
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998 173

Distributed Optimistic Concurrency
Control Methods for High-Performance

Transaction Processing
Alexander Thomasian, Senior Member, IEEE

Abstract —There is an ever-increasing demand for more complex transactions and higher throughputs in transaction processing
systems leading to higher degrees of transaction concurrency and, hence, higher data contention. The conventional two-phase
locking (2PL) Concurrency Control (CC) method may, therefore, restrict system throughput to levels inconsistent with the available
processing capacity. This is especially a concern in shared-nothing or data-partitioned systems due to the extra latencies for
internode communication and a reliable commit protocol. The optimistic CC (OCC) is a possible solution, but currently proposed
methods have the disadvantage of repeated transaction restarts. We present a distributed OCC method followed by locking, such
that locking is an integral part of distributed validation and two-phase commit. This method ensures at most one re-execution, if the
validation for the optimistic phase fails. Deadlocks, which are possible with 2PL, are prevented by preclaiming locks for the second
execution phase. This is done in the same order at all nodes. We outline implementation details and compare the performance of
the new OCC method with distributed 2PL through a detailed simulation that incorporates queueing effects at the devices of the
computer systems, buffer management, concurrency control, and commit processing. It is shown that for higher data contention
levels, the hybrid OCC method allows a much higher maximum transaction throughput than distributed 2PL in systems with high
processing capacities. In addition to the comparison of CC methods, the simulation study is used to study the effect of varying the
number of computer systems with a fixed total processing capacity and the effect of locality of access in each case. We also
describe several interesting variants of the proposed OCC method, including methods for handling access variance, i.e., when
rerunning a transaction results in accesses to a different set of objects.

Index Terms —Distributed database systems, transaction processing, optimistic concurrency control, access invariance, commit
protocols, system performance modeling.

—————————— ✦ ——————————

1 INTRODUCTION

ONCURRENCY control (CC) is an important aspect of dis-
tributed transaction processing (the reader is referred

to [47] for an overview of CC methods). Virtually all com-
mercial database management systems still use two-phase
locking (2PL) for synchronizing database accesses. How-
ever, since optimistic methods were first described in [25], a
large number of optimistic concurrency control (OCC) meth-
ods have been proposed for centralized and distributed
database systems [32] and have been implemented in sev-
eral prototypes, particularly for distributed environments
[36], [10], [22], [28], [30]. In this paper, we propose a hybrid
OCC method for transaction processing, which combines
OCC with locking in partitioned database systems. Locks
are only requested at the time of transaction validation and
commit processing to guarantee global serializability [5].

The ever-increasing demand for higher throughput for
more complex transactions in online transaction processing
leads to an increase in the degree of transaction concur-
rency (denoted by M) and a higher lock contention level,
which manifests itself by an increased frequency in trans-
action blocking due to lock conflicts and restarts (to resolve

deadlocks) [46]. In fact, as M increases there may be a sud-
den reduction in the number of active transactions due to
transaction blocking, which eventually leads to a severe
degradation in performance which is referred to as thrash-
ing [41], [43]. Thus, high-performance transaction process-
ing requirements may not be satisfiable by 2PL. This is par-
ticularly so in shared-nothing or data-partitioned architec-
tures for transaction processing, because for a given trans-
action arrival rate M is increased due to extra delays intro-
duced by intersystem communication.

The OCC protocol allows a high degree of transaction
concurrency and has been shown to outperform 2PL in
systems with “infinite” [11], [2] or at least “adequate”
hardware resources [12], [14]. More specifically, much
higher transaction throughputs can be attained by OCC
versus 2PL, at the cost of the additional processing capacity
required for transaction restarts. Another advantage of
OCC methods compared to 2PL is that they are deadlock-
free, since deadlock detection schemes for distributed data-
base systems tend to be complex and have frequently been
shown to be incorrect [23]. While time-outs can be used for
deadlock resolution, their implementation is complicated,
since it requires the determination of an appropriate time-
out interval [3], [21]. Deadlock-free locking schemes such as
wound-wait and wait-die are alternatives [37]. Simulation
results in [11], [2] show that these methods are outper-
formed by optimistic methods when the data-contention

1041-4347/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The author is with the IBM Thomas J. Watson Research Center, 30 Saw Mill
River Rd., Hawthorne, NY 10532. E-mail: athomas@watson.ibm.com.

Manuscript received 19 Feb. 1992.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104468.

C

174 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

level is high and adequate hardware resources are avail-
able. Another approach to prevent deadlocks is to limit the
wait depth of blocked transactions to one. The wait depth
limited (WDL) concurrency control method achieves this
goal while attempting to minimize wasted processing due
to transaction restarts [13]. A performance study of this
method in a distributed system is reported in [15], [16],
which shows that this method also outperforms 2PL in
high-lock contention environments.

An important issue in OCC is the efficiency of the vali-
dation method. The simple validation method first pro-
posed in [25] (for centralized systems) causes an unneces-
sarily high number of restarts, which can be prevented, e.g.,
by using timestamps for conflict detection [38], [31]. There
have been several extensions of the original validation
method to a distributed environment (see e.g., [8], [1])
(Agrawal et al. [1] use versioning to improve performance
for read-only transactions). In the case of longer transac-
tions, these methods generally cause an intolerably high
number of restarts and are susceptible to “starvation” (i.e.,
transactions may never succeed due to repeated restarts).
To overcome these problems, some authors proposed a
combination of locking and OCC (see e.g., [26]), where
transactions may be synchronized either pessimistically or
optimistically. Though this is a step in the right direction,
the resulting methods are no longer deadlock-free.

The proposed OCC protocol offers substantial benefits
over existing OCC methods and can be used for high-
performance transaction processing in data-partitioned or
shared-nothing systems. The protocol to be described ex-
hibits the following characteristics:

1) Transactions are executed optimistically, ignoring locks
held by other transactions on the object. We also inves-
tigate an alternative method where an object access is
delayed when updates are pending (see Section 2).

2) Before global validation is performed, the validating
transactions request appropriate locks for all items ac-
cessed. Locks are only held during the commit phase
(if validation is successful) so that lock conflicts are
far less likely than with standard locking.

3) If validation should fail, all acquired locks are re-
tained by the transaction while being executed again.
This guarantees that the second execution phase is
successful if no new objects are referenced. In this
way, frequent restarts, as well as starvation, can be
prevented. We also investigate an alternative method
where lock requests may be deferred to a point where
the execution of a transaction is considered to be suc-
cessful (see Section 5.1).

4) Deadlocks in requesting locks are prevented by using
a static locking paradigm, i.e., preclaiming locks for
objects accessed by a transaction in its first phase and
processing these requests in the same order at all nodes.

5) Lock requests do not cause any additional messages.
6) The protocol is fully distributed.

A key concept utilized here is phase-dependent control
[12], [14], such that a transaction is allowed to have mul-
tiple execution phases with different CC methods in differ-
ent phases. The need for multiphase processing arises in a

high-data-contention environment, where the processing of
transactions in one phase may lead to severe degradation in
performance, such as thrashing in 2PL [41], [43] and exces-
sive additional processing due to restarts in OCC [38]. Two-
phase processing is preferable to these methods from the
viewpoint of reduced transaction response time and also
reduced additional processing. Even if a transaction is
known to be conflicted in its first execution phase, its exe-
cution is allowed to continue in virtual execution mode
[12], [14]. In spite of the additional processing, the virtual
execution will result in prefetching of data into the database
buffer, which is useful when the transaction is rerun, pro-
vided that we have access invariance [12], [14], i.e., the
property that the set of objects accessed by a transaction does not
vary from execution to execution (according to physical access
invariance the data required for transaction re-execution is
prefetched as a result of the first execution phase, such that
the buffer is primed when the transaction is rerun [12],
[14]). A high degree of access invariance is to be expected in
a system with short and preplanned transactions postulated
in this study, which usually access the same set of objects in
repeated executions. The execution of a transaction in the
second phase is much shorter than the first phase, since
disk accesses are obviated when access invariance prevails,
such that there are very few transactions in the second
phase and, hence, little data contention among such trans-
actions. The second phase will thus lead to transaction
commit with very high probability.

We are concerned here with a special case of two-phase
processing, referred to as the hybrid optimistic method,
with OCC in the first phase and locking in the second
phase. The first phase is based on the optimistic die [12],
[14] or silent commit option [38], such that a transaction is
allowed to proceed to its validation (although it may be
already known that its validation will fail), as opposed to
the optimistic kill [12], [14] or broadcast commit [38],
which results in an immediate abort (and restart) of a con-
flicted transaction when the data read by the transaction is
invalidated. A restarted transaction may be run again op-
timistically (with the optimistic kill policy), but this may
result in additional restarts. Rerunning a transaction with a
2PL policy will limit the number of transaction re-
executions to one, because of the very low frequency of
deadlocks associated with 2PL. In fact, deadlocks can be
avoided altogether by preclaiming the locks required in the
second execution phase, since the identities of objects ac-
cessed by the transaction have been determined in the first
phase [12], [14]. Simulation results in [12], [14] show that
the CC method used in the second phase has little effect on
overall performance. The present paper describes a method
which permits an efficient use of the latter property in a
distributed environment.

A key measure of the success of the proposed method is
its relative performance compared to 2PL, which is demon-
strated in Section 4. An experiment to compare OCC and
2PL using the Cm* experimental system was reported in
[35]. This experiment was inconclusive in that both CC
methods achieved a similar performance. This was due to
a system-specific bottleneck, which resulted in the maxi-
mum transaction throughput being attained at a rather low

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 175

degree of concurrency. Another experiment indicated the
superior performance of distributed OCC with respect to
distributed 2PL, but was limited to two nodes and the re-
sults were influenced by the fact that I/O constituted a bot-
tleneck [24]. A simulation study comparing the perform-
ance of 2PL with OCC with centralized validation in a dis-
tributed memory system was discussed in [4]. It is inter-
esting to note that most simulation studies of CC methods
have dealt with the fully replicated databases (see e.g., [7]).

A simulation study was undertaken as part of this effort,
although an approximate analysis based on the approach
in [38] (for a centralized system) is feasible. The analysis
in [38] allows multiple transaction classes (depending on
the number of locks requested) and optimistic die and kill
policies. The problem with an approximate analytic solu-
tion is that:

1) It requires simplifying modeling assumptions to make
the analysis tractable. This is because analytic solu-
tions for the queueing network model for the under-
lying computer system are only available under
rather stringent modeling assumption, e.g., exponen-
tial service times for FCFS queues [27].

2) Modeling multiple transaction classes introduces ad-
ditional complications.

3) We are interested in the peak throughput attainable
by the various CC methods under consideration, but
most analytic solutions for OCC tend to be less accu-
rate at very high-data-contention levels, which are of
interest here. For example, the blocking effect due to
static locking, which results from lock preclaiming
can only be estimated by a rather elaborate analytic
solution [45].

4) A simulation of the system would be required in any
case for validating the approximate analytic solution.

The system under consideration and the hybrid OCC
method is described in the next section, followed by a
more formal description of the OCC method in Section 3.
In Section 4, we describe the simulation model and com-
pare the performance of 2PL and the new OCC method. In
Section 5, we outline several variants of the proposed OCC
method and address the issue of access variance. Conclu-
sions appear in Section 6.

2 SYSTEM AND TRANSACTION PROCESSING MODEL

Though our protocols are, in principle, applicable to a wide
range of data-partitioned systems (including distributed
databases), we restrict our discussion to locally distributed
systems, referred to as shared-nothing architectures, which
are equipped with a high-speed interconnect for internode
communication. Such systems are good candidates for
high-volume transaction processing, see e.g., [19].

Data allocation is an important consideration in a data-
partitioned system. Data allocation may be done to achieve
a high degree of locality of data access in systems with
prespecified transaction classes, where the database access
characteristics of different transaction classes are known
a priori. The database can then be partitioned to increase
locality as well as to achieve a relatively balanced load

among the nodes of the system (see e.g., [48]). Transactions
are routed according to their class to the node which holds
most of the data required for their processing. This results
in reduced internode communication, shorter transaction
response times, and reduced CPU overhead, since message
costs can be significant [17]. Data allocation can be done
solely to balance the load, as is done using hashing mecha-
nisms in some shared-nothing database machines [20]. This
reduction in the locality of access is of less consequence in a
system with low cost messages and a broadcast capability.
In the simulation studies reported in Section 4, we vary the
number of nodes and the degree of locality of reference to
determine the effect they have on performance.

We postulate a transaction execution model in which a
transaction is associated with a primary node. Basically two
approaches can be used to access data referenced by a
transaction, which is not available locally. According to the
function request approach, the request is processed at the
node where the object resides. If necessary a subtransaction
or cohort process is invoked to handle the function request
at the remote node to which the object belongs. According
to the data-request approach, the primary node requests an
object from the node which owns it and the object is sent to
the requesting node for processing. It is postulated in this
study that objects correspond to database pages. The data-
request approach was reported to provide better perform-
ance than the function request alternative when a high-
communication bandwidth is available in [48]. This is be-
cause function requests allow little flexibility for transaction
routing, since a node must process all operations against its
database partition, while in the case of data requests most
of the processing associated with a transaction is carried
out at its primary node. Although the proposed CC method
is applicable to both approaches, in this paper we will con-
centrate on the data-request approach, because of its po-
tential for load balancing and the additional advantage
pointed out below of caching data when a transaction is
restarted. A similar discussion is applicable to a client-sever
architecture, whether the processing of the data is done at
the server or the server sends appropriate pages to the
client [9].

A transaction is processed in three phases, according to
the OCC method:

• a read phase,
• a validation phase, followed immediately by
• a write phase,

if the validation is successful. During the read phase the
transaction reads all objects required for its execution. Ref-
erences to remote objects may be handled according to the
function request or data-request approach. Updates are
done only to a private copy of the object assigned to the
transaction at the primary node of transaction execution
(resp. the node which owns the object) in the data request
(resp. function request) approach. In the validation phase
(elaborated on below for the distributed case), a check is
made to verify that none of the objects accessed by a trans-
action has been modified since it was accessed. If the vali-
dation is successful, in the following write phase objects
updated by the transaction are externalized, i.e., written

176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

onto the global buffer. A transaction failing its validation is
restarted. The re-execution of a transaction, with respect to
access to remote objects is more efficient than its execution
in the first phase. This is because, according to the data-
request approach, remote objects are already available at the
primary node of transaction execution and a fresh copy is re-
quired only for modified objects. This is similar to the pre-
fetching effect (from disk) associated with the two-phase
processing method described in [12], [14]. When transaction
restarts occur, this constitutes the main advantage of the
data request compared to the function request approach.
Note that a locking method cannot take advantage of the
prefetching feature since lock requests need to be sent in
any case to the node which owns the object.

In fact, a data-partitioned system may allow for remote
as well as local caching of database objects. Thus, in the
case of OCC a data request to the owner system is only
required in case the object is not cached locally. Note
that in the case of 2PL, a message requesting an appropri-
ate lock on the object should be sent to the primary node,
although a copy of a remote object may be cached locally.
Remote caching is particularly attractive for data which
is used mainly in read-only mode and may be enhanced
by providing cache coherence mechanisms (as in data-
sharing systems [33]), for example, the owner site may re-
quest the invalidation of data as part of the commit of
a transaction. This approach will increase the chances for a
successful validation, but is not required for the correct
execution in the case of OCC methods. In fact, we will util-
ize special messages in conjunction with the optimistic kill
policy (see Section 5.1) to notify a transaction that it has
been conflicted.

In the distributed validation method, a transaction gen-
erally validates at all nodes which were involved in its read
phase, i.e., nodes which control the partitions that were
accessed by the transaction. As a consequence a transaction
can be processed without any intersystem communication
when it has referenced only local data objects being stored
at its primary node. For global transactions (i.e., transac-
tions that have referenced multiple partitions) validation
and write phases can be integrated into the two-phase
commit protocol (required to ensure the atomicity of the
transaction) in order to avoid additional messages:

• At EOT when all database operations of the transac-
tion have been executed, the (transaction manager at
the) primary node of transaction execution acts as
a coordinator for commit processing and sends a
PREPARE message to all nodes involved in the exe-
cution of the transaction (after logging a prepare or
precommit record). This message is now also used as
a validation request and to return the modified data-
base objects of external partitions to the owner sys-
tems. Upon receiving this message, a node performs
local validation on behalf of the requesting transac-
tion, where it is checked whether or not local seri-
alizability is affected. If local validation is success-
ful, the modifications of local database objects and
a precommit or ready record are logged and an O.K.
message is sent to the coordinator node. Otherwise, a

FAILED message is returned and the node forgets
about the transaction.

• The second phase of the commit protocol starts after
the coordinator node has received all response mes-
sages. If all local validations were successful, a com-
mit record is logged and COMMIT messages are sent
to the nodes participating in the commit protocol. The
COMMIT message processing at a remote system
consists of writing a commit log record and updating
the database buffer with modified objects (write
phase). If any of the local validations failed, an
ABORT message is sent to the nodes which voted
O.K. and the transaction is aborted by simply dis-
carding its modifications.

This basic strategy alone does not ensure correctness,
since local serializability of a transaction at all nodes does
not automatically result in global serializability (e.g., a
transaction may precede a second transaction in the seriali-
zation order at one node, but not another) [5]. An easy way
to solve this problem is to enforce that the (local) valida-
tions of a global transaction are processed in the same
order at all nodes. In this case, the local serialization orders
can be extended to a unique global serialization order with-
out introducing any cycles. The global serialization order is
thus given by the validation order.

In a local environment with a (reliable) broadcast me-
dium, it is comparatively simple to ensure that validation
requests are processed in the same order at all nodes. Here,
a multicast message is used to send the validation request
(including a message to the primary node itself in case
it holds data accessed by the transaction) and these re-
quests should be processed in the order they are received.
There is no distinction between local and remote valida-
tions. Other strategies which are more generally applicable
use unique EOT timestamps or a circulating token to seri-
alize validations [33].

Another difficulty for distributed database systems is the
treatment of precommitted database objects, i.e., modifi-
cations of a precommitted, but not yet committed transac-
tion. Here, basically three approaches can be pursued:

1) The conventional approach would be to ignore the
fact that a precommitted object copy exists or is in
preparation (a transaction which is being rerun is
computing a new value for the object) and to access
the unmodified object version. This, however, leads to
the abort of the accessing transaction in the case when
the precommitted transaction is successful, which is
highly likely when the level of data contention is low.
Note that the modifications of the precommitted
transaction must be seen by all transactions which are
validated later.

2) A more optimistic approach would be to allow ac-
cesses to precommitted modifications, although it is
uncertain whether or not the locally successfully vali-
dated transaction will succeed at the other systems
too. The problem with this approach is that a domino
effect (cascading aborts) may be introduced since un-
committed data is accessed. In any case, one has
to keep track of the dependencies with respect to

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 177

precommitted transactions and to make sure that a
transaction cannot commit if some of the accessed
database modifications are still uncommitted. In ad-
dition, locks may be held by a transaction which is
being rerun because it failed its validation, such that
precommitted data is not available. Option 2 will not
be considered further in this paper.

3) It seems best to block accesses to precommitted ob-
jects until the final outcome of the modifying transac-
tion is known. In general, these exclusive locks are
only held during commit processing and are released
in phase 2 after transaction commit. This approach is
attractive since it is expected to result in a reduction
in the number of transactions failing their validation.
On the negative side, similarly to 2PL, it incurs trans-
action blocking.

The effect of options 1 and 3 (referred to hereafter as OCC1
and OCC2, for short) on performance is investigated fur-
ther in this paper.

In order to solve the starvation problem associated with
other OCC methods, we make extensive use of locking by
requesting locks for all objects (not only for modified ones)
at EOT before the validation. If the validating transaction is
successful, these locks are held only during commit proc-
essing. If the transaction validation should fail, the locks are
retained during the re-execution of the transaction and
guarantee a successful second execution, at least if no new
objects are accessed. With this technique, starvation can be
avoided for typical transaction processing applications.

For lock acquisition we distinguish between read (shared)
and write (exclusive) locks. Validation for the optimistic die
policy for the first phase is performed by using timestamps
associated with objects, by checking whether the object ver-
sions seen by a transaction are still up-to-date (an alternate
method based on access locks is described in Section 3.2).
This is not automatically ensured by a successful lock acquisition

since locks are requested after the object accesses in our method,
so that unnoted modifications by committed transactions (for
which the locks have already been released at validation time) may
have been performed.

Fig. 1 shows the various phases during the execution of a
global transaction for a successful first execution (Fig. 1a) as
well as for the case of a validation failure (Fig. 1b). As indi-
cated in Fig. 1, commit phase 1 consists of a lock request
and validation phase, followed by precommit logging in
the case of a successful local validation.

Irrespective of whether or not the local validation was
successful, locks are requested for all data items accessed
and the O.K. or FAILED message is only returned after all
locks are acquired. If all local validations were successful,
commit phase 2 is started consisting of the write phase and
the release of all locks (Fig. 1a). If validation at any node
failed, the transaction is re-executed under the protection of
the acquired locks. If no additional objects are accessed in
the second execution phase, the transaction can be immedi-
ately committed at the end of its second read phase before
the write phases and the release of the locks are performed
at the respective nodes. It follows from Fig. 1 that the num-
ber of messages for commit processing of failed transac-
tions that reference the same objects during re-execution, is
the same as successfully validated transactions. The issue of
access variance is discussed further in Section 5.2.

Given the transaction execution model adopted in this
paper all information for the recovery of a transaction can
be logged at the transaction execution node, i.e., the pre-
commit logging at remote nodes is not required since the
data is already logged at the coordinator node. This latter
protocol is similar to the coordinator log protocol described
in [39], which is, however, proposed for a function request
paradigm. In other words, a full-blown two-phase commit
protocol is not required. The precommit at remote nodes
after a successful validation is beneficial since it alleviates

(a) (b)

Fig. 1. Transaction execution flow for: (a) successful validation and (b) failed validation.

178 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

the need to transmit modified pages. When a transaction
failing its validation is re-executed, the modified pages
must be transmitted again, since their value has possibly
changed. Since given access-invariance, the execution in
this phase is guaranteed to be successful, a simplified
commit protocol which involves logging at the execution
node and sending the modified pages to remote nodes is
sufficient. This is because in the case of the failure of a
node, the transaction coordinator log can be used for the
purpose of recovery [39].

3 IMPLEMENTATIONS FOR THE HYBRID OCC
SCHEME

In Section 3.1, we provide a rather detailed procedural de-
scription of the proposed protocol, which unless otherwise
specified is based on object timestamps. An implementation
using access locks is then described in Section 3.2. The first
implementation can only be used in conjunction with the
optimistic die policy (in the first phase), while the access
lock method is more flexible and can be used to implement
both optimistic die and kill policies, as well as option 3 (or
OCC2) described in Section 2.

3.1 Implementation Using Object Timestamps
The identifiers of all objects accessed and modified by a
transaction T are denoted as its read set RS(T) and write set
WS(T), respectively. Every system maintains a so-called
object table to process lock and validation requests for ob-
jects of its partition. For this purpose, the object table entries
keep the following information:

OID: ... {object identifier};
WCT: integer {write counter};
XT: exclusive lock holder transaction;
ST: shared (read) lock holder transactions;
WL: waiting list for incompatible lock requests;

WCT is a simple counter which is incremented for every
successful object modification and is stored with the object
itself (e.g., database pages) as well as in the object table. The
WCT value in the object table always refers to the most re-
cent object copy, while the counter value within a given
object copy indicates the version number (or timestamp) of
this copy. The WCT field is used during validation to de-
termine whether or not the object copies accessed by a
transaction are still valid.

Locks are held either by precommitted transactions or
by already failed transactions during their second execu-
tion. An X-lock indicates that the transaction holding
the lock is going to modify the object (at commit time). In
order to prevent unnecessary rollbacks, according to the
OCC2 method, we delay object accesses during the read
phase until an X-lock is released. Also, an X-lock results in
the abort of first phase transactions that have accessed the
unmodified object version (before the lock was set). Read
(R) locks are set for accessed objects which have not been
modified. Though these locks are not required for a correct
synchronization, they prevent the object from being up-
dated (invalidated) by other transactions. Thus, they guar-
antee a successful re-execution for a failed transaction,

provided it accesses only its locked objects. The need for an
additional validation is thus obviated. Incompatible lock
requests are appended to the WL waiting list according to
the request order.

The execution of a transaction T at its primary node is
described below. It is assumed that a transaction performs a
sequence of read or write accesses on database objects.
Furthermore, it is assumed that every object is read before it
is modified (no “blind writes”), i.e., the write set of a trans-
action is a subset of its read set.

{read phase of first execution, OCC1 is the default policy}
for every object O to be accessed do;

if O belongs to local partition then
if (OCC2 and (X-lock set or X-lock request is waiting

for O))
then

queue A-lock request into WL;
wait until conflicting X-locks are released;

else
perform object access;
if OCC2 then append A-lock;

else
record O with current version number in RS(T);
if write access then also add O to WS(T);

{perform modification on private copy of O}
end if;

else
perform remote object access;

{wait at remote system when conflicts with
X-locks arise}

end if;

{commit phase 1}
broadcast validation request to remote systems

involved during T’s read phase;
local lock acquisition and validation of T; {for details,

see below}
receive validation results from remote systems;

{commit phase 2}
if (all validations successful) then write commit record;

broadcast COMMIT to all participating systems;
else

(* re-execution *)
restart and re-execute transaction;
if (no new objects referenced) then write commit record;

broadcast COMMIT to all participating systems;
else

perform two-phase commit with validation;
end if;

end if;

Next, we describe the first commit phase including lock
acquisition and validation of a transaction T at system S.
Part of the processing has to take place within a critical sec-
tion (indicated by << ... >>) against other transactions
which are ready to validate. RS(T, S) and WS(T, S) denote
the objects of RS(T) and WS(T), respectively, belonging to
the database partition of S. With wct(x, t) we denote the ver-
sion number of the copy of object x as seen by transaction T.

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 179

In fact, the information pertaining to the read-set and write
set of a transaction, including wct(x, t) can be maintained as
part of access locks.

<< VALID := true;
for all O in RS(T, S) do;

if (X-lock set or X-request is waiting for O)
then VALID := false;

if (lock conflict for O) then
if O in WS(T, S) then queue X-request into WL;

else queue R-request into WL;
else {no lock conflict}

if O in WS(T, S) then XT := T {acquire X-lock};
else append T to ST list {acquire

R-lock};
end if;

{validation using timestamps, rather than access
entries}

if wct(O, T) < WCT(O) then VALID := false;
end for; >>

if VALID
then

wait (if necessary) until all lock requests at S are granted;
write log information; {precommit}
send O.K.;

else
wait (if necessary) until all lock requests at S are granted;
send FAILED;

end if;

It is to be noted that all locks for the read and write set
elements are requested within a critical section, even if lock
conflicts occur for some requests or the transaction is to be
aborted. This guarantees that deadlocks cannot occur since
all locks are requested atomically with respect to other
transactions,

1) all locks required by a transaction are requested in a serial-
ized manner,

2) the lock request/validation phases are processed in the same
order at every node.

As a measure of precaution, we even request read locks
before validation although they are only needed to achieve
the preclaiming effect for failed transactions. If read lock
requests were deferred until after the global validation re-
sult (abort) is known, deadlocks would be possible. Also,
requesting these lock requests separately could result in
additional communication overhead.

Although we request all locks before the validation, it
is to be emphasized that the waiting time for conflicting
lock requests as well as the logging delays occur after the
validation and are not part of the critical section. This is
important because otherwise transaction throughput could
be seriously limited, since the validations are to be per-
formed in the same order at every pertinent node. There-
fore, a delay in the critical section at one node would delay
all other validations. The use of timestamps in fact allows a
very efficient validation with just one comparison per write
set element.

The procedure shows that a transaction T is aborted ei-
ther if validation fails, i.e., if some of the accessed object
copies have been modified (invalidated) in the meantime,
or if such a modification is planned by a previously vali-
dated update transaction. The latter is indicated by the fact
that another transaction has already requested an X-lock for
one of T’s read set elements. However, not every lock con-
flict results in the abort of the transaction making the lock
request. For instance, when T requests an X-lock and only
R-locks have been granted to other transactions and no
other X-requests are pending, then T is not aborted but
waits until the release of the read locks before returning
the O.K. message to the coordinator. X- and R-requests re-
sult in a transaction abort in lock state X and the failed
transaction waits for the respective lock before being re-
executed. In lock state R (only read locks granted, no wait-
ing X-requests), an X-request does not result in the abort of
transactions requesting the lock, but only in a lock wait.

If all local validations are successful, the coordinator
commits the transaction by writing a commit record to its
log file. In the second commit phase, the coordinator sends
a COMMIT message to all pertinent systems. Upon receipt
of the COMMIT message for transaction T, the following
steps are performed at system S:

write commit record for T to log file;
copy objects modified by T into database buffer;
<< for all (O in WS(T, S)) update WCT(O) in object

table;
release T’s locks;
{if possible, activate waiting transactions in WL} >>
send ACK to coordinator;

Naturally, the write phase and lock release are also per-
formed at the coordinator system for T. The coordinator
must keep the commit information for T until all systems
have acknowledged processing of commit phase 2.

If the local validation of a transaction fails at a system,
the FAILED message is returned after the transaction has
acquired all of its locks at this node. The re-execution of a
failed transaction is started as soon as it has acquired its
locks at all pertinent nodes. Modified data pages are sent
along with lock acquisition notifications. If no new objects
are referenced, the second execution may be performed
without any I/O delays if all objects can be held in the main
memory of the computer system at which the transaction is
in execution. As a result, the re-execution of a transaction
should usually be much faster and cheaper than its first
execution supporting short lock holding times. If no new
objects are accessed during re-execution, the transaction’s
success is guaranteed without further validation. Therefore,
the coordinator can write the commit record right after the
second read phase and start the second commit phase as
described above.

Caching of remote data is particularly beneficial to the
OCC method since it permits a re-execution of a transaction
without any remote data requests, if the same data is accessed
as in the first execution. Thus, not only all disk I/Os but
also all remote requests may be avoided for failed transac-
tions thereby supporting very fast re-execution. To utilize
this idea, however, we have to make sure that a transaction

180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

always sees the most recent object versions during re-
execution in order to guarantee a successful execution. This
can be achieved without extra messages by using the
FAILED message after an unsuccessful validation at a sys-
tem to transmit the current version of all read set elements
to the transaction’s primary system before re-execution.
Also, when a transaction modifies remote objects, the new
object versions have to be returned to the owner system. To
avoid extra messages for this, we can send these modifica-
tions back together with the validation request after the first
read phase or together with the COMMIT message after the
second (successful) read phase. In the write phase, these
modifications can then be logged and made visible at the
owner system before the write locks are released.

3.2 Implementation Using Access Locks
Access locks may be used to defer object access in case
exclusive locks are being held on the object (option 3 or
OCC2 affecting the read phase of first execution described
in Section 2) and in implementing the optimistic kill policy
[12], [14] (see Section 5.1). It should be emphasized that
access locks obviate the need for maintaining object times-
tamps and can also be used with the optimistic die policy.

During the optimistic read phase a transaction does not
request regular R- and X-locks, but it has to wait
for X-locks, according to OCC2. To detect these situations,
special Access- or A-locks are requested during the read
phase and inserted in the waiting list in the case there is an
X-lock granted or already waiting (note that A-locks are
always posted for the optimistic kill policy). These A-locks
are only used in this case to activate transactions after the
release of the conflicting X-locks, but they are not granted
or released like regular locks (in particular, X-lock or R-lock
requests are never denied because of A-lock requests). The
compatibility of the various lock modes is summarized in
Table 1. A-lock requests only have to wait in lock state
X indicating that an X-lock is already granted or waiting.
R- and X-requests can be granted in lock state NL (no locks
granted) or A (the object is being accessed by transactions
in their read phase).1

It is appropriate to point out an implementation detail
regarding the validation of transactions in the presence of
access locks. Upon the commit of a transaction, these locks

TABLE 1
LOCK COMPATIBILITY MATRIX

current lock state

NL A R X

A + + + wait

R + + + abort
and
wait

X + + wait abort
and
wait

1. As a matter of fact, we do not distinguish between the lock state NL
and A in the object table since we do not record granted A-locks. This is
necessary, however, in the case of the optimistic kill policy or as a replace-
ment to using timestamps to detect deadlocks as discussed below.

may be used directly to determine transactions which have
accessed an object and should fail their validation since the
object is being updated. This approach can be used in con-
junction with both the optimistic die and kill policies,
where in the latter case the information that the data read
by the transaction has been invalidated is used immediately
(see Section 5.1), while in the latter case this is deferred to
the validation point of the transaction.

4 PERFORMANCE COMPARISON WITH STANDARD
LOCKING

Our comparison will concentrate here mainly on perform-
ance aspects, since we are primarily interested in the rela-
tive suitability of the protocols for high-performance trans-
action processing. In terms of fault tolerance, the new
OCC method is as robust as distributed 2PL [5], since it
mainly depends on the robustness of the commit protocol
required in both methods. The deadlock freedom of our
protocol considerably simplifies the complexity of an actual
implementation.

The relative performance of OCC and 2PL is quantified
in this section using a simulation study. In Sections 4.1, 4.2,
and 4.3, we describe the simulation model for:

1) the multicomputer system,
2) the partitioned database, and
3) transactions.

Simulation results are reported in Section 4.4

4.1 The Multicomputer System Model
The system model and the settings for the simulation pa-
rameters are as follows:

1) Multicomputer system configuration. We consider
two cases with N = 4 and N = 8 computer systems,
where each computer system consists of a four-way
tightly coupled multiprocessor. The total processing
capacity in the system is varied to study this effect on
the relative performance of 2PL and OCC methods.
When N = 4, we consider three cases with 100, 200,
and 400 MIPS four-way multiprocessors (or 25, 50,
100 MIPS per processor, respectively). When N = 8,
we consider 50, 100, and 200 MIPS four-way multi-
processors (or 12.5, 25, 50 MIPS per processor, re-
spectively). Thus, we have three sets of systems with
an equal total MIPS for comparison purposes.

2) Intersystem communication. The computer systems
are interconnected by a high-speed network. A
broadcast capability in the network would be benefi-
cial in sending appropriate messages as discussed earlier
(otherwise appropriate software methods should be
adopted to achieve the FCFS processing of broadcast
messages). The communication delay is assumed to
be negligibly small. We take into account, however, the
CPU overhead to send and receive individual mes-
sages, i.e., messages to different nodes are considered
as separate messages at this level.

3) I/O subsystem. The I/O configuration, more specifi-
cally the number of disks per system which hold the

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 181

database is selected to match the corresponding CPU
processing capacity, such that the ratio of CPU and
disk utilizations, taking into account the database
cache hit ratio (see below) and one transaction proc-
essing phase (no transaction reruns), is 75/20. This
ratio which was also used in [14] is typical of transac-
tion processing systems since much longer queueing
delays can be tolerated at the CPU than the disks.
Disk accesses are uniformly distributed (no skew).

4) Database cache. A database cache with a global LRU
policy for caching local data is considered. This im-
plies that objects are not cached remotely, i.e., nonlo-
cal objects are purged upon transaction commit, but
are retained in case a transaction is to be re-executed.
Comparative results obtained in this study are, there-
fore, favorable to 2PL, since remote caching would re-
sult in improving the performance of read-only que-
ries with the OCC protocol. High-contention items
(see Section 4.2) for local data are always in the cache,
while the hit ratio for low contention items is FDB_low =
0.50. The cache is large enough such that data refer-
enced by an in progress or restarted transaction is
not replaced before the transaction is committed. As
far as objects accessed from remote nodes are con-
cerned, these objects also are retained when a trans-
action is restarted, but are purged when a transaction
is completed.

5) Logging and recovery. Nonvolatile (random access)
storage is assumed to be available for logging, such
that synchronous disk I/O for logging is not required.
Logging time is, therefore, an order-of magnitude
smaller than what would be required to write onto
disk. This results in reducing lock holding time for
both CC methods.

4.2 Database Access Model
The database model considered in this study is described
below:

1) Database objects. We distinguish high- and low-
contention data items based on their access frequency
by transactions. In a system with N = 4 nodes, the
effective database size for each category of data
items at each system is Dhigh = 1,000 and Dlow = 31,000,
respectively. A fraction Fhigh = 0.25 (resp. Flow = 0.75)
of all transaction accesses are to high- (resp. low)-
contention items. High-contention data items, which
are thus accessed roughly ten times more fre-
quently than low contention items, determine the
level of data contention. In order to maintain the
same level of lock contention (for the same total
number of transactions) in a system with N = 8 and
N = 4 nodes, we need to maintain the same effec-
tive database size Deff = D/(b2/c + (1 − b)2/(1 − c)) [40],
where b = Fhigh and c = Dhigh/D. When N = 4, we have
Deff = 12,400. Setting Deff = 6,200 in the case of N = 8
yields Dhigh = 436 (and Dlow = 31,564). The frequency of
access to high- or low-contention objects is the same
as for N = 4. Note that we have assumed that the ef-
fective database size does not increase with the degree

of transaction concurrency (the increase in the degree
of transaction concurrency may be considered to rep-
resent an increased arrival rate).

The overall cache hit ratio for a transaction exe-
cuting for the first time is: Phit = FDB_low × Flow + Fhigh =
0.625. This hit ratio also applies to nonlocal database
accesses.

2) Granularity of locking. The data-request approach
postulated in our study requires locking or time
stamping data items (in the first phase of OCC) at the
level of disk blocks or at the level of appropriately
specified objects.

3) Access mode. Data items are accessed in exclusive
mode, since we are interested in the relative perform-
ance of the two methods. Shared accesses would have
resulted in a reduction in the data-contention level,
i.e., given that the fraction of shared accesses is s
would have resulted in an effective database size
D/(1 − s2) [40].

Read-only queries spanning a large number of
pages in a database can introduce very high levels of
lock contention if shared locks are held up to the
completion point of a query. This is referred to as de-
gree 3 isolation [18]. Lock contention is significantly
reduced if locks are only held while the query is
reading the corresponding page (degree 2 isolation).
Queries requiring an approximation to the contents of
the database are run with degree 1 or in browse mode
without acquiring any locks. Another approach to re-
duce the lock contention due to locking is to use ver-
sioning. A simulation study characterizing this effect
is [6]. More recently finite-versioning methods have
been proposed to limit the space overhead associated
with versioning methods [29]. In other words, special
methods are used for handling read-only queries,
which is an issue beyond the scope of this paper.

4.3 Transaction Processing Model
In this section we describe the characteristics of the trans-
actions.

1) Transaction “arrivals.” We consider a closed system
with M transactions in each system (and N × M trans-
actions in the complex), i.e., a completed transaction
is immediately replaced by a new transaction at the
same system.

2) Transaction classes. There are multiple transaction
classes based on transaction size, i.e., the number of
data items (nc) accessed by a transaction in class c.
Transactions are introduced into the system with fre-
quencies fc, c = 1, ..., C according to what would be
expected in a stream of arriving transactions. There
are 17 transaction classes with sizes uniformly dis-
tributed in the range (8, 24) with a mean transaction
size of 16.
 The variability of transaction size has a significant
effect on performance. This issue has been investi-
gated in the case of 2PL (resp. OCC) methods in [41],
[43] (resp. [38]). Another complication is that variable
size transactions tend to access data at a fewer number of

182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

distinct remote nodes than fixed size transactions with the
same mean size on the average [42]. The implication is
that fewer nodes need to be involved in the two-phase
commit protocol in the case of fixed size transactions
as compared to variable size transactions (more de-
tails regarding this issue appear in [42]).

3) Transaction processing stages.

a) Transaction initialization. This requires CPU
processing only and the path-length for this stage
is Iinit1 = 100,000 instructions. If the transaction is
restarted due to failed validation or having been
selected the victim for deadlock resolution then
Iinit2 = 50,000.

b) Database processing. There are n steps in this
stage, corresponding to the number of data items
accessed from the database (from local or remote
partitions). We consider two cases. In the first case,
each transaction is routed to a system at which
it exhibits a high degree of locality, i.e., the fraction
of local accesses at each system is Flocal = 0.75,
while the remaining 1 − Flocal accesses are uniformly
distributed over the remaining systems. We also
consider the case when accesses to database objects
are uniform over all N nodes in the system, i.e.,
Flocal = 1/N.
 A data item may be available in the database
cache in which case the path-length per data item
is Icache =20,000. This includes the overhead for con-
currency control. Otherwise when data has to be
accessed from disk, an additional Idisk = 5,000 in-
structions are required (the processing required to
retrieve cached data is considered to be negligible).
It takes Isend = 5,000 instructions to send and receive
a message. Therefore, 20,000 instructions are exe-
cuted for intersystem communication to access re-
mote data.

c) Transaction completion. The CPU processing in
this stage requires Icomplete = 50,000 instructions. In
case a transaction has accessed local data only, it
commits without requiring a two-phase commit
(after local validation in the case of OCC). Commit
processing requires Icommit = 5,000 instructions to
force a log record onto stable storage.

In case multiple systems are involved in proc-
essing a transaction with 2PL, as part of two-phase
commit Iprecommit = 5,000 instructions are executed at
the primary node of transaction execution (mainly
to write a PRECOMMIT log record). There is also a
per system overhead of Isend and Ireceive to send and
receive PRECOMMIT messages. Precommit proc-
essing at secondary nodes from which data was ac-
cessed requires Iremote = 5,000 instructions, which
includes writing PRECOMMIT records. Each re-
mote system after forcing modified data onto sta-
ble storage sends an ACK message in the case of
2PL to the primary system, which in turn sends a
COMMIT message to all of the nodes involved af-
ter forcing a commit record onto the log. All sys-
tems release their locks at this point.

The processing in the case of OCC is more com-
plicated as explained before. If transaction valida-
tion is unsuccessful at any node, it is re-executed at
the primary node after the required data has been
locked and an up-to-date copy of all modified or
invalidated data has been made available to the
transaction. We have used the same figures for 2PL
and OCC, although it is expected that the private
workspace paradigm for OCC would require ad-
ditional processing. The conclusions of this study
hold with longer path-lengths for OCC, except that
faster processors would be required for OCC to
outperform 2PL.

4.4 Simulation Results
A discrete-event simulation program was written to com-
pare the performance of 2PL and the OCC method with
optimistic access (referred at OCC1) and the OCC method
with deferred access to locked objects (referred as OCC2).
The overall system throughput for all N systems is the per-
formance measure of interest in comparing the distributed
2PL and the new OCC methods. Due to symmetry the
throughput at each system is 1/N of the overall through-
put. Furthermore, due to conservation of flow, the through-
put for class c transactions is a fraction fc(= 1/17) of the
overall throughput. Due to space limitations we do not re-
port mean response times for individual transaction classes.
In fact, in the case of 2PL, the expansion in the mean re-
sponse time is proportional to transaction size [41], [43].
This is not so for long transactions at high-lock contention
levels, since the susceptibility to encounter deadlocks in-
creases with the fourth power of transaction size [46]. In the
case of the hybrid optimistic policy, the probability that a
transaction fails its validation at the end of its first phase
increases with the square of transaction size, which is re-
ferred to as the quadratic effect [13], [14],

To quantify the effect of data contention on system per-
formance, we consider a situation when there is No Data
Contention (NDC), e.g., we have 2PL or OCC with all ac-
cesses in shared mode and system performance is solely
determined by hardware resource contention.2 Given in
Figs. 2-5 are transaction throughputs (in transactions per
second) versus the per system degree of transaction concur-
rency (M), for the four cases:

System 1. Four node system with locality of access.
System 2. Eight node system with locality of access.
System 3. Four node system with uniform access.
System 4. Eight node system with uniform access.

Figs. 2a-2c in each case correspond to a system with a total
processing capacity of 400, 800, and 1,600 MIPS, respec-
tively. In each case, we plot the overall system throughput
for the NDC, 2PL, OCC1, and OCC2, methods (represented
by the letters N, L, O, and Q, respectively) versus the de-
gree of transaction concurrency at each node (the total
number of transactions in the system is N × M). Each point

2. For the sake of a fair comparison, we do not consider the usual optimi-
zation possible with read-only accesses and carry out a two-phase commit
protocol at all nodes at which objects were referenced.

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 183

(a)

(b)

(c)

Fig. 2. Throughput versus degree of transaction concurrency charac-
teristics with four nodes and locality of access: (a) 400 MIPS sys-
tem, (b) 800 MIPS system, (c) 1,600 MIPS system.

(a)

(b)

(c)

Fig. 3. Throughput versus degree of transaction concurrency charac-
teristics with eight nodes and locality of access: (a) 400 MIPS sys-
tem, (b) 800 MIPS system, (c) 1,600 MIPS system.

184 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

(a)

(b)

(c)

Fig. 4. Throughput versus degree of transaction concurrency charac-
teristic with four nodes and uniform accesses: (a) 400 MIPS sys-
tem, (b) 800 MIPS system, (c) 1,600 MIPS system.

(a)

(b)

(c)

Fig. 5 Throughput versus degree of transaction concurrency charac-
teristic with eight nodes and uniform accesses: (a) 400 MIPS sys-
tem, (b) 800 MIPS system, (c) 1,600 MIPS system.

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 185

on the graphs corresponds to the mean obtained from three
runs, such that the system throughputs measured in differ-
ent runs were within 5 percent of each other (with the ex-
ception of the thrashing region for 2PL).

In the case of NDC, as M is increased the system through-
put (TNDC(M)) increases initially and saturates beyond the

point where the CPU is fully utilized (TNDC
max). Such a be-

havior is typical of a multiprogrammed computer system
with an adequately large main memory. In this case, the
throughput is determined by the utilization of the bottle-
neck resource (in our system, the processors, which follows
from the assumption made in Section 4.1 regarding the
relative utilization of processors and disks). Systems with
fewer nodes and locality of access achieve the best per-
formance, which can be ascribed to the fact that intersys-
tem communication for remote data access and commit proc-
essing is minimized in this case. There is considerable deg-
radation in performance as the locality of reference is re-
duced from 75 percent to uniform (for N = 4, Flocal = 0.25 and

for N = 8, Flocal = 0.125). This effect is more severe as the num-
ber of nodes is increased, which is due to the increase in the
number of accesses to other nodes as well as the number of
distinct remote nodes accessed [42] (the latter factor affects
the number of nodes to be involved in commit processing).

In the case of 2PL, the system throughput T2PL(M) ini-

tially follows TNDC(M) rather closely, since very few trans-
actions are blocked and there is little wasted processing due
to restarts to resolve deadlocks. As M is increased further,
the number of blocked transactions increases gradually, but
the wasted processing due to deadlocks remains small,
such that T2PL(M) < TNDC(M). A peak in transaction through-
put is achieved, followed by a decrease in system through-
put, which constitutes the thrashing region for 2PL [41],
[43]. The maximum throughput attained by 2PL (T PL2

max) in-
dicates the best performance attainable by 2PL for the given
degree of data contention. There is the aforementioned deg-
radation in performance due to reduced locality, especially
when the number of nodes is higher.

The performance of OCC methods is determined by the
fraction of transactions validated successfully in the first
phase. This is because the additional processing incurred by
transactions failing their validation, which are rerun in the
second phase, results in a rather significant degradation in
performance, especially in the case of lower MIPS systems.
As the degree of transaction concurrency is increased, the
CPU utilization due to transactions executing in the first
phase is increased. There is also an increase in the degree of
data contention and the processing incurred by transactions
in the second phase. The maximum system throughput for
the OCC methods is thus obtained at the point where the
processors are 100 percent utilized, i.e., the blocking effect
due to lock contention (including access locks) tends to
have a second-order effect. Increasing the concurrency be-
yond this point results in a slight reduction in throughput,
which is due to a decrease in the fraction of successfully
validated transactions in the first phase.

Three options in accessing precommitted database ob-
jects were discussed in Section 3, at which point qualitative
arguments regarding their relative performance were pre-
sented. Simulation results have shown that the performance
attained by OCC2 is better than OCC1 for the consid-
ered cases. The improvement in system throughput, how-
ever, remains negligibly small, such that the through-
puts attained by the two methods is not distinguishable
(see Figs. 2-5). This can be attributed to the fact that al-
though there is a reduction in the fraction of transactions
which need to be rerun, the reduction in additional proc-
essing is in fact quite small, because the restart frequency
for longer transactions remains high (quadratic effect in
[13], [14]) and is not reduced. There is the additional effect
of transaction blocking time due to access locks associated
with this approach. Given the extra complexity associated
with A-locks, a pure optimistic policy in phase 1 (OCC1 in
Section 2) may be preferable.

The maximum throughput attainable by NDC, 2PL,
OCC1, and OCC2 are summarized in Table 2. The follow-
ing conclusions can be drawn from this table.

1) In a low MIPS system (400 in our case), there is a
slight degradation in performance due to data con-
tention when 2PL is in effect. The maximum through-
put achieved by the optimistic methods is inferior to
2PL in this case.

2) In an intermediate MIPS system (800 in our case), the
performance degradation due to data contention is
significant. The 2PL method still outperforms optimis-
tic methods in this case.

3) In a high MIPS system (1,600 in our case) there is
a severe degradation in performance due to data
contention. However, the performance achieved by
OCC methods is significantly higher than 2PL,
i.e., this is the region where the OCC method is pref-
erable to 2PL.

TABLE 2
MAXIMUM THROUGHPUTS ATTAINED

FOR DIFFERENT SYSTEM CONFIGURATIONS

No Data
Contention

Two-
Phase

Locking

Optimistic
I

Optimistic
II

400 MIPS
4 nodes/L 563 542 408 418
8 nodes/L 539 497 365 370
4 nodes/U 426 416 373 376
8 nodes/U 362 345 264 266

800 MIPS
4 nodes/L 1,137 853 794 807
8 nodes/L 1,080 797 722 728
4 nodes/U 867 753 717 724
8 nodes/U 723 609 529 532

1,600 MIPS
4 nodes/L 2,266 1,009 1,555 1,556
8 nodes/L 2,168 919 1,441 1,442
4 nodes/U 1,732 916 1,363 1,375
8 nodes/U 1,467 832 1,066 1,071

L = 75% locality of access with remainder of accesses uniform.
U = uniform accesses.

186 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

Other performance measures of interest are the (per
class) mean response times and device utilizations. In cases
when there is no or little wasted processing (NDC and 2PL),
the CPU utilization can be deduced simply as the product
of system throughput and the mean processing time at the
CPU. The CPU is 100 percent utilized beyond the point that
the throughput achieves asymptotic behavior in the case of
NDC. In the case of OCC, the CPU is 100 percent utilized at
the peak system throughput and also beyond that point,
but otherwise CPU utilization can be estimated directly
from the simulation or indirectly from the fraction of trans-
actions that fail their validation.

Transaction response times are of interest from two
viewpoints:

1) that they are acceptably low, and
2) that they only increase proportionately to transaction

size (and not the square of transaction size, for example).

A straightforward implementation of optimistic CC meth-
ods may result in an excessive number of restarts and long
response times, but this is not a concern for the proposed
hybrid OCC method since transactions may be restarted
only once.

Simulation studies while varying other system parame-
ters (besides the number of systems and locality of refer-
ence) such as:

1) the level of data contention, and
2) transaction load imbalance among the systems,

yielded results supporting our conclusions.

5 ALTERNATIVES AND EXTENSIONS TO THE BASIC
OCC METHOD

In this section, we first describe the implementation of a
scheme with deferred lock requests for transaction execu-
tion. We then discuss several options to cope with the case
when access invariance does not prevail.

5.1 Deferred Lock Requests
As discussed in the Section 1, the adoption of the optimistic
die (rather than kill) policy is motivated by the simulation
results in [12], [14] for high MIPS systems, which have
shown that in a system with access invariance the pre-
fetching of data results in an improvement in performance
compared to the optimistic kill policy. There are several
cases when this is not so:

1) a system with a main storage database where no pre-
fetching is required,

2) a system with slow processors and/or transaction re-
quiring few disk accesses where the additional process-
ing incurred by the die option cannot be tolerated, and

3) a system with no or little access invariance, in which
case no benefit is to be gained by prefetching the data.

Approaches for handling of transactions for which access
invariance does not prevail are discussed in the next section.

We propose an alternate method where the initial opti-
mistic/die and the following optimistic/kill phases are fol-
lowed by lock requests for validation only if the transaction
has not been notified at the completion of its execution that it has

been conflicted. The notification that a conflict occurred is pref-
erably accompanied by the modified object. The restarted
transaction need only execute with the optimistic/kill pol-
icy, because prefetching data is no longer an issue. Locking
will be attempted only when a transaction has executed to
completion with no apparent conflicts.

This approach has the disadvantage that a transaction
may be restarted more than once, but it has the advantage
of reducing lock holding times. An invalidate message
might still be in transit, when locks are requested, such that
absolute successful execution is never guaranteed. This is
because deferring the requesting of locks in this manner
increases the probability of a successful validation obviat-
ing transaction rerun, such that locks will be held for a
shorter time period. In effect, there is the potential of an
increased higher maximum throughput due to the reduc-
tion in lock holding times at the cost of additional process-
ing which may be tolerable only in a system with “adequate”
resources. This method is expected to outperform the hy-
brid OCC method for a narrow range of parameters, if
not at all.

To avoid starvation and repeated restarts a transaction
which is restarted a given number of times may switch to
locking and preclaim its locks. A transaction which has re-
quested locks will wait until it has acquired all locks. At
this point it may still require re-execution because of the
invalidation of one or more of the objects it requires for
execution.

Access locks (A-locks) which were introduced in
Section 3.2 are required for implementing the modified CC
method, while they are optional for the optimistic/die pol-
icy (unless, according to option 2 in Section 2, accesses to
objects locked in exclusive mode need to be deferred). An
A-lock, identifying the transaction and its primary node, is
posted for each accessed object at the node where the object
resides. Note that this is done regardless of whether the
object is locked or not. The CC manager at each system uses
the access locks to keep track of transactions which have
interest in the objects belonging to the system and these
transactions are notified when a lock conflict occurs. In fact,
in the case of remote caching of data, which was alluded to
in Section 2, similar locks identifying the node (rather than
transaction) can be used to invalidate the object in the
node’s buffer.

When a data item is updated by a committing transac-
tion, then all transactions which had posted access locks for
the data item are notified that they have been conflicted.
Associated with the invalidation message is the newest
copy of the data item (when a data item resides remotely).

The performance of this method can be extrapolated
from previous performance studies of optimistic methods,
especially [12], [14], where it was shown that the CC
method used in the second phase (and further phases) of
transaction execution have a negligible effect on overall
performance and we expect this to be true also in the cur-
rent environment. If the maximum system throughput is
constrained by lock utilizations and, therefore, at least in
theory, the second approach should be able to achieve a
higher maximum throughput than the first one. This is ex-
pected to be at the cost of increased additional processing,

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 187

however, such that the potential increase in the maximum
system throughput that can be sustained by the system is
expected to occur for a rather narrow range of parameters
(if any), e.g., very high-data-contention and “infinite re-
sources.”

5.2 Processing Options for Deviations from Access
Invariance

Various deviations from access invariance are possible.
Several examples of how this happens are given in [12],
[14]. We first consider the case when this property does
not hold for certain classes of transactions. In this case, dif-
ferent policies (optimistic die and kill) may be used ac-
cording to transaction class. Locking is used for validation
in both cases.

When a transaction accesses additional objects during its
re-execution, validation must be performed for the newly
accessed objects. The request of locks for a subset of objects
accessed by a transaction may lead to deadlock, since the
locks required by a transaction are no longer requested
atomically. An alternative is to release all locks requested as
part of the first validation and then request locks for all
objects accessed in the second execution phase, in per-
forming the second validation. To elaborate, in the case of
an access to a new object, a transaction may revert to its
first phase, i.e., release all of its locks and continue its exe-
cution in optimistic mode. At the other extreme it may use
2PL and obtain locks only for the newly referenced objects.

In a system with little or no access invariance, the opti-
mistic kill policy is preferable to the optimistic/die policy,
because prefetched objects are of little use if the transaction
fails its validation and has to be rerun. Validation is only
attempted if a transaction executes to completion, but if the
validation fails, locks should be released and the whole
cycle is repeated. In fact, locking based methods may be
more suitable for this environment.

The performance of the aforementioned methods is be-
yond the scope of this discussion.

6 CONCLUSIONS

We presented a new optimistic concurrency control proto-
col for distributed high-performance transaction systems.
Unlike other proposals for OCC in distributed systems, our
method limits the number of restarts by acquiring locks to
guarantee a failed transaction a successful second execu-
tion. Lock acquisition as well as validation are imbedded in
the commit protocol in order to avoid any extra messages.
Deadlocks are avoided by requesting all locks at once be-
fore performing validation. The protocol is fully distributed
and employs parallel validation and lock acquisition.

A main advantage compared to distributed locking meth-
ods is that locks are held only during commit processing,
in general, thus considerably reducing the degree of lock
contention. As simulation results have confirmed, this is of
particular benefit for high-performance transaction process-
ing complexes with fast processors. For these environments,
the maximum throughput may be limited by lock conten-
tion in the case of pure locking methods. The new hybrid
OCC protocol, on the other hand, allows significantly higher

transaction throughputs, since the overhead required for
re-executing failed transactions is more affordable than
underutilizing fast processors. This is also favored by util-
izing large main memory buffers for caching data objects
from local and remote partitions. As a result, in the new
method many re-executions of failed transactions can be
processed without any interruption for local I/O or remote
data requests.

An open question is: How does the performance of the
hybrid OCC method compare with the distributed WDL
method? If we just consider the baseline models for both
schemes the following observations can be made:

1) In a system with no data contention both schemes re-
quires the same number of messages.

2) In a high-data-contention system the number of mes-
sages required by distributed WDL is not bounded,
since each transaction can be restarted repeatedly.
Each re-execution requires repeated remote accesses
for nonlocal data and extra messages when lock con-
flicts occur.) On the other hand the hybrid OCC
method requires just one restart and precommit mes-
sages are resent only once.

There are several complications associated with the compari-
son of the two methods. Firstly, as described in Section 2,
the hybrid OCC method uses a data-request approach as
opposed the function request approach used by the dis-
tributed WDL [15], [16]. The advantage of the former
method is that a transaction can be re-executed locally after
obtaining up-to-date copies of invalidated data, which is
not the case with the locking scheme. Secondly, there are
many variants of distributed WDL, as well as hybrid OCC,
such that a performance comparison of the best WDL and
OCC scheme is an area for further investigation.

Other possible directions for extending this work are as
follows. A more realistic simulation study would allow
shared (in addition to exclusive) locks and the caching of
remote data. It is expected that such a configuration would
yield more favorable results for OCC than 2PL, especially
in an environment where read-only queries are quite com-
mon and caching of remote objects is allowed. Another area
of investigation, as mentioned in Section 5, is to determine
the performance of the variants of the OCC method, in-
cluding those which deal with access variance.

ACKNOWLEDGMENTS

The pseudocodes specifying the concurrency control para-
digms in Section 3.1 are extended versions of those ap-
pearing in [44] and were contributed by Dr. Erhard Rahm
(currently with the Computer Science Department of the
University of Leipzig), who also coauthored the prelimi-
nary version of this paper [44]. The author also thanks Pro-
fessor B. Bhargava of Purdue University for handling this
paper well beyond his term as editor.

188 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 1998

REFERENCES

[1] D. Agrawal, A.J. Bernstein, P. Gupta, and S. Sengupta, “Distributed
Optimistic Concurrency Control with Reduced Rollback,” Dis-
tributed Computing, vol. 2, no. 1, pp. 45-59, 1987.

[2] R. Agrawal, M.J. Carey, and M. Livny, “Concurrency Control
Performance Modeling: Alternatives and Implications,” ACM
Trans. Database Systems, vol. 12, no. 4, pp. 609-654, Dec. 1987.

[3] R. Agrawal, M.J. Carey, and L.W. McVoy, “The Performance of
Alternative Strategies for Dealing with Deadlocks in Database
Management Systems,” IEEE Trans. Software Eng., vol. 13, no. 12,
pp. 1,348-1,363, Dec. 1987.

[4] M. Bellow, M. Hsu, and V.O. Tam, “Update Propagation in Dis-
tributed Memory Hierarchy,” Proc. Sixth IEEE Int’l Conf. Data
Eng., Los Angeles, pp. 521-528, Feb. 1990.

[5] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison-Wesley, 1987.

[6] M.J. Carey and W.A. Mouhanna, “The Performance of Multiver-
sion Concurrency Control Algorithms,” ACM Trans. Computer
Systems, vol. 4, no. 4, pp. 338-378, Nov. 1986.

[7] M.J. Carey and M. Livny, “Distributed Concurrency Control Per-
formance: A Study of Algorithms, Distribution, and Replication,”
Proc. 14th Int’l Conf. Very Large Data Bases, Los Angeles, pp. 13-25,
Aug. 1988.

[8] S. Ceri and S. Owicki, “On the Use of Optimistic Methods for
Concurrency Control in Distributed Databases,” Proc. Sixth Ber-
keley Workshop Distributed Data Management and Computer Net-
works, pp. 117-129, Feb. 1982.

[9] A. Delis and N. Rousopoulos, “Performance Comparison of Three
Modern DBMS Architectures,” IEEE Trans. Software Eng. vol. 19,
no. 2, pp. 120-138, Feb. 1993.

[10] D.H. Fishman, M. Lai, and W.K. Wilkinson, “Overview of the
Jasmin Database Machine,” Proc. ACM SIGMOD Conf. Manage-
ment Data, pp. 234-239, 1984.

[11] P.A. Franaszek and J.T. Robinson, “Limitations on Concurrency
in Transaction Processing,” ACM Trans. Database Systems, vol. 10,
no. 1, pp. 1-28, Mar. 1985.

[12] P.A. Franaszek, J.T. Robinson, and A. Thomasian, “Access Invari-
ance and Its Use in High-Contention Environments,” Proc. Sixth
Int’l Data Eng. Conf., Los Angeles, pp. 47-55, Feb. 1990.

[13] P.A. Franaszek, J.T. Robinson, and A. Thomasian, “Wait Depth
Limited Concurrency Control,” Proc. Seventh Int’l Data Eng. Conf.,
Kobe, Japan, pp. 92-101, Apr. 1991.

[14] P.A. Franaszek, J.T. Robinson, and A. Thomasian, “Concurrency
Control for High Contention Environments,” ACM Trans. Data-
base Systems, vol. 17, no. 2, pp. 304-345, June 1992.

[15] P.A. Franaszek, J.R. Haritsa, J.T. Robinson, and A. Thomasian,
“Distributed Concurrency Control with Limited Wait Depth,”
Proc. 12th Int’l Conf. Distributed Computing Systems, Yokohama,
Japan, pp. 160-167, June 1992.

[16] P.A. Franaszek, J.R. Haritsa, J.T. Robinson, and A. Thomasian,
“Distributed Concurrency Control Based on Limited Wait
Depth,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 6,
pp. 246-264, Nov. 1993.

[17] J.N. Gray, “The Cost of Messages,” Proc. Seventh Ann. Symp. Prin-
ciples of Distributed Computing, Toronto, Ont., Canada, pp. 1-7,
Aug. 1988.

[18] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan-Kaufmann, San Mateo, Calif., 1992.

[19] P. Heidelberger and M.S. Lakshmi, “A Performance Comparison
of Multimicro and Mainframe Database Architectures,” IEEE
Trans. Software Eng., vol. 14, no. 4, pp. 522-531, Apr. 1988.

[20] H.I. Hsiao and D.J. DeWitt, “Chained Declustering: A New Avail-
ability Strategy for Multiprocessor Database Machines,” Proc.
Sixth Int’l Conf. Data Eng., Los Angeles, pp. 456-465, Feb. 1990.

[21] B.C. Jenq, B.C. Twichell, and T.W. Keller, “Locking Performance
in a Shared Nothing Parallel Database Machine,” IEEE Trans.
Knowledge and Data Eng., vol. 1, no. 4, pp. 530-543, Dec. 1989.

[22] M.L. Kersten and H. Tebra, “Application of an Optimistic Con-
currency Control Method,” Software}Practice and Experience,
vol. 14, no. 2, pp. 153-168, 1984.

[23] E. Knapp, “Deadlock Detection in Distributed Databases,” ACM
Computing Surveys, vol. 1, no. 4, pp. 303-328, Dec. 1987.

[24] W.J. Kohler and B.P. Jenq, “Performance Evaluation of Integrated
Concurrency Control and Recovery Algorithms Using a Distrib-
uted Transaction Testbed,” Proc. Sixth IEEE Int’l Conf. Distributed
Computing Systems, Boston, pp. 130-139, Sept. 1986.

[25] H.T. Kung and J.T. Robinson, “On Optimistic Methods for Con-
currency Control,” ACM Trans. Database Systems, vol. 6, no. 2,
pp. 213-226, June 1981.

[26] G. Lausen, “Concurrency Control in Database Systems: A Step
Towards the Integration of Optimistic Methods and Locking,”
Proc. ACM Ann. Conf., pp. 64-68, 1982.

[27] Computer Performance Modeling Handbook, S.S. Lavenberg, ed.,
Academic Press, Orlando, Fla., 1983.

[28] M.D.P. Leland and W.D. Roome, “The Silicon Database Ma-
chine,” Proc. Fourth Int’l Workshop Database Machines, pp. 169-189,
Springer-Verlag, 1985.

[29] C. Mohan, H. Pirahesh, and R. Lorie, “Efficient and Flexible
Methods for Transient Versioning of Records to Avoid Locking
by Read-Only Transactions,” Proc. ACM SIGMOD Int’l Conf. Man-
agement Data, San Diego, pp. 124-133, June 1992.

[30] S.J. Mullender and A.S. Tanenbaum, “A Distributed File Service
Based on Optimistic Concurrency Control,” Proc. 10th ACM Symp.
Operating System Principles, pp. 51-62, 1985.

[31] E. Rahm, “Design of Optimistic Methods for Concurrency Control
in Database Sharing Systems,” Proc. Seventh IEEE Int’l Conf. Dis-
tributed Computing Systems, West Berlin, pp. 154-161, Sept. 1987.

[32] E. Rahm, “Concepts for Optimistic Concurrency Control in Cen-
tralized and Distributed Database Systems,” IT Informationstech-
nik, (in German), vol. 30, no. 1, pp. 28-47, 1988.

[33] E. Rahm, “Empirical Performance Evaluation of Concurrency and
Coherency Control Protocols for Database Sharing Systems,”
ACM Trans. Database Systems, vol. 18, no. 2, pp. 333-377, June 1993.

[34] A. Reuter and K. Shoens, “Synchronization in a Data Sharing
Environment,” unpublished report, IBM San Jose Research Cen-
ter, 1984.

[35] J.T. Robinson, “Experiments with Transaction Processing on a
Multi-Microprocessor System,” IBM Research Report RC 9725,
Yorktown Heights, N.Y., Dec. 1982.

[36] W.D. Roome, “The Intelligent Store: A Content-Addressable Page
Manager,” Bell Systems Technical J., vol. 61, no. 9, pp. 2,567-2,596,
1982.

[37] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II, “System Level
Concurrency Control for Distributed Database Systems,” ACM
Trans. Database Systems, vol. 3, no. 2, pp. 178-198, June 1978.

[38] I.K. Ryu and A. Thomasian, “Performance Analysis of Central-
ized Databases with Optimistic Concurrency Control,” Perform-
ance Evaluation, vol. 7, no. 3, pp. 195-211, 1987.

[39] J.W. Stamos and F. Cristian, “A Low-Cost Atomic Commit Proto-
col,” Proc. Ninth Symp. Reliable Distributed Systems, Huntsville,
Ala., pp. 66-75, Oct. 1990.

[40] Y.C. Tay, N. Goodman, and R. Suri, “Locking Performance in
Centralized Databases,” ACM Trans. Database Systems, vol. 10,
no. 4, pp. 415-462, Dec. 1985.

[41] A. Thomasian, “Performance Limits of Two-Phase Locking,” Proc.
Seventh IEEE Int’l Conf. Data Eng., Kobe, Japan, pp. 426-435,
Apr. 1991.

[42] A. Thomasian, “On the Number of Remote Sites Accessed in Dis-
tributed Transaction Processing,” IEEE Trans. Parallel and Distrib-
uted Processing, vol. 4, no. 1, pp. 99-103, Jan. 1993.

[43] A. Thomasian, “Two-Phase Locking Performance and Its Thrashing
Behavior,” ACM Trans. Database Systems, vol. 18, no. 3, Sept. 1993.

[44] A. Thomasian and E. Rahm, “A New Distributed Optimistic Con-
currency Control Method and a Comparison of Its Performance
with Two-Phase Locking,” Proc. 10th Int’l Distributed Computing
Conf., Paris, pp. 294-301, May 1990.

[45] A. Thomasian and I.K. Ryu, “A Decomposition Solution to the
Queueing Network Model of the Centralized DBMS with Static
Locking,” Proc. 1983 ACM SIGMETRICS Conf. Measurement and
Modeling Computer Systems, Minneapolis, pp. 82-92, Aug. 1983.

[46] A. Thomasian and I.K. Ryu, “Performance Analysis of Two-Phase
Locking,” IEEE Trans. Software Eng., vol. 17, no. 5, pp. 386-402,
Sept. 1991.

[47] A. Thomasian, Database Concurrency Control: Methods, Performance,
and Analysis, Kluwer Academic, 1996.

[48] P.S. Yu, D.W. Cornell, D.M. Dias, and A. Thomasian, “On Coupling
Partitioned Data Systems,” Proc. Sixth IEEE Int’l Conf. Distributed
Computing Systems, Boston, pp. 148-157, Sept. 1986.

THOMASIAN: DISTRIBUTED OPTIMISTIC CONCURRENCY CONTROL METHODS FOR HIGH-PERFORMANCE TRANSACTION PROCESSING 189

Alexander Thomasian received the PhD degree
in computer science from the University of Cali-
fornia at Los Angeles. He has been a faculty mem-
ber at Case Western University, Cleveland, and
the University of Southern California, Los Ange-
les, and has served as an adjunct faculty mem-
ber at the University of California at Irvine and
Columbia University in New York. He was a senior
staff scientist at the Burroughs Corporation be-
fore joining IBM’s Thomas J. Watson Research
Center in Hawthorne, New York. He is now affili-

ated with the Networked Data Systems Department, where he is re-
searching the area of digital libraries. He has also done research in the
areas of performance modeling and analysis of transaction processing

systems, concurrency control methods, parallel and distributed computer
systems, and disk arrays. He has published more than 90 papers in
these and other areas, and he has received IBM’s Invention Achieve-
ment and Outstanding Innovation Awards. He is the author of Data-
base Concurrency Control: Methods, Performance, and Analysis (Kluwer,
1996). Dr. Thomasian is a senior member of the IEEE, a member of
the ACM, and an area editor for IEEE Transactions on Parallel and
Distributed Systems. He has been on the program committees of the
IEEE International Conference on Distributed Computing Systems, the
IEEE International Symposium on High-Performance Distributed Com-
puting, the IEEE International Conference on Data Engineering, and
the IEEE International Conference on Information and Knowledge
Management.

