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Abstract. IPSec (Internet Security Protocol Suite) functions will be executed
correctly only if its policies are correctly specified and configured. Manual IP-
Sec policy configuration is inefficient and error-prone. An erroneous policy
could lead to communication blockade or serious security breach. In addition,
even if policies are specified correctly in each domain, the diversified regional
security policy enforcement can create significant problems for end-to-end
communication because of interaction or conflicts among policies in different
domains. A policy management system is, therefore, demanded to systemati-
cally manage and verify various IPSec policies in order to ensure an end-to-end
security service. This paper contributes to the development of an IPSec policy
management system in two aspects. First, we defined a high-level security re-
quirement, which not only is an essential component to automate the policy
specification process of transforming from security requirements to specific
IPSec policies but also can be used as criteria to detect conflicts among IPSec
policies, i.e. policies are correct only if they satisfy all requirements. Second,
we developed mechanisms to detect and resolve conflicts among IPSec policies
in both intra-domain and inter-domain environment.

1   Introduction

IPSec [1] is receiving widespread deployment to restrict access or selectively enforce
security operations for VPN implementation etc. IPSec is a typical policy-enabled
networking service in that IPSec functions will be executed correctly only if policies
are correctly specified and configured. IPSec policy database is manually configured
in current practice. It is inefficient and error-prone for large distributed networking
systems. Because of the growing number of secure Internet applications, IPSec policy
deployment will be more and more complex in the near future. Therefore, a policy
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management system is clearly demanded to automatically and systematically config-
ure and manage various IPSec policies.
      Policy is to implement people or corporation’s desired requirement. In a policy
hierarchy [2], a requirement (high level policy) is an objective while implementation
policies (low level policy) are specific plans to meet the objective. One requirement
might be satisfied by different sets of implementation policies. Therefore, the policy
specification process is the process to transform from requirement to specific imple-
mentation policies to realize the requirement. The current security policy proposals
for IPSec [3,4,5] focus on policy rules that can be “deterministically” enforced by one
or more network elements (i.e., PEP, Policy Enforcement Points). In other words, the
security requirements of a policy domain have been manually transformed into
LDAP Policy Framework rules. There is, therefore, a currently vague relationship
between a desired security requirement and specific IPSec policies to realize the
requirement. However, to manage policies for large distributed systems, it is desir-
able to separate requirement and policies because: 1) Policies are specific ways to
implement requirements such that requirements are more static and policies are
more dynamic. The separation allows requirement component to be reused while
policies to be dynamically modified and improved without needs to alter the re-
quirement component. 2) The separation permits automation of the process to trans-
form from requirements to policies. 3) Explicitly specified requirements can be used
as criteria to verify the correctness of low level policies.
      At the first glance, it seems that requirement and IPSec policy may directly map
to each other. We can use the following example to illustrate the difference between
a security requirement and specific IPSec policies to fulfill the requirement.

 

H1 H2FW1 R1

H2H1 FW1 R1

b) Two chained tunnels

a)  One direct tunnel

Figure 1: Security Requirement and IPSec Policies

      In figure 1, if a sensitive communication from a host machine H1 to another host
machine H2 requires to be encrypted during transmission anywhere from H1 to H2
except the firewall FW1, which is trusted to review content, then both of configura-
tions shown in the figure 1 satisfy the requirement. In configuration a), H1 directly
builds an encryption tunnel with H2 to protect the sensitive traffic while in b), two
IPSec tunnels are chained at FW1, which will decrypt the traffic from cipher text
back to plain text, then re-encrypt again for the second encryption tunnel. Similarly,
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more different chained tunnel configurations can satisfy the requirement if some
other security gateways on the path are also trusted to review the content.
      In a large distributed system or inter-domain environment, the diversified re-
gional security policy enforcement can create significant problems for end-to-end
communication. In the above example, suppose FW1 needs to examine traffic con-
tent for the purpose of intrusion detection and a policy is set up at FW1 to deny all
encrypted traffic to enforce its content examination requirement. Yet, H1 and H2
build a direct tunnel without awareness of existence of the firewall and its policy
rules. Therefore, all the traffic will be dropped by FW1. The scenario shows that
each policy satisfies its corresponding requirement while all policies together can
cause conflicts. In this case, if two chained tunnels are built as b) in figure 1, then
both requirements are satisfied and the traffic will go through with appropriate pro-
tection. However, end users have no idea about topology or policy information to
make right choice of policy configurations. A policy management system should be
responsible to provide assurance of end-to-end protection and transmission.
      The following shows another scenario that each policy may be satisfying individ-
ual requirement while all policies together cause violation:

H1                  Ra                Rb              Rc                Rd                     H2

Figure 2: Overlapping tunnels

      In this scenario, there are four routers Ra, Rb, Rc and Rd on the path from H1 to
H2. Assume there are two requirements for the traffic from H1 to H2: one is integrity
protection from Ra to Rc and the other is confidentiality protection from Rb to Rd.
Two tunnels are built from Ra to Rc and from Rb to Rd accordingly. With the tun-
nels, the traffic will be encapsulated by Ra, then encapsulated again by Rb to send to
Rd. When Rd decapsulates and finds the destination is Rc, Rd will send traffic back
to Rc. Finally Rc will decapsulate and send traffic to its real destination. Although it
is originally intended to encrypt traffic from Rc to Rd, the traffic is eventually sent in
clear from Rc to Rd because of tunnel interaction.
      Therefore, an IPSec policy management system will need to not only systemati-
cally specify policies to fulfill requirements but also tackle the topological interaction
and conflicts among IPSec policies. This paper contributes to the development of an
IPSec policy management system in two aspects: First we specified security require-
ments in a high level. Then, we developed mechanisms to detect and resolve con-
flicts among IPSec policies to ensure secure end-to-end communications.
      The remaining paper is organized as follows. In section 2, we define security
requirements and their satisfaction. Section 3 develops an algorithm to systemati-
cally verify the correctness of policies. Section 4 discusses the policy resolution
problem and solutions. Then section 5 talks about deployment issues by introducing
Celestial system that the conflict detection and resolution mechanisms can be de-
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ployed in to provide end-to-end security service. Finally, section 6 presents some
related work and section 7 concludes the paper and outlines future work.

2. Security Requirements and Their Satisfaction

Requirement is high level objective while implementation policies are low level
specific plans to meet the objective. One important task of IPSec policy management
is to represent security requirements in a high level efficiently and unambiguously.
We will first analyze the security requirements for IPSec policies.

2.1  Security Requirement Analysis

• Access Control Requirement (ACR): One fundamental function of security is
to conduct access control that is to restrict access only to trusted traffic. A simple
way to specify an ACR is:

       flow id.  à deny | allow
• Security Coverage Requirement (SCR): Another important function is to

apply security functions to prevent traffic from being compromised during
transmission across certain area, which requires the security protection to pro-
tect the traffic from all links and nodes within the area. However, optionally, us-
ers can authorize certain nodes in the area to access content since some nodes on
the path may need and be trusted to examine content. For example, a simple way
to specify a SCR to protect traffic from “from” to “to” by a security function
with certain strength could be:

flow id. à enforce (sec-function, strength, from, to, trusted-nodes)
• Content Access Requirement (CAR): Some nodes may need to access content

of certain traffic, for example, a firewall with an intrusion detection system
(IDS) may need to examine content to determine the characteristic of the traffic.
However, one node is not able to view the content of traffic if an encryption tun-
nel is built across it. Similarly, there might be certain nodes that need to modify
content for special processing but can not if authentication tunnels are built
across them. We allow CAR to be explicitly specified such as to disallow IPSec
tunnels to be built without the participation of the CAR nodes. A simple way to
specify a CAR could be:

flow id, sec-function, access-nodes à deny | allow
• Security Association Requirement (SAR): Security Associations (SA) [1] need

to be formed to perform encryption/authentication function. There might be
needs to specify some nodes to desire/not desire to set up SA with some other
nodes because of trust/distrust relationship, capability match/mismatch or per-
formance etc. A simple way to specify a SAR could be:

flow id, SA-peer1, SA-peer2 à deny | allow

The above four requirements expressed the needs of IPSec users with respect to not
only the access control and protection of traffic but also impacts and attributes of
security enforcement.
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2.2  Definitions of Security Requirements and Implementation Policies

      Definition 1: IPSec/VPN policy can be specified in two different levels: the re-
quirement level security policies (or security requirements in short) and the imple-
mentation level security policies (or security implementation policies in short). Two
level security policies are the same in basic form as defined below but different in
attributes and semantics as will be defined respectively below. For example, the IP-
Sec policies that are installed in security gateways to operate on the passing traffic
are implementation policies.        �
      Definition 2: A security policy P is a rule of the following form: If condition C
then action A:         P = C à A.                   �
      Definition 3: The condition part of a security policy is composed of a set of sets
S1, S2, …, SN, each of which is a finite set of values of a specific attribute, we call a
selector, to associate certain traffic with a particular policy. The condition is met, or
a packet is selected by a policy, if and only if each of the packet’s value of a selector
is an element of the corresponding set of the selector, which can be expressed by
Cartesian product of the sets,

                                       
i

N

i
SC

1=
×=         �

      For example, if selector attributes of a policy are source address and destination
address, then the traffic from a to c will be selected by the policy with condition of
source address {a,b} and destination address {c,d} because

},{},{),(},{},{ dcbacathusdccbaa ×∈∈∈
Therefore, selectors are defined as the attributes used to match packets with poli-

cies. We will specify selectors and their values in detail for requirement level and
implementation level security policies respectively below.
      Definition 4: The action part of a security policy is of form ),...,,( 21 Mttta  where

a is an action type with M parameters that specify attributes of the action. One action
type is for each policy. We will define each action type and associated parameters in
detail for requirement level and implementation level security policies respectively
below.                                  ),...,,( 21 MtttaA =         �
      Definition 5: The requirement level security policies have the following selectors
in the condition part:

       flow identity 
 [sec-function access-nodes]2

      [SA-peer1 SA-peer2]
and have the following action types and parameters in the action part:

deny
         allow

  enforce (sec-function strength [algorithm] from to [trusted-nodes])3

                                                       
2  Attribute with [ ] is optional and can be specified to be empty.
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In the condition part, each 
iS is a finite set:

• flow identity is composed of 5~6 sub-selectors: src-addr, dst-addr, src-port, dst-
port, protocol, [user-id] to identify the traffic flow;

• sec-function access-nodes is to specify the condition that certain security func-
tions (e.g. authentication or encryption) are applied against particular nodes
specified by the finite set access-nodes. This condition can be used in expressing
the Content Access Requirement of certain nodes by denying certain security
function(s) against them;

• SA-peer1 SA-peer2 is to specify the condition that any node of the set of SA-
peer1 forms SA with any node in the set of SA-peer2. This condition can be
used in expressing the Security Association Requirement by explicitly deny-
ing/allowing particular nodes to build association relationship.

In the action part, each jt is a finite set:

• sec-function is to specify the security function(s) (e.g authentication or encryp-
tion) required for certain traffic;

• strength is to specify desired level of security protection such as ordinary, middle
or high; optionally algorithm specifies the specific algorithms desired to use for
the security protection;

• from to is to specify the areas outside the from to sets are to be protected against,
for example, from (128.1.*.*) to (156.68.*.*) indicates the transmission going
outside sub-domain 128.1.*.* before entering into sub-domain 156.68.*.* needs
to be protected. The enforcement agents, which form SA to protect the traffic,
would be the border security gateways of the sub-domains. Optionally, trusted-
nodes is to specify the nodes that are allowed to access content rather than being
protected from.         �

The above definition of requirement specification is capable of expressing four secu-
rity requirements analyzed in section 2.2 and is extensible for new security require-
ments in the future.
      Definition 6: The implementation level IPSec security policies check various
header fields to select a packet. Therefore, the implementation level security policies
have selectors of all possible header fields of an IP packet in the condition part as
follows:
   src-addr, dst-addr, src-port, dst-port, proto, ah-hdr, esp-hdr, TOS, ah-next-hdr,
etc.
and have the following action types and associated parameters in the action part:

      deny
     allow
     ipsec-action ( sec-prot, algorithm4, mode, from, to)

                                                                                                                               
3 Each attribute will be specified as a finite set, which can be specified as wildcard, list of values, ranges or

optionally preceded by not to express all but some etc. e.g. ip addresses, ip address ranges, or dns names can be
used to specify particular nodes.

4 We use algorithm to also abstract other related attributes like key-length etc.
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      In the condition part, each 
iS  is a finite set used to match the header fields of a

packet to the policy.
      In the action part, each 

jt is a single value except algorithm:

• sec-prot specifies either ah or esp;
• algorithm specifies all possible algorithms for ISAKMP to negotiate;
• mode specifies either transport or tunnel;
• from to specify two nodes to build an SA.      �

Implementation policies are to instruct certain security devices to set up specific SA
and perform specific operations on the passing traffic. Therefore, in the definition,
deterministic values will be assigned for the attributes of ipsec-action except algo-
rithm of which multiple values can be specified for ISAKMP negotiation. Our defi-
nition is compliant with the specification language [3] proposed in IETF.

2.3  Security Requirement Satisfaction

2.3.1 Access Control Requirement Satisfaction
Notation:

Ø path(x,f) : node x is on the path of flow f
Ø drop(x,f) : node x drops flow f
Ø R ß Q          : R is true if Q is true
      Definition 7.1: flow f à deny is satisfied iff any node on the path of the flow f
drops all packets of f.

denyfflowR →:11

),(),(11 fxDropfxxPathR Λ∃←      �
      Definition 7.2: allowfflow →  is satisfied iff none of node on the path of the

flow f drops the flow.
allowfflowR →:12

),(),(12 fxDropfxxPathR Λ¬∃←  �

2.3.2  Security Coverage Requirement Satisfaction
Notation:

Ø ),,,(sec strgsfuncxflink−  : Traffic flow f is protected by a security func-

tion sfunc with strength strg on the link from node x to the next node on the
path.

Ø ),,,(sec strgsfuncxfnode−   : Traffic flow f is protected by a security func-

tion sfunc with strength strg against the node x.

Definition 8: flow f à enforce ( sec-func, strength, from, to, trusted-nodes) is satis-
fied iff
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1) all the links within the protection area are secured against by all security func-
tions specified in sec-func with strength equal or greater than the level specified
in strength;  and

2) all the nodes within the protection area are also secured against with the security
functions and strength except the nodes in the except-list.

         :2R  flow f à enforce(sec-func, strength, from, to, trusted-nodes)5

),,,,sec,(sec_&

),,,sec,(sec_2

nodestrustedtoAfromAstrengthfuncfnodes

toAfromAstrengthfuncflinksR

−−
−←

)(),,,(sec

)(),(

),,,sec,(sec_

sec strengthstrgstrgsfuncxflink

toAxfromAfxxPath

toAfromAstrengthfuncflinks

funcsfunc ≥Λ−∀
Λ<≤Λ∀

←−

−∈

)(),,,(sec

)()(),(

),,,,sec,(sec_

sec strengthstrgstrgsfuncxfnode

nodestrustedxtoAxfromAfxxPath

nodestrustedtoAfromAstrengthfuncfnodes

funcsfunc ≥Λ−∀
Λ−∉Λ<<Λ∀

←−−

−∈

�
      From the definition, we can see a SCR contains protection requirements for every
link and node in the specified area. If one requirement has some element require-
ments such that the requirement is satisfied iff all its elements are satisfied, we call
the elements the sub-requirements of the requirement. If one requirement has prop-
erty that, the satisfaction of which will be determined as a single unit, we call it an
atomic requirement. For example, a sub-requirement for a certain link or node with
a certain security function is an atomic sub-requirement of a SCR, since it is either
satisfied if the link or node is protected accordingly or violated otherwise and there is
no partial satisfaction or violation. The verification of a non-atomic requirement can
be accomplished by verifying if each of its atomic sub-requirements is satisfied.

2.3.3 Content Access Requirement Satisfaction

Definition 9: flow f, sec-func access-nodes à deny  is satisfied iff all nodes in the
access-nodes can access the traffic content that is not secured by any of the function
in sec-func.

denynodesaccessfuncfflowR →−−sec,:3

),,,(sec)(),( sec3 strgsfuncxfnodenodesaccessxfxxPathR funcsfuncstrg −¬∀∀Λ−∈Λ∀← −∈

        �
It is composed of atomic sub-requirements of access requirement of each node in the
access-nodes.

Although flow f, sec-func access-nodes à allow is satisfied unconditionally, it
can be used in conjunction with flow f, sec-func access-nodes à deny to specify

                                                       
5 from to might be specified as sets or sub-domains etc. fromA toA as denoted in definition 5 are two specific

nodes to determine the protection area, which is between the two nodes. In addition, we did not explicitly list
algorithm here since satisfaction of algorithm can be verified in a similar way.
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some CAR. For instance, a requirement that all nodes except SG1 need to access
content of flow f can be specified as:

      flow f, encryption (access-nodes) SG1 à allow
      flow f, encryption (access-nodes) * à deny

2.3.4 Security Association Requirement Satisfaction
:Notation :

Ø ( ):,, 21 xxfpeer  node x1 and x2 form a SA peer for flow f.

Definition 10: flow f, SA-peer1 SA-peer2 à deny is satisfied iff none of node in SA-
peer1 set up SA with any of node in SA-peer2 for flow f.

denypeerSApeerSAfflowR →−− 21,:4

),,()2()1(4 yxfpeerpeerSAypeerSAxyxR ¬Λ−∈Λ−∈∀∀←       

        �
It is composed of atomic sub-requirements of peer requirement of each pair specified
in SA-peer1 SA-peer2 sets.

Although flow f, SA-peer1 SA-peer2 à allow is satisfied unconditionally, it can
be used in conjunction with flow f, SA-peer1 SA-peer2 à deny to specify some SAR
in a similar way as exemplified in the last subsection.

3. IPSec Policy Correctness and Conflict Detection

We call a set of implementation policies regarding a certain traffic flow correct iff
the set of policies satisfies the set of requirements regarding the flow. We call a set of
implementation policies regarding a certain traffic flow conflicting when the set of
policies together does NOT satisfy all of the requirements regarding the flow, with
the requirement satisfaction as defined below.

3.1  IPSec Policy Processing

The IPSec policies installed in security gateways will be consulted in processing
either inbound or outbound traffic. As specified in [1], the IPSec policy will be proc-
essed at a particular node as follows:
• For inbound traffic, if the action in the policy for the traffic is deny, then the

traffic is dropped; if allow, then forward the traffic. If it is the destination of the
outer tunnel, then it needs to de-apply the security function. For tunnel mode, it
also decapsulates to remove outer header before forward;

• For outbound traffic, if the policy is with action of ipsec-action (sec-prot, alg,
mode, from, to), then the node will apply the corresponding security function.
For tunnel mode, it also encapsulates an outer header with new source and des-
tination address to be addresses of tunnel entry and tunnel exit nodes. Finally it
will forward the packets;

• All the forwarding is only based on destination address of outer header.
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      Traffic sometimes might be sent back and forth because of tunnel interaction as
illustrated with figure 2 in the introduction part.

3.2  Policy Verification Algorithm

As we illustrated in the introduction, regionally enforced policies together might
interact or cause conflicts. It is important for a policy management system to be able
to detect those conflicts. A Policy Verification/ Conflict Detection Problem can be
defined as follows: Given a set of security requirements regarding a particular traffic
flow }Re,...,Re,{Re 21 Kqqq  and a set of implementation policies regarding the flow

Nppp Im,...Im,Im 21
 that are installed in nodes along a linear path with N nodes

NNodeNodeNode ,..., 21
. Verify the correctness of the set of implementation polices.

From the correctness definition, we need to verify the satisfaction of the require-
ments thus to verify satisfaction of all their atomic sub-requirements as defined in
section 2.3.

Two points need to be emphasized before proceeds to the verification algorithm:
1) Transmission at a link or a node is subject to protection of all the security func-
tions that are applied but not de-applied yet when the traffic travels to the link or
node.  2) Since traffic may travel to one link or node more than once, the security
protections are only the weakest one of all the trips to the link or node.  To illustrate
the two points, we use an example as shown below.

               AH

H1                   Ra              Rb   ESP       Rc                   H2

Figure 3: Calculating Security Coverage

In this simple five nodes linear topology, traffic is to be sent from H1 to H2. First
traffic is tunneled to Rb with authentication. Then before it reaches tunnel exit Rb, it
is tunneled by Ra and send to Rc with encryption. Since authentication function is
applied at node A and has not been de-applied yet at tunnel from Ra to Rc, the link
Ra-Rb and Rb-Rc are subject to protection of both authentication and encryption.
Then the encryption will be de-applied at node Rc and the traffic will be sent back to
Rb along Rb-Rc link with protection of authentication only. Then Rb will de-apply
the authentication function. At this moment, no any security function still applies
such that the third time the traffic travels the link Rb-Rc under no protection, which
is the weakest one of the three trips.

Based on the above analysis, we know a packet may be traveling in many different
ways rather than simply hop-by-hop ahead because of IPSec processing. However,
the processing at each node, which was described in section 3.1, is with fixed num-
ber of operations and can be easily simulated. In the verification algorithm, we will
simulate IPSec policy processing to follow a packet’s trip step-by-step from source to
destination as well as record security protection and related information of each link
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and node at every step that is necessary to prove the satisfaction of requirements. As
described in section 3.1, tunnel mode processing will encapsulate an outer header
with addresses of tunnel entry and tunnel exit as the new source and destination
address. We will use a stack to simulate the nested header such that new header will
be pushed into the stack upon encapsulation and popped out upon decapsulation. In
addition to header information, we also push security protection information associ-
ated with the tunnel into the stack when it is applied and pop it out when it is de-
applied. Therefore, the security protection for a link or node is all those security
functions on the stack at the moment that the traffic comes to it.

In the following, we will present an algorithm to follow the packets’ trip and col-
lect protection information based on actions of policies along the path.

There are N nodes on the path. Imp[n] is the policy of the corresponding node n.
We need to use action information of each policy to calculate required information
while action part can be represented by:

Imp[n].action = deny | allow | ipsec -> (sec-prot, alg, mode, from, to)
in which ipsec point to a link list of one or more ipsec actions. There is only one

action type in one policy though we allow multiple actions with the same type and
different parameters in one policy.

We also need the following data structures in the algorithm:
§ sec_link[N] is an array of link list, each of which is to mark what security pro-

tection covers link from 
nNode  to 

1+nNode . One link might be subject to multiple

protections, e.g. sec_link[n] = esp cast -> ah hmac5 .
§ sec_node[N] is an array of link list, similar to the above, each of which is to

mark what security protections are against the corresponding node.
§ SA_peer[M][2] is used to record all SA peers in the policies.
§ A stack S is used to store series of (sec-prot, alg, from, to) and simulate encap-

sulation/ decapsulation, security function application/ de-application. top = 0
initially and the destination address of encapsulated outer header will always be
destination address to on the top of the stack S.

__________________________________________________
Algorithm:  Policy Processing Along The Path                                                                

top = 0; m = 0; n =0; //stack is empty, from the first
node

sec_link[N] = sec_node[N] = null  // no travel yet

while  ( n < N)  // at node n
{  // inbound processing
     if (Imp[n].action == deny)
             report and exit
   // calculate what the node n is secured against
     if ( top == 0)
             sec_node[n] = 0  // no protection
     else
     {     //decapsulates first if tunnel exit
           while ( S[top].to == Node[n])
           {     pop (S)

                   top - -
           }
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  // protection are all those in the stack and the real one
  //is always the weaker one of this trip and previous
trips.
           If (stack is weaker than sec_node[n])
               update sec_node[n] to be those in the stack
     }

  // Outbound processing
  // encapsulate and record SA information for ipsec
     if ( Imp[n].action == ipsec)
     {    push (sec-prot, alg, from, to) into the stack
          record all pairs ( from, to) in SA_peer
     }
     // send packet out; record protection for link
     if (top == 0)
     {      sec_link[n] = 0 // no protection
             n ++    // forward
     }
     else ( S[top].to > Node[n])        // forward
     {  if (stack is weaker than in sec_link[n])
            update sec-link[n] with those in stack
            n ++
     }
     else    // backward and travel the link n to n-1
     {if (stack is weaker than in sec_link[n-1])
            update sec-link[n-1] with those in stack
       n - -
     }
}

 The algorithm can effectively verify correctness of a set of policies in O(N3)6, in
which N is the number of nodes on the path.

4. IPSec Policy Conflict Resolution

Once we found conflicts, next step is to find ways to resolve them. Ideally, we want
to satisfy all the security requirements. However, there may be circumstances that in
no way can all requirements be simultaneously satisfied. Violation of any require-
ment will cause some damage. If there has to be some damage, then our goal is to
find a set of policies that minimize the possible damage. We will first discuss the
mapping from the requirements to implementation policies.

There are trusted-nodes in SCR such that the nodes in trusted-nodes are not nec-
essarily protected from. In an example shown below, a SCR requires to protect cer-
tain traffic from H1 to H2. Between H1 and H2, there are Ra and Rb that are in the
trusted-nodes. Then all the following configurations satisfy the SCR (we assume
every tunnel is with appropriate security function and strength):

                                                       
6 Because of space limitation, the detail complexity is omitted here.
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H 2H 1 R a R b

H 2H 1 R a R b

a )

H 1 H 2R a R b

b )

c )

d )

H 2R bH 1   R a

      Figure 4: Four different configurations that satisfy one SCR

Sometimes it is advantageous to build several chained tunnels to implement one
SCR rather than one direct tunnel for the preference of other requirements. For in-
stance, in the above figure, if Rb is required to examine the content, then Rb has to
be a connecting node of tunnels to be able to access the content. In another example,
Rb also requires to examine content. Additionally, H1 and Rb is not suitable to set up
SA as specified in one SAR, while H1 and Ra, Ra and Rb are allowed to build SA,
then we can use Ra, Rb as connecting nodes to build three SAs rather than one for
the SCR.

In addition to satisfaction of CAR and SAR, another reason to use several tunnels
instead of one is to resolve overlapping as illustrated below.

                 AH

H1                  Ra                Rb   ESP      Rc                   H2

a) Overlapping causes SCR violation

                  AH

H1                 Ra    ESP     Rb     ESP     Rc                   H2

b) Breaking the lower tunnel up eliminates the overlap

Figure 5: Breakup to resolve overlapping

In the example shown in the figure 5, as we explained and calculated in section
3.3, the configuration will make traffic to be sent back from Rc to Rb, then sent in
clear from Rb ahead which may violate the SCR for the link Rb-Rc. If the lower
tunnel is broken up as shown in b), then the traffic will not be sent back and the link
Rb-Rc will be protected by the tunnel from Rb to Rc. The reason that we do NOT
build additional tunnel from Rb to Rc to resolve lack of security coverage caused by
overlapping is that the additional tunnel does not compensate the security coverage.
In the above example, even though we can build additional ESP tunnel from Rb to
Rc, the traffic sent back from Rc to Rb is still not encrypted.
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The problem is then to evaluate the tradeoff and find one configuration that re-
sults in minimal total damage. Since each tunnel can be implemented by an IPSec
policy with ipsec-action, the policy resolution problem becomes that, from all set of
policies of alternative chained tunnel configurations, choose one that minimizes
damage caused by violation of requirements. We quantify the damage associated
with any requirement violation as a non-negative value called penalty. If one re-
quirement is not atomic, there might be different penalties associated with violation
of each of its atomic sub-requirement. For example, a CAR may specify that Ra, Rb
need to examine content while the penalty that Ra is not able to access content might
be much greater than that of Rb.

If there is 
1K SCRs and the members of each subset can be selected from a set

with J nodes, then the total number of possible configurations are
122...22 KJJJJ ×=××× . The solution space can be expressed as )...,,(

1,21 KJxxx ×
where

0|1=ix , value 1 represents breakup at a certain node while 0 represents not.  How-

ever, most time we do not need to break one tunnel up if the tunnel already satisfies
the requirement. We only test different breakup configurations when violation oc-
curs. Therefore, we can start from building one tunnel for each SCR first. If one
tunnel plan cause no conflict, then it is perfect. Otherwise we will try different
breakup plans for those problematic tunnels to search for optimal configurations. To
find those tunnels that need to be resolved, we can first define the following tunnel
relationship types. There are two tunnels with end points (fromi, toi) and (fromj, toj).
We say tunnel i contains tunnel j iff fromi < fromj < toj < toi. Tunnel i overlaps with
tunnel j iff fromi < fromj < toi < toj; Tunnel i and tunnel j are disjoint iff fromi < toi

<= fromj < toj; Tunnel i and tunnel j nests with each other if they are not disjoint
(either containing, contained or overlapping); A group of nesting tunnels iff every
tunnel nests with at least on other tunnel in the group.

Nested tunnels need to be considered as a whole in seeking optimal breakup plans
because breaking one up may cause additional overlapping among nested tunnels.
Those disjoint groups can be considered separately because any kind of breakup for
one group will not have any effect on the other group. Having these in mind, we can
group those tunnels with corresponding requirements and resolve each group sepa-
rately. We only try different breakup plans for those groups that caused violations
and leave others as they are. Resolution for some groups might be very easy. For
instance, if one group is only with one tunnel that only violated one CAR of one
node Ra, then the only work to do is to compare and make a decision whether or not
break the single tunnel up at the node Ra. However, at the worst case, given a group
of tunnels, we may need to test all possible configurations before an optimal one can
be determined.

Among those optimization problems with solution as a n-tuple )...,,( ,21 nxxx ,

backtracking [7] is a commonly used algorithm. The basic idea of the backtracking
algorithm is to continuously build and test partial vector )...,,( ,21 ixxx to see if it can

possibly lead to an optimal solution. If not, then all possible values of latter part of
vector )...,,( ,21 nii xxx ++ can be ignored entirely. The process can be also illustrated by
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constructing a solution tree. A bounding function is used to test whether a branch
has any chance to lead to an optimal solution and a node is killed immediately with-
out generating any of its children when it is found to be with no chance to success.
Then it will go back to an upper layer node to construct other branches of the solu-
tion tree.

When we search for optimal configurations for nested tunnels, with backtracking
algorithm, we can calculate the penalty with partial configuration to help to kill non-
optimal breakup plans at its earliest stage. The verification algorithm developed in
section 3 can be easily modified to calculate the total penalty for a set of policies. The
idea of using backtracking here is that if some portion of a configuration already
cause penalty greater than a so-far-minimal penalty, then we will not investigate any
other portion of this configuration further, which may greatly reduce the number of
configurations that are really calculated.

We can use the example in figure 7 to show how we may kill one branch earlier.
In this example, when verification algorithm goes to the second layer, it finds that,
no matter how the third layer tunnel is configured, the traffic will be sent from Rd to
Rc then send in clear from Rc, which may have violated certain atomic SCR with big
penalty. We also can calculate how many penalties there are for violation of CAR
and SAR at each stage. If the penalty already exceeds the penalty of a known con-
figuration, it will be killed for non-optimality without investigating deeper layers.

The complexity of backtracking algorithm mainly depends on two factors: 1) the
time to calculate the penalty; 2) the number of branches that not being killed. We
may greatly improve efficiency if we initially have a known configuration with a
small penalty that can help to kill more branches earlier. Combining heuristic and
random mechanisms, we may first choose an initial configuration with a small al-
though not smallest penalty. We can first sort the set of requirement penalties and
find those largest penalties. Then we randomly choose dozens of configurations that
avoided the large penalty violation. For example, if one largest penalty caused by
violation of a SAR, then we select initial value only from the configurations that do
not build the undesirable SA.  Then from the randomly selected dozens of configu-
rations, we use penalty calculation algorithm to find out the one with smallest pen-
alty to be as our initial penalty.

Although backtracking can vary greatly in time complexity for different problem
instances, for a lot instances in large scale, backtracking indeed can find out solution
in very short time. Monte Carlo [7] method can be used to estimate the efficiency of
the backtracking algorithm for a specific instance. Besides backtracking algorithm,
other algorithms like branch and bound [7], genetic algorithm [8] etc. can also be
used for policy optimization problem. Genetic algorithm normally could get a good
solution very fast but can not guarantee the optimality of the solution.

5. Celestial – An Inter-domain Security Management System

In our conflict detection and resolution algorithms, we need information about re-
quirements and implementation policies as well as the route path for the flow. For
intra-domain policy management, the required information might be obtained from a
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central policy server of the domain. For inter-domain communication, an inter-
domain security management system like Celestial system [9] is needed to collect
and manage the information.

Celestial system aims to provide reliable and scalable end-to-end security services
using multiple distributed security mechanisms. In Celestial system, Security Man-
agement Agent (SMA) is to sit in management plane of any SMA-enabled node
(switch, router, security gateway etc.) and is responsible for coordinating all security-
related activities on a network system. Inter-Domain SMA Coordination Protocol
(ISCP) [10] provides the transport function for security service negotiation and res-
ervation in order for the Celestial system to gather relevant information and manage
security services end-to-end. In Celestial, security context establishment is done in
two phases. In the discovery phase, the application’s service requirements are dis-
tributed along the communication path and the service capabilities/policies of the
nodes along the path are collected. Then the SMA who is authoritative to the re-
ceiver will determine an optimal configuration plan using certain policy resolution
algorithm based on the collected information, and then invokes the reservation phase
that distributes assignments to the nodes selected for providing the security services.
Refreshing messages are periodically sent to collect updated policy and path infor-
mation and distribute new reservation/ assignment information, which helps the
system dynamically adapt to changes and maintain adequate security service for
users.

6. Related Work

Another research on end-to-end IPSec policy management is Policy Based Security
Management (PBSM) system [11,12] developed in BBN. PBSM is a distributed sys-
tems with Policy Servers (PS) that can manage IPSec security policies for multiple
domains. The system answers end-to-end security service query by merging policies
among Policy Servers (PS). Along with PBSM, they developed Security Policy
Specification Language (SPSL) [3]. However, the potential conflicts and topological
interactions have not been analyzed in their work. In addition, without distinguish-
ing the requirement level and implementation level security policies, SPSL itself can
not ensure the correctness of policy specification.

The needs of separating high-level requirements and low-level policies were ad-
dressed in [2,6]. Our work applied the concepts to a specific policy service by defin-
ing IPSec security requirements in a high level. Some recent work [13,14] analyzed
two types of conflicts: one is co-existence of both positive and negative policies,
which can be detected by checking syntax; the other one is application specific con-
flicts. In this research, we analyzed IPSec specific conflicts caused by topological
interaction etc. The developed algorithm can detect all possible conflicts among
IPSec policies in a distributed environment. The consistency analysis of security
policies in [15] focuses on access control policy while our work focuses on topologi-
cally interacted IPSec policies.

7. Conclusion and Future Work
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It is critical for IPSec/VPN security policies to be specified correctly in order to en-
force access control and traffic protection appropriately. Although security policy
specification and configuration received a lot of attention, one important problem has
not been carefully studied: How to ensure policy’s correctness? In this research, we
studied and analyzed potential conflicts caused by various interactions among poli-
cies, which are hard to resolve in one level. We clearly defined security policies in
two levels: requirement level security policy and implementation level security pol-
icy. The correctness of implementation level security policies can be verified by
checking satisfaction of requirement level security policies, which can be automati-
cally done using our conflict detection algorithm. When conflicts are detected, a
resolution is demanded. We developed an optimization model to abstract this prob-
lem, in which we find right policy set when there is a set of policies that can satisfy
all security requirements and find policies that optimize the overall satisfaction when
the security requirements can not be simultaneously satisfied by any means.
     In this research, we focus on conceptually centralized conflict detection and
resolution in which we resolve policies when all relevant information is collected.
Next step we will work on a decentralized collaboration model in which conflicts can
be detected in a distributed manner.
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