address range would be 0xE1.
Since the string in the example can be changed by increasing or decreasing the number of
NOPs, we try to determine a suitable range that would help us detect the attacks even if
the number of NOPs is changed.

In addition to having the form [NNNN][SSSS][RRRR], the attack script can also
be of the form [RRRR] [NNNN][SSSS], especially in cases where the buffer is small. In
this case, the buffer and the return address field are filled up with the address where the
shellcode is to be found. The attack in this case looks like this:

 bottom of EEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
 memory 0123456789AB CDEF 0123 4567 89AB CDEF memory
 buffer sfp ret a b c
 <------ [0xF80xF80xF8][0xF8][0xF8][NNNN][SSSS][SSSS]
 | ^
 |_________|

Figure 3: Structure (horizontal representation) of a different form of a buffer overflow exploit.

In the case where the attack is of the form [NNNN][SSSS][RRRR], the upper
limit would be the (address of the return address field - length of the shellcode). In the

6

case where the attack is of the form [RRRR] [NNNN][SSSS], the upper limit would be
(bottom of stack – length of the shellcode).

We have thus determined that there is definitely an upper limit and a lower limit
within which the return address of the shellcode of a buffer overflow exploit should fall.
The only task left now is determining the address range. This range of values can aid in
the detection of a particular buffer overflow exploit.

In some buffer overflow exploits targeting Windows systems (such as Code Red
and Slammer worms), the return address does not point directly into the stack. It points to
a CALL or JMP instruction in a DLL, which in turn points back into the stack. Buttercup
can still be used to detect the address range of the CALL or JMP instruction in the
particular DLL.

3.1. Implementation of proposed solution

We implemented the solution by including a new keyword in Snort-2.0.0 called “range”.
We call this implementation of our solution in Snort, Buttercup. In Buttercup, a new
detection plugin file named sp_range_check, was included in Snort version 2.0.1, which
takes 32 bits at a time from the payload of the incoming packet, starting from the first
byte, and compares it against the two values provided as the values for the “range”
keyword. If it lies within the range, then the buffer overflow alert corresponding to those
return address values is generated. Else, the 32 bits starting from the next byte are
compared with the two values.

The range values are obtained by getting the return address used for a particular
buffer overflow exploit and initially, the lower limit is taken to be a value –200 from the
return address value and the upper limit is a value +200 from the return address value. In
this way, the entire packet is analyzed.

We also obtained a range for the Microsoft Windows RPC Buffer Overflow
vulnerability, which was exploited by the very recent Blaster worm that caused a lot of
damage worldwide. We obtained this range by studying some exploit codes for this
vulnerability. The lower range and higher range values were found to be 0x77d73713 and
0x77f92b63 respectively. However, a rule for detecting this attack wasn’t added to our
rules file before we performed all the tests, since this vulnerability was exploited only
recently.

3.2. Steps proposed to reduce false positives

In order to reduce the number of false positives further, 2 other keywords, ‘rangeoffset’
and ‘rangedepth’ were introduced. The value provided with the ‘rangeoffset’ indicates the
starting point in the packet payload from where the 32-bit values are checked. The
‘rangedepth’ sets the maximum search depth for the range check function to search from
the beginning of its search region. The ‘rangeoffset’ and ‘rangedepth’ options are used as
modifiers to rules using the ‘range’ option keyword.

7

By carefully studying the buffer overflow exploit code, we can determine the
part of the shellcode in which the return address is placed and thus provide values for the
above two option keywords. We also used the ‘dsize’ option keyword, already
implemented in Snort, in order to flag alerts only for those packets that have payloads
whose length falls within a given range in addition to containing the particular return
address values. Using these three additional keywords, the number of false positives was
brought down considerably. An example of a Snort rule containing the ‘dsize’,
‘rangeoffset’ and ‘rangedepth’ keywords, in addition to the ‘range’ keyword, is as
follows:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS any (msg:"MSSQL2000 remote
UDP exploit"; range:"|42ae1000-42b0caa4|"; dsize:475<>550; rangeoffset:97;
rangedepth:20;)

The above rule is used for detecting attacks that exploit the MS SQL 2000 buffer
overflow vulnerability. We detect these attacks by looking for values lying between
42ae1000 and 42b0caa4, only in packets whose size falls in the range 475-550. Also, we
look for these values starting from the 97th character in the packet payload and only
within 20 characters from the starting point. As we can see from this example, this
greatly reduces the amount of processing that the IDS needs to do since it looks for the
address values only in certain packets and only in certain portions of those packets
instead of searching all the packet payloads from start to finish.

However, due to the complex nature of the shellcodes, we could not get values
for the ‘dsize’, ‘rangeoffset’ and ‘rangedepth’ keywords for all of the exploits. We hope
that through deeper evaluation, these values can be obtained for all the exploits.

[11] is a complete version of the paper, which includes all the rules we have in
included in the rules file for detecting polymorphic shellcode.

4. Simulation and Analysis
In this section, we describe the various tests that were performed on Buttercup in order to
compare its performance with the original version of Snort. In order to determine the
performance of our IDS architecture against polymorphic shellcode, various parameters,
such as ‘range’ and ‘dsize’ values, were changed in our implementation and the
performance of Snort observed in terms of processing time and percentage of alerts
generated.
Simulation
For our simulation, 55 real TCPdump files of network traffic were obtained from the MIT
Lincoln Laboratory IDS evaluation Data Sets. These TCPdump files were provided as
input to Buttercup, which included the ‘range’, ‘dsize’, ‘rangeoffset’ and ‘rangedepth’
keywords and 19 new rules. Buttercup was then tested for false positives on each of these
files.

Table 1 depicts the results obtained in the form of the percentage of alerts
generated i.e. (no. of alerts / no. of packets) when several TCPdump files were taken as

8

input by Buttercup. In order to observe how the number of alerts would change when the
range values were changed, we present the percentage of alerts for range values of +-50,
+-100, +-200, +-250, +-300, +-400 and +-500 in table 3 below.

Table 1: Percentage of alerts generated by Buttercup for various address ranges and
TCPdump files

Table 2 again depicts the change in the percentage of alerts, but this time,
comparison is made between the cases where the rules have just the ‘range’ keyword
alone, the rules have the ‘dsize’ keyword, with symbol ‘<>’, in addition to the ‘range’
keyword, the rules have the ‘range’, ‘dsize’, ‘rangeoffset’ and ‘rangedepth’ keywords and
the symbol ‘>’ is used with the ‘dsize’ keyword.

Table 2: Percentage of alerts generated for various versions of Snort for a range value of
+-200.

 RANGE
TCPdump files
 +-50 +-100 +-200 +-250 +-300 +-400 +-500

inside.tcpdump-00 0.3488 0.6213 0.6664 0.6746 0.6927 0.7165 0.7973
outside.tcpdump-00 0.3967 0.6727 0.7276 0.7356 0.7541 0.7797 0.8174
sampledata01-dump 0.1928 0.2066 0.2203 0.2203 0.2203 0.2203 0.2617
tcpdins-00 0.1617 0.2846 0.3113 0.3176 0.3296 0.3421 0.3684
tcpdwk1mon-98 0.7181 0.9904 1.1237 1.1336 1.2203 1.2704 1.3104
tcpdwk1tue-98 0.6796 0.9422 1.0721 1.0804 1.1566 1.2009 1.2415
tcpdinswk1wed-99 0.2678 0.4734 0.5210 0.5284 0.5431 0.5634 0.6031
tcpdinswk2mon-99 0.2670 0.4439 0.4927 0.4996 0.5172 0.5393 0.5749

 Snort versions
TCPdump files

 BC-range BC-range- BC-range- BC-range- BC-range-
 dsize<> dsize<> dsize> dsize>-
 -RO-RD RO-RD

Inside.tcpdump-00 0.6664 0.0144 0.0138 0.5293 0.2468
Outside.tcpdump-00 0.7276 0.0245 0.0249 0.5987 0.2833
sampledata01-dump 0.2203 0 0 0.2203 0.0275
tcpdins-00 0.3113 0.0057 0.0051 0.2408 0.1039
tcpdwk1mon-98 1.1237 0.0077 0.0093 0.9642 0.3240
tcpdwk1tue-98 1.0721 0.0075 0.0092 0.9275 0.3229
tcpdinswk1wed-99 0.5210 0.0106 0.0099 0.4083 0.1902
tcpdinswk2mon-99 0.4927 0.0107 0.0098 0.3845 0.1710

9

where
BC-range – Buttercup with only ‘range’ keyword and range of +-200.
BC-range-dsize<> – Buttercup with range of +-200 and ‘dsize’ <> values (values
derived from size of shellcode).
BC-range-dsize<>-RO-RD – Buttercup with ‘range’ of +-200 and ‘dsize’ <> values
(values derived from size of shellcode) and ‘rangeoffset’ and ‘rangedepth’ keywords
included.
BC-range-dsize> – Buttercup with ‘range’ of +-200 and ‘dsize’ > value (size of shellcode
obtained from buffer overflow exploits).
BC-range-dsize>-RO-RD - Buttercup with range of +-200 and ‘dsize’ > value (size of
shellcode obtained from buffer overflow exploits) and ‘rangeoffset’ and ‘rangedepth’
keywords included.

Since, in the above two cases, we only want to concentrate on how many alerts
Buttercup generates due to the buffer overflow rules we have added, we only include our
rules file my.rules in the configuration file, snort.conf.

Finally, Table 3 depicts the change in the processing times of original Snort and
Buttercup. In this case, since we are concerned about how our modified Snort compares
with the unmodified Snort, we include all the rules files in the configuration file,
snort.conf.

Table 3: Processing times (in seconds) of different versions of Snort
where
Snort-2.0.0 - original snort-2.0.0 with all rules files included in snort.conf.
BC-range – Buttercup with all rules files included in snort.conf and only ‘range’ keyword
with a range of +-200.
BC-range-dsize<> – Buttercup with all rules files included in snort.conf and ‘range’
keyword with a range of +-200 and ‘dsize’ (<> values) keyword.

 Snort versions
TCPdump files No. of Snort-2.0.0 BC-range BC-range- BC-range-

 Packets dsize<> dsize<>-RO-RD

phase-1-dump-00 40 0.311 0.301 0.308 0.314
phase-2-dump-00 158 0.12466 0.21532 0.12144 0.13130
phase-3-dump-00 225 0.10749 0.19784 0.12670 0.42505
phase-4-dump-00 520 0.54868 0.36267 0.33663 1.63335
phase-5-dump-2-00 954 0.30983 0.36433 0.35798 0.48870
sampledata01-dump 14523 1.33127 5.76940 3.51988 3.43390
tcpdwk3mon-98 793256 73.11217 215.2422 219.2653 230.4325
tcpdwk3tue-98 393566 37.42337 135.6459 125.3525 149.3899

10

BC-range-dsize<>-RO-RD – Buttercup with all rules files included in snort.conf and
‘range’ keyword with a range of +-200 and ‘dsize’ (<> values), ‘rangeoffset’ and
‘rangedepth’ keywords.

Figure 4 is a graphical representation of the results presented in Table 1. Figure
5 is a bar graph representing the results presented in Table 2.

Bar graph for percentage of alerts for various address range values

0

0.2

0.4

0.6

0.8

1

1.2

inside.tcpdump_00 tcpdwk2wed-98 tcpdinswk1wed-99

Tcpdump files

P
er

ce
n

ta
g

e
o

f
al

er
ts

+-50

+-100

+-200

+-250

+-300

+-400

+-500

Figure 4: Bar graph showing percentage of alerts for various address range values for 3
TCPdump files.

Bar graph showing percentage of alerts for various versions of Snort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

inside.tcpdump_00 tcpdwk2wed-98 tcpdinswk1wed-99

Tcpdump files

P
er

ce
nt

ag
e

of
 a

le
rt

s

BC-range
BC-range-dsize<>
BC-range-dsize<>-RO-RD
BC-range-dsize>
BC-range-dszie>-RO-RD

Figure 5: Bar graph showing percentage of alerts for various versions of Snort for 3
TCPdump files.

Performance
In Table 2, we see that the number of alerts generated by Buttercup is far greater than
those generated by Snort. This is most probably due to a large number of false positives
generated by Buttercup since the version of Buttercup used here does not contain the
‘dsize’, ‘rangeoffset’ and ‘rangedepth’ keywords.

11

From Table 3, we observe that as the address range values are increased from +-
50 to +-500, there is a corresponding rise in the percentage of alerts generated. From
Figure 4, which shows the bar graph comparing the percentage of alerts for the various
address range values, we can see that the percentage of alerts for the various range values
doesn’t change too much. For some variations in range values, such as between the +-200
and +-250, the percentage of alerts is almost constant. Since increasing the range values
doesn’t increase the number of alerts too much, we can conclude that this solution of
detecting buffer overflow attacks is feasible.

 Table 4 compares the percentage of alerts generated for different versions of
Buttercup for various TCPdump files. It can be observed from Figure 5, which shows the
bar graph more clearly depicting the percentage of alerts for the various versions of
Snort, that the percentage of alerts is the greatest when only the ‘range’ keyword is used,
is lesser when the ‘dsize’ (with symbol ‘<>’) keyword is included and is the least when
the ‘rangeoffset’ and ‘rangedepth’ keywords are also included. Hence, by studying a
buffer overflow exploit carefully and determining the size of the shellcode and the part of
the shellcode that contains the return addresses, the number of false positives can be
brought down considerable, thereby, enabling a more accurate detection of buffer
overflow attacks.

However, the drawback of narrowing the payload in which to look for address
ranges is that some of the buffer overflow attacks may not be detected if there is a
miscalculation in the ‘rangeoffset’ and ‘rangedepth’ values or if the shellcode is modified
considerably. The same behavior repeats for the cases where symbol ‘>’ is used with the
‘dsize’ keyword, but the percentage of alerts is far greater than those where symbol ‘<>’
is used. Hence, calculating the range in which the size of the shellcode falls helps us
determine buffer overflow attacks more accurately than just looking for packets that are
larger than a given size. It must be pointed out here that there is definitely a range for the
size of the shellcode, since there aren’t too many ways of modifying the size of a
particular shellcode other than varying the number of NOPs included.

Table 5 compares the processing times of four different versions of Snort for
different TCPdump files and also lists the number of packets in each file. It can be
observed that the TCPdump files used aren’t the same as the ones used in the above three
cases. This is because these are the smaller TCPdump files, which didn’t generate too
many alerts and hence, are unsuitable for determining the performance of Snort in the
first three cases. These files are, however, useful in this case, since the larger files cannot
be used for determining the processing times because all the rules files are included in the
snort.conf (since the performance is compared to the unmodified Snort with all its rules
files included). Since all the rules files are included, when the large TCPdump files are
used, too many alerts are generated and Snort halts.

It can be observed that the processing time increases sharply when the ‘range’
keyword is included as compared to the unmodified version. However, when the ‘dsize’
keyword is included, the processing time decreases since only packets whose payload

12

size falls within a specific payload are searched for the address ranges. This considerably
brings down the processing time. We would expect the processing time to decrease
further when the ‘rangeoffset’ and ‘rangedepth’ keywords are added since the payload in
which to look for address ranges is further narrowed down, but this doesn’t happen. In
fact, the processing time increases slightly. It can be concluded that this happens due to
the extra processing involved with the inclusion of two new keywords.

Also, it should be noted that this behavior is true for most of the TCPdump files,
but, as can be observed from Table 5, for some of them, the results are different. This is
due to the fact that due to the complexity of some of the exploit codes, the ‘rangeoffset’
and ‘rangedepth’ values for all the rules could not be determined. Hence, some of the
rules have just the ‘range’ and ‘dsize’ keywords, thereby leading to the inconsistency in
the results of the TCPdump files. A final observation is that as the size of the TCPdump
files increases, the processing time increases significantly.

5. Related Work
Several solutions have been proposed to deal with the problem of buffer overflow attacks.
Some of them try to detect buffer overflow vulnerabilities and prevent them from being
exploited while others try to detect an exploit before it causes any damage to the target
system.

StackGuard [12] is a simple compiler technique, that is implemented as a small
patch to gcc that places a “canary” word next to the return address when the function is
called and before the function returns, detects the change of the return address by
checking to see if the canary word has been changed. This method virtually eliminates
buffer overflow vulnerabilities with only modest performance penalties.

Return Address Defender (RAD) [13] is a simple compiler patch that
automatically creates a safe area to store a copy of return addresses and automatically
adds protection code into applications that it compiles to defend programs against buffer
overflow attacks. RAD does not modify the source code or the layout of stack frames, so
the binary code it generates is compatible with exisiting libraries and other object files.

A tool for the automatic detection of buffer overrun vulnerabilities in object
code is presented in [14]. It searches the file systems for critical programs and tests them
individually against buffer overruns. For the vulnerable ones, the exploit is built and
executed against the program. The system administrator is then notified of the
vulnerability.

[15] describes a technique for finding potential buffer overrun vulnerabilities
through the use of static analysis. The technique is to formulate detection of buffer
overruns as an integer range analysis problem. The advantages of this static analysis are
that security bugs can be eliminated before code is deployed and new remotely
exploitable vulnerabilities can be found and the disadvantage is it generates a large
number of false positives and a small number of false negatives.

13

An approach that accurately detects buffer overflow code in the request’s
payload by concentrating on the sledge (e.g. string of NOPs) of the attack has been
presented in [16]. This method works by performing abstract execution of the payload to
identify sequences of executable code with virtually no false positives.

Finally, several solutions to detect polymorphic solution using an IDS have been
proposed in [17]. These solutions include shellcode payload decryption, signatures to
detect the decrypter engine, decrypter engine emulation and NOP section detection.
These pros and cons of the various methods are pointed out and it is concluded that NOP
section detection is the best technique.

All these papers, except the last one, do not deal with polymorphic shellcode
detection using a signature-based NIDS, which is what Buttercup proposes. Most of them
are solutions that need to be implemented in the compiler or detecting vulnerabilities in
programs themselves and preventing them from being exploited.

6. Conclusion
In this paper, we focus on the weakness of signature-based Network Intrusion Detection
Systems in detecting polymorphic attacks. When a regular attack, for which an NIDS
already has a signature available in its signature database, is modified or transformed, the
IDS might fail to detect it.

We present a new solution here called “Buttercup” to counter against any attacks
based on buffer-overflow vulnerabilities. We have implemented our idea in SNORT, and
included 19 return address ranges of buffer-overflow vulnerabilities. We introduce three
new keywords in SNORT namely ‘range’, ‘rangeoffset’ and ‘rangedepth’ and used a
keyword already existing in Snort named ‘dsize’ to detect packets with return address
values potentially lying within specific ranges.

For evaluation, with a suite of tests against 55 TCPdump traces, the false
positive rate for our best algorithm is as low as 0.01%. This indicates that, potentially,
Buttercup can drop 100% worm and other attack packets on the wire while only 0.01% of
the good packets will be sacrificed. We believe that our solution is simple and practical as
normally, a vulnerability is known long before the worms based on it are developed and
launched.

Currently, Buttercup needs an accurate input of the return address ranges to be
effective. For high-speed Internet worms, we are currently developing solutions such that
Buttercup can intelligently discover address ranges for existing buffer overflow
vulnerabilities, which haven’t been exploited yet.

The future work for this project includes false negative analysis i.e. we need to
determine whether this technique detects real-time traffic containing an attack. We also
need to look into how this technique can be applied to detect other kinds of blended
attacks [18], which include off-by-one overflows, heap overflows and attacks exploiting
format string vulnerabilities. We believe that ButterCup can be used to detect each of the

14

above exploits by developing suitable address ranges through careful analysis of the
attack techniques used.

Acknowledgment

This research is sponsored by NSF under grant nos. 0113388, 0220147, and ITRI.

References

[1] “Network-Based Detection of Polymorphic Attacks”, MS thesis, Computer Science
Department, UC Davis.
[2] Martin Roesch, “Snort-Lightweight Intrusion Detection for Networks”.
[3] Martin Roesch, “Snort Users Manual”, Snort Release: 1.9.x.
[4] Aleph One. Smashing the Stack for fun and profit. Phrack Magazine, 49(14), 1996.
[5] “Buffer Overflows Demystified”, http://www.enderunix.org/docs/eng/bof-eng.txt
[6] Lefty, “Buffer Overruns, what’s the real story?”,
http://destroy.net/machines/security/stack.nfo.txt
[7] K. Timm, “IDS Evasion Techniques and Tactics”,
http://online.securityfocus.com/infocus/1577
[8] E. Messmer, “Put to the test”,
http://www.nwfusion.com/news/2002/0415idsevad.html
[9] “ADMuate Readme”, http://www.ktwo.ca/readme.html
[10] E. Skoudis, “Sneaking Past IDS”,
http://www.infosecuritymag.com/2002/jul/sneaking.shtml
[11] http://wwwcsif.cs.ucdavis.edu/~pasupula/ Buttercup-paper.doc
[12] Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In Proceedings of the 7th USENIX Security Conference, January 1998.
[13] T. Chiueh, F. Hsu. RAD: A Compile-Time Solution to Buffer Overflow Attacks.
International Conference on Distributed Computing Systems (ICDCS), Phoenix, Arizona,
USA, April 2001.
[14] D. Bruschi, E. Rosti, R. Banfi. A tool for pro-active defense against the buffer
overrun attack. In Proceedings of ESORICS 98, 5th European Symposium on Research
in Computer Security.
[15] D. Wagner, J. S. Foster, E. A. Brewer, and A Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In Proceedings of the Network and distributed
system security symposium, February 2000.
[16] T. Toth, C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload
Execution. RAID 2002, LNCS 2516, pp.274-291, 2002.
[17] “Polymorphic Shellcodes vs. Application IDSs”, NGSEC White Paper,
http://www.ngsec.com
[18] E. Chien, P. Szor. Blended Attacks Exploits, Vulnerabilities and Buffer-Overflow
Techniques in Computer Viruses. Virus Bulletin Conference 2002.

HTTP://WWW.ENDERUNIX.ORG/DOCS/ENG/BOF-ENG.TXT
HTTP://DESTROY.NET/MACHINES/SECURITY/STACK.NFO.TXT
HTTP://ONLINE.SECURITYFOCUS.COM/INFOCUS/1577
HTTP://WWW.NWFUSION.COM/NEWS/2002/0415IDSEVAD.HTML
HTTP://WWW.KTWO.CA/README.HTML
HTTP://WWW.INFOSECURITYMAG.COM/2002/JUL/SNEAKING.SHTML
HTTP://WWW.NGSEC.COM/

