
Minos: Architectural Support for Protecting
Control Data

JEDIDIAH R. CRANDALL and S. FELIX WU

University of California at Davis

and

FREDERIC T. CHONG

University of California at Davis and Santa Barbara

We present Minos, a microarchitecture that implements Biba’s low water-mark integrity policy on
individual words of data. Minos stops attacks that corrupt control data to hijack program control
flow, but is orthogonal to the memory model. Control data is any data that is loaded into the program
counter on control-flow transfer, or any data used to calculate such data. The key is that Minos
tracks the integrity of all data, but protects control flow by checking this integrity when a program
uses the data for control transfer. Existing policies, in contrast, need to differentiate between control
and noncontrol data a priori, a task made impossible by coercions between pointers and other data
types, such as integers in the C language. Our implementation of Minos for Red Hat Linux 6.2 on a
Pentium-based emulator is a stable, usable Linux system on the network on which we are currently
running a web server (http://minos.cs.ucdavis.edu). Our emulated Minos systems running Linux
and Windows have stopped ten actual attacks. Extensive full-system testing and real-world attacks
have given us a unique perspective on the policy tradeoffs that must be made in any system, such as
Minos; this paper details and discusses these. We also present a microarchitectural implementation
of Minos that achieves negligible impact on cycle time with a small investment in die area, as well
as and minor changes to the Linux kernel to handle the tag bits and perform virtual memory
swapping.

Categories and Subject Descriptors: B.3.m [Hardware]: Memory Structures

General Terms: Security

Additional Key Words and Phrases: Control data, buffer overflow, worms

Extension of Conference Paper: This is an extension of a paper presented at MICRO-37 [Crandall
and Chong 2004b]. The additional material includes implementations for FreeBSD, and OpenBSD,
as well as three new attacks for these, seven new actual attacks caught by Minos honeypots, six
of which were included in a different conference paper [Crandall et al. 2005b], a new section on
noncontrol data attacks (Section 8.4), a new section describing the details of the Hannibal exploit
(Section 9), and a new section (Section 3.1) which details the policy tradeoffs that a year and a half
of testing has uncovered.
Authors’ addresses: Jedidiah R. Crandall, S. Felix Wu, University of California at Davis, Davis,
California 95616; email: {crandall,wu}@cs.ucdavis.edu; Frederic T. Chong, University of California
at Santa Barbara, Santa Barbara, California 93106.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1544-3566/06/1200-0359 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006, Pages 359–389.

360 • J. R. Crandall et al.

Table I. Definitions of Trust for Different Minos Implementations

Implementation Data Considered to be Untrusted
Linux with kernel All network socket reads; all reads from the filesystem
modifications from objects modified or created after the establishment

time (the time before which all libraries and trusted files
were established and after which everything created is
treated as vitriol and forced low-integrity, discussed in
Section 5.2), except for pipes between lightweight
processes; all pread()s, readv()s, and arguments to execv();
8- and 16-bit immediates; 8- and 16-bit data loaded or
stored with a low-integrity address; misaligned 32-bit
reads or writes; any data that is the result of an
operation with low-integrity data as an operand; any 16-
or 32-bit word with a smaller low-integrity piece of data
written into it.

JIT compatibility All of the above except for 8- and 16-bit immediates.
mode

Windows or other All data from port I/O over the network card data port;
unmodified OSes 8- and 16-bit data loaded or stored with a low-integrity

address; misaligned 32-bit reads or writes; any data that
is the result of an operation with low-integrity data as an
operand; any 16- or 32-bit word with a smaller low-integrity
piece of data written into it. (No establishment time checks
are performed so attacks where data goes to the hard drive
and comes back through the filesystem are not detected.)

1. INTRODUCTION

Control-data attacks form the overwhelming majority of remote intrusions on
the Internet, especially Internet worms. The cost of these attacks to commodity
software users every year now totals well into the billions of dollars. We present
a general microarchitectural mechanism to protect commodity systems from
these attacks, namely, hardware that protects the integrity of control data.

Control data is any data that is loaded into the program counter on control-
flow transfer or any data used to calculate such data. It includes not just return
pointers, function pointers, and jump targets, but variables such as the base
address of a library and the index of a library routine within it used by the
dynamic linker to calculate function pointers.

Minos requires only a modicum of changes to the architecture, very few
changes to the operating system, no binary rewriting, and no need to specify or
mine policies for individual programs. In Minos, every 32-bit word of memory
is augmented with a single integrity bit at the physical memory level and the
same for the general-purpose registers. This integrity bit is set by the kernel
when the kernel writes data into a user process’ memory space. The integrity
is set to either “low” or “high” based upon the trust the kernel has for the data
being used as control data. Biba’s [1977] low water-mark integrity policy is ap-
plied by the hardware as the process moves data and uses it for operations. The
definition of trust and policy details for the different implementations of Minos
discussed in this paper are presented in Table I.

Biba’s low water-mark integrity policy specifies that any subject may modify
any object if the object’s integrity is not greater than that of the subject, but

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 361

any subject that reads an object has its integrity lowered to the minimum of the
object’s integrity and its own. Fraser [2000] provides a very thorough discussion
of why the low water-mark policy is a good candidate for securing commodity
systems. Because Minos does not distinguish between subjects and objects, it
does not adhere exactly to Biba’s low water-mark integrity policy, but the Minos
concept was based on this policy. LOMAC [Fraser 2000] is the only true imple-
mentation of Biba’s low water-mark integrity policy that we know of. LOMAC
applied this policy to file operations and demonstrated that this policy could be
applied to commodity software and substantially increase the security of the
system, despite the tendency of all subjects in the system to quickly become low
integrity.

This monotonic behavior is the classic sort of problem with the low water-
mark policy, which Minos ameliorates with a careful definition of trust. In-
tuitively, any control transfer directly using untrusted data is a system vul-
nerability. Minos detects exactly these vulnerabilities and, consequently, avoids
false positives under extensive testing. We chose to implement an entire system
rather than demonstrating compatibility with just a handful of benchmarks.

If two data words are added, for example, an AND gate is applied to the
integrity bits of the operands to determine the integrity of the result. A data
word’s integrity is loaded with it into general-purpose registers. A hardware
exception traps to the kernel whenever low-integrity data is directly used for
control flow by an instruction, such as a jump, call, or return.

Minos secures programs against attacks that hijack their low-level control
flow by overwriting control data. As per our experiments in Section 7 and dis-
cussion in Section 8, the definition of trust in our Linux implementation stops
all remote intrusions based on corrupting control data with untrusted data. We
protect against local control data attacks designed to raise privileges, but only
because the line between these and remote vulnerabilities is not clear.

By “remote intrusions” we mean attacks where an attacker gains access
to a machine (by, for example, running arbitrary code or opening a command
shell) from over the network. Local attacks imply that the attacker already has
access to the machine and wishes to gain elevated privileges; this is a much
broader class of attacks of which control data attacks are only one constituent.
Virtually all remote intrusions where an attacker gains control of a remote
system over the Internet are control data attacks. Some exceptions are directory
traversal in URLs (for example, “http://www.x.com/../../system/cmd.exe?/cmd”),
control characters in inputs to scripts that cause the inputs to be interpreted as
scripts themselves, or unchanged default passwords. These kinds of software
indiscretions are outside the scope of what the architecture is responsible for
protecting. More about this topic will be discussed in Section 8.4.

We begin by elaborating on the motivation behind Minos. This is followed by
related works in Section 3 to compare Minos to existing and historical meth-
ods to add security to the architecture and software. Section 3.1 enumerates
the policy tradeoffs that we discovered during extensive testing of Minos. We
then describe the architectural support necessary for the system by consid-
ering its implementation on an out-of-order superscalar microprocessor with
two levels of on-chip cache in Section 4, followed by Section 5 discussing our

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

362 • J. R. Crandall et al.

implementation of Minos for Red Hat Linux 6.2 on a Pentium emulator, as
well as other implementations for Microsoft Windows XP, OpenBSD 3.1, and
FreeBSD 4.2. Section 6 explains our evaluation methodology and shows that
control-data protection is a deeper issue than buffer overflows and C library for-
mat strings. The results in Section 7 show that Minos is very effective, that the
low water-mark integrity policy is stable, and that the performance overhead
of virtual memory swapping with tag bits is negligible. A security assessment
of Minos in Section 8 attempts to analyze the security of the Minos approach
against possibly more advanced attacks than are available today. Section 9
discusses the current best practices for preventing control data attacks. A dis-
cussion of follow-up research for the Minos project is followed by conclusions.

2. MOTIVATION

Control-data attacks form a significant majority of remote control-flow hijack-
ing attacks on the Internet, especially Internet worms, and are a major con-
stituent of local attacks designed to raise privileges. These vulnerabilities allow
control data, such as return pointers on the stack, virtual function pointers, li-
brary jump vectors, long jmp() buffers, or programmer defined hooks to be over-
written. When this data is read to be used in a procedure call, return, a jump,
or other transfer of control flow, the attacker then has control of the program.

The yearly cost of control data attacks to commodity software users totals
well into the billions of dollars. The Code Red worm spread by a buffer overflow
in Microsoft’s Internet Information Services (IIS) server, and this one worm
alone was estimated to have caused more than $2.6 billion in damage [Moore
et al. 2002]. It infected approximately 359,000 machines in less than 14 hours,
an unimpressive number compared to more recent worms and theoretical pos-
sibilities [Staniford et al. 2002].

The release of Windows XP was accompanied by a concerted effort on the part
of Microsoft to rid Windows of all buffer overflows through static analysis and
code inspection. Control-data protection problems in Microsoft software have
since been a common occurrence, a batch of about a dozen can be found in CERT
[2005, TA04-104A]. All this suggests that perhaps the persistence of the buffer
overflow problem and control-data protection problems, in general, is not be-
cause of a lack of effort by software developers. Every major Linux distribution’s
security errata lists contain dozens of control-data protection vulnerabilities.
This problem is an architecture problem.

It is inevitable that large, complex systems written almost entirely in C are
going to have memory corruption bugs. The architecture’s failure to protect the
integrity of control data, however, amplifies every memory corruption vulnera-
bility into an opportunity to remotely hijack the control flow of process.

An integrity policy was chosen because the confidentiality and availability
components of a full security policy are not critical for control-data protection.
We chose Biba’s low water-mark policy over other integrity policies, because
it has the property that access controls are based on accesses a subject has
made in the past and, therefore, need not be specified. For a more thorough
explanation of this property, we refer the reader to Fraser [2000].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 363

3. RELATED WORK

The key distinction of Minos is its orthogonality to the memory model. In
Minos, integrity is a property of the physical memory space. Therefore, Minos is
applicable even to flat-memory model machines. Minos should be equally as
easy to implement on architectures with more complex virtual addressing.

In the flat-memory model, memory is viewed as a linear array of untyped
data words. The programmer is not constrained by the architecture to treat
any data word as a particular type. This has obvious security disadvantages,
but this low-level control is the reason that the flat memory model survived
the vicissitudes of computer architecture when better-designed, more secure,
architectures did not.

Most commodity operating systems, such as Windows, Linux, or BSD, are
based on this memory model and so are the languages they are built upon: C
and C++. The success of Linux on dozens of architectures is facilitated by the
two minimal requirements of a paged memory-management unit (MMU) and a
port of the gcc compiler. Linux can be used without the MMU; the ADI Blackfin,
a DSP, has a paged MMU and can run an embedded version of Linux called
uCLinux, but the MMU is not currently used because uCLinux was intended for
a variety of architectures, not all of which have an MMU. This historical trend is
similar to the one that lead to the flat-memory model and shows that hardware
security mechanisms must be orthogonal and universally applicable to survive.

The network router market is tumultuous enough to necessitate the same
portability and so they also use flat-memory model architectures, such as
XScale (in Von Neumann mode) or MIPS and C-based operating systems,
leaving them vulnerable to buffer overflows [CERT 2005, VU 579324] and
other control-data attacks.

A work very similar to Minos was published in Suh et al. [2004] and was
developed independently in parallel. The focus in Suh et al. [2004] is on com-
pression techniques and their performance overhead, while Minos’ focus is more
on the way that specifics of the system and details of various attacks lead to
policy tradeoffs.Two projects from the security community [Newsome and Song
2005; Costa et al. 2005] have also looked at taint checking, the basic mecha-
nism behind Minos, using binary rewriting without modifying the hardware.
The policies in Suh et al. [2004], Newsome and Song [2005], and Costa et al.
[2005] are different from Minos’ policy. Minos’ policy has the benefit of having
been tested against 27 attacks (21 for real vulnerabilities and 10 of those ac-
tual attacks on Minos honeypots), many of which gave us insights causing us
to change the policy. More about this is discussed in Section 3.1.

Capability systems [Levy 1984] were an early attempt to secure entire sys-
tems. A capability is like a key that allows a program to access some object.
Capabilities must not be forged and so there are restrictions as to how their
values may be manipulated. Of special interest is the AS/400 [National Secu-
rity Agency 1997] which was loosely based on the System/38 and is still in use
today as the IBM iSeries. The AS/400 has a global, persistent address space
shared by all processes and in which all files and data are present. Pointers
are tagged by the operating system and can only be manipulated through a

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

364 • J. R. Crandall et al.

controlled set of instructions. Thus UNIX-based C programs can be compiled,
but only if pointer usage conforms to certain constraints. Such conformity is
not common in commodity software.

The Elbrus E2K [Babayan 2000] uses a type-based approach and is able
to compile and run C/C++ programs efficiently if they obey three draconian
measures: (1) no coercion between pointers and other types such as integers,
(2) no redefinition of the new operator, and 3) no references from a data structure
with a longer lifetime to one with a shorter lifetime. All three of these rules are
commonly broken.The third is very similar to Ada scoping rules and is contrary
to the way that most programmers are accustomed to building dynamic data
structures, because any pointer created in a function or procedure cannot be
used after the function or procedure returns. The Intel iAPX-432 [Pollack et al.
1982] was a type-based capabilities architecture with memory management
similar to Ada scoping rules. Ada scoping rules are certainly not orthogonal to
the flat-memory model.

More recent work has aimed to enable new applications, such as running
trusted software on an untrusted host where even the operating system and
main memory are not trusted [Suh et al. 2003]. There have also been ef-
forts to combat software piracy, such as XOM [Lie et al. 2000; Lie 2003;
Yang et al. 2003] or the Palladium and TCPA initiatives [Trusted Comput-
ing Group 2004], which has more to do with protecting your data on another
person’s machine and does not address control-data attacks. All of these tech-
nologies provide the basic functionality of compartmentalization, but putting
a vulnerable program into a compartment only yields a vulnerable program
in a compartment, so compartmentalization alone does not make a system
secure.

Code injection attacks are a subset of control data attacks and have been
considered with hardware solutions based on embedding processor-specific con-
straints in binaries with semantics-preserving rewriting techniques [Kirovski
et al. 2002].

There have, of course, been attempts to combat control data attacks and code
injection with software techniques. The most notable is StackGuard [Cowan
et al. 1998], which places a canary before every return pointer on the stack to
detect stacksmashing attacks. Return pointers are only one type of control data
and, according to our independent analysis of the Code Red II worm Stack-
Guard, would not have prevented Code Red II, which overwrote a function
pointer on the stack and not a return pointer.

PointGuard [Cowan et al. 2003] attempts to protect the integrity of all point-
ers by encrypting them when a C program is compiled using type information.
Pointers, and even function pointers, may be the sum of a base pointer with
one or more integers. We agree with Babayan [2000] that this coercion be-
tween pointers and other data types forces all fine-grained memory protection
mechanisms, even Minos, into a fundamental trade-off between security and
compatibility with existing C code. The PointGuard paper [Cowan et al. 2003]
gives a very good explanation of how this tradeoff can be seen at different stages
of compilation. A hardware implementation of pointer encryption has also been
studied [Tuck et al. 2004].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 365

Secure execution via program shepherding [Kiriansky et al. 2002] is a soft-
ware technique that prevents attempts to hijack control flow with a security pol-
icy and binary rewriting techniques. There are performance problems related
to virtual memory and it is not orthogonal to the memory model. However, this
paper helped inspire the Minos concept.

Control-flow integrity [Abadi et al. 2005] is a promising approach that com-
bines static analysis and run-time checks and is provably secure against control-
flow hijacking based on corrupting control data. It has not yet been demon-
strated for an entire system with dynamic library linking, which is where many
of the challenges for any such system lie.

Mechanisms similar to Minos have been employed for different purposes.
RIFLE [Vachharajani et al. 2004] uses more sophisticated information flow-
tracking mechanisms to enforce confidentiality policies on user data that are
set by the user. TaintBochs [Chow et al. 2004, 2005] uses a mechanism much
like the emulated implementation of Minos to examine data lifetime in a
full system and produced some interesting results on the lifetime of sensitive
data.

Intrusion-detection systems have been proposed that will detect when a pro-
cess’ control flow has been hijacked, for example, by observing anomalous sys-
tem call sequences that are made [Hofmeyr et al. 1998; Wagner and Dean 2001].
Mimicry attacks that subvert these mechanisms have been explored [Wagner
and Soto 2002]. This is an active area of research, so we will refer the reader
to more recent papers for a discussion on intrusion detection [Gopalakrishna
et al. 2005; Abadi et al. 2005]. We use terms like “false positive rate” to de-
scribe Minos, but view it as more of an architectural protection that provides a
foundation for secure systems than as an intrusion-detection system.

Address space randomization [Barrantes et al. 2003; Kc et al. 2003] seeks to
prevent memory corruption attacks by randomizing, as much as possible, the
placement of data objects in memory. Attacks have demonstrated that great
care must be taken in designing systems with address space randomization
[Shacham et al. 2004; Sovarel et al. 2005; Nergal 2001]. We show in Section 9
that a vulnerability, such as a format string vulnerability, can be exploited to
read from arbitrary locations in memory or from the stack without knowing its
address, so it is possible to follow a return pointer back to the static binary and
locate the PLT and GOT. Furthermore, there is a limit to the randomization
that can be performed because 32- and 64-bit machines use two- or three-level
page tables for virtual address translation and a perfect randomization of a full
system will require possibly terabytes of page tables.

Mondrian Memory Protection [Witchel et al. 2002] is an architectural mech-
anism that facilitates access controls on individual words of data in the virtual
address space, such as readable, writable, or executable. There is considerable
storage and performance overhead because access controls are dependent on
context. A word may be writable in one context of a program, but not another,
so permissions must be loaded and applied speculatively. Control-data attacks
could be prevented with Mondrian Memory Protection by marking control data
as read-only, except in the contexts in which it is allowed to be modified. Since
these permissions are a property of virtual memory locations and not physical

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

366 • J. R. Crandall et al.

data, they are not orthogonal to the memory model and must be specified on a
per-program basis.

Minos’ orthogonality to the memory model cannot be overemphasized. By or-
thogonality we mean that for compatibility with existing code there should be no
conflicts between the way a program uses its memory and Minos’ policy, unless
there is an actual vulnerability and no specification should be required to apply
Minos’ protections. The need to do pointer arithmetic, even with control data, is
not limited to applications. Middleware, such as the GNU linker and loader (ld),
uses pointer arithmetic to relocate shared libraries and do dynamic linking from
user space (in an unprivileged context). Moving all of the library functionality
into kernel space is undesirable in terms of both portability and security.

Nonexecutable pages are now available for 64-bit Pentium-based architec-
tures, but attackers already have methods for subverting this [Nergal 2001].
Furthermore, we describe an attack called hannibal in Section 9 that does not
need to use the stack frame forging techniques of Nergal [2001].

An interesting work related to how Minos handles virtual memory swapping
with tag bits is the AS/400. The implementation evaluated in [National
Security Agency 1997] stores tag bits by building a linked list of the tagged
pointers in each page on disk using reserved portions of each 16-byte pointer
and storing the pointer to the head of the list in the disk’s sector header.

Babayan [2000] discusses two implementations of virtual swapping with tag
bits for the Elbrus line. One uses software to transfer data and tags to an
intermediate buffer large enough to hold both without using the memory tag
bits and then writes this larger buffer to disk. Another uses special I/O hardware
to do the unpacking.

3.1 Discussion of Policy Tradeoffs

In this section, we justify specific policy decisions and compare our policy to
the policies in related works that employ the same basic “tainting” method as
Minos [Suh et al. 2004; Newsome and Song 2005; Costa et al. 2005]. Note that
Suh et al. [2004], TaintCheck [Newsome and Song 2005], and Vigilante [Costa
et al. 2005] perform checks other than for control-data attacks and can have
flexible policies. While a direct comparison of four mechanisms with different
protections and flexible policies is not possible, comparing the specific policy
decisions we made for Minos with related work can shed light on the tradeoffs
inherent to information flow tracking.

Suh et al. [2004] presented a categorization of information-flow dependencies
that we will use here: copy dependency, computation dependency, load-address
dependency, store-address dependency, and control dependency. For each, we
will discuss the tradeoff of propagating the integrity bit for that dependency
or not and make an important distinction between 8- and 16-bit data and 32-
bit data (this distinction is an important difference of the Minos policy). From
our experience testing 21 real exploits, we found that most of the information
flow security problems that require information flow to be tracked involve 8-
and 16-bit data while all control data is 32 bits, so the distinction helps to
increase security without adding false positives. This is because complex string

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 367

processing involving lookup tables and control characters usually are done on
8- and 16-bit data.

Now we will discuss each of the five categories of dependency:

1. Copy dependency: Obviously when data is copied from memory to register,
register to register, or register to memory, the integrity bit should also be
copied. There all special cases, though, where an 8- or 16-bit piece of data is
copied into a place that a 32-bit piece of data is stored or when 32-bit data
is written to memory and the store address is not 32-bit aligned. In the first
case, the resulting 32-bit word is only high integrity if both the 32-bit and 8-
or 16-bit values were high integrity. In the second case, the write is always
low integrity to prevent the attacker from using “striping” to create an arbi-
trary 32-bit value. Neither of these policy decisions caused false positives in
any of our extensive testing. Neither the Alpha or x86 policies of Suh et al.
[2004] consider these cases involving different data sizes (note that Suh et al.
[2004] keeps an integrity bit for every byte), nor the policies implemented
for TaintCheck [Newsome and Song 2005] or Vigilante [Costa et al. 2005].

2. Computation dependency: Biba’s low water-mark integrity policy is applied
to every operation in Minos for both operands. The Pentium instruction
“xor EAX, EAX” that is a common idiom for zeroing a register is not treated
specially since control data never seems to be calculated from these zeroes.
Extensive testing revealed no false positives because of this. Suh et al. [2004]
made an exception to the rule that both operands have their integrity prop-
agated for the addition of the base and offset of a pointer; this was possible
apparently because pointer addition is done on the Alpha with the “s4addq”
instruction. We did not do this in Minos for two reasons: because pointer ad-
dition on the Pentium is done using the same instruction as regular addition
and is, therefore, impossible to distinguish, and also because it is important
to consider the integrity of the offset in some scenarios. For example, Code
Red II does ASCII to UNICODE conversion using table look-ups and is
not caught unless the offset of pointer additions is checked. TaintCheck
[Newsome and Song 2005] and Vigilante [Costa et al. 2005], like Minos, apply
taint marks to all operations, but do not consider load-address dependency.

3. Load-address dependency: Here we make a clear distinction between 8- and
16-bit loads and 32-bit loads because, as stated above, the load dependency
is very important for catching Code Red II. Checking the load dependency
for 32-bit loads would be desirable for security, but creates a situation where
the monotonic behavior of Biba’s low water-mark integrity policy quickly
causes all pointers and all data in the entire system to become low integrity.
We refer the reader to the heap example in Section 8. Minos checks the
load-address dependency for all 8- and 16-bit loads. Both computation
dependency and load-address dependency are needed to stop the Code Red
II exploit, and only Minos applies both to 8- and 16-bit operations. It is
impossible to apply both to 32-bit operations. Suh et al. [2004] consider
load-address dependencies, while TaintCheck [Newsome and Song 2005]
and Vigilante [Costa et al. 2005] do not.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

368 • J. R. Crandall et al.

4. Store-address dependency: Minos also checks the store-address dependency
for all 8- and 16-bit loads. Checking the store dependency of 32-bit stores
would be desirable and would have stopped the ASN.1 exploit with a
control-flow check rather than checking the integrity of the executed
instructions (see Section 7). However, like load-address dependencies,
this will create an exorbitant number of false positives. Suh et al. [2004]
consider store-address dependencies while TaintCheck [Newsome and Song
2005] and Vigilante [Costa et al. 2005] do not. The ASN.1 exploit links a
function pointer into the heap as a doubly linked list (this is a common
exploit technique for double free() vulnerabilities), so that the only pointer
provided by the attacker is a pointer to the function pointer, which is not
control data, meaning that Minos allows it to be low integrity without
flagging an attack. Minos also checks the integrity of instructions that are
executed for added security, as is discussed in Section 7, and this is how
Minos detects this particular attack. After control flow is hijacked, when
the attacker’s code on the heap is executed, Minos will raise an alert.

5. Control dependency: Control dependency on low-integrity data is very
common and must not be flagged by Minos because a web server must
read a remote user’s request, for example, in order to fulfill that request.
The only policy decision we made related to control dependency was to
make all 8- and 16-bit immediate values be low integrity. This causes some
false positives in some JITs because they use 8- and 16-bit immediates to
calculate branch targets in generated code, which we addressed with a JIT
compatibility mode. The innd and longstr attacks are not caught without
this policy. None of the other mechanisms [Suh et al. 2004; Newsome and
Song 2005; Costa et al. 2005] consider immediates nor do they track all
control dependencies for the same reason that Minos cannot.

4. ARCHITECTURE

The goal of the Minos architecture is to provide system security with negligible
performance degradation. To achieve this goal, we describe a microarchitecture,
which makes small investments in hardware where the tag bits in Minos are
in the critical path.

At a basic level, every 32-bit word of data must be augmented with an in-
tegrity bit. This results in a maximum memory overhead of 3.125% (neglecting
compression techniques). The real cost, which we will try to address in this sec-
tion, is the added complexity in the processor core. We argue that this complex-
ity is well justified by the security benefits gained and the high compatibility of
Minos with commodity software. Given increasing transistor densities and de-
creasing performance gains, investments in reliability and security make sense.

Figure 1 shows the basic data flow of the core of a Minos-enabled processor.
One bit is added to the common data bus. When data or addresses are transmit-
ted, their integrity bit is also transmitted in parallel. The reorder buffer and
the load buffer have an extra bit per tag to store the integrity bit. The reser-
vation stations have two integrity bits, one for each operand. The integrity of
the result is determined by applying an AND gate to the integrity bits of the

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 369

Fig. 1. Minos in an out-of-order execution microprocessor core. (*) Based on size and compatibility
settings; (**) ignored for 32-bit loads and stores.

operands. All of the integrity bit operations can be done in parallel with normal
operations and since they are never in the critical path, there is no need for
new speculation mechanisms.

The L1 cache in a modern microprocessor, the Pentium 4, for example, is
typically about 8 KB and is optimized for access time. To maintain this low
access time, we store the integrity bit with every 32-bit word as a 33rd bit. The
total storage overhead in an L1 cache of this size is 256 bytes. The on-chip L2
cache, on the other hand, can be as large as 1 MB and is optimized for hit rate
and bandwidth. To keep the area overhead low and the layout simple, we use
the same technique often used for parity bits: have one byte of integrity for
every 256-bit cache line.

All of the floating point, MMX, BCD, and similar extensions can ignore the in-
tegrity bits and always write back to memory with low integrity. This is because
control data, such as jump pointers and function pointers, are never calculated
with BCD or floating point. One possible exception is that MMX is sometimes
used for fast memory copies, so these instructions should just preserve the in-
tegrity bits. The instruction cache, trace cache, and branch target buffer must
check the integrity bits with their inputs, but do not need to store the integrity
bits after the check. If data is low integrity, it is simply not allowed into the
instruction cache or branch target buffer. This is not a problem for JIT compati-
bility or dynamic library linking, since, in both cases, the instructions executed
should be from high-integrity sources. Overall, the L1 cache and processor core’s
area increases will be negligible compared to the L2 cache, so we can produce an
estimate of the increase in die area for Minos by looking at the L2 cache alone.

Intel’s 90-nm process can store 52 Mbits, or 6.5 MB, in 109.8 mm2 with 330
million transistors [Intel 2002]. A 1 MB L2 cache without the extra integrity bits
in this process would be about 51 million transistors and 16.9 mm2. Minos would

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

370 • J. R. Crandall et al.

add to this another 1.59 million transistors and 0.53 mm2 for an additional
32 KB. The Prescott die area is reported to be 112 mm2, so the contribution of
the extra storage required by Minos in the L2 cache to the entire die area is
less than one-half of 1%. Using the die cost model from Patterson and Hennessy
[2003] and assuming 300 mm wafers, α = 4.0, and 1 defect per cm2, this is less
than a penny on the dollar.

A 32-bit microprocessor without special addressing modes can address 4 GB
of DRAM off chip. This requires 128 MB to store the integrity bits outside
the microprocessor. We propose a separate DRAM chip, which we will call the
Integrity Bit Stuffer (IBS). The IBS can coexist with the bus controller and store
the integrity information for data in the DRAM. When the DRAM fills requests
for data, the IBS stuffs the stored integrity bits with this data on the bus.

By using a banking strategy that mirrors that of the conventional DRAM
chip it can be guaranteed that the integrity bit will always be ready at the
same time as the conventional data. The bus must be widened from 64 to 66
bits. When the data bus is driven by other devices for DMA or port I/O, the
IBS assumes high integrity. Alternatively, nonstandard DRAM chips could be
built or the parity bits of existing DRAM chips could be utilized as integrity
bits instead.

The hardware support needed for Minos is almost identical to what is needed
for the soft error rate reduction mechanism proposed in Weaver et al. [2004].
The same paper discusses other uses of tag bits. The PowerPC AS has a tag bit
per 64-bits and is used for running the microcode of iSeries programs. A 64-bit
Linux implementation with Minos support on the iSeries may be possible by
using a similar microcode approach.

5. IMPLEMENTATION

In this section we describe our hardware emulation platform and operating
system implementation.

5.1 Hardware Emulation

We emulated Minos on a Pentium emulator called Bochs [2005] as a proof-of-
concept. For performance reasons, architectural support would be necessary
for a real Minos system. Our software Minos emulator only achieves about 10
million instructions per second on a 2.8-GHz Pentium 4. Better software imple-
mentations [Newsome and Song 2005; Costa et al. 2005] can achieve within an
order of magnitude of the performance of native hardware, but will likely al-
ways have a fraction of the performance of native hardware because of the need
to manage integrity bits for every executed instruction. Ho et al. [2006] demon-
strate near-native performance when very little tainted data is being processed,
but performance more consistent with other software emulators when tainted
data is being processed.

Bochs emulates the full system, including booting from the BIOS, and load-
ing the kernel from the hard drive. DMA, port I/O, and extensions such as
floating point, MMX, BCD, and SSE are supported. The floating point and BCD
instructions ignore the integrity of their inputs and their outputs are always low

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 371

integrity. A single-integrity bit was added to every 32-bit word in the physical
memory space.

All port I/O and DMA is assumed to be high integrity in the Linux imple-
mentation. The Windows and BSD implementations assume the port I/O for
network data to be low integrity. The reasons for this are twofold: so that Mi-
nos is compatible with all existing hardware devices and so that the main tenet
of Biba’s low water-mark integrity policy, that data should never go up in in-
tegrity, is not broken.

The Pentium is also byte and 16-bit word addressable, but it suffices to only
store one integrity bit for every 32-bit word. Compilers align all control data
along 32-bit words for performance reasons. If a low-integrity byte is written
into a high-integrity 32-bit word, or a high-integrity byte is written into a low-
integrity word, the entire resulting word is then low-integrity. The same applies
to 16-bit manipulation of data. This is necessary to keep low-integrity data
from ever going up in integrity. Any misaligned 32-bit writes will also be forced
low integrity to prevent attackers from building arbitrary high-integrity 32-bit
values using striping. Enforcing these constraints could cause false positives in
principal, but almost two years of extensive testing of Minos have not produced
any false positives, in practice, because of these policies.

Every instruction operation applies the low water-mark integrity policy to its
inputs to determine the integrity of the result. All 8- and 16-bit immediate loads
are low integrity unless the processor is running in a special compatibility mode
and all memory references to load or store 8- and 16-bit values also have the low
water-mark integrity policy applied to the addresses used for the load or store.

We added a compatibility mode to the architecture and the kernel where 8-
and 16-bit immediates are high integrity, but the rest of the policy remains
the same. The compatibility mode cannot be exploited for privilege escalation
because of constraints on using it, described in Subsection 5.2. For security
reasons, it would be better if the JIT was slightly modified to be compatible
with Minos, because with 8- and 16-bit immediate loads set to high integrity, it
may be possible to generate arbitrary high-integrity 32-bit values.

String operations on the Pentium, such as a memory copy, go from one seg-
ment to another. The operations always go from the segment referenced by the
“DS” register to that referenced by the “ES” register, so that a string copy using
“REP MOVSD,” “REP MOVSW,” or “REP MOVSB,” when the “ES” register references a
special segment descriptor will force the data low integrity. Typically in Linux
“DS” and “ES” will be segments containing the same flat address space, but
marking “ES” as low integrity allows the kernel to indicate to the architecture
that data should be forced low integrity. We used the reserved 53rd bit of the
segment descriptor to do this marking. During a read() system call, the ker-
nel always uses these string operations to copy data into the process’ address
space. If the 53rd bit of the segment descriptor is not set, then the integrity bit
is simply copied.

The only other cases where data must be forced low integrity are when
pages are mmap()ed or read back from a swap device. Our Linux kernel im-
plementation uses a low-integrity marked memory copy of a page onto itself
for low-integrity mmap()s. Better implementations could be devised, but the

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

372 • J. R. Crandall et al.

performance of the hard drive read should always dominate the performance
of an mmap(). For virtual memory swapping, there is also another special seg-
ment descriptor which, when used in string operations, causes the source or
destination to have a stride of 32-words and the value copied in or out of this
segment is the 32 bits of integrity information for this 32-word block. This way
the kernel can copy the integrity information from an entire 4-KB page into
a 128-byte buffer, or copy the integrity information of a 128-byte buffer into
the integrity bits of an entire page. Since there were no more reserved bits in
the segment descriptor, we hard-coded a segment descriptor number into the
emulator for this purpose.

5.2 Operating System Changes

The two segment descriptors described in the last section were added to the
Linux 2.4.21 kernel to cover the whole linear address space, as do the existing
segment descriptors (this is how a flat memory model is implemented on the
Pentium). A few other small modifications that are described in this subsection
were made to the kernel, so that now when data enters a process’ memory space
Minos the dreadful snarls at the gate and wraps himself in his tail with as many
turns as levels down that shade will have to dwell [Alighieri 1308, 1994]. An
interrupt traps to the kernel whenever an attempt is made to transfer control
flow with low integrity data. Unless otherwise stated, all operating system
details in this section and subsequent sections are specific to Linux.

Ideally, control data should only come from the original ELF binary or dy-
namically linked libraries so that everything else can be marked low integrity.
Unfortunately, GNU ld does not use a system call for most shared objects,
opting instead to use the read() system call and mmap()s so that it can relo-
cate them and also to keep library mechanisms separate from the kernel. We
also discovered that the pthreads library creates lightweight processes with
the clone() system call and then passes them function pointers to call through
pipes. Last, sometimes legitimate programs, such as plug-ins and JITs, are not
implemented with the normal library code mechanisms.

Consequently, we chose to define trust for our implementation in terms of
how long the data has been part of the system. In Minos, the kernel keeps a
timestamp called the establishment time before which all libraries and trusted
files were established and after which everything created is treated as vit-
riol and forced low integrity. More sophisticated and user-friendly definitions
of trust and installation procedures could be devised, but we are mostly con-
cerned with nailing down the policy decisions that must be accounted for in the
architecture design for this work. For example, our current definition of trust
does not support the Network File System (NFS), but a more sophisticated pol-
icy could. The establishment time requirement does not create false positives
for JIT compilation or dynamic library linking, since the JIT source code and
list of operands it can use, as well as the data used for linking objects, should
all be created and written to disk before the establishment time.

Any communication where one process passes data to another process that
is not sharing its memory space will be forced low integrity, because it will go

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 373

through the virtual file system through an inode that was either established or
modified sometime after the establishment time (an inode is a structure that
stores information about objects in the filesystem, such as files, pipes, or sockets;
in BSD systems the correct term would be vnode). Thus, when an attacker’s data
comes from the network, it will stay low integrity in the system even if it goes
out to disk and comes back. There is no need to modify the filesystem on the
hard drive.

More specifically, the read() system call forces the data read by the process
to be low integrity, unless both the ctime (time of last inode change) and mtime
(time of last modification) of the inode are set to a time before the establishment
time of the system, or the file descriptor points to a pipe between lightweight
processes that share the same memory space. The read() system call in Linux
is used for reading from files, the console, the network, pipes, sockets, and
everything else of interest to Minos.

It is impossible, even for the superuser, to change a ctime backward in time
without changing the system time. The ctime is used by the kernel to keep track
of inode changes for fault-tolerance purposes. The exception for pipes between
lightweight processes was added for compatibility with pthreads, but it does not
diminish security because the lightweight processes share the same memory
space; the integrity bits are simply copied and a lightweight process with the
same address space as the one being attacked could just copy the memory from
one place to another and not use pipes. Minos operates at the physical memory
abstraction so threads in a process need not be distinguished. A good, concise de-
scription of the Linux virtual filesystem is available in Bovet and Cesati [2002].

On an execv() all of the argument variables are forced low integrity. The
readv() and pread() system calls force the data read to low integrity. All reads
from a network socket are also forced low integrity without exception. Thus,
a remote attacker’s data will enter the system low integrity and will never be
lifted to high integrity because of the establishment time requirement, even
if the data goes through the virtual file system to the disk and back, or to
another process.

When mmap()ed files are mapped by the kernel a check is done to see if the file
meets the establishment time requirement or is the original binary mounted by
the user, otherwise it is forced low integrity. Our implementation of this simply
copies the page onto itself through the special low-integrity segment descriptor.

Any attempt to run a setuid program in JIT compatibility mode will squash
the euid and egid down to the real uid and gid, similar to a ptrace. It would also
be possible to have a full compatibility mode where all data is high integrity,
but we did not find any programs where this would be necessary.

5.3 Virtual Memory Swapping

When the Linux kernel swaps out a page, it first puts the page in the swap cache,
then changes all page table entries for any processes that reference the page to
swap entries, then writes the page to disk. Any process that then references the
page either finds it in the swap cache or must wait for it to be read back from
disk. The page is not deleted from the swap cache until all processes that have

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

374 • J. R. Crandall et al.

swap entries for it get a new mapping. The 4-KB block size on the swap device
matches the 4-KB page size of the Pentium and should not be modified. All
reads of pages from the swap device must also be kept asynchronous, because
they are often speculatively read in clusters. The swapping mechanisms are
finely tuned so we chose a method of handling the tag bits that does not add to
this complexity.

When the Minos-enabled kernel writes the page to disk, it kmalloc()s 128
bytes and copies the integrity tag bits to this buffer. Any process that trades
in its swap entry for a page mapping will not receive the mapping until the
integrity bits of the page are restored and the 128 byte buffer is kfree()ed.
However, this is done lazily when the first request is made so that the actual
read operation remains asynchronous. The performance overhead is negligible,
which we will demonstrate in Section 7.

5.4 Windows and BSD Implementations

We installed both Microsoft Windows XP and a beta version of XP called Win-
dows Whistler with IIS 5.1 on the emulator and changed the hardware emu-
lation so that all reads from the network device port are low integrity. This is
not secure if the attacker’s input from the network goes to the disk then comes
back and overwrites control data. However, without the Windows source code
we cannot track this. Virtual memory swapping was disabled. Both versions of
Windows run in JIT compatibility mode full time.

We also installed OpenBSD 3.1 and FreeBSD 4.2 and ran both with unmod-
ified kernels. Any operating system should work with Minos unmodified with
the tradeoff that the integrity bits will not follow data that goes to the hard
drive and comes back. Unmodified operating system kernels must run in JIT
compatibility mode full time, since there is no kernel support for switching back
and forth between the normal and JIT compatibility modes.

6. EXPERIMENTAL METHODOLOGY

There are three important metrics in a system such as Minos: (1) the false
positive rate, (2) the effectiveness at stopping the attacks it is intended to stop,
and (3) the performance overhead as a result of virtual memory swapping. This
section describes our methods for evaluating Minos in regard to all three.

6.1 False Positive Rate

We have been using the emulated Minos architecture for honeypots and various
testing for nearly 2 years without any false positives, except two that have been
fixed and are described in Section 7. Two other tests are described in Section 7
that were designed to show that the monotonic behavior of Biba’s low water-
mark policy is not a problem for a single process or for the whole system.

6.2 Effectiveness at Stopping Attacks

For Minos, we chose an evaluation methodology similar to what is seen in the
computer security research community. This is only because we feel that real

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 375

attacks give more insight into our design decisions. To see the reasoning be-
hind this approach, consider the many papers that motivate return pointer
protection using Code Red as an example, although Code Red and Code Red II
did not overwrite a return pointer, but instead a function pointer on the stack.
Implementations of mechanisms in real systems also often discover that cer-
tain assumptions do not hold and lead to new innovations toward making the
technology viable. For example, a full-system Linux implementation of func-
tion pointer encryption in Tuck et al. [2004] found that return pointers are not
always used in a LIFO manner and a binary rewriting scheme to ameliorate
this was developed.

Now we describe the attacks that we have tested Minos with or that Minos
honeypots have actually been attacked with.

6.2.1 Exploits for Real Linux Vulnerabilities. Red Hat 6.2 was chosen be-
cause of the high number of control data-protection problems with this partic-
ular version of the Red Hat distribution.

The rpc.statd exploit [Security Focus 2005, bid 1480] is a remote-format
string attack on an NFS locking mechanism, which overwrites a return pointer
on the stack to return to arbitrary code on the stack.

The traceroute exploit [Security Focus 2005, bid 1739] is a local exploit based
on a vulnerability, where free() is called twice with a pointer for data that was
only malloc()ed once when multiple command line arguments are given with
the same flag. It is not a buffer overflow or a format string vulnerability.

The su-dtors exploit [Security Focus 2005, bid 1634] uses a vulnerability in
glibc’s locale functionality where it is possible to link (with an mmap()) a bogus
language module library into a program and exploit a format string vulnerabil-
ity. The .dtors section of ELF binaries contains pointers to any destructors that
need to be run before the program exits and is the victim of an arbitrary write
primitive in this exploit. This is a local attack, but could possibly be exploited
remotely through telnetd.

A remote format string exploit for wu-ftpd [Security Focus 2005, bid 1387]
basically can write an arbitrary value to an arbitrary location.

An exploit for a different vulnerability in wu-ftpd [Security Focus 2005, bid
3581] exploits an error in the file globbing functionality in a manner similar to
the double free() exploit for traceroute.

A more challenging remote exploit to catch is the remote attack on the innd
news server [Security Focus 2005, bid 1316], where a news message is posted
and then later canceled. Thus, the buffer overflow is exploited with data that
goes to the filesystem and comes back.

We created a seventh exploit, hannibal, which exploits the format string
vulnerability in wu-ftpd to basically overwrite rename(char *, char *)’s Global
Offset Table (GOT) entry with a pointer to execv(char *, char **)’s Procedure
Linkage Table (PLT) entry. A subsequent request to rename a file then actually
executes a binary file. More details can be found in Section 8.4.

Note: ∗means: caught by Minos’ check of the integrity of instructions executed, not by the check of
the integrity of control data.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

376 • J. R. Crandall et al.

6.2.2 Exploits for Hypothetical Linux Vulnerabilities. We created six hy-
pothetical attacks as local attacks. They are designed to test setjmp()s and
longjmp()s (tigger), string to integer conversion (str2int), off-by-one vulnerabil-
ities (offbyone), pointer arithmetic (also str2int), virtual function pointers (virt),
and environment variables (envvar). The longstr exploit is a standard format
string exploit except that no size specifiers are used (see Section 8).

6.2.3 Exploits for Real BSD Vulnerabilities. We tested OpenBSD 3.1 with
the Apache chunk handling integer overflow [Security Focus 2005, bid 5033]
that was exploited by the Scalper worm. We also tested FreeBSD 4.2 with
the ntpd buffer overflow [Security Focus 2005, bid 2540] and an ftpd exploit
[Security Focus 2005, bid 2124] for an off-by-one buffer overflow where control
flow is hijacked by overwriting the least significant byte of a saved base pointer
and linking in a bogus stack frame with a bogus return pointer.

6.2.4 Windows Exploits and Actual Attacks. The Code Red II worm was
released just after the Code Red worm, but was built on an entirely different
code base. It attacks the Microsoft IIS web server. It is a buffer overflow that
is caused because a string of the form “XXXXXX%u1234%uABCD” in an HTTP
GET request has its ASCII characters converted to UNICODE, making it longer
than when its length was first calculated. The beta version of Windows XP
called Whistler was used to catch Code Red II.

Microsoft SQL Server 2000 was installed on the same version and was at-
tacked first with a remote stack buffer overflow based on a vulnerability during
authentication [Security Focus 2005, bid 5411]. After moving the Minos hon-
eypots out from behind the campus firewall, Minos caught six more Windows
exploits: the Slammer worm [Security Focus 2005, bid 5311], the Blaster worm
[Security Focus 2005, bid 8205], the Sasser worm [Security Focus 2005, bid
10108] (this particular exploit is also commonly used for spreading botnets),
a Workstation Service buffer overflow exploit [Security Focus 2005, bid 9011],
an RPCSS buffer overflow exploit [Security Focus 2005, bid 8459], and the Zo-
tob worm exploiting the Windows Plug and Play buffer overflow vulnerability
[Security Focus 2005, bid 14513].

We attacked Minos with the ASN.1 library bit string processing heap cor-
ruption vulnerability [Security Focus 2005, bid 13300], because it uses a par-
ticularly interesting exploit that helps illustrate the policy tradeoffs that must
be made in a system like Minos.

6.2.5 Actual Linux Attacks. Our Linux web server [Web Server 2005] was
attacked from South Korea and Minos SIGSTOPed the process exactly the way
it is supposed to. Analysis was done by launching gdb and attaching to the
stopped process. The attack exploited the heap-globbing vulnerability in wu-
ftpd. The exploit itself was not the same exploit we used for this vulnerability
and is quite interesting. There is a fake NOP sled and a lot of jumps that change
the alignment of the way the opcodes are decoded in an apparent attempt to
make analysis hard.

The same web server was also attacked from an apparently compromised
machine on campus using an sshd buffer overflow [Security Focus 2005, bid
2347], which Minos caught.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 377

6.3 Virtual Memory Swapping Overhead

While the microarchitecture of Minos has been designed to avoid performance
overheads, the operating system must still save the tag bits during virtual
memory swapping. The cost of extracting and replacing these bits is negligible
compared to the seek time and read time of the hard drive, so only the 128 bytes
added to the kernel’s memory allocator can cause performance problems by us-
ing memory when memory is scarce. We ran several SPEC2000 benchmarks
(that use enough memory to be interesting) to completion on their reference in-
puts with varying amounts of memory. We did not run the full set because most
SPEC2000 benchmarks do not use more than several megabytes of RAM. We
used mlock()s to lock various amounts of memory in RAM so that the benchmark
would have to share the rest with the kernel.

All benchmarks were compiled with gcc 3.2 and the “-O2” option. They were
executed natively on a 1.6-GHz Pentium 4 with 256 MB of RAM and 512 MB of
swap space on the same physical hard drive as the root filesystem. The operat-
ing system used was Red Hat 9.0 and all services including the network were
disabled. Extracting and replacing integrity bits was simulated by memcpy()ing
128 bytes. In order to obtain reproducible results, we found, it necessary to
reboot the system between data points because Linux changes its clustering
algorithm over time to spread the load over different physical blocks on the
disk. The results from the virtual memory swapping tests are in Section 7.

7. RESULTS

This section describes the results for the three types of experiments: (1) false
positives, (2) effectiveness at stopping exploits, and (3) performance overhead
due to virtual memory swapping.

7.1 False Positives

We have been using the Minos system for more than 1 year as honeypots and
for testing and exploit analysis and only encountered false positives twice, one
of which has been fixed and the other would only require adding the capability
to the Linux virtual file system of sync()ing and deleting the buffers for an
individual file rather than an entire volume.

One source of false positives was the Java just-in-time (JIT) compiler, for
which a compatibility mode was discussed in Section 5.1. The SUN Java SDK
was run on Minos and it gave a large number of false positives while running
a Hello World program, because of the JIT using 8- and 16-bit immediates to
calculate call and jump targets. The other source of false positives was when
a freshly compiled program was mounted for execution before it was flushed
out to disk. The binary program was still in the kernel’s file buffers with low-
integrity marks because it had been data for the compiler. A solution to this is
to sync() newly mounted binary executable files to disk before executing them.
We did not implement this, although it would be straightforward.

Figure 2 shows the amount of low-integrity data in the system for a full
run of the gcc benchmark from SPEC2000 on the reference inputs. This is
just to demonstrate that monotonic behavior, the usual criticism of Biba’s low

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

378 • J. R. Crandall et al.

Fig. 2. The gcc stress test.

Fig. 3. Linux web server over 1 month.

water-mark integrity policy, is not observed in Minos. This is because, while
data never goes up in integrity during its stay in the physical memory, it does
die and get replaced with other data. We did not run the full set of SPEC
benchmarks because they are all statically compiled binaries that do not use
the network or dynamic linking so there is nothing interesting in them that
could cause a false positive.

Figure 3 shows the amount of low-integrity data in the system for 1 month of
our Apache web server being up. This graph constitutes trillions of instructions
from a whole system, including the kernel where there were no false positives.
This is a usable system on the network that we can access with a remote shell
and send email, surf the web with lynx, or debug programs using gdb.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 379

Minos also checks the integrity of instructions that are executed. This has the
same effect as nonexecutable pages, except that permissions need not be speci-
fied in Minos’ case. This is only important for one exploit that we tested, which
deserves some explanation, since it is the only exploit tested that Minos does
not catch at the bogus control flow transfer. The ASN.1 library bit string heap
corruption exploit basically works the way that double free() exploits work: the
two pointers of a node in the doubly linked list of free chunks are overwritten,
and then unlinking when the free chunk is allocated in the future will cause
a pointer, which is calculated to point to that heap chunk, to be written to an
arbitrary address. For reasons discussed in Section 8, calculated heap pointers
are usually low integrity, but this is not guaranteed and in Windows, which
we run in JIT compatibility mode full-time, it is common for the heap pointers
to be high integrity. In the ASN.1 exploit, this means that the calculated heap
pointer, which will point to the attacker’s arbitrary code on the heap, is high in-
tegrity and can be written anywhere. Minos catches the attack when arbitrary
code is executed, but this pointer calculation shows the challenges in protecting
against more advanced attacks, which will be discussed in Section 8.

7.2 Exploit Tests

All exploits tested and real attacks were stopped by Minos (shown in Table II
and Table III). With the integrity of the addresses of 8- and 16-bit loads not
being checked, Code Red II is not caught. The ASN.1 bit string processing heap
corruption exploit is caught by Minos’ check of the integrity of instructions
executed, not by the check of the integrity of control data. More about this was
discussed in Section 3.1.

Early in the project we identified three ways in which low-integrity data
could become high integrity because of information flow. Statements such as

if (LowIntegrityData == 5)

HighIntegrityData = 5;

HighIntegrityData =

HighIntegrityLookupTable[LowIntegrityData];

HighIntegrityData = 0;

while (LowIntegrityData--)

HighIntegrityData++;

give an attacker control over the value of high-integrity data via information
flow. These were supposed to be pathological cases, but they are not in the case
of 8- and 16-bit data, because of the way functions, such as scanf() and sprintf(),
handle control characters and also because of translations between strings and
integer values such as atoi() or conversion from ASCII to UNICODE, as was
exploited by Code Red II. As was discussed in Section 3.1 the distinction between
8- and 16-bit data and 32-bit data is important.

7.3 Virtual Memory Swapping Overhead

For most SPEC2000 benchmarks tested, the performance of the Minos-enabled
kernel and the performance of the unmodified kernel are indistinguishable. The

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

380 • J. R. Crandall et al.

Table II. Exploits that We Attacked Minos With

Exploit Name Real Vuln.? Remote? Vulnerability Type Caught?
rpc.statd Yes Remote Format string Yes
traceroute Yes Local Multiple free() calls Yes
su-dtors Yes Possibly Format string Yes
wu-ftpd Yes Remote Format string Yes
wu-ftpd Yes Remote Heap globbing Yes
innd Yes Remote Buffer overflow Yes
Apache Chunk Handling Yes Remote Integer overflow Yes
ntpd Yes Remote Buffer overflow Yes
Turkey ftpd Yes Remote Off-by-one buffer overflow Yes
ASN.1 bit string Yes Remote Heap corruption Yes*
hannibal Yes Remote wu-ftpd format string Yes
tigger No Local long jmp() buffer Yes
str2int No Local Buffer overflow Yes
offbyone No Local Off-by-one buffer overflow Yes
virt No Local Arbitrary pointer Yes
envvar No Local Buffer overflow Yes
longstr No Local Format string Yes

Table III. Exploits that Others Actually Attacked Minos With

Attack Remote? Vulnerability Type Caught?
Linux wu-ftpd Remote Heap globbing Yes
Linux sshd Remote Buffer overflow Yes

Code Red II Remote Buffer overflow Yes
SQL Server 2000 Remote Buffer overflow Yes
Sasser Remote Buffer overflow Yes
Blaster Remote Buffer overflow Yes
Slammer Remote Buffer overflow Yes
NTLM Workstation Remote Buffer overflow Yes
RPCSS Remote Buffer overflow Yes
Zotob Remote Buffer overflow Yes

interesting case is mcf, which uses a lot of memory and has a large working set.
Figure 4(c) shows that there is a “cliff” as the amount of RAM available crosses
the threshold of the working set size of the benchmark. The Minos-enabled ker-
nel starts thrashing several megabytes before the unmodified kernel, because
of the extra 128 byte allocation for every page swap. While Minos requires
more RAM, in this case, RAM prices continue to decrease and trading memory
requirements for increased security is often desirable.

8. SECURITY ASSESSMENT FOR MORE ADVANCED ATTACKS

We have demonstrated that Minos stops a broad range of existing control data
attacks, but we must address the security of Minos against future attacks de-
veloped with subversion of Minos in mind. A useful way to think of how attacks
more advanced than simple buffer overflows are developed is to consider that
vulnerabilities lead to corruption, corruption leads to primitives (such as an
arbitrary write), and primitives can be used for higher level attack techniques
[jp 2003].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 381

Fig. 4. Virtual memory swapping performance (a) gcc; (b) vpr; (c) mcf; (d) bzip2.

We will compare the security of Minos specifically to the AS/400 [National
Security Agency 1997], the Elbrus E2K [Babayan 2000], a similar architecture
with a different policy [Suh et al. 2004], and the current best practices. Our
estimation of the current best practices is execute permissions on pages, random
placement of library routines in memory, and return pointer protection such as
StackGuard [Cowan et al. 1998].

The following three classes of control-data attacks must be considered:
(1) Can an attacker overwrite control data with untrusted data undetected?
(2) Can an attacker cause the program to load/store control data to/from the
wrong place? and (3) Can an attacker cause the program to load control data
from the right place but at the wrong time?

8.1 Capabilities

The AS/400 tags all pointers and these pointers can only be modified through
a controlled set of instructions, so an attacker cannot overwrite control data or
pointers to control data, securing it against the first two classes of attacks. The
specification for this architecture has a very large address space (128 bits), so
the third kind of attack may be ameliorated by never reusing virtual memory
addresses, but most implementations actually only support 64 bits and virtual

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

382 • J. R. Crandall et al.

memory fragmentation may become a problem if this technique were actually
used. The AS/400 is also secure against control-data attacks when the pointer
protection is enabled, but these protections are disabled for Linux on the iSeries
[Boutcher 2001] simply because C programs written for Linux do not have the
semantic information to distinguish pointers from other data.

The Elbrus E2K uses strong run-time type-checking to protect the integrity
of all pointers, and pointers may not be coerced with other data types such
as integers. To protect itself against temporal reference problems, C/C++ pro-
grams may not have unchecked references from data structures with a longer
lifetime to those with a shorter lifetime and C++ programs may not redefine
the new operator. These constraints are very draconian, but would be neces-
sary to totally secure C/C++ programs against all three classes of control-data
attacks.

8.2 Best Practices

The current best practices disallows the execution of arbitrary code with nonex-
ecutable pages, and tries to thwart return-into-libc [Nergal 2001] attacks by
protecting the integrity of return pointers on the stack and putting libraries
in random locations in memory. Unfortunately, this is not enough. We as-
sumed these protections on our default Red Hat Linux 6.2 installation and
were able to hijack control flow of the ftp server daemon with an attack named
hannibal, which is described in more detail in Section 9. It takes advantage
of the fact that the statically compiled binary uses a Procedure Linkage Ta-
ble (PLT) to call library functions when it does not know where they will be
mapped.

Minos stops this kind of attack because Minos protects the integrity of all
control data, not just return pointers on the stack. The possible security prob-
lems we foresee for Minos are copying valid control data over other control
data (which falls in the second class), dangling pointers to control data (which
falls in the third class), and generating arbitrary high-integrity values through
legitimate control flow (which falls in the first class).

8.3 Integrity Tracking: A Fundamental Tradeoff

The goal of Minos is to prevent all attacks that overwrite control data with
untrusted data. To stop attacks that copy other high-integrity data over control
data, Minos would need to check the integrity of addresses used for 32-bit loads
and stores, as is done in the policy of Suh et al. [2004]. To see why this is
infeasible consider this example of how Doug Lea’s malloc (which is used in
glibc) stores management information on the heap and uses it to calculate
pointers:

chunk-> +-+

| prev_size of previous chunk (if p=1) | |

+-+

| size of chunk, in bytes |p|

mem-> +-+

| User data starts here... .

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 383

. .

. (malloc_usable_space() bytes) .

. |

nextchunk-> +-+

| size of chunk |

+-+

The size field is always divisible by eight so the last bit (p) is free to store
whether or not the previous chunk is in use. The addresses of all chunks are
calculated using the size and pre size integers (note that this is a violation of
the Elbrus E2K’s constraint that pointers may not be coerced with integers).
These sizes may be read directly from user input so you would expect them to
be low integrity. That means that all heap pointers will be low integrity if the
integrity of these sizes is checked and, if it is not checked, then an attacker can
use this fact to modify heap pointers undetected. These sizes are never bounds
checked, because they are supposed to be consistent with the size of the chunk.

If all heap pointers are low integrity then all control data or pointers to
control data on the heap will also become low integrity when they are loaded or
stored using these pointers. An example of control data or pointers to control
data on the heap might be C++ virtual function pointers or plug-in hooks. This
will create a lot of false positives. That is why both (1) the integrity of addresses
used for loads and stores of control data and (2) the integrity of all operands
to an operation cannot be checked without producing false positives. Thus the
policy of Suh et al. [2004] does the first and Minos does the second, but neither
is able to do both. In Suh et al. [2004] an exception was made to the rule that
both operands be checked for integrity when an operation is performed, if the
operation is an addition of the base and offset of a pointer (possible only because
the Alpha has an instruction “s4addq” used for adding pointers). Because of
this exception the policy will not track the information flow from table look-ups
and, therefore, will not catch Code Red II. For the Pentium architecture it is
also impossible to determine when additions are being applied to pointers and
not integers.

Vulnerabilities that allow the attacker an arbitrary copy primitive appear
to be much less common than arbitrary write primitives. One possibility would
be to overwrite both the source and destination pointers of a memcpy(void *,
void *, size t), but both arguments would have to be in writable memory. The
strcpy(char *, char*) function manipulates data at the byte level so the integrity
of the addresses is checked by Minos. A vulnerability that allowed an arbitrary
copy primitive would allow an attacker to subvert Minos. For example, if a
dynamic linker used multiple levels of indirection, Minos could be subverted by
overwriting a pointer to a function pointer and making it point to a different
function pointer using the hannibal attack.

Note that an arbitrary read primitive and an arbitrary write primitive (both
of which are trivial with, for example, a format string vulnerability) do not give
the attacker an arbitrary copy primitive in Minos, because any data that goes
through the filesystem and comes back will be low integrity.

One method of generating high-integrity arbitrary values might be to exploit
a format string vulnerability, but use “%s” format specifiers instead of “%9999u,”

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

384 • J. R. Crandall et al.

where “%s” is supplied a pointer to a string that is 9999 characters long (a
controlled increment). Fortunately, this arbitrary value will be low integrity in
our Minos Linux implementation because the count of characters is kept by
adding 8-bit immediates to an initially zero integer and our policy treats all 8-
and 16-bit immediates as low integrity (note that this attack is, therefore, not
caught in JIT compatibility mode).

For more on the kinds of issues discussed in this section, we refer the reader
to two recent papers from the Workshop on Duplicating, Deconstructing, and
Debunking [Dalton et al. 2006; Piromsopa and Enbody 2006]. We cannot say
that Minos is totally secure against control data attacks for every possible pro-
gram, but we will assert that the control data protection that Minos provides
would be a critical component in any secure system based on a flat memory
model with a system and programs coded in C. Minos should be complemented
with software techniques to handle more advanced control data attacks (for
example, slight modifications to the library mechanisms and sandboxes in key
areas, such as the PLT, to remove the threat of arbitrary copy primitives) and
should also be part of a system that protects against attacks that are not based
on corrupting control data.

8.4 Noncontrol Data Attacks

Attacks that do not overwrite control data to hijack control flow will not be
caught by Minos. In addition to attacks such as directory traversal exploits on
web servers or unchanged default passwords, many of the memory corruption
attacks tested in this paper could as easily be used to overwrite file descriptors
or stored user identities (UIDs) as they could to overwrite control data [Chen
et al. 2005]. Both Newsome and Song [2005] and Suh et al. [2004] allow the
program developer to specify a policy to protect other data besides control data,
something we did not add to Minos because our major concern was protection
of commodity software against control data attacks.

Minos does not make secure design principles [Saltzer and Schroeder 1975]
(see also Bishop [2003, Chapter 13]) nugatory. One attack in Chen et al. [2005]
overwrites a stored URI after a check has been performed for a directory traver-
sal attack, adding “..\..\” to the URI to create a directory traversal attack after
the check. Windows-based web servers have always had such problems with
directory traversal, such as UNICODE encodings that passed the check. Linux
and BSD support chroot() jails (although the implementations are different)
where an attacker who has not hijacked control flow of the process cannot leave
the directory the web server is supposed to operate in. The principle of economy
of mechanism states that security mechanisms should be as simple as possible
and is the reason that jails have successfully stopped directory traversal attacks
where static string checking has not. It is possible to break out of chroot() jails
in Linux and BSD through specific sequences of system calls, but in order to
produce this sequence, in practice, an attacker needs to hijack control flow.

Another attack described in Chen et al. [2005] overwrites a stored UID with 0
(meaning root) when the ftp daemon stores this UID, while it uses its root priv-
ileges to perform some specific task. When the ftp daemon restores its original
UID, it retains its root privileges, because the stored UID has been corrupted.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 385

The principle of least privilege dictates that the ftp daemon process associated
with the remote user should only be given the privileges it needs to perform its
task. This kind of attack could be prevented by specifying a good policy for the
Security Enhanced Linux mechanisms [Loscocco and Smalley 2001]. The same
is true for attacks that overwrite file descriptors. In short, hijacking control flow
by overwriting control data is a very powerful primitive for an attacker and,
after this primitive has been taken away by Minos, other kinds of attacks can
be addressed through good design principles. With Minos, the API (Application
Programmers Interface) of a system only needs to be secure against the system
call sequences actually in the program, not any arbitrary sequence (which the
attacker can build once they have hijacked control flow).

9. THE HANNIBAL EXPLOIT

We developed the hannibal exploit to illustrate the insecurity of current best
practices. Our estimation of current best practices includes nonexecutable
pages, return pointer protection, and random library placement. Because for-
mat string attacks allow arbitrary locations to be read or written or for the
stack to be read without knowing its location, adapting the hannibal attack to
more advanced address space randomization is possible. To stop control-data
attacks, we must protect the integrity of all control data and stop the attack
before control flow is hijacked. To further illustrate this point, we assumed
nonexecutable pages, return pointer protection, and random placement of li-
brary functions on our Red Hat Linux 6.2 Bochs emulator with Minos disabled
and were easily able to still obtain a remote root shell. With Minos enabled,
this attack is stopped at the first illegitimate control flow transfer.

The hannibal exploit takes advantage of the use of a Procedure Linkage Table
(PLT) and Global Offset Table (GOT) to facilitate calls to dynamically linked
functions from statically compiled code. The following C program is complex
enough to require the use of a PLT and GOT:

#include <stdio.h>

int main()

{

printf("Hello World!\n");

return 0;

}

The main program is compiled with the value 0x08048268 statically bound
to printf(). This three instruction sequence is the PLT entry for printf() and
resides in read-only, executable memory:
0x8048268 <printf>:

jmp *0x80494b8

0x0804826e <printf+6>:

push $0x8

jmp 0x8048248 <_dl_runtime_resolve>

The GOT entry for printf() is loaded from 0x080494b8 (readable and writable
memory) and an unconditional jump either reads the value 0x0804826e, which
will continue to push an identifier for printf() and jump to a function to resolve

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

386 • J. R. Crandall et al.

the symbol and update printf()’s GOT entry, or will jump directly to printf() if
the symbol has already been resolved.

More details on the hannibal exploit are in Crandall and Chong [2004a].
The wu-ftpd 2.6.0 FTP server daemon for Red Hat 6.2 contains a format string
vulnerability that allows us to write an arbitrary value into a nearly arbi-
trary location in memory without touching the stack or crashing the process
[Security Focus 2005, bid 1387]. In short, the hannibal exploit uploads a stati-
cally compiled binary executable called “jailbreak” via anonymous FTP onto the
victim machine and replaces rename(char *, char *)’s GOT entry with a pointer
to execv(char *, char **)’s PLT entry. Subsequently, a request to rename the file
“jailbreak” to “\xb8\x6b\x08\x08” will cause the server to run execv(“jailbreak”,
{“jailbreak”, NULL}).

As a practical matter, the string “\xb8\x6b\x08\x08” must land on the heap
in a chunk initially with all zeroes in it because execv() expects a NULL-
terminated list of arguments. This is achieved by changing syslog(int, char *,
int)’s GOT entry to point to the PLT entry for malloc(int) and trying to lo-
gin sixty times, which will generate system log events because we are already
logged in. This memory leak will “squeeze the heap” the way Hannibal squeezed
the Roman infantry at the Battle of Cannae and cause our string to land in the
wilderness chunk.

The “jailbreak” executable will inherit the network socket descriptors of the
wu-ftpd daemon, break out of the chroot() jail keeping it in “/home/ftp” using
well-known techniques, and execute a root shell. A couple of interesting points
can be made about this exploit. The first is that the execv() symbol is not even
resolved until the attack hijacks control flow and jumps to execv()’s PLT en-
try, which will locate this function and resolve the symbol for us. Also, most
format string vulnerabilities, including the one used here, make it trivial to
produce either an arbitrary write primitive or an arbitrary read primitive [scut
2001]. Randomizing the locations of the PLT, GOT, or even the static binary
will not help, because the attacker can easily use arbitrary read primitives to
locate them. Since format string vulnerabilities can be used to read the entire
stack without knowing its address, it is possible to locate code even if the entire
address, space is randomized using binary rewriting. Address space random-
ization and attacks on it were discussed in Section 3.

In Drinic and Kirovski [2004] a technique was proposed to combat code in-
jection attacks by verifying a Message Authentication Code (MAC) for every
executed block of instructions. The hannibal attack could trivially be modified
to circumvent this by creating a shell script to replace the jailbreak binary ex-
ecutable. With an arbitrary copy primitive, Minos could be attacked with the
hannibal exploit by copying the pointers to execv() and syslog(int, char *, int)’s
out of the symbol table and into the GOT.

10. FOLLOW-UP RESEARCH FROM MINOS

The original proposal for Minos was in [Crandall and Chong 2004b]. More infor-
mation about the Minos honeypots and what has been learned from debugging
the attacks Minos has stopped can be found in [Crandall et al. 2005b].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 387

Because Minos catches attacks at the precise moment when control flow is be-
ing hijacked and because the memory layout is identical to a vulnerable system
all forensic information is preserved. We have investigated, in collaboration
with other researchers, worm-analysis techniques that use Minos to capture
worms [Crandall et al. 2005].

11. CONCLUSIONS

The use of Biba’s low water-mark integrity policy in Minos allows a very general
defense against control data attacks without complicated, program-specific se-
curity policies that are difficult to adapt to new applications and exploits. Our
results show that deployed Minos-enabled Linux and Windows systems can sta-
bly provide real services and catch actual attacks in real time, even discovering
previously unknown attacks. Given the popularity of control data attacks, we
believe that the Minos approach has great potential and will lead to more se-
cure systems in a variety of domains. We hope that the policy tradeoffs detailed
in this paper will contribute to its development.

ACKNOWLEDGMENTS

In addition to thanking everyone we acknowledged in the two conference pa-
pers [Crandall and Chong 2004b; Crandall et al. 2005b], we would like to thank
the DIMVA reviewers who we forgot to thank in the DIMVA paper; and we es-
pecially would like to thank the TACO anonymous reviewers and our associate
editor, Ben Zorn, who, were exceptionally helpful.

REFERENCES

ABADI, M., BUDIU, M., ÚLFAR ERLINGSSON, AND LIGATTI, J. 2005. Control-flow integrity: Principles,
implementations, and applications. In ACM Conference on Computer and Communications Se-
curity.

ALIGHIERI, D. 1308. Inferno (Robert Pinski translation, published in 1994). Farrar, Straus and
Giroux.

BABAYAN, B. 2000. Security (Unpublished, available at http://web.archive.org as www.elbrus.
ru/mcst/eng/SECURE INFORMATION SYSTEM V5 2e.pdf from 19 June 2005).

BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S., STEFANOVIC, D., AND ZOVI, D. D. 2003. Randomized
instruction set emulation to disrupt binary code injection attacks. In Proceedings of the 10th ACM
conference on Computer and Communication Security. ACM Press, New York. 281–289.

BIBA, K. J. 1977. Integrity considerations for secure computer systems. In MITRE Technical
Report TR-3153.

BISHOP, M. 2002. Computer Security: Art and Science. Addison-Wesley, New York.
BOCHS. 2005. Bochs: the Open Source IA-32 Emulation Project (Home Page), http://bochs. source-

forge.net.
BOUTCHER, D. 2001. The Linux Kernel on iSeries (Unpublished, available at http://lwn.net/

2001/features/OLS/pdf/pdf/iseries.pdf).
BOVET, D. D. AND CESATI, M. 2002. Understanding the Linux kernel, 2nd ed.. O’Reilly, Sebastopol,

CA.
CERT. 2005. CERT, http://www.cert.org.
CHEN, S., XU, J., AND SEZER, E. C. 2005. Non-control-hijacking attacks are realistic threats. In

USENIX Security Symposium 2005.
CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K., AND ROSENBLUM, M. 2004. Understanding data

lifetime via whole system simulation. In Proc. 13th USENIX Security Symposium.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

388 • J. R. Crandall et al.

CHOW, J., PFAFF, B., GARFINKEL, T., AND ROSENBLUM, M. 2005. Shredding your garbage: Reducing
data lifetime through secure deallocation. In Proc. 14th USENIX Security Symposium.

COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A., ZHOU, L., ZHANG, L., AND BARHAM, P. 2005.
Vigilante: End to end containment of internet worms. In 20th Symposium on Operating Systems
Principles.

COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND

HINTON, H. 1998. StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proc. of the 7th Usenix Security Symposium. 63–78.

COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P. 2003. PointGuardTM: Protecting pointers from
buffer overflow vulnerabilities. In Proc. of the 12th Usenix Security Symposium.

CRANDALL, J. R. AND CHONG, F. T. 2004a. A Security Assessment of the Minos Architecture. In
Workshop on Architectural Support for Security and Anti-Virus.

CRANDALL, J. R. AND CHONG, F. T. 2004b. Minos: Control data attack prevention orthogonal to
memory model. In The 37th International Symposium on Microarchitecture.

CRANDALL, J. R., SU, Z., WU, S. F., AND CHONG, F. T. 2005a. On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In Proceedings of the 12th ACM
Conference on Computer and Communication Security. ACM Press, New York.

CRANDALL, J. R., WU, S. F., AND CHONG, F. T. 2005b. Experiences using Minos as a tool for capturing
and analyzing novel worms for unknown vulnerabilities. In Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA) 2005.

DALTON, M., KANNAN, H., AND KOZYRAKIS, C. 2006. Deconstructing hardware architectures for se-
curity. In Fifth Annual Workshop on Duplicating, Deconstructing, and Debunking.

DRINIC, M. AND KIROVSKI, D. 2004. A hardware-software platform for intrusion prevention. In
MICRO 37: Proceedings of the 37th annual International Symposium on Microarchitecture. IEEE
Computer Society, Washington, DC. 233–242.

FRASER, T. 2000. Lomac: Low water-mark integrity protection for COTS environments. In Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy (S&P 2000). IEEE Computer
Society, Washington, DC. 230.

GOPALAKRISHNA, R., SPAFFORD, E. H., AND VITEK, J. 2005. Efficient intrusion detection using au-
tomaton inlining. In Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P
2005). IEEE Computer Society, Washington, DC. 18–31.

HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND HAND, S. 2006. Practical taint-based protection
using demand emulation. In EuroSys ’06, Leuven, Belgium.

HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. 1998. Intrusion detection using sequences of system
calls. Journal of Computer Security 6, 3, 151–180.

INTEL. 2002. Press Release, 12 March 2002.
JP. 2003. Advanced Doug lea’s malloc() exploits, Phrack 61.
KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. 2003. Countering code-injection attacks with

instruction-set randomization. In Proceedings of the 10th ACM conference on Computer and
communication security. ACM Press, New York. 272–280.

KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. 2002. Secure execution via program shepherding.
In 11th USENIX Security Symposium.

KIROVSKI, D., DRINIC, M., AND POTKONJAK, M. 2002. Enabling trusted software integrity. In Pro-
ceedings of ASPLOS-X, San Jose, CA.

LEVY, H. M. 1984. Capability-Based Computer Systems. Butterworth-Heinemann, London.
LIE, D. 2003. Architectural support for copy and tamper-resistant software. Ph.D. thesis, Stan-

ford University, Stanford, CA.
LIE, D., THEKKATH, C. A., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J. C., AND HOROWITZ, M.

2000. Architectural support for copy and tamper resistant software. In Proceedings of ASPLOS-
IX. 168–177.

LOSCOCCO, P. AND SMALLEY, S. 2001. Integrating flexible support for security policies into the linux
operating system. In FREENIX Track: 2001 USENIX Annual Technical Conference.

MOORE, D., SHANNON, C., AND BROWN, J. 2002. Code-Red: A study on the spread and victims of an
Internet Worm. In Internet Management Workshop.

NATIONAL SECURITY AGENCY. 1997. Final Evaluation Report, IBM Corporation Application System
400.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Minos: Architectural Support for Protecting Control Data • 389

NERGAL. 2001. The advanced return-into-lib(c) exploits: PaX case study, Phrack 58.
NEWSOME, J. AND SONG, D. 2005. Dynamic taint analysis for automatic detection, analysis, and sig-

nature generation of exploits on commodity software. In Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS 2005).

PATTERSON, D. A. AND HENNESSY, J. L. 2003. Computer Architecture: A Quantitative Approach, 3rd.
ed. Morgan Kaufmann, San Mateo, CA.

PIROMSOPA, K. AND ENBODY, R. J. 2006. Defeating buffer-overflow prevention hardware. In 5th
Annual Workshop on Duplicating, Deconstructing, and Debunking.

POLLACK, F. J., COX, G. W., HAMMERSTROM, D. W., KAHN, K. C., LAI, K. K., AND RATTNER, J. R. 1982.
Supporting Ada memory management in the iAPX-432. In Proceedings of ASPLOS-I. ACM Press,
New York. 117–131.

SALTZER, J. AND SCHROEDER, M. 1975. The protection of information in computer systems. In Pro-
ceedings of the IEEE 63. 1278–1308.

SCUT. 2001. Exploiting Format String Vulnerabilities (Unpublished, available at http://web.

archive.org as http://www.team-teso.net/articles/formatstring/ from 18 October 2001).
SECURITY FOCUS. 2005. Security Focus Vulnerability Notes, http://www.securityfocus.com.
SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU, N., AND BONEH, D. 2004. On the effec-

tiveness of address-space randomization. In CCS ’04: Proceedings of the 11th ACM conference on
Computer and communications security. ACM Press, New York. 298–307.

SOVAREL, A., EVANS, D., AND PAUL, N. 2005. Where’s the FEEB?: The effectiveness of instruction
set randomization. In Proceedings of the USENIX Security Conference.

STANIFORD, S., PAXSON, V., AND WEAVER, N. 2002. How to 0wn the internet in your spare time. In
Proceedings of the USENIX Security Symposium. 149–167.

SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M., AND DEVADAS, S. 2003. AEGIS: Architecture
for tamper-evident and tamper-resistant processing. In Proceedings of the 17th Annual ACM
International Conference on Supercomputing.

SUH, G. E., LEE, J., ZHANG, D., AND DEVADAS, S. 2004. Secure Program Execution via Dynamic
Information Flow Tracking. In Proceedings of ASPLOS-XI.

TRUSTED COMPUTING GROUP. 2004. TCG Specification: Architecture Overview (available at https:
//www.trustedcomputinggroup.org/groups/TCG 1 0 Architecture Overview.pdf).

TUCK, N., CALDER, B., AND VARGHESE, G. 2004. Hardware and binary modification support for code
pointer protection from buffer overflow. In The 37th International Symposium on Microarchitec-
ture.

VACHHARAJANI, N., BRIDGES, M. J., CHANG, J., RANGAN, R., OTTONI, G., BLOME, J. A., REIS, G. A., VACH-
HARAJANI, M., AND AUGUST, D. I. 2004. RIFLE: An architectural framework for user-centric
information-flow security. In Proceedings of the 37th International Symposium on Microarchitec-
ture (MICRO).

WAGNER, D. AND DEAN, D. 2001. Intrusion detection via static analysis. In SP ’01: Proceedings of
the 2001 IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington, DC.
156.

WAGNER, D. AND SOTO, P. 2002. Mimicry attacks on host based intrusion detection systems. In
Proceedings of the 9th ACM Conference on Computer and Communications Security. ACM Press,
Washington, DC, New York. 255–264.

WEAVER, C., EMER, J., AND MUKHERJEE, S. S. 2004. Techniques to reduce the soft error rate of a
high-performance microprocessor. In Proceedings of the 31st annual International Symposium
on Computer Architecture. IEEE Computer Society, Washington, DC. 264.

WEB SERVER. 2005. http://minos.cs.ucdavis.edu/.
WITCHEL, E., CATES, J., AND ASANOVIĆ, K. 2002. Mondrian memory protection. In Proceedings of

ASPLOS-X.
YANG, J., ZHANG, Y., AND GAO, L. 2003. Fast secure processor for inhibiting software piracy and

tampering. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, Washington, DC. 351.

Received August 2005; revised January 2006 and May 2006; accepted June 2006

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

