
Distributed Computing (1987) 2:45 59

�9 Springer-Verlag 1987

Distributed optimistic concurrency control
with reduced rollback

Divyakant Agrawal, Arthur J. Bernstein, Pankaj Gupta, and Soumitra Sengupta
Department of Computer Science, SUNY at Stony Brook, NY 11794, USA

Divyakant Agrawal is currently
a graduate student in the Depart-
ment of Computer Science at the
State University of New York at
stony Brook. He received his
B.E. degree from Birla Institute
of Technology and Science, Pi-
lani, India in 1980. He worked
with Tata Burroughs Limited,
from 1980 to 1982. He complet-
ed his M.S. degree in Computer
Science from S U N Y at Stony
Brook in 1984. His research in-
terests include design of algo-
rithms for concurrent systems,
optimistic protocols and distrib-
uted systems.

Arthur Bernstein is a Professor
of Computer Science at the State
University of New York at Stony
Brook. His research is concerned
with the design and verification
of algorithms involving asyn-
chronous activity and with lan-
guages for expressing such algo-
rithms.

Pankaj Gupta is currently a
graduate student in the Depart-
ment of Computer Science at the
State University of New York at
Stony Brook. He received M.S.
degree in Electrical Engineering
from S U N Y at Stony Brook in
1982 and M.S. degree in Com-
puter Science from S U N Y at
Stony Brook in 1985. His re-
search interests include distrib-
uted systems, concurrency con-
trol, and databases.

Soumitra Sengupta is currently
a graduate student in the Depart-
ment of Computer Science at the
State University of New York at
Stony Brook. He received his
B.E. degree from Birla Institute
of Technology and Science, Pi-
lani, India in 1980. He worked
with Tata Consultancy Services,
from 1980 to 1982. He complet-
ed his M.S. degree in Computer
Science from S U N Y at Stony
Brook in 1984. His research in-
terests include distributed algo-
rithms, logic databases and con-
currency control.

Abstract. Concurrency control algorithms have
traditionally been based on locking and timestamp
ordering mechanisms. Recently, optimistic schemes
have been proposed. In this paper a distributed,
multi-version, optimistic concurrency control

Offprint requests to: A.J. Bernstein
This work was supported by the National Science Foundation
under grant DCR-8502161 and the Air Force Office of Scientific
Research under grant AFOSR 810197

scheme is described which is particularly advanta-
geous in a query-dominant environment. The
drawbacks of the original optimistic concurrency
control scheme, namely that inconsistent views
may be seen by transactions (potentially causing
unpredictable behavior) and that read-only trans-
actions must be validated and may be rolled back,
have been eliminated in the proposed algorithm.
Read-only transactions execute in a completely

46 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

asynchronous fashion and are therefore processed
with very little overhead. Furthermore, the prob-
ability that read-write transactions are rolled back
has been reduced by generalizing the validation
algorithm. The effects of global transactions on lo-
cal transaction processing are minimized. The algo-
rithm is also free from deadlock and cascading roll-
back problems.

Key words: Database systems - Concurrency - Op-
timistic protocols Distributed algorithms Roll-
backs - Transactions

1 Introduction

Concurrency control algorithms [3] have received
considerable attention in the literature. Two con-
currency control mechanisms - locking [-7] and
timestamp ordering [16] - can be considered pes-
simistic in their outlook. To avoid inconsistency,
they synchronize at each step of a transaction.
Other drawbacks of such algorithms include the
deadlock problem in locking and unnecessary roll-
backs in timestamp ordering. Recently, optimistic
schemes [-9] have been proposed for concurrency
control. In this approach the optimistic assumption
is made that concurrent transactions will rarely
conflict and therefore synchronization at each
transaction step is wasteful. Instead, transactions
are given unrestricted read access to the database
during their initial, read phase. Transactions write
only in local storage during this phase. Transac-
tions then enter a validation phase to check for
conflicts, and, if successful, read-write transactions
enter a write phase to incorporate their updates
into the database. If validation fails the transaction
restarts. This scheme has several drawbacks. Since
transactions are not synchronized during their read
phase they may see an inconsistent database.
Though ultimately aborted, their behavior prior
to validation is unpredictable. Secondly, transac-
tion rollback represents wasted work. The fre-
quency with which this may occur in standard op-
timistic schemes has been criticized [2].

Optimistic concurrency control has been ex-
tended for use in a relational database [4]. A pro-
posal has been made to modify the basic optimistic
scheme so that read-only transactions do not have
to be validated [17], but read-write transactions
must still be validated against read-only transac-
tions. Furthermore, the updates of a transaction
cannot be installed until there is no conflicting
read-only transaction in progress, implying an un-
bounded delay in the completion of read-write

transactions. An attempt to unify optimistic and
locking schemes has also been proposed [13]. A
distributed optimistic scheme has been proposed
by [5] in which dependency graphs are maintained
and timeouts are used to avoid deadlocks. Unfortu-
nately, calculation of the dependency graph re-
quires a significant amount of computation.

Multi-version schemes [16, 6] have been pro-
posed to increase concurrency and to reduce trans-
action rollback by providing transactions with a
succession of views of database objects. A multi-
version distributed optimistic scheme [10] has
been discussed using global timestamps. However,
the probability that read-write transactions will be
rolled back is the same as in the original optimistic
scheme and, in addition, the possibility of cascad-
ing rollbacks exists.

This paper proposes a distributed optimistic
concurrency control algorithm for use in a multi-
version relational database which is based on the
original proposal presented in [9]. The proposed
scheme is designed to overcome the difficulties of
that algorithm. Thus, transactions cannot see in-
consistent data and therefore do not behave unpre-
dictably during their read phase. From this it fol-
lows that read-only transactions do not need to
be validated or rolled back. This makes the algo-
rithm particularly suitable for query dominant sys-
tems since the overhead of validation is eliminated
for all such transactions and the overall frequency
of rollback is greatly reduced. Furthermore, the
validation technique has been generalized to re-
duce the probability of rollback for read-write
transactions. The updates of a transaction are
stored in intentions lists [12], and are propagated
to the database atomically at commit time. The
intentions lists serve as the write set of a transac-
tion and thus form an integral part of the concur-
rency control algorithm as well. Finally, the effects
of global transactions on local transaction process-
ing are kept minimal and deadlocks are not possi-
ble.

In Section 2 several optimistic algorithms are
described which provide concurrency control for
the single site case. In Section 3, the algorithms
for maintaining multi-version relations are pre-
sented. An analysis of rollback is presented in Sec-
tion 4 and the distributed case is described in Sec-
tion 5.

2 Single site concurrency scheme
In the standard optimistic concurrency control al-
gorithm, a monotonically increasing transaction
number counter, (tnc), is maintained. When a trans-

D. Agrawal et al. : Distributed optimistic concurrency control with reduced rollback 47

action, T, enters its read phase it takes the value
of tnc as its start number, sn(T). When it finishes,
the transaction counter is incremented and the
transaction then takes the value of tnc as its trans-
action number, tn(T). These two numbers are used
to delimit the start and finish points of T. Transac-
tions with transaction numbers lying between sn (T)
and tn (T) have entered validation while T was exe-
cuting and may have interfered with T's execution.
The test for interference involves checking for non-
null intersections between the read and write sets
of the transactions. If the simplifying assumption
is made that a transaction's write set is contained
in its read set, then T conflicts with a prior transac-
tion (with transaction number between sn(T) and
tn(T)) if the intersection between the former's read
set and the latter's write set is not empty. In this
paper we will assume that a transaction's write set
is contained in its read set. The algorithms pre-
sented can be refined if this is not the case.

In the multi-version scheme presented here,
sn(T) is in addition used to select an appropriate
version of each relation. The mechanism used to
extract the view corresponding to sn(T) is de-
scribed in Section 3. It is designed so that T does
not see the effects of concurrent read-write transac-
tions (whose transaction numbers must be greater
than sn(T)). T is guaranteed of seeing a consistent
view of the database which is the result of a serial
execution of transactions that had already commit-
ted when T started (i.e., transactions T' such that
tn(T')<sn(T)). Two important implications follow
from this: transactions behave predictably since
they operate on consistent views and read-only
transactions need not be validated and will not
be rolled back. Furthermore, a transaction sees
only the results of previously committed transac-
tions and therefore cascading rollbacks cannot oc-
cur. A read-write transaction, however, must be
validated and may be rolled back since it may have
executed concurrently with another read-write
transaction whose effect it should have seen.

A set of tuples in a relation can be designated
by a predicate which specifies values for some of
the attributes. All tuples which agree in these
values are in the set. The read set of T, RS(T),
consists of the read predicates used during the read
phase. The updates of T are not performed directly
on the stored relations. Rather, for each relation
that is modified an intentions list, or write set
WS (T), is maintained which is the log of modifica-
tions that T makes to that relation. The modifica-
tions consist of: (i) tuples to be inserted in the rela-
tion, and (ii) predicates describing tuples to be de-
leted. An update to a tuple is treated as a delete

of the old tuple followed by an insert of a new
tuple.

2.1 Serial val idat ion

As in the original optimistic scheme [9], one trans-
action may be executing its validation or write
phases at a time in the multi-version serial valida-
tion algorithm (MVSV). The algorithm and a func-
tion to check for transaction conflicts are shown
in Figs. 1 and 2 respectively. Critical sections are
bracketed with " < " and ">> ". There is, in fact,
no difference between MVSV and the serial valida-
tion of [9], except that read-only transactions are
no longer validated. As a result, in the discussion
of the algorithms presented here we will be con-
cerned with read-write transactions unless specifi-
cally stated otherwise. A read-write transaction T
can be successfully validated with respect to a con-
current read-write transaction T' which has pre-
viously committed if the standard intersection check
is satisfied: WS(T') n RS(T)= ~b. The transaction
number is assigned before the write phase so that
T's updates can be tagged with tn(T) and thus dif-
ferent versions of a relation can be identified. The
transaction counter is incremented after the write
phase has completed. The equivalent serial order
of transactions is the order of their transaction
numbers. Start numbers are assigned the current
value of tnc. A transaction, T~, in its read phase
sees the results of all transactions, T2, such that
sn(T~)>tn(T2). Since all such transactions have
committed and written to the database, T1 can be
provided with a consistent view.

<

>>

tn(T)+----tnc + 1 ;
IF Validate(T) THEN

{Write(WS(T), tn(T));
tnc~---tnc + 1 ;}

ELSE
{Abort(T);}

Fig. 1. Multi-version serial validation algorithm

FUNCTION Validate(T: TxnDesc): BOOLEAN ;
FOR All T~: sn(T)<tn(T~)<tn(T) DO

IF W S (T ~) A R S (T) ~) THEN
{RETURN (FALSE);}

RETURN (TRUE);
END Validate;

Fig. 2. Function validate

48 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

2.2 Paral le l val idat ion

Serial validation is not attractive since the valida-
tion and write phases are done in a single critical
section, resulting in a bottleneck. The multi-version
parallel validation algorithm (MVPV) allows sever-
al transactions to be in their validation or write
phases at the same time, and therefore allows
greater concurrency.

In the parallel validation algorithm described
in [9], the equivalent serial order of transactions
is dictated by the order in which they enter the
critical section that precedes the validation phase.
The transaction numbers, however, are assigned
in a different critical section at the end of the write
phase. Since transactions may enter the validation
phase in a different order than they leave the write
phase, the transaction number order does not nec-
essarily correspond to an equivalent serial order.
Thus, start numbers cannot be used to obtain con-
sistent views.

To overcome this problem MVPV uses two
transaction counters, ctnc (commit tnc) and vtnc
(visible tnc) in order to guarantee that transaction
numbers correspond to an equivalent serial order.
An active queue, AQ, is maintained containing en-
tries for transactions that have entered validation.
An entry, E(Ti), of AQ contains, among other

things, a transaction identifier field (E(Ti).id), a
transaction number field (E(Ti).num) and a type
field (E(Ti).type - described below). AQ is ordered
on E (T0.num. MVPV is depicted in Fig. 3.

Vtnc supplies start numbers for transactions.
Its value determines the most current, consistent
view since it is the largest number satisfying the
property that all transactions T~ such that
tn(T~) < vtnc have committed and finished writing.
Ctnc contains the largest transaction number of
any transaction that has entered validation. Trans-
action numbers are assigned the incremented value
of ctnc. When a t ransact ion T enters validation
it makes a copy of the suffix of AQ starting from
the entry E(T~) with the smallest number field sat-
isfying E(Ti).num>sn(T). This determines the
transactions against which T validates. An entry
for T of type VALIDATING is appended to AQ.

Validation is performed by the function Vali-
date Predecessors, illustrated in Fig. 4. The param-
eters identify a transaction, T, and an open interval
of transaction numbers, [from, to]. The function
validates T against all transactions with entries in
AQCopy(T) having transaction numbers in the in-
terval. Validation is carried out in increasing order
of transaction numbers. If all transactions in the
given interval can precede T then the function re-
turns null. However, if the function finds a conflict-

Ini t ia lCS:

ctnc ~----ctnc + 1 ;
t n (T) , ctnc;
Allocate entry E(T);
E(T).id< T;
E (T). type < VALIDATING;
E(T).num< tn(T);
AQCopy(T)< CopyAQ([sn(T), tn(T)]);
InsertAQ(E(T), tn(T));

>>

Validation:
IF (ValidatePredecessors(T, [sn(T), tn(T)])~NULL) THEN

{Abort(T); EXIT}

WritePhase :

Write(WS(T), tn(T));

E(T).type < WRITTEN;
FOR E (T i) e A Q : v tnc<E(Tg) .num<ctnc IN INCREASING ORDER DO

IF E(T~).type=WRITTEN THEN
vtnc , E (Ti).num ;

ELSE
EXIT;

>>

Fig. 3. Multi-version parallel validation algorithm

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 49

FUNCTION ValidatePredecessors(T: TxnDesc; [from, to] : TxnNoInterval): TxnNo;
BEGIN

FOR E(Ti)e AQCopy(T): from < E(Ti).num < to IN INCREASING ORDER DO
IF WS(T~) n RS(T) r ~o THEN

{RETURN(E(T~).num);}
RETURN (NULL);

END ValidatePredecessors;

Fig. 4. Function ValidatePredecessors

ing transaction T' such that WS (T') n RS (T) v a qE,
then it returns the value tn(T'), which is the small-
est transaction number of any concurrent transac-
tion that cannot precede T in an equivalent serial
order. In this case T is aborted. If validation is
successful T executes its write phase tagging its up-
dates with tn(T) and then changes the type of its
entry in AQ to WRITTEN. The entry E(Ti) in AQ
with the largest number satisfying the property that
it and all earlier entries are WRITTEN is then located
and vtnc is set equal to E(Ti).num. If vtnc cannot
be increased then T's updates will not yet be visible
to other transactions. Delayed visibility is neces-
sary since otherwise the view of the database deter-
mined by the start number of a transaction may
not include the updates of all transactions with
smaller transaction numbers and hence would be
inconsistent. Thus the results of committed trans-
actions are made visible in the order of transaction
entry into validation (i.e., the serialization order).

Although the visibility of a transaction may be
delayed, the results computed by the transaction
may be returned immediately to the user. Because
of the delay there is the danger that if T~ and T2
are successive transactions in the same process (or
in processes that are synchronized so that Tz must
follow T~), the results produced by T~ may not be
visible to T2. In order to overcome this, a transac-
tion returns its transaction number to the user on
completion, and a user may specify a minimum
acceptable start number on transaction initiation.
By supplying the transaction number of the preced-
ing transaction as the minimum start number of
the succeeding transaction a process can be assured
that the latter will see the results of the former.
A transaction, thus, may have to be delayed until
its requested view is available. Deadlocks are not
possible because only transactions in their read
phase may wait, and they do not wait for each
other. This issue will be discussed again in the sec-
tion describing the distributed algorithm and a
simple implementation of waiting will be presented.

Note that the algorithm would still work cor-
rectly if sn(T) were less than the current value of
vtnc on entry into the read phase. This would cause

T to get an older version of the database, and if
T was a read-write transaction, it would make it
more vulnerable to rollback (since it will be validat-
ed against a larger set of transactions); but it is
a degree of freedom which can be exploited when
the algorithm is extended to the distributed case.
Similarly, ctnc can be incremented by more than
one, leaving gaps in the sequence of transaction
numbers. This is also useful in the distributed case.

There are two aspects of the algorithm which
result in overhead for read-only transactions. The
first is that they must initially get a start number.
This represents a relatively negligible amount of
additional work (particularly since, as noted above,
this need not be the most recent value of vtnc).
A more important consideration is that all transac-
tions must be sure to access the correct version
of each relation, an issue dealt with in the next
section. It is important to recognize, however, that
in other respects a read-only transaction proceeds
at its own pace and does not synchronize with
other activities in the database nor perform extra
functions related to concurrency control.

If a read-write transaction fails validation, then
it must be restarted. The function Abort is responsi-
ble for discarding the read and write sets of the
transaction and deleting its entry from AQ. The
transaction restarts itself by obtaining a new start
number. For a committed transaction, T, E (T) and
WS(T) can be discarded when the probability that
there exists a read-write transaction T' in its read
phase such that sn(T')<tn(T) is sufficiently small.
Premature disposal will cause unnecessary roll-
backs since subsequent transactions will not be
able to perform validation. The point at which
these data structures are disposed of is an indepen-
dent policy of the system which will not be dis-
cussed in the paper and is not included in the algo-
rithms.

2.3 Parallel validation, generalized

The equivalent serial order of transactions deter-
mined by MVPV is the order of entry into valida-
tion. Since transaction numbers are assigned the

50 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

incremented value of ctnc at the beginning of the
validation phase, the transaction number order
corresponds to the serialization order. A validating
transaction, T, is aborted if there exists an earlier
concurrent transaction whose write set has a non-
null intersection with RS (T). It may, however, be
possible to commit T in this case using a different
transaction number. The reassignment would pre-
serve the correspondence between the equivalent
serial order and the transaction number order but
the equivalent serial order would no longer corre-
spond to the order of entry into validation. This
sub-section presents a generalized parallel valida-
tion algorithm (MVGV) which functions in this
way. Thus, MVGV is capable of committing read-
write transactions that fail validation in MVPV.

Suppose a validating read-write transaction, T,
detects a conflict with a concurrent transaction,
T', while performing the standard intersection
check: WS (T') c~ RS (T) ~ ~b. Then T' cannot pre-
cede T in the equivalent serial order since T should
have seen the results produced by T'. In MVPV,
T would be aborted. It may be the case, however,
that T' can follow T in an equivalent serial order.
This would be true if a reverse intersection check
is satisfied: WS (T) n RS (T') = ~b. Thus, the strategy
of MVGV is to divide the transactions which are
not yet visible but which entered validation before
T into predecessors and successors of T. T is as-
signed a new transaction number which is larger
than that of all predecessors and smaller than that
of all successors. For all predecessors the standard
validation condition must hold, whereas for all suc-
cessors the reverse validation condition must hold.
The justification for this approach rests on the ob-
servation that if transactions had entered valida-
tion in transaction number order, the reverse inter-
section checks performed by T would have been
done as the standard intersection checks by the
successors of T. The only difference in this case
is that if the condition is not satisfied then T, not
its successor, is rolled back.

If transaction numbers are restricted to be in-
tegers it may not be possible to assign a new
number to T in the appropriate range which is
different from those already assigned to other
transactions. This problem can be minimized by
allowing transaction numbers to be real numbers.
In the following it is assumed that a unique real
number can always be assigned. In the rare situa-
tion in which this is not possible the transaction
can be aborted.

In MVPV all transactions are required to main-
tain their read and write sets until validation is
completed, after which read sets can be discarded

but write sets are retained so that subsequent trans-
actions can be validated. In MVGV, RS(T) must
be maintained for some time after T has completed
validation. However, unlike WS(T), RS(T) can be
discarded when v tnc>tn(T) since RS(T) is only
used by transactions attempting to validate with
transaction numbers less than tn(T). But transac-
tions cannot be committed with numbers less than
vtnc because their results should already be visible.
Thus, this requirement does not impose a signifi-
cant additional overhead.

The MVGV algorithm is given in Fig. 5. The
initial assignment to tn(T) is the incremented value
of ctnc at the time of entry into validation. The
current values of vtnc and ctnc are copied in the
variables lower(T) and upper(T) respectively. T
makes a copy of the active queue entries with trans-
action numbers greater than sn(T) (corresponding
to transactions against which it must validate) and
then appends an entry for itself.

Validation utilizes two auxiliary functions, Va-
lidatePredecessors and ValidateSuccessors, shown
in Figs. 4 and 6 respectively. ValidateSuccessors is
an analog of ValidatePredecessors. When given an
(open) interval of transaction numbers it checks
in decreasing order if each of the transactions with
entries in AQCopy(T) having transaction numbers
in the interval can be successors of T. This is deter-
mined by using the reverse intersection check. The
function returns null if all transactions in the inter-
val can succeed T. Otherwise, it returns the largest
transaction number of the transactions in the inter-
val that cannot succeed T.

Validation is initiated by invoking the function
ValidatePredecessors with the interval [sn(T),
tn(T)]. The value returned is stored in HighTn(T).
If it is null the situation is identical to successful
validation in MVPV. Otherwise, the function Vali-
dateSuccessors is invoked with the open interval
[HighTn(T) -e , tn(T)]; e is the smallest positive
real number in the system and is used here so that
the transaction whose conflict with T was detected
by ValidatePredecessors is included in the open
interval passed to ValidateSuccessors. A null in the
returned variable LowTn(T) implies that all trans-
actions with entries in AQCopy(T) having transac-
tion numbers greater than or equal to HighTn(T)
can be successors of T and a new value,
H ig h T n (T) - 1 is assigned to tn(T). If LowTn(T) is

1 The notation HighTn(T)- is used to indicate that E(T) is
placed immediately before E (T') in AQ where
tn(T')=HighTn(T). Similarly, the condition immediately
after E(T'), will be indicated using +. The exact value of
tn(T) is decided upon in the function InsertAQ

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 51

InitialCS :
<

ctnc e---ctnc + 1 ;
tn(T)~ ctnc;
lower(T)~---vtne; upper(T), ctnc;
AQCopy(T)*----CopyAQ([sn(T), tn(T)]);
Create entry E(T) for T;
InsertAQ (E(T), tn(T));

>>

Validation:
HighTn(T)*--ValidatePredecessors(T, [sn(T), tn(T)]);
IF (High Tn(T)= NULL) THEN

GO TO WritePhase;
ELSE

{LowTn(T)~---ValidateSuccessors(T, [HighTn(T)-~, tn(T)]);
IF LowTn(T) = NULL THEN

tn(T)~ HighTn(T)- ;
ELSE

{Abort(T); EXIT}}

ReorderAQ :

IF vtnc >__ tn(T) THEN {Abort(T); EXIT}
DeleteAQ (E(T));
E(T).num~ tn(T);
AQCopy(r)~ CopyAQ([lower(T), upper(T)]);
InsertAQ (E (r), tn (T));

>>

Augmented Validation:
IF (ValidatePredecessors(T, [lower(T), tn (T)])r THEN {Abort(T); EXIT}
IF (ValidateSuccessors(T, [tn(T), upper(T)])r THEN {Abort(T); EXIT}

WritePhase :

- As in Fig. 3 -

Fig. 5. Multi-version generalized validation algorithm

FUNCTION ValidateSuccessors(T: TxnDesc; [to, from]:TxnNolnterval): TxnNo;
BEGIN

FOR E(TI)eAQCopy(T): from > E(Ti).num > to IN DECREASING ORDER DO
IF WS(T)nRS(T~)V=~ THEN

{ RETURN (E (Ti). hum);}
RETURN (NULL);

END ValidateSuccessors;

Fig. 6. Function ValidateSuccessors

not null, T is aborted since no satisfactory transac-
tion number for T is possible.

Since AQ is maintained in transaction number
order it is necessary to change the position of E (T)
in AQ to reflect its new transaction number. Unfor-
tunately, T's position cannot simply be changed
without considering the effect of this on other
transactions that may also have moved in the inter-

im. This additional computation is performed in
the sections labelled ReorderAQ and Augmented-
Validation in Fig. 5. An initial check is done to
ascertain whether the final value of tn(T) is larger
than vtnc. If not, T is aborted since it cannot be
inserted in the visible range. Otherwise, T makes
a new copy of AQ to be used for the additional
validation and reorders its entry in AQ. A simple

52 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

and straightforward approach which guarantees
serializability using the new transaction number
is to revalidate T with respect to all transactions
in the new copy of AQ, as shown in the Fig. 5.
Much of this work has already been performed
in the section labelled Validation and so in reality
the only additional conditions which must be
checked are with respect to transactions that have
moved since the initial copy of AQ was made. Such
transactions are ones for which conflicts have been
detected and hence, if the optimistic assumption
is true, only a few additional checks will be re-
quired. Since transactions could not have moved
into positions before lower(T) (the value of vtnc
when T entered validation) this serves as a lower
bound on the copy. Similarly, upper(T) (the value
of ctnc when T entered validation) serves as an
upper bound since a transaction, T', such that
tn(T') > upper(T) entered validation after T and ei-
ther has not moved or, if it has, remains a successor
to the initial position of T. It will therefore perform
the correct validation checks with respect to T.

It should be noted that read-write transactions
which would be committed by MVPV or the paral-
lel validation algorithm in [9] will be committed
by MVGV and the same amount of computation
will be involved. Such transactions will be commit-
ted with their initial assignment of transaction
numbers. The effect of MVGV is to reduce roll-
back. Only transactions that would have been
aborted by the former algorithms commit with
modified transaction numbers and execute the ad-
ditional computation contained in the sections of
the algorithm labelled ReorderAQ and Augmen-
tedValidation. The same amount of computation
is performed in the section labelled Validation
whether or not a conflict is detected.

3 Integration and compaction
In this section we propose a technique for storing
tuples which allows multiple versions of a relation
to be extracted. A two stage process, consisting
of integration and compaction, for merging a write
set with a relation is described. The technique has
the property that it can be performed concurrently
with the execution of other transactions in their
read phase without requiring any synchronization.

3.1 Integrat ion

Integration is the process of applying the intentions
lists of a transaction to the corresponding relations
to get newer versions of the relations without des-
troying earlier versions. All the versions of a rela-

tion are stored in one file. In order to maintain
a multi-version relation, create and delete fields are
associated with each tuple. If tuple t was created
by transaction T then the create field of t, e(t),
contains tn(T). Similarly, the delete field, d(t) of
t contains tn(T) if t has been deleted by T, or ' ~ '
if t has not been deleted. Tuple t is visible to trans-
action T if and only if c(t)<sn(T)<d(t) . Each
transaction must evaluate this inequality while ex-
amining t during its read phase. This constitutes
the additional computational overhead of main-
taining a multi-version database. Several tech-
niques can be used to minimize the space allocated
to each field. 2

Integration is performed during the write phase
of a transaction. Suppose T integrates an intentions
list, into relation R. The delete field of each visible
tuple in R that unifies with a delete predicate is
set to tn (T). These tuples are not actually removed
from the file and no change is made to indices
used to access R since the tuples may still be in
the view of other active transactions. Inserted tu-
ples are appended to the relation with value tn(T)
in their create fields and ' ~ ' in the delete fields.
In this case the indices are also modified. For ex-
ample, if the tuples were indexed by a B-tree, then
the B-tree is updated to include the key values of
the inserted tuples.

Since a goal of the algorithm is to eliminate
the need for read-only transactions to synchronize
with other transactions, it must be possible to per-
form integration asynchronously with the execu-
tion of transactions in their read phase. But if T1
is in its write phase at the same time that T2 is
in its read phase then sn(T2)< tn(T~) and T2 is there-
fore reading an earlier version of the database than
the one being created by T1. Thus if t is a tuple
being deleted by T1 and sn(T2)>c(t), t will be seen
by T2 whether or not tn(T~) has been assigned to
d(t). Similarly if T~ adds t then c(t)>sn(T2), and
therefore t will not be seen by T2 even if the addition

To avoid storing real numbers a transaction installs its ver-
sion using the smallest integer greater than or equal to its
transaction number and vtne is assigned the largest integer
satisfying the property that all transactions having numbers
less than or equal to its value have completed their write
phases. Thus, when vtnc is incremented several transactions
may become visible simultaneously. Note, however, that if
T2 follows T~ in the equivalent serial order then the updates
of Tz do not become visible before those of T~. Furthermore,
if 4 bytes are allocated for each transaction number then
two 3-byte factor registers can be stored in the header of
the relation and only 1 byte is needed for each number in
each tuple. Depending upon whether the 1-byte number in
the tuple is positive or negative, one of the 3-byte register
contents is prepended to construct the entire transaction
number

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 53

occurs before Tz reads the relation. Thus integra-
tion need not be done in a critical section. Integra-
tion consists only of in-place changes to the delete
fields of existing tuples and the appending of new
tuples. If the underlying system provides an atomic
append facility, then multiple integrations can be
carried out concurrently.

Indices can also be updated concurrently. An
algorithm for updating B-trees [14]*exists in which
no synchronization is required between a process
updating the B-tree via page writes and processes
which simply read it. Thus a transaction in its write
phase which has appended tuples to a relation can
update a B-tree index without synchronizing with
transactions in their read phase which are accessing
the relation through the B-tree. This technique can
be extended to other indexing schemes. Note that
there may be tuples belonging to different views
of the relation which have the same key value. A
simple generalization of B-trees allows the index
to have multiple instances of a given key value.

3.2 Compact ion

The process of discarding older versions of a rela-
tion is called compaction. Tuples that have been
deleted by transactions which committed in the
more distant past are discarded from the relation
during compaction. Since certain earlier views of
the relation will no longer be constructible, a rela-
tion R must be tagged with a base transaction
number, bt(R), which corresponds to the earliest
version of R that can still be constructed. This must
be checked by all transactions when the relation
is first opened and represents a small, additional
overhead. If T needs access to R and sn(T)< bt(R),
then T must be restarted with a new (larger) start
number. As a result, it is now possible for a read-
only transaction to abort, but this effect can be
minimized by limiting the frequency with which
compaction takes place. Successive aborts of the
same transaction, however, are highly unlikely.

Compaction can be done by writing the tuples
contained in the versions of a relation to be re-
tained (i.e., tuples t such that d(t) is greater than
or equal to the new value of bt (R)) to a new file,
creating new indices and switching the file pointer
on completion. Thus, it can be performed concur-
rently with transactions executing their read phase
without imposing any synchronization require-
ments on them. Subsequent readers read the con-
tents of the new file. Transactions reading while
the relation is being compacted remain linked to
the original file. File space is reclaimed when all
readers unlink from that file. Compaction and inte-

gration, however, can not be performed concur-
rently as this may result in lost updates. Thus some
synchronization among writers is required.

4 Rollback

The major overhead incurred by optimistic concur-
rency control algorithms is due to transaction roll-
back [1, 2]. Since such algorithms detect conflict
only after a transaction is run to completion, a
significant amount of wasted computation may be
incurred. In the multiversion algorithms presented
in this paper read-only transactions are never
rolled back due to conflicts. Any transaction may
be rolled back due to premature compaction, but
the probability of this happening can be brought
arbitrarily close to zero by increasing the time be-
tween successive compactions. The probability of
rollback of read-write transactions due to conflicts
in MVPV is the same as that in the standard optim-
istic algorithm. The extent to which MVGV re-
duces this probability is examined in this section.
In addition, a technique for reducing the amount
of wasted computation by detecting conflicts dur-
ing the read phase instead of waiting until valida-
tion is discussed. Finally, a technique for prevent-
ing successive rollbacks of the same transaction
is presented.

4.1 Analysis o f rollback in M V P V
and M VG V

Let K be the average number of transactions in
AQ when T enters validation and let ~. be the i th
such transaction. Transactions are assumed to be
independent of one another. A conflict occurs be-
tween T and ~. if either WS (~.) c~ RS (T) r q~, which
shall be referred as a forward conflict, or
WS (T) ca RS(~.) r qS. The probability of either of
these events is p and they are assumed to occur
independently. T can be successfully committed as
the successor of the K transactions in AQ provided
it does not have a forward conflict with any of
them. The probability that this occurs , PaftertK)(K),
is:

K

P~fter(~)(K) = F[Probabi l i ty(WS (T~)c~ RS(T) = (o)
i = 1

=(1 _p)K.

This is the probability of successful validation
in MVPV given that there are K transactions in
the queue. Therefore

pMVeV (K)=(1 _ p)K.

54 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

If T has a forward conflict with a transaction
q~+l, then it cannot commit after q~+l or subse-
quent transactions. The probability that T can
commit as the successor of the first 1 transactions
but not as the successor of the first l+ 1 transac-
tions, Pafter(l)A ~ a f t e r (l + 1), is given by

Paf ter (l) A ~ a f t e r (l + 1)

r'] = H Probability(WS(T/) c~ RS(T)= r �9
Li= l

[Probability (WS (T~+ 1) c~ RS(T) # r �9

[i =H+ Probab,I ity (WS (T) c~RS(Ti)=r

=p(1 _p)K.

Paf ter (i) A ~ a f t e r (i + I) and Raf te r (j) A ~ a f t e r (j + 1) a r e
the probabilities of disjoint events for i#j. In
MVGV, T cannot be placed before any transaction
that has been made visible during its read phase.
If k of the K transactions are visible then the prob-
ability that T will successfully validate in MVGV
is given by

pMVGV (K)
K - I

= (1 - p) " d + (/ ~ - k). p).

Thus, the ratio of the probability of success in
MVGV to the probability of success in MVPV is
(l+(K-k).p). The probability of rollback as a
function of K is plotted for two different values
of p in Figs. 7 and 8. The MVGV curve assumes
k = 0 and represents the best improvement possible.
When k = K, the probability of rollback in MVGV
is same as in MVPV. In general, the operating
range of MVGV will be between these two ex-
tremes. The figures indicate that this range is
singificant. Thus, transaction rollbacks in MVGV
will almost always be less than in MVPV.

4.2 Immediate rollback

The create and delete fields of a tuple can be used
by a read-write transaction to detect a potential
conflict while it is still in its read phase. It can

0.50

0.40

0.30

li+v 1 MVGV
Avg Queue Length
Prob of Rollback

...'"
. ''�9176149 �9

. r

, f

t r-'"

0.20 ..-"
, . w

�9

0.10 "
.,'"' ~

�9 " ~
I'i ~ i

10 20 30 ' 4'0 50"

Fig. 7. Probability of rollback versus average queue length for
p=0.01

0.50'

0.40

0.30

MVGV
Avg Queue Length
Prob of Rollback

0.20 "
,,,..~'"

..r"
,,~."

0.10 �9

. r ' " ' "

, .i ,'+'+

15 ~ 2 - " ~ ~ 30 ' 40 ' 50"
K -*

Fig. 8. Probability of rollback versus average queue length for
p=0.005

then elect to abort itself immediately. Thus, if a
read-write transaction T encounters a tuple t sat-
isfying its read predicate and c(t)>sn(T), then t
was appended by a prior, but concurrent, transac-
tion, T', against which T will ultimately validate.
Since t is an element of WS(T'), it follows that
WS(T') c~ RS(T)~ r As a result, T cannot be a suc-
cessor of T' and validation reduces to checking if
T can precede T'. Thus the probability of successful
validation is significantly reduced and immediate
rollback may be deemed appropriate. A similar
condition exists with respect to d (t).

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 55

4.3 Success ive ro l lback

If an aborted transaction, T, is simply restarted
as a new transaction then it may be aborted again
and, although the probability is quite small, this
pattern may repeat an arbitrary number of times.
A simple technique for avoiding this exists if T's
read and write sets do not change when it is rerun.
The essential idea is to force a situation in which
the second time T is executed the set of transactions
against which it must validate is empty, thus ensur-
ing successful validation.

For example, suppose T is aborted while exe-
cuting the section labelled Validation in the
MVGV algorithm shown in Fig. 5. On its second
iteration tn(T) is left unchanged and sn(T) is set
equal to tn (T) -e . This guarantees that when T
enters validation for the second time no transaction
will be found with transaction number in the inter-
val [sn(T), tn(T)] and validation will be successful.
The scheme can be implemented by simply leaving
T's entry in AQ when validation fails, thus using
the old transaction number again. Since RS(T) and
WS(T) are known at this time, transactions which
subsequently enter their validation phase can vali-
date against T despite the fact that T may not
have completed its (second) read phase. Thus, vali-
dation of other transactions is not effected. Since
vtnc may be less than sn(T) when T is to be res-
tarted, it may be necessary to delay the restart.
A mechanism for doing this is already an integral
part of the distributed version of MVGV (described
in the next section) and presents no problem. The
drawback of this technique is that while T is being
rerun new views cannot be made visible. T is res-
tarted when the previous transaction in AQ com-
pletes its write phase and vtnc cannot be advanced
until T completes its write phase.

5 Distributed optimistic
concurrency control
The single site algorithm extends naturally to a
distributed environment. An agent process called
the transaction server executes at each site and is
responsible for handling the validation of local
transactions as well as the sub-transactions of glob-
al transactions at that site. All servers maintain
their own local counters. Distributed concurrency
control algorithms generally guarantee the atomi-
city of global transactions by employing a commit
protocol [-8, 15]. The server at the coordinator site
of a global transaction initiates the commit proto-
col at the end of the read phase, and the servers
at the cohort sites validate the sub-transactions.

If the initial phase of the commit protocol is suc-
cessful, (i.e., all cohorts reply in the affirmative to
the validation request), the coordinator starts the
final phase of the protocol during which the co-
horts integrate the respective intentions list at each
site. Each cohort is concerned only with the local
read and write sets of the global transaction at
that cohort site.

The extension of the single site parallel valida-
tion algorithm to a distributed environment should
not only guarantee the serializability of local and
global transactions but, to eliminate the need to
validate global read-only transactions, should
guarantee globally consistent views to all transac-
tions. Unfortunately, a naive extension of the algo-
rithm in which sub-transactions of a global trans-
action are independently validated without coor-
dination among the cohort sites leads to non-seria-
lizable execution schedules as well as to inconsis-
tent views. The following examples illustrate these
problems.

Suppose two global transactions, T1 and T2, ac-
cess relations at sites St and $2. Let relation R1
be on $1 and relation R2 be on $2. The read sets
of T~ and T2 are both {R1, Rz}, the write set of
Tt is {R2} and the write set of T2 is {Rx}. If valida-
tion of T~ and T2 at sites $1 and $2 are such that
tn(T0<tn(T2) at $1 and tn(Tz)<tn(T0 at $2 then
both transactions will commit despite the fact that
if both relations had been on the same site one
of the transactions would have been aborted.

Similarly, suppose a global transaction, T~,
commits at sites St and $2, and the write phase
of T~ at $1 finishes before the write phase at $2.
If the vtnc at $1 is advanced and at this instant
another global transaction, T2, obtains start
numbers from $1 and $2, the relations read by T2
from S1 will reflect the completion of T, whereas
the relations read from $2 will not. Thus, T2 will
have an inconsistent view of the database. Note
that these problems are limited to global transac-
tions.

The distributed algorithm described here guar-
antees the serializability of a global transaction by
requiring that its sub-transactions commit with the
same transaction number at all cohorts. This en-
sures that if there are two concurrent global trans-
actions involving common cohorts, then at each
such site the serial order of the two transactions
will be same. The transaction number assigned to
a global transaction is called a global transaction
number (gtn).

Similarly, the problem of inconsistent views can
be eliminated by requiring that a global transaction
uses the same start number at all cohorts. A global

56 D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback

transaction gets a start number from the coordina-
tor and uses it to extract a view from all other
sites. This requirement, in conjunction with the
property that a global transaction commits with

the same transaction number at all sites, ensures
a consistent view to a global transaction. The start
number assigned to a global transaction is referred
to as its global start number (gsn).

>>

IF (gsn(T) > vtnc) THEN
{ctnc~ MAX(gsn(T), ctnc);
A l l o c a t e entry E(T);
E(T).id*-- T;
E (T).type*----WamNC;
E (T).num +---- gsn (T);
Inser tAQ(E(T), gsn(T));
Exit Crit ical Sec t ion and W a i t }

Fig. 9. Initiating a sub-transaction at a cohort site

5.1 Algorithm

The details of a distributed algorithm based on
MVGV are presented here. Since the treatment of
local transactions is unchanged, only considera-
tions pertaining to global transactions will be dis-
cussed and dealt with in the figures. Note, however,
that ctnc, vtnc, and AQ are used for both the vali-
dation of local transactions as well as sub-transac-
tions of global transactions. Validation of a sub-
transaction at a cohort site involves only the local
read and write sets at that site. The distributed

receive(coordinator, request, T, gtn(T));

InitialCS :

ctnc , MAX(gtn(T), ctnc);
tn(T)*---MAX(gtn(T), vtnc +);
lower (T)*---- vtnc; upper (T)*---- ctnc + ~;
AQCopy(T)*----CopyAQ([sn(T), upper(T)]);
Create entry E(T) for T;
Inser tAQ (E (T), tn (T));

>>

Validation:
HighTn(T), ValidatePredecessors(T, [sn(T), tn(T)]);
IF (HighTn(T)= NULL) THEN

{LowTn(T)~ ValidateSuccessors(T, [tn(T), upper(T)]);
IF LowTn(T) = N U L L THEN

GO TO SendVote;
ELSE

{HighTn(T), ValidatePredecessors(T, [tn(T), LowTn(T)+ ~]);
IF (HighTn(r)= NULL) THEN

tn(T)*---LowTn(T) + ;
ELSE

{Abort(T); EXIT}}}
ELSE

{ Low Tn(T)+--- V alidateSuccessors(T, [High Tn(T)-- ~, upper(T)]);
IF LowTn(T)=NULL THEN

tn(r)§ Tn(r) - ;
ELSE

{Abort(T); EXIT}}

ReorderAQ :

- As in Fig. 5 -

Augmented Validation:
- As in Fig. 5 -

Send Vote:
send(coordinator, VALID, T, tn(T));

Fig. 10. Distributed multi-version generalized validation algorithm

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 57

Coordinator Cohorts

Phase I

gtn (T) *---- MAX (all c tnc) + A ;
send(cohorts, VALIDATE, T, gtn(T));

- As in Fig. 10

Phase II

Evaluate Vote:

receive(cohorts, replies, T, tn);
CASE replies OF

Any cohort replies I N V A L I D :
send(cohorts, ABORT, T, NULL); EXIT;

All cohorts reply VALID:
gtn.,i. (T)*----- M IN (all tn);
gtnm..~(T)' MAX(all tn);
CASE

gtnmi.(T) = gtnmax(T) :
send(cohorts, C O M M I T , T, NULL); EXIT;

gtn,.i.(T) < gtn(T) < gtnm.x(T) :
send(cohorts, ABORT, T, NULL); EXIT;

gtn~.(T) < gtn(T) /x gtnm.~(T) < gtn(T) :
send (cohorts, R E V A L I D A T E , T, gtn..i. (T));

gtn,.ax(T) > gtn(T) A gtnmi.(T) >_ gtn(T):
send(cohorts, R E V A L I D A T E , T, gtnm.~(T)) ;

END; (* CASE *)
GO TO EvaluateVote;

END; (. CASE *)

receive (coordinator, request, T, newgtn (T));
CASE request OF

ABORT: Abor t (T); EXIT;
C O M M I T : GO TO WritePhase;
R E V A L I D A T E :

IF newgtn(T) = tn(T) THEN
GO TO SendVote;

ELSE
{ tn (T) *---- newgtn (T);
GO TO ReorderAQ; }

END; (* CASE *)

WritePhase :
- As in Fig. 3

Fig. 11. Validation and commit phase of the distributed algorithm

algorithm is shown in Figs. 9-11. The subscripts
of ctnc, vtnc and AQ that identify variables at a
specific cohort site have been omitted in the figures
for a clearer presentation.

If the value of vtnc~ at each cohort, Si, of a
global transaction, T, were known by the coordina-
tor before it began its read phase, then it would
be reasonable to assign the minimum of these
values to gsn(T) and thus be assured that the view
required by each sub-transaction would be avail-
able at all cohort sites. In the absence of such infor-
mation, gsn (T) is assigned the current value of vtnc
at the coordinator site. (An assignment of a smaller
value is also possible.) The initiation of a subtrans-

action is shown in Figure 9. If gsn(T)_< vtnci the
sub-transaction can proceed immediately since the
desired view is available. If gsn (T)> vtnci execution
at Si must be delayed until all transactions in their
validation or write phases at S~ having transaction
numbers less than or equal to gsn (T) have termin-
ated. For this purpose an AQ entry is created for
T with E(T).type set to WAITING and E(T).num set
to gsn(T). Since AQ is ordered on the number field,
when vtnci reaches E(T).num the sub-transaction
can be started and the entry deleted. A minor mod-
ification of the WritePhase section of Fig. 3 is re-
quired for this purpose. If ctnci < gsn(T) then ctnci
is set equal to gsn(T). This reduces the probability

58 D. Agrawal et al. : Distr ibuted optimistic concurrency control with reduced rollback

that subsequent transactions will enter validation
with transaction numbers less than gsn(T), forcing
T to wait for their completion.

In order to facilitate agreement among cohorts
on a common transaction number the coordinator
proposes a value for gtn(T) at the end of the read
phase and transmits it to all cohorts. Each cohort
attempts to validate its sub-transaction using a
modified form of MVGV in which the initial as-
signment to tn(T) is gtn(T) instead of the incre-
mented value of ctnc at that site. Since the attempt
may fail, one or more sites may find it necessary
to choose a different transaction number. Thus,
even if all sub-transactions are successfully validat-
ed, additional coordination may be required to
generate a common transaction number at all sites.
If all cohorts successfully validate using the initial
value of gtn(T) then this additional coordination
can be avoided. Thus, care must be taken in choos-
ing the initial transaction number. Local transac-
tions do not enter the algorithm with a preassigned
transaction number. The incremented value of ctnc
is used in that case.

If the coordinator selects a value for gtn(T)
which is smaller than vtnci at some cohort site then
it will not be possible to commit T at that site
using the initial assignment, since T cannot be com-
mitted with a number which is already in the visible
range. Thus, to reduce the probability of reassign-
ment, the initial value of gtn (T) must be larger than
vtnc~ at all cohorts. On the other hand, the equiva-
lent serial order should approximately correspond
to the order in which transactions are processed
in real time. Specifying a value of gtn(T) which
is very large not only uses up the number space
from which transaction numbers are drawn, but
increases the probability that the equivalent serial
order of global transactions will differ greatly from
the order in which they were initiated in real time.
As a result, the coordinator bases its choice of
gtn(T) on the values of ctnci which it obtains from
the cohorts. The initial value of gtn(T) is selected
by adding a safety factor, A, to the maximum of
these values. The safety factor is heuristically cho-
sen to reflect the number of transactions that may
have entered validation at S~ since ctnc~ was sam-
pled. The goal of the heuristic is to make gtn(T)
close to ctnc~ at each cohort. In this way the trans-
action number assigned to the sub-transaction ap-
proximates the number that would have been as-
signed by the cohort had the sub-transaction been
local. It is useful in this regard to keep the commit
transaction counters at all sites in rough synchroni-
zation. Since these counters can always be incre-
mented, a mechanism similar to that proposed in

[11] can be used to exchange and update values.
A side effect of this is that the view transaction
counters will be kept roughly synchronized as well,
which is desirable since it reduces waiting and en-
sures current views to sub-transactions. Note that
an optimal algorithm does not eliminate the possi-
bility of reassignment, which may still be necessary
due to conflicts detected at cohort sites.

The distributed MVGV algorithm used to vali-
date a sub-transaction at a cohort site is shown
in Fig. 10. The initial critical section first ensures
that ctnci refers to the largest entry in AQ. If the
strategy used by the coordinator in choosing
gtn(T) is successful it will be larger than vtnci and
can serve as the initial assignment to tn(T). If not,
another value must be chosen and additional coor-
dination will be required.

The Validation section of the algorithm deter-
mines whether T can be validated with the initial
assignment and, failing that, whether a different
number can be found which allows successful vali-
dation. If neither is possible, T must be aborted.
In order to be successful with the initial assignment
all transactions with entries in AQCopy(T) having
transaction numbers smaller than tn(T) must pre-
cede T in the equivalent serial order and all trans-
actions with larger numbers must follow T. Valida-
tion proceeds accordingly by invoking the function
ValidatePredecessors with the open interval [-sn(T),
tn(T)] and, if a null value is returned, invoking
ValidateSuccessors with the open interval [tn(T),
upper(T)]. If the returned value is also null then
validation of T succeeds with transaction number
tn(T). If a non-null value is returned by both func-
tions then conflicts are indicated which require the
rollback of T. An INVALID indicator is sent to the
coordinator as part of Abort(T). If a single non-
null value is returned then a new transaction
number is determined with which T can be validat-
ed. The number will be smaller than tn(T) if the
collision was detected by the original call to Vali-
datePredecessors and will be larger if the collision
was detected by the call to ValidateSuccessors. In
the former case the new number is the maximum
that can be used for validating the sub-transaction
at that cohort; in the latter case it is the minimum.
If validation is successful, the transaction number
is returned to the coordinator. This constitutes the
first phase of the two-phase commit protocol. The
cohort then awaits a response from the coordinator
before entering its write phase. Note that only glob-
al transactions encounter such a wait and that such
transactions do not delay each other or local trans-
actions, since a parallel validation algorithm is
used.

D. Agrawal et al.: Distributed optimistic concurrency control with reduced rollback 59

The coordinator enters the second phase of the
commit protocol, shown in Figure 11 after receiv-
ing replies from all cohorts. It sends an abort mes-
sage if any one of the cohorts replies I~VALIO. If
all cohorts reply VALID then the coordinator com-
putes the minimum and maximum, gtnmin(T) and
gtnmax(T), of the transaction numbers returned. If
the two are identical, indicating that all sub-trans-
actions have been validated with the same transac-
tion number, the coordinator commits the transac-
tion with that number and sends a commit message
to the cohorts. On the other hand, if gtnmin(T) is
smaller, and gtnm,x(T) is greater, than gtn(T) then
the coordinator sends an abort message to the co-
horts. This is necessary because in this case one
cohort cannot commit its sub-transaction with a
transaction number greater than gtnmin(T) and an-
other cannot commit with a number less than
gtnmax(T). The other two cases arise when gtnmin(T)
and gtnm, x(T) are not identical and either both are
less than or equal or both are greater than or equal
to gtn(T). In the former case all cohorts have either
successfully validated with the initial assignment
or have determined upper bounds on possible
transaction numbers. The latter case is similar ex-
cept the bounds are lower bounds. In both cases
a common transaction number is possible. The
coordinator requests the cohorts to revalidate T
with gtnmin(T)(gtnmax(T)) as the final global trans-
action number.

Upon receiving a reply from the coordinator
the cohort either aborts, commits or continues vali-
dating the sub-transaction with the transaction
number returned. In the latter case the cohort re-
enters validation in such a way that only the new
transaction number is acceptable. Hence, one extra
phase is required to determine if the transaction
can be committed.

6 Conclusions
In this paper a distributed, multi-version optimistic
concurrency control scheme has been proposed
which is particularly advantageous in query-domi-
nant systems. The algorithm attacks several defi-
ciencies of the original optimistic concurrency con-
trol scheme. Since all transactions are guaranteed
of seeing a consistent view of the database, unpre-
dictable behavior during the read phase is elimi-
nated. The amount of wasted computation is re-
duced by (essentially) eliminating rollback for read-
only transactions, eliminating the need to validate
read-only transactions and generalizing the valida-
tion conditions so as to reduce the probability of
rollback for read-write transactions. Unlike multi-

version timestamp ordering algorithms, read-only
transactions cannot cause read-write transactions
to abort. The algorithm does not suffer from the
deadlock and cascading rollback problems of other
distributed optimistic concurrency control
schemes.
Acknowledgement. The authors wish to thank Josyula Rao for
his helpful comments and criticism.

References
1. Agrawal R, Carey M J, Livny M (1985) Models for studying

concurrency control performance: Alternatives and implica-
tions. Proe ACM-SIGMOD, Texas (May 1985) pp 108-121

2. Agrawal R, Dewitt DJ (1985) Integrated concurrency con-
trol and recovery mechanisms: Design and performance
evaluation. ACM Trans Database Syst 4:529 564

3. Bernstein PA, Goodman N (1981) Concurrency control in
distributed database systems. Comput Surv 2:185 221

4. Bragger RP, Reimer M (1983) Predicative Scheduling: Inte-
gration of Locking and Optimistic Methods. Tech Rep Eid-
gen6ssische Technische Hochschule (ETH), Ziirich (July
1983)

5. Ceri S, Owicki S (1982) On the use of optimistic methods
for concurrency control in distributed databases. Proc 6th
Berkeley Workshop in distributed data management and
computer networks (Feb 1982) pp 117-129

6. Chan A, Fox S, Lin WK, Nori A, Ries DR (1982) The
implementation of an integrated concurrency control and
recovery scheme. Proc ACM-SIGMOD, Florida (July 1982)
pp 184-191

7. Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The
notion of consistency and predicate locks in database sys-
tem. Commun ACM 11:624-633

8. Gray JN (1978) Notes on data base operating systems. In:
Bayer R, Graham RM, Seegmuller G (eds) Operating sys-
tems. An advanced course. Lect Notes Comput Sci, vol 60.
Springer, Berlin Heidelberg New York pp 393 481

9. Kung HT, Robinson JT (1981) On optimistic methods for
concurrency. ACM Trans Database Syst 2:213-226

10. Lai MY, Wilkinson WK (1984) Distributed transaction
management in JASMIN. Proc 10th Int Conf on very large
data bases, Singapore (August 1984) pp 466-470

11. Lamport L (1978) Time, clocks, and the ordering of events
in a distributed system. Commun ACM 7:558-565

12. Lampson BW, Sturgis HE (1979) Crash recovery in a distrib-
uted data storage system. Computer Science Laboratory,
Xerox Palo Alto Research Center

13. Lausen G (1982) Concurrency control in database systems:
A step towards the integration of optimistic methods and
locking. Proc ACM Annual Conf, Dallas, TX (Oct 1982)
pp 64-68

14. Lehman PL, Yao SB (1981) Efficient locking for concurrent
operations on B-trees. ACM Trans Database Syst 4:650-
670

15. Mohan C, Lindsay B (1985) Efficient commit protocols for
the tree of processes model of distributed transactions. ACM
Operating Syst Review 2:40-52

16. Reed DP (1978) Naming and Synchronization in a Decen-
tralized Computer System. Tech Rep MIT/LCS/TR-205,
MIT (September 1978)

17. Schlageter G (1981) Optimistic Methods for Concurrency
Control in Distributed Database Systems. Proc 7th lnt Conf
on very large data bases, Cannes (September 1981) pp 125-
130

