
IPSec/PHIL (Packet Header Information List): Design,
Implementation, and Evaluation
Chien-Long Wu, NC State University, Raleigh, NC
S. Felix Wu, University of California, Davis, CA
Ravindar Narayan, Cosine Communication, Red Wood City, CA

Abstract
For most TCP/UDP/IP applications, when a packet or a message arrives, usually only the payload portion
of the original packet can be obtained by the application. For instance, if a packet has been delivered
through some IPSec tunnels along the route path, then the application, in general, will not know exactly
which tunnels have been used to deliver this particular packet. The IPSec/PHIL (Packet Header
Information List) interface has been designed and implemented such that an “authorized” application is
able to know which set of IPSec tunnels has been used to deliver a particular incoming packet.
Furthermore, IPSec/PHIL enables the controlability over which set of IPSec tunnels will be used to send a
particular outgoing packet. IPSec/PHIL is a key component in the DECIDUOUS decentralized source
tracing system to correlate the IPSec information with intrusion detection results. Other IPSec/PHIL
applications we have built include a SNMPv3 security module using IPSec as well as a IPSec tunnel
switching router.

1 Introduction
IP security (IPSec) protocol suite [1, 2, 3, 4] is a series of guidelines for the protection of Internet
Protocol (IP) communications. It provides ways for securing private information transmitted over
public networks. The currently available IPSec-based applications in the market are
predominantly Virtual Private Networks (VPNs). VPNs provide Network-to-Network security by
setting up SAs (Security Associations) in the tunnel mode between Gateways of the networks,
and these tunnels secure the aggregated data flowing from one policy domain to another through
IPSec gateways.

For most TCP/UDP/IP applications, when a packet or a message arrives, usually only the payload
portion of the original packet can be obtained by the application. If a packet has been delivered
through some IPSec tunnels, then the application, in general, will not know exactly which tunnels
have been used to deliver this particular packet. For instance, an intrusion source tracing system
(such as DECIDUOUS [??]) might be very interested in analyzing not only the payload but also
which particular IPSec tunnels have been used to deliver these attack packets with obviously
spoofed source IP addresses.

For application-layer protocols such as SNMP and LDAP, it is usually not natural and feasible to
use IPSec to secure the application-layer traffic, and thus a separate security mechanism is
needed. In this paper, we will show that, with a simple extension of the socket API, the security
mechanisms and capabilities of IPSec can support the security requirements of some applications.
We called this new interface: IPSec/PHIL (Packet Header Information List [5]) API.

A third issue is regarding the support of end-to-end security using IPSec, while it is impossible to
directly build a IPSec security association from the source to the destination. For instance, in an
inter-domain environment, it might not be always possible to negotiate directly between two IP
nodes belonging to two different domains. Things get more tricky if an intermediate gateway will
perform network address translation (NAT). We will show later that how to utilize the PHIL API
to support “packet switching” among a set of IPSec tunnels such that it is possible to use a set of

tunnels collaboratively (an IPSec tunnel path, more specifically) to secure the information end-to-
end.

2 Motivation
In the FreeSWAN implementation [7] of IPSec:
q At the time of processing the in-bound IPSec traffic, all the IPSec headers are discarded at

the IP layer; and when the applications do receive data, the data is devoid of all IPSec
headers, thus there is no way of knowing whether the incoming packets were secured. If the
packets were secured, then it is also hard to figure out what level of security was afforded and
which end host or Security Gateways provided the security.

q Also, there is no way for user applications to control the out-bound IPSec traffic through a
specific SA (security association). More specifically, since we are unable to bind an SA to a
particular socket port in the application layer, we can not support end-to-end application-layer
security using IPSec.

Based on our observation and experience with IPSec, we believe that IPSec’s capabilities can be
greatly extended if we have a good interface to access the security services provided in the IP
layer. Naturally, we would like to have the following two capabilities:
q For incoming traffic it provides an API such that the application developers are able to extract

security information such as the security afforded to a particular segment of data received at
the application layer from the kernel.

q For the outgoing traffic, PHIL-API provides the functionality to interact with the kernel's
Security Association database (SAdB) and Security Policy database (SPdB) to query
information about the existing SAs and the security level afforded to their outgoing data. It
should also provide a way for the outgoing process to be able to override the default security
policy.

3 Specification of Packet Header Information List (PHIL) API
The key feature in PHIL-API is the “PHIL” information, which is a “list” data structure
containing the IPSec related information. In regular protocol stack processing, all header
information about IPSec has been stripped out before the payload being passed to the transport
and application layers. However, in PHIL, extra IPSec information will be attached to the payload
all the way up or down. The architecture of PHIL and its relationship with the OS kernel is
depicted in the following figure. In this section, we first introduce the set of PHIL-API calls for
accessing the IPSec services provided by the kernel. In the subsequent sections, we will then
show how they are implemented and applied.

3.1 PHIL-API for Incoming Traffic
q A TCP or UDP socket opened with a socket system call should first be enabled (or maybe

later disabled) to receive the PHIL information along with the application data. The following
two functions are designed to control the PHIL functions:

int phil_enable (int sockfd, int mode)
int phil disable (int sockfd)

This function call prepares a socket to receive PHIL information and the mode parameter can
either be EXHAUSTIVE or NON_EXHAUSTIVE. If the receive mode is set to
NON_EXHAUSTIVE mode then the PHIL information consists only of the SPI value associated
with each data segment that was received. Otherwise, in the EXHAUSTIVE mode, the PHIL
information consists of the entire set of security parameters associated with the packet (explained
in the phil_recvfrom() call in detail later). This function must be called before any other PHIL-
API calls are used in the input mode. This call can be used at any time on a socket that is open
and performing normal send/receive operations. After PHIL enabling a socket an application

can continue to use normal socket API calls on the socket. In case of UDP server applications,
a single enabled call on the socket will facilitate the PHIL information regarding packets from
various sources. In case of TCP concurrent server applications, each child socket that is spawned
to handle a new connection should be PHIL enabled so that PHIL information for each
connection is properly received.

q For TCP applications:
int phil_accept (parameters to accept(), char *phil_buf, int phil_len)

In addition to the return values of the corresponding normal API call accept(), this call returns
phil_buf, which is a character buffer containing the PHIL information. The phil_accept() call is
for TCP concurrent mode. The parent socket should provide policy information about which
peers can be trusted based on the PHIL information. The server can then decide whether or not it
should accept the new request.

q For receiving data:
int phil_recvfrom (parameters to recvfrom(), char *phil_buf, int phil_len,

 int *dsegs)
In addition to the return values of the corresponding normal call recvfrom(), this call returns
phil_buf, which is a character buffer that contains the PHIL information, and dsegs, which is the
number of TCP data segments constituting the total data bytes being read from this call. A
phil_recvfrom() call is intended to be used to retrieve the data plus the PHIL information for
both UDP and TCP applications. The phil_buf points to one of the two PHIL information
structures depending on the receive mode that was set.

3.2 PHIL-API for Outgoing Traffic
q The outgoing data can be directly linked to one or more SA's by binding the spi values of

SA's (Security Associations) to the socket.
int phil bind (int sockfd, unsigned long *spi array, int size)
int phil unbind (int sockfd)

IP layer

Transport layer

Kernel

SPdb

SAdb

Phil_recvfrom()

IP
packet

PHIL

TCP/UDP
packet

PHIL

Domain

User Domain

In-bound IPSEC traffic

Phil_sendto()

TCP/UDP
packet

Specific
SA

Specific
SA

IP
packet

Out-bound IPSEC traffic

IPSEC Stack

In-bound Out-bound

applications
Applications
w/ specific SA

The bind call merely records a possible set of SPI's that could be used by this socket in its
sessions, the actual and specific value for each send operation can be different and should be
specified at the time of a send call, also specifying a set of SPI's through the phil_bind() call
does not mandate a socket to send its data securely all the time.

q The following call is a modification to the data output call.
int phil_sendto (parameters to sendto(), long *spi_arr , int size)

The spi_arr array describes the SPI value(s) of our preference in sending the data (in the case
where we have a choice of sending the data over several possible SAs). If the application does not
know the set of the possible SA’s, it can query the SAdB (Security Association database) for the
SPI values through the query spi() call described later. The value of the SPI's should be a subset
or equal to the SPI values that were bound to the socket using the phil_bind() call earlier.
Through the phil_sendto call it is possible to send a stream of data bytes from a single application
process over different SAs, which provides different levels and features of security for different
data types. It should be emphasized, though, that the application’s preference of sending its data
over an SA will be honored only if it conforms to the SPdB.

3.3 Miscellaneous Calls
q An application sometimes might want to know the availability of an SA and their SPI values

before they send the data:
int phil_qspi (struct sockaddr* src, struct sockaddr * dst, char * buf, int size,
 int *num)

When no SA's exist to protect the data between the given source and destination address, an error
is returned. In case of VPN, the source IP address is most likely the IP address of the security
gateway on which the application is running. If there are one or more SAs that match the source
and destination IP addresses then they are returned through the SPI structure as a linked list.

q Based on the SPI values, the applications can further query the SAdB for the source of
authentication.

int phil qsadb (unsigned long spi, struct sockaddr *dst, char *buf, int size)
This function is used to query the SAdB for detailed information about the SA.

4 Implementation

4.1 Linux FreeS/wan IPSec implementation
Linux FreeS/wan is an IPSec implementation for Linux; and it is freely available from
http://www.freeswan.org/. Our PHIL/PHIL-API implementation is on Linux kernel version
2.0.36 with FreeS/wan version 1.0.

4.2 PHIL-API
For the incoming traffic, the FreeS/wan implementation is BITS (Bump In The Stack)
implementation, and therefore the security headers are stripped before the packet is handed over
to the IP layer. Therefore, we create the PHIL information at the time of verifying and decrypting
a secured packet in the BITS implementation. Since the memory management in Linux is handled
within the "sk_buff" structure, we modified the structure to include the PHIL related information.
As the same sk_buff traverses the entire network stack up to the socket layer, we copy back the
PHIL information from the sk_buff to the user buffer at the same time when the user socket data
is being copied from the sk_buff into the user buffer. With this motive, a pointer to the PHIL
information structure called the spi_info is appended to the sk_buff structure. As the number of

SA's between a pair of nodes is not constant, each SA memory element is dynamically allocated
at the time of IPSec header processing. The "spi_info" pointer in the sk_buff structure is the
starting point for the singly linked list of these memory elements called "spi_structs", and the
order of these spi_structs determines the order of applying SA’s to the packet. This approach
optimizes the memory allocation and does not burden the sk_buff structure unnecessarily when
no SA's exists. The following is the definition of spi_structure:

typedef struct spi_struct {
unsigned long spi;
unsigned long dst_addr;
unsigned long src_addr;
unsigned short dst_port;
unsigned short src_port;
unsigned short xprot; /* TCP or UDP */
unsigned int data_len;
unsigned int sec_proto;
spi_struct *next_ssp;

};

4.3 In-bound processing in Linux FreeS/wan IPSec
At the data-link layer, after receiving an Ethernet packet, the network card triggers ei_interrupt()
which then transfers control to ei_receive(),a function allocating the sk_buff structure and
initializing it with the received data (and here is where the journey begins for the sk_buff
structure). At this time, the function netif_rx() is called with the packet as the argument and it
adds the packet to the input queue. All these activities are done within the interrupt call
ei_interrupt(). Before returning from this interrupt call, a bit in the network implementation’s
bottom half mask, called "bh_mask", is set. The kernel checks the bh_mask regularly when there
are no system calls and interrupts to handle. If any of the bh_mask bits is set then the service
function corresponding to the set bit is called through the function do_bottom_half(), and the
service function under this case is the net_bh() function. The net_bh() function de_queues the
packets from the input queue and passes it to the ip_rcv() function which de-multiplexes the
packet to one of the transport layer’s receiving functions. In the case of IPSec AH and ESP
processing, the packet is queued again into the system input queue (and to be picked up by the
net_bh() function again). The transport layer receiving function will enqueue the packet into the
appropriate sockets. For an UDP server socket, we have only one receiving queue, whereas, in
case of TCP server, every client will have a dedicated receiving queue at the server socket.

When the user issues a recvfrom() system call to the socket, the handling function in the kernel
locates the appropriate socket and dequeues the packet from the queue to copy the data to the user
buffer and return. If the phil_recvfrom() is used instead, then the PHIL associated with the data
is also passed up to the application in addition to the user data. The PHIL information associated
with a sk_buff in the kernel will be destroyed at the time of releasing that particular sk_buff.

4.4 Out-bound processing in Linux FreeS/wan IPSec
The outgoing packets in the Linux FreeS/wan IPSec are secured only after they cross the IP layer
because of the BITS implementation. Thus, each IP packet is secured by the device transmit
function before giving the packet to the actual device itself, Figure 3 illustrates this functional
flow. Every sk_buff used in the outgoing packet path contains a back pointer to the socket
structure that owns the sk_buff (and hence the data contained in the sk_buff). Therefore, even at
the device transmit level, the pointer to the socket is available to cross check with the SPI values
bounded through the phil_bind call. And, the phil_arr parameter in phil_sendto will choose the
SA's for the current packet. When this packet arrives at the receiver side, the SPI values in the

IPSec packet headers are matched first with the existing SA's. If each SPI (and hence each SA) is
associated with a data sensitivity level, an application can received different levels of security to
cater to its data's multi-sensitivities. In other words, this application can secure every single byte
of its data using a different SA.

Figure 2: Incoming packet process in Linux kernel (in UDP case)

5 Application

5.1 PHIL Switching
Traditionally, an IP router will forward packets solely based on their destination addresses. In the
DECIDUOUS project [5,6], in order to support “inter-domain collaboration,” a router needs to
switch the packets based on the “incoming” IPSec tunnels. Due to the space limitation, we will
discuss very briefly how this new feature is used in DECIDUOUS. The functions of PHIL-
switching router can be summarized as:
q Any incoming IPSec traffic, if matched any entry of the PHIL-switching table, will be

forwarded to a specific security path.
q If the incoming traffic is non-IPSec, it will be processed as normal IP traffic.
q A selected set of inbound SA’s can be aggregated into one outbound SA or dropped.

 ethernet

 ei_interrupt()
 ei_receive()

 netif_rx()

INPUT
Queue

set
 bh_mask()

 net_bh()

 ip_rcv()

 tcp_rcv() udp_rcv()

 skb_queue_tail(rcv_queue)

 ah_rcv()
 esp_rcv()

Pkt filtering

PHIL create here!!

Re-queue

do_bottom_half()

socket
receive queue

 skb_dequeue()

udp_recvmsg()

inet_recvmsg()
sys_recvfrom()

recvfrom()User domain

Kernel domain

Figure 3: Outgoing packet process in Linux FreeS/wan IPSec.

5.1.1 PHIL-Switching controller
The PHIL Switching controller provides an interface for users to add, delete or flush PHIL
switching table. In our implementation, the controller has two different interfaces: one is a client-
server model using UDP, the other is the SNMP MIB model. In the latter case, PHIL-switching is
under the control of SNMP agent through the PHIL-switching MIB. In either case, the user can
“read, add, delete” and “flush” the PHIL-switching table.

5.1.2 User-Level Switching Entity
For any incoming packets with header fields such as [SPI, security protocol, source and
destination addresses, protocol, source and destination ports], the switching entity looks up the
PHIL switching table. Then, it will “switch” the incoming packets into different tunnels using
specified SPI according to the switching table entry. To realize the concept of PHIL-Switching in
the user level, we use “divert sockets” to intercept IP packets from kernel to the user-level
switching process. After the switching table look up, the intercepted packet will be forwarded
using the phil_sendto() with a specified SPI/SA.

5.1.3 Deciduous Collaboration
In an intra-domain environment, it is easy to establish SA among routers. It is in general not
possible to build up SA directly among any pair of routers in different domains. With the
realization of PHIL-switching, DECIDUOUS can collaborate with a security gateway in another
domain to establish a IPSEC SA tunnel path, which emulates a direct SA across multiple
domains.

We assume that SA can only be established between the border security gateway of collaborating
domains. In Figure 6, six SA’s (A1, A2, B1, B2, C1, C2) have been established between victim
and local border router, between remote and local border routers, and within the remote domain.

 sendto()

 sys_sendto()

inet_sendmsg()

 udp_send()

 ip_build_xmit()

 dev_queue_xmit()

 dev->hard_start_xmit()

 ipsec_tunnel_do_xmit()

 ah_output()

 esp_output()

 choose SA here!

 dev= ipsec/eth

User domain

Kernel domain

 socket layer

UDP layer

IP layer

Ether layer

To physical device

Now if IDS (Intrusion Detection System) detects attacks, it will report the detected attacks to
local DECIDUOUS process. In the report, it will show that the attacks have been launched
through SA C2. With the local PHIL-Switching table, we can tellthat the attacks are indeed from
SA B2. And, finally, the remote domain will be notified and it can further track down the source
by correlating SA B2 with SA A2.

Figure 5: PHIL-switching implementation.

Figure 6: DECIDUOUS Collaboration with PHIL-Switching

IDS
victim

Deciduous

Deciduous

attack

Subnet S1

Subnet S2

BR
remote

BR
local

SA C2

SA
 A

1

SA A2

SA B1

SA B2

SA C1

Domain A Domain B

Note: BR-- Border router

A1 S1 B2

A2 S2 B1

B1 * C1

B2 * C2

PHIL Switching
 Table

PHIL Switching
 Table

IP/IPSEC stack

 incoming packets

IP packets /w PHIL

L
inux divert socket

PHIL-Switching
table

Switching entity

Interface:
Client-Server

model

Interface:
SNMP Agent

model

IP/IPSEC stack

Phil_sendto()

Packet /w
 specified SPI

Outgoing packets

User domain

Kernel domain

5.2 SNMP over IPSEC
The earlier versions of SNMP (SNMPv1 and SNMPv2) [11,12] use the community feature for a
simple and unsecured password-based authentication. To improve the security concern, therefore,
SNMPv3 introduces the concepts of snmpEngineId and securityName. snmpEngineId uniquely
identifies an SNMP engine that provides services for sending and receiving messages,
authenticating and encrypting messages, and controlling access to managed objects.
securityName is a human readable string representing an individual on whose behalf the services
are provided or processed. Each securityName is associated (or configured) with a securityLevel
parameter which is stored in the Local Configuration Database (LCD). When a user issues a
command or requests information, LCD is queried to determine the security requirements for the
given securityName and snmpEngineID. If the securityLevel specifies that the message is to be
authenticated, then the message is authenticated according to the user's authentication protocol.
Privacy and timeliness modules are called depending on the securityLevel.

 Figure 10: Security Information Mapping for SNMP over IPSec

Figure 11: SNMP security architecture using IPSec.

S e c u r i t y I n f o r m a t i o n M a p p i n g

S e c u r i t y N a m e

s n m p E n g i n e I D

S P I

.

.

O u g o i n g S P I

I n c o m i n g S P I

s e c u r i t y N a m e

s n m p E n g i n e I D

B i l l e a r t h 1 0 x 1 7 1

M i c h e a r t h 2 0 x 1 6 5 0 x 1 7 5

0 x 1 6 1

Phil_sendto(data, spi_1)

 Agent
SNMP

SIM

Manager
SNMP

SIM

SAdb
SAdb

Manager_to_Agent_request

Phil_sendto(data, spi_2) Phil_recvfrom()Phil_recvfrom()

Agent_to_Manager_reply

User
domain

Kernel
domain

IPsec encrypting
 process IPSec decrypting

process

For supporting SNMPv3 security on IPSec, first, we modified the SNMPv3 to support security
information mapping (SIM) as shown on Figure 10. For example, The securityName(Bill) and
snmpEngineID(Earth1) will generate two SPIs: SPI 0x161 for incoming, and SPI 0x171 for
outgoing. Hence the SNMP packet data unit from SNMP manager to SNMP agent will be
encrypted/decrypted using SPI 0x171; and when SNMP agent receives the request from SNMP
manager, SNMP agent will use securityName(Bill) to associate with the replying message and
the replying security information (SPI 0x 161). With the PHIL-API (phil_sendto(), and
phil_recvfrom()), we can apply the specified SPI (generated by SIM) in the IPSec process.

6 Performance Evaluation
In this section, we evaluate the latency introduced by PHIL and PHIL-switching. The major delay
is the PHIL extracting process (incoming side) and PHIL matching-and-replacing process
(outgoing side). In PHIL-switching, we are interesting in combining with divert socket delay and
switching entity delay. The measurement configuration consists three 450MHz Pentium II PC
equipped with 10Mbit/sec ethernet cards. All of them are running Linux 2.0.36 platform with
FreeS/wan 1.0.

6.1 FreeS/wan IPSec with PHIL implementation
The configuration (Figure 12) of measurement includes two machines: both are 450MHz Pentium
II equipped with 10Mbit/sec ethernet cards. We use echo client/server (TCP) to launch 100000
packets each time and then record the average time. We also test the different data sizes in 16, 32,
64, 128, 256, 512, 1024 bytes. For any packet great than MTU, the packet will be fragmented and
the PHIL process could be executed more than two times (depends upon the data size) in each
packet. Hence we limited the packet size to be less than MTU such that we can simply calculate
the average time delay for each packet.

Figure 12: The configuration for PHIL evaluation

Figure 13: The configuration for PHIL Switching Evaluation

C a s e 3

A B C

C a s e 1

P H I L S W

A B C

C a s e 2

D i v e r t

i n j e c t

A B C
P h i l _ s e n d t o ()

S A 0 x 1 7 1

N o - S A

A B

Three test cases are:
Case 1: original Linux 2.0.36 kernel, no IPSec, and no PHIL.
Case 2: Linux 2.0.36 kernel with FreeS/wan IPSec; no PHIL.
Case 3: Linux 2.0.36 kernel with FreeS/wan IPSec and PHIL.

The result is shown on table 6-1. From case1 and case 2, we show the IPSec overhead; and by
comparing case2 and case3, we show the PHIL implementation performance.

Table 6.1 The test result of PHIL
 size(bytes) Case 1 Case 2 Case 3 Case3-Case2
16 363 us ESP: 505 us ESP: 506 us ESP: 1 us

AH: 502 us AH: 502 us AH: 0 us
32 398 us ESP: 538 us ESP: 539 us ESP: 1 us

AH: 535 us AH: 536 us AH: 1 us
64 465 us ESP: 616 us ESP: 617 us ESP: 1 us

AH: 613 us AH: 613 us AH: 0 us
128 601 us ESP: 761 us ESP: 762 us ESP: 1 us

AH: 756 us AH: 757 us AH: 1 us
256 870 us ESP: 1050 us ESP: 1051 us ESP: 1 us

AH: 1045 us AH: 1046 us AH: 1 us
512 1410 us ESP: 1628 us ESP: 1630 us ESP: 2 us

AH: 1625 us AH: 1625 us AH: 0 us
1024 1410 us ESP: 1628 us ESP: 1630 us ESP: 2 us

AH: 1625 us AH: 1625 us AH: 0 us

Since 3DES causes heavy CPU loading in ESP protocol, we modify kernel such that it is able to
support light-ESP. Light-ESP just creates ESP header and trailer but it does not encrypt data
payload. From Table 6.1, we observed that the delay introduced by PHIL (compare with Case2
and Case 3) is 1-2 micro-seconds.

6.2 PHIL-switching
To evaluate PHIL-switching, we set up the test configuration as shown in Figure 13. In each of
the three cases, we use a program to send out packets in 10000 times and record the average time
(total time/10000). In case 2, we use divert socket to obtain the incoming IP packet and then re-
inject the diverted IP packet into kernel. In case 3, we also use divert socket to get the incoming
IP packet and then use phil_sendto() to push the data back to the kernel with specified SPI/SA.:
Our test results are summarized in Table 6.2.

Figure 13: The configuration of evaluating PHIL-switching.

Table 6-2 The test result of evaluating PHIL Switching.
Data
size

Case1 Case2 Case3 Divert socket
overhead

PHILSW
overhead

16 777 us 1845 us 1860 us 1068 us 1083 us
64 979 us 2458 us 2361 us 1479 us 1382 us

256 1879 us 19407 us 13698 us 17528 us 11819 us
512 2860 us 39012 us 27679 us 36152 us 24819 us

1024 5020 us 41439 us 29536 us 36419 us 24516 us

The result shows that the divert socket and PHIL-switching overhead is data size dependent. For
example, the PHILSW overhead in 64 bytes is 1382 us. As data size increases to 1k bytes, the
overhead is 24516 us. The result also shows us that the major overhead comes from the divert
socket, since transferring data from kernel to user is quite expensive.

7 Remarks
IPSec has been standardized and widely deployed for securing private information over the
Internet. Currently, VPN is the major application for IPSec since higher layers can not easily
access and control IPSec-layer security services. Our PHIL-API design and implementation
provides a possible bridge between IPSec and other security applications. We have demonstrated
the usefulness of this new API for applications such as DECIDUOUS and SNMPv3. We believe
that many other secure Internet applications can be built directly on top of IPSec, without having
to re-develop yet another security module in the application layer. Furthermore, in the near future,
we expect to see more and more hardware acceleration for IPSec (e.g., 3Com’s IPSec NIC, and
CellTech’s Gigabit IPSec chip). Therefore, for high performance applications, it will be much
more attractive to use IPSec/PHIL than the software-based lower-throughput transport/application
layer protocols such as TLS or SSL. Practically, the PHIL-API is useful when the applications
need to run on platforms not supporting other security protocols (e.g., TLS). Finally, through our
implementation and evaluation, we have shown that the overhead (memory space and cpu time)
in providing PHIL is quite reasonable – 1 to 2 microseconds per packet in software. The PHIL
service has been integrated into the DECIDUOUS system, which can trace the true attack sources
in a few seconds on top of a 10+ node testbed.

8 References
[1] S. Kent, and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401,

November 1998.
[2] S. Kent, and R. Atkinson, “IP Encapsulating Security Payload (ESP),” RFC 2406, November

1998.
[3] S. Kent, and R. Atkinson, “IP Authentication Header,” RFC 2402, November 1998.
[4] Angelos D. Keromytis, John Ioannidis, and Jonathan M. Smith, “Implementing
 IPSec,” IEEE, August 1997
[5] H.Y. Chang, S.F. Wu, et al., "Deciduous: Decentralized Source Identification for Network-

based Intrusions", appeared in 6th IFIP/IEEE International Symposium on Integrated Network
Management, IEEE Communications Society Press, May 1999

[6] H.Y. Chang, S.F. Wu, et al., "Design and Implementation of a Real-Time Decentralized
Source Identification System for Untrusted IP Packets", appeared in DARPA Information
Survivability Conference and Exposition(DISCEX 2000), IEEE Computer Society Press,
January, 2000.

[7] Linux FreeSwan Web site: http://www.xs4all.nl/~freeswan/
[8] Ravindra Narayan, “Socket API Extensions to Extract Packet Header Information List

(PHIL)” Master thesis, May 1999. http://www.lib.ncsu.edu/etd/public/etd-
3721141949931381/etd-title.html

[9] The Linux Kernel Archives: http://www.kernel.org/
[10] M. Beck, H. Bohme, M. Dziadzka, and U. Kunitz, “Linux Kernel Internals”
 Addison-Wesley Second version, 1998.
[11] Harrington, D., Presuhn R., Wijnen B., "An Architecture for describing SNMP management

frameworks", RFC 2271, January 1998.
[12] D. Levi, P. Meyer, B. Stewart, “SNMPv3 Applications,” RFC2273, January 1998
[13] Blumenthal, U., Wijnen B., "User-based Security Model (USM) for version 3 of the Simple

Network Management Protocol", RFC 2274, January 1998.

