
Automated Bug Isolation via Program Chipping ∗

Chad D. Sterling
†

Department of Computer Science
University of California, Davis
Davis, CA 95616-8562 USA

sterling@cs.ucdavis.edu

Ronald A. Olsson
Department of Computer Science

University of California, Davis
Davis, CA 95616-8562 USA

olsson@cs.ucdavis.edu

ABSTRACT
This paper introduces program chipping, a simple yet effec-
tive technique to isolate bugs. This technique automatically
removes or chips away parts of a program so that the part
that contributes to some symptomatic output becomes more
apparent to the user. Program chipping is similar in spirit
to traditional program slicing and debugging techniques and
tools, but chipping uses very simple techniques based on the
syntactic structure of the program. We have developed a
chipping tool for Java programs, called ChipperJ, and have
run it on a variety of small to large programs, including a
Java compiler, looking for various symptoms. The results
are promising. The reduced program is generally about 20-
35% of the size of the original. ChipperJ takes less than an
hour on large programs to perform this reduction; even if
it took overnight, that would be reasonable if it saves the
developer time.

“A fool-proof method for sculpting an elephant:
first, get a huge block of marble; then you chip
away everything that doesn’t look like an ele-
phant.” – Unknown

“The Sculptor produces the beautiful statue by
chipping away such parts of the marble block as
are not needed — it is a process of elimination.”
– Elbert Hubbard (American editor, publisher
and writer, 1856-1915)

∗The National Science Foundation partially supported our
equipment through grant EIA-0224469.
†Chad Sterling was partially supported by a GEM fellow-
ship via the National Consortium for Graduate Degrees for
Minorities in Engineering and Science, Inc.

1. INTRODUCTION
Software developers spend an enormous amount of their time
in debugging and testing their products. When a user dis-
covers a bug in a program, the user typically sends the entire
program to the developer (or maintainer), who then needs
to isolate the cause of the bug. For example, a compiler or
library developer might be presented with an entire user pro-
gram and just told that something does not work properly.
These user programs are usually quite large and the devel-
oper can spend much time isolating the bug. Some of that
time is wasted, in that the developer needs to understand
some of the program’s logic to see what the user program is
doing and exactly what code is being executed.

Traditional program slicing and debugging techniques and
tools can assist the developer to some extent, but such tools
might not be available for the source language and they can
be costly to build or use. Moreover, using traditional tech-
niques and tools requires some manual intervention. For
example, suppose that the bug is that the source program
loops infinitely. Typically, the developer would use a debug-
ger to find where the program is looping and then slice the
source program on variables involved in that loop to reduce
the size of the program.

This previous specific example is typical of a common gen-
eral process: Given a buggy program and some symptom,
the developer often reduces the program to a smaller one
that exhibits the same symptom. From that smaller pro-
gram (much smaller, one hopes), the developer can then
more quickly determine the cause of the bug. Unfortunately,
if appropriate tools are not available, this process of reduc-
ing the program is done by hand, requires some understand-
ing of the structure of the program, and can be tedious.
For example, the developer sometimes employs ad-hoc tech-
niques to track down what parts of the program contribute
to the bug. One such technique is “binary search”: repeat-
edly eliminate half (or some portion) of the program and see
whether the program still exhibits the symptom.

Our work aims to remedy this problem by developing tech-
niques and tools to automate this program-reduction pro-
cess. The developer can specify a symptom and our tool
will automatically try various heuristics (including binary
search mentioned earlier) to reduce the program. We call
our approach program chipping and our tools chippers.

We have developed a program chipper for Java, called Chip-

perJ, and have run it on a variety of small to large programs,
including a Java compiler, looking for various symptoms.
The results are promising. The reduced program is gener-
ally about 20-35% of the size of the original. ChipperJ takes
less than an hour on large programs to perform this reduc-
tion; even if it took overnight, that would be reasonable if
it saves the developer time.

Program chipping is a specific application of the general no-
tion of data slicing [9]. In our case, programs are the data.
Program chipping is in some ways similar to delta debug-
ging [36] (a form of data slicing), but exploits application-
specific knowledge, in our case, the syntactic structure of
the program. This important difference together with our
chipping techniques allow us to produce automatically a rea-
sonable number of reduced programs in a reasonable amount
of time. Program chipping is also related to program slic-
ing. However, with slicing, the user looks for behavior with
respect to a variable or group of variables, whereas in pro-
gram chipping the user looks for behavior with respect to the
overall program behavior. In this regard, program chipping
treats the program as a “black box” and proceeds automat-
ically to isolate the bug. Notably, program chipping tech-
niques are “light-weight” in the sense they use fairly simple
techniques and do not require more sophisticated program
analysis techniques, such as slicing.

The rest of this paper is organized as follows. Section 2
presents a general overview of our approach and introduces
terminology. Section 3 describes ChipperJ, our program
chipper for Java. Section 4 discusses the effectiveness of
ChipperJ over a range of small and large buggy programs
with various symptoms. Section 5 outlines some of our de-
sign decisions and some limitations. Section 6 presents re-
lated work and includes a brief comparison of chipping with
delta debugging. Finally, Section 7 describes future work
and concludes the paper. Reference [29] presents additional
details.

2. OVERVIEW OF APPROACH
We use the following terminology:

• symptom: identifying characteristic in behavior of in-
terest. It may be something in the program’s output,
something not in the program’s output, that the pro-
gram loops infinitely, etc. It may represent a bug.

• variant: program derived from the original program

• good variant: a variant that exhibits the symptom

• bad variant1: a variant that does not exhibit the symp-
tom

• best variant: the smallest good variant found by the
chipper

• minimal variant: the smallest possible good variant.
It may not be found by the chipper

• simplification: process that produces a new variant
from another variant (which may be the original pro-
gram)

1In the course of this work, we have also seen some ugly
variants ;-)

We use the term smallest with respect to some application
specific measure, e.g., number of nodes in a parse tree or
number of lines of source code.

As indicated in Section 1, our general approach is to auto-
matically reduce a program to a variant that exhibits the
same symptom. Our approach, program chipping, is “light-
weight” (even näıve) compared to other techniques such as
program slicing. In short, our work uses the idea of data
slicing [9], where the data is the original program. Our ap-
proach is to simplify the original program in various ways,
based only on the syntactic structure of the program. In
doing so, we produce variants and execute each one to see
whether it is good or bad.

The variants are derived from the original program so they,
of course, contain many of the same statements. However, in
some cases the simplifications can modify some statements.
Also, the execution behaviors of the variants can differ from
that of the original program. Our approach requires only
that a good variant exhibit the same symptom, not that that
symptom manifests itself for the same reason. Section 5.2.2
discusses this issue in detail.

Figure 1 shows a high-level view of a program chipper. The
chipper takes a program and two scripts. The Run script
specifies how to compile and run the program. The Com-
pare script specifies the symptom; more precisely, it specifies
what to look for in the results from the Run script, and how
to do so. The goal is for the resultant program to be con-
siderably simpler (e.g., shorter in length) than the original,
so that finding the symptom in the remaining code will be
easier.

In more detail, the program chipper builds a parse tree cor-
responding to original program, as shown in Figure 2(a).
From this parse tree, the chipper tool deletes or modifies
one or more nodes to generate other parse trees, e.g., Fig-
ure 2(b). The program variant corresponding to each such
parse tree is tested to see if it is “good”. Specifically, the
tool generates from the parse tree the corresponding source
program, compiles and runs it, and determines whether it
exhibits the symptom (using the Run and Compare scripts).
This process continues until the chipper has completed, hav-
ing identified a best variant (parse tree), e.g., Figure 2(c).

The prior description does not specify the exact process that
the tool follows to reduce parse trees, and to determine when
to terminate. One possibility is to generate and test all
possible variants. Certainly, though, for any reasonably-
sized program, that approach is impractical. The key, then,
is to identify heuristics that will be useful in practice, as
discussed in Section 3.

3. ChipperJ: A PROGRAM CHIPPER FOR
Java

We have developed a program chipper for Java, called Chip-
perJ. ChipperJ is built on top of Sun’s Java 1.4.2 compiler.
The rest of this section describes the user view of Chip-
perJ, presents ChipperJ’s simplification algorithm, describes
ChipperJ’s specific simplifications, and discusses how Chip-
perJ deals with a key pragmatic issue: infinite loops.

Program Chipper
Original Program Simplified Program

Run script Compare script

Figure 1: Overview of program chipping

3.1 User View
The user gives ChipperJ the original program, specifies how
to run the program and how to check for the symptom,
via the Run and Compare scripts, as shown in Figure 1.
ChipperJ then produces the best variant. The user can then
examine the best variant to determine the exact cause of the
given symptom.

We use scripts, Run and Compare, to allow the user the
flexibility to specify how to run the program and what con-

(a) Parse tree for original program

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

(b) Parse tree for an intermediate variant

�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

(c) Parse tree for best variant

Figure 2: Parse trees during program chipping.
Shading indicates the original node has been
deleted.

stitutes the symptom. A typical Run script compiles the
variant program, runs it on some specified input, and saves
the program’s standard output to a file. A typical Compare
script searches the program’s output for the given symptom.
Often these are just shells script that uses one or more greps
and other standard UNIX tools. Typical symptoms include
erroneous output, null pointer exceptions, and infinite loop-
ing. So that users can specify line numbers in the original
code as part of the symptom (e.g., that a “NullPointerEx-
ception” occurred on line 90 of main.java), ChipperJ (by
default) preserves line numbers in the variants by replacing
with a blank line any entire line of code or comments that
it chipped away.

3.2 Simplifying Transformations
ChipperJ follows the overall simplification approach shown
in Figure 2. First, ChipperJ builds a parse tree of the orig-
inal Java program. It then generates variant programs by
removing or modifying nodes in the parse tree. For each
variant, ChipperJ checks whether the variant exhibits the
same symptom as the original program. If it does, Chip-
perJ tries to reduce that variant further.

To limit to a reasonable number the amount of variants
ChipperJ checks, it uses a left-to-right, top-to-bottom traver-
sal of the parse tree. ChipperJ tries simplification at each
node at most once; some nodes in the original parse tree are
not considered for simplification and some are pruned before
ChipperJ reaches them. ChipperJ might perform some sim-
plification(s) on a node depending on the node’s type. For
example, it tries to simplify a statement block in a variety
of ways (as described later), but does not try to simplify an
assignment statement. For any given node type, ChipperJ
will attempt a few different kinds of simplifications on the
node. The number of specific simplifications ChipperJ tries
at each node is bounded as determined by the type of node
and its contents. Examples: for an assignment statement,
the bound is zero; for an if statement, the bound depends on
the number of arms within the if statement; and for a block,
the bound depends on the number of statements within the
block.

For any simplification ChipperJ performs, it checks, using
the Run and Compare scripts, whether the simplification
produces a good variant. If the variant is good, then simpli-
fication continues in this new good variant. If the variant is
bad, then simplification continues in the current good vari-

ant, i.e., the bad variant is not considered further. In either
case, simplification continues at the same node with the next
possible simplification for that particular node; if no simpli-
fications remain to be tried, simplification continues at the
next node.

Note that a variant can be bad because its execution does
not exhibit the symptom or because it does not compile,
e.g., if some necessary variable declaration has been chipped
away. Generating bad variants does not affect the overall
search for the best variant, except for the time it takes to
generate, run, and compare the bad variants.

Figure 3 illustrates a sample simplification process. The
first simplification ChipperJ tries on the original program
(variant v0) results in good variant v1. The first simpli-
fication ChipperJ tries on v1 results in bad variant v2, so
ChipperJ tries another simplification on v1, which results
in good variant v3. The process continues until ChipperJ
has no further simplifications to try. In this example, v8
is the best variant. Note that each simplification produces
a smaller variant. However, the variants produced from a
given good variant can vary in size, e.g., when trying to
simplify a block, as described in the next section.

We also developed a GUI called v-diff. It displays a graphi-
cal representation of the variants created by ChipperJ, sim-
ilar to that shown in Figure 3. The v-diff tool is useful to
see the differences between any two variants or to watch in
“movie mode” the differences between successive variants in
a sequence.

3.3 Speci£c Simpli£cations
3.3.1 Simpli£cations on Blocks
ChipperJ tries, in the order given, the following simplifica-
tions on blocks.

• eliminate the entire block.

• “binary search”, also known as block splitting. Chip-
perJ splits the statement list in block B into two halves,
B1 and B2.2 It first removes B2 from the parse tree.
If the resulting variant is good (i.e., still exhibits the
symptom), then ChipperJ attempts (recursively) the
statement block simplifications on the first half. Oth-
erwise, ChipperJ tries this simplification on B2. If
simplification fails on each of B1 and B2, then Chip-
perJ restores B into the parse tree.

• eliminate one statement at a time from the block.

• simplify each remaining statement. For example, if a
while loop cannot be entirely eliminated (by the pre-
vious step), then ChipperJ will try to simplify (recur-
sively) the body of the loop.

One complication arises when, for example, ChipperJ re-
moves the entire body of a non-void method. Without a

2ChipperJ uses the number of statements in the block to
determine where to split the block and treats declarations
as statements.

return statement, the variant will not compile, so ChipperJ
would restore the method body and try the remaining sim-
plifications. Although restoring the method body is not
harmful to the simplification process, the size of the best
variant ChipperJ finds will not be as small as it might be.
So, instead of replacing the method body with an empty
block, ChipperJ replaces it with a block containing a type-
appropriate return statement, e.g., {return 0;} for an in-
teger method. ChipperJ also inserts such return statements
in other cases, e.g., when it splits a method body into two
blocks.

ChipperJ operates on the switch statement much in the same
fashion it operates on blocks, but it operates on the case

level instead of the statement level. See Reference [29] for
details.

3.3.2 Simpli£cations on Loops
ChipperJ tries to simplify any of the three kinds of loops
in Java by replacing the loop by one iteration of the
loop’s body. For example, while (x!=0) {S} becomes
just {S} and for (int i = 0; i < N; i++) {S} becomes
{int i = 0; {S}}. (One can view this simplification as
“loop unrolling”, as used in compiler optimizations, but here
we replace the loop by only its the initial iteration.)

Thus, if the symptom is coming from loop’s first iteration,
removal of the loop structure will make it all the more evi-
dent to the user. ChipperJ continues simplification by sim-
plifying the loop’s body. Most often the body is a block,
so ChipperJ proceeds with the block simplifications (Sec-
tion 3.3.1).

3.3.3 Simpli£cations on If Statements
ChipperJ treats a sequence of if-else if-else if ... -else state-
ments together for simplification purposes.

ChipperJ first tries to replace the sequence with the body
of one of its arms, one arm at a time.

However, if no body of these arms by itself produces a good
variant, ChipperJ starts over with the sequence. It next
tries, starting at the beginning of the sequence, to remove
each arm in turn and retains only those arms that are needed
in a good variant.

As usual, ChipperJ recursively simplifies any arms that still
appear in the good variant resulting from these simplifica-
tions.

3.3.4 No Other Simpli£cations
ChipperJ does no other simplifications. It does not attempt
to simplify assignment statements or expressions, discard
entire methods (but it might discard their bodies, as noted
in Section 3.3.1), etc.

3.4 Dealing with In£nite Loops
The original Java program might itself contain an infinite
loop. Indeed, an infinite loop might be the symptom of in-
terest. Moreover, a variant generated by ChipperJ might
similarly contain an infinite loop. In some cases, these loops

v0

v3 v5

v8 v9

vi −− variant program

simplification

v1 v2

v4 v6

v10

decreasing size of variant

v7

good variant (exhibits symptom)

bad variant (does not exhibit symptom)

Figure 3: Sample ChipperJ simplification process

arise due to some of the simplifications described in Sec-
tion 3.3. For example, ChipperJ might generate a variant
that omits from the body of a while loop the assignment
statement that increments the loop’s index variable.

ChipperJ solves this problem simply: the Run scripts use a
timeout program to limit the variant’s execution time. (The
specific timeout interval is specified by the user based on
the time taken by original program.) The timeout program
outputs a special message if the program does not terminate
before the timeout occurs. The Compare script can specify
to search the program’s output for this special message if
the symptom is infinite looping.

3.5 External or Internal Chipping
ChipperJ can operate in one of two modes: external or in-
ternal. In external mode, ChipperJ writes each variant it
produces from the parse tree to a file and then compiles
and runs that variant according to the Run script and looks
for the symptom according to the Compare script. In in-
ternal mode, ChipperJ does not need to write each variant
to a file. Instead, it compiles the variant directly from the
parse tree, and then applies the Run and Compare scripts
to the generated .class files.3 Internal mode, of course, can
be substantially faster, as will be seen in Section 4.

4. EXPERIENCE
We have used ChipperJ on a wide variety of programs and
for different symptoms. This section reports on our experi-
ence on a representative collection of these tests. Section 5
further discusses these results.

The data reported are for tests run on a dual processor
2.8GHz CPU with Red Hat Enterprise Linux 3 (kernel 2.4.21-

3ChipperJ passes a parameter to the Run script so the script
knows whether or not it needs to compile the program.

27.0.2.ELsmp).4 The results are averages of several test
runs, which had insignificant variances.

Table 1 summarizes the results of running ChipperJ on a va-
riety of small to large Java programs and for various symp-
toms. Recall from Section 2 that “best” is not necessarily
minimal. “Source lines” in Table 1 represents non-blank,
non-comment lines. The data in Table 1 show that exter-
nal chipping takes about from 2-5 times as long as internal
chipping (Section 3.5).

T1-T3 demonstrate ChipperJ’s simplification techniques, es-
pecially block splitting, for very basic programs. These test
programs consist of blocks of code with a variety of control
flow statements. The Compare script for each of these tests
specifies a single value to search for in the output. These
results highlight the extent to which chipping can reduce a
program. In these cases, ChipperJ reduces the Java source
to the minimum or near minimum. T4 is also a small pro-
gram with two classes. The symptom is just a line of output
from a method within one of the classes (This best vari-
ant can, with additional techniques, be further chipped, as
discussed in Section 5.1.2.)

T5-T8 show how well ChipperJ works on medium-sized pro-
grams: about 600–1200 lines of code. T5, T6 and T7 are stu-
dent programming assignments of a simple language trans-
lator; T8 is a chipper for a simple, non-Java language. Chip-
perJ is able to reduce them to about 40-65% of the original
based on a variety of different symptoms.

T9 is a very simple program. It consists of a single block
of code containing about 1200 loops, with a nesting depth
of at most two. The Compare script searches for the oc-

4Because neither the test programs nor ChipperJ is multi-
threaded, using a dual processor had no benefit over a single
processor.

Table 1: ChipperJ results

source lines parse tree nodes # of time (H:MM:SS.00)
test original best original best variants external internal notes
T1 21 5 109 13 11 8.13 2.29 small, straightline code
T2 17 6 62 18 13 10.05 2.50 small, if statement
T3 75 20 313 37 30 23.73 5.68 small, bad parameter
T4 22 15 56 28 17 12.59 2.93 small, two classes
T5 596 344 2112 1094 225 54.56 13.98 medium, simple translator
T6 596 364 2112 1116 259 5:12.62 2:30.50 medium, simple translator
T7 701 252 1880 485 140 2:55.45 1:28.28 medium, simple translator
T8 1767 726 5939 1949 530 10:03.60 4:25.75 medium, prototype chipper for simple language
T9 1875 290 26435 3999 1146 22:11.42 7:32.97 worst case, repeated code, repeated symptom
T10 5080 1208 11899 3332 505 6:50.24 1:34.29 medium, bug injected into string library
T11 30329 7275 100137 26892 3262 1:01:52.10 30:24.29 large, javac, wrong class name
T12 25148 6201 80819 19978 3332 1:21:53.66 37:45.12 large, javac (1.3.1), version error
T13 30329 8698 100137 30680 4219 1:32:06.50 37:23.57 large, javac, return in finally (bug id 4821353)
T14 30329 9120 100137 32431 4825 1:50:02.36 46:03.63 large, javac, 128 length array (bug id 4917091)
T15 30329 8415 100137 29489 3873 1:24:47.73 34:08.16 large, javac, doubly nested inner class (bug id 4903103)
T16 30329 8682 100137 30229 4371 1:27:49.16 38:36.88 large, javac, string reference error (bug id 5093115)
T17 35023 7789 113106 26161 2885 47:38.54 10:51.06 large, ChipperJ, null pointer error in if
T18 35023 9349 113106 35570 4410 1:35:37.74 32:18.08 large, ChipperJ, chipper v5 compiler error

currence of the output string 2003 95 times. This output is
generated from multiple points throughout the code. This
test represents a worst case example for ChipperJ; this rel-
atively small and simple program takes longer to simplify
than larger programs such as T10. Block splitting does not
work here because output comes from many parts of the
code. So, ChipperJ needs to walk through entire lists of
statements and attempt to simplify each in turn. In addi-
tion, many of the statements are loops, so ChipperJ tries to
apply the loop simplification to those (Section 3.3.2).

T10 is a program that uses a user-defined Java library for
string manipulation [18] with features inspired by strings in
the Icon language [16]. The symptom is a specific NullPoint-
erException due to a bug that we injected into the code.

T11-T16 demonstrate ChipperJ’s effectiveness on large pro-
grams. We use versions of Sun’s Java Compiler javac (ver-
sion 1.4.2, unless otherwise noted). In T11, javac is set to
compile a file where the filename does not match the class
name. The symptom for T12 occurs when trying to run
the Java 1.3.1 compiler in an environment where a more re-
cent compiler has previously been installed. This produces
a version error when trying to access Object.class.

The symptoms for T13-T16 are all registered bugs for the
Java 1.4.2 compiler in Java bug site [30]; the bug ids appear
in parentheses in the table. In T13, javac issues a warning
that a finally clause cannot complete normally if it con-
tains a return statement. In T14, the symptom is that javac
issues an error for an array over 128 dimensions whereas the
JVM specifications allows 255 [24]. The Compare script for
this test specifies the error string “array type has too many
dimensions”.

In all these tests with javac (i.e., T11-T16), ChipperJ is able
to reduce the number of lines by roughly 70-77%.

The final two tests, T17 and T18, are tests where we use
ChipperJ to chip itself. The results are in the same ranges
as for chipping just javac.

1 methA(){
2 int x;
3 x = methB();
4 if (x == 30)
5 ...
6 else if (x > 30)
7 ...
8 else
9 ...

10 System.out.println("Yes");
11 }
12 int methB(){
13 ...
14 return 30;
15 }

Figure 4: Example for direction of chipping

ChipperJ’s disk space usage depends on the number of vari-
ants and the size of each variant and its output. In our
tests, T16, one of the tests involving javac, used the most
disk space: 127MB. Although that is a good amount of disk
space, it is not very much given the size of disks on current
systems. ChipperJ can be run so as to use less disk space.
As noted in Section 3.5, in internal mode, ChipperJ does
not need to actually write the variants to disk. Also, Chip-
perJ can be told to retain on disk all variants, only the good
variants, or only the best variant.

ChipperJ took us about five person-months to develop (de-
sign, debug, test). As noted in Section 3, ChipperJ is built
on top of javac and uses, with small modifications, javac’s
code that builds and walks parse trees. The additional code
for ChipperJ totals about 5000 lines.

5. DISCUSSION
5.1 Re£nements
5.1.1 Chipping Direction
Our original approach to simplifying statements within a
block was to start with the first statement and work toward
the last. However, we can generate better variants if we

work in the reverse direction. For example, consider the
code fragment in Figure 4 for the symptom of Yes in the
output. Chipping of the body of methA proceeds as follow:

• block splitting. The block has four statements. (Recall
that a sequence of if statements is treated together.)

– removing lines 2-3 fails – x is used later

– removing lines 4-10 fails – line 10 outputs symp-
tom

• simplifying each statement in turn, from top to bottom

– removing line 2 fails – x needs to be declared for
later statements

– removing line 3 fails – x needs to be initialized (to
avoid an error from the Java compiler)

– removing lines 4-9 succeeds

– removing line 10 fails – it outputs the symptom.

Thus, the best variant, using forward simplification, consists
of lines 2-3 and 10.

However, if we reverse the order

• simplifying each statement in turn, from bottom to top

– removing line 10 fails – it outputs the symptom.

– removing lines 4-9 succeeds

– removing line 3 succeeds – x’s value is not used
later

– removing line 2 succeeds – x is not used later

Thus, the best variant, using reverse simplification, consists
of line 10. The key point is that reverse simplification reflects
how dependencies flow from the top of a block to its bottom.

5.1.2 Order of File Chipping, Rechipping
ChipperJ performs chipping on files in the same order as
their filenames appear on its command line. In some cases,
removing parts of class A (say part of a method body) can
have an adverse effect on the code in class B, although un-
related to the symptom. So, the best variant for A will
need to retain those parts. However, if class B were chipped
first, then parts of A can be removed and smaller variants
obtained.

Unfortunately, determining class interdependencies of this
nature would require a significant amount of analysis. In-
stead, we use rechipping. With rechipping, ChipperJ finds
the best variants of all classes, as it normally does, but then
it chips them again, starting with the first. Chipping con-
tinues until no best variant changes, i.e., a fixed point is
reached. (Rechipping terminates because variants can never
increase in size.)

We have experimented with rechipping on the tests in Ta-
ble 1. The successive passes of the chipper are faster than
the original pass because a variant is always smaller than

the original code from which it is derived, and the chipper
only rechips the best variant of a program. For the tests in
Table 1, rechipping requires from 2-6 passes and 20-400%
additional time before converging, and generates roughly 2-
3 times more variants. The sizes of the best variants are
reduced by 10-15% in most cases, although by about 75%
in one case (T4). As a typical example, rechipping T2 re-
moved declarations for variables that are no longer needed
after the initial chipping. As the atypical example, rechip-
ping T4, which contained two classes in separate files that
are dependent on each other, removed code no longer needed
after initial chipping removed the dependency. We plan to
further explore and evaluate rechipping in future work.

5.2 Limitations
5.2.1 Variant Size
The data in Section 4 show that ChipperJ is reasonably ef-
fective in reducing the original program. However, ChipperJ
is not guaranteed to find the minimal variant. For example,
ChipperJ might split block B into two halves, B1 and B2. It
first tests whether B1 exhibits the symptom. If so, ChipperJ
simply discards, without any further consideration, B2. It
is possible that B2 also exhibits the symptom and B2 would
lead to a smaller best variant than B1 does. ChipperJ uses
this simple, but not optimal, strategy so as to limit the num-
ber of variants it needs to generate and test.

The results in Section 4 show that ChipperJ is effective in
substantially reducing the size of the input code. In our
experience, larger blocks that contribute to the symptom
in multiple places tend increase the number of variants, and
the time required to find the minimal variant. For the larger
programs, such as the Java Compiler, a reduction of 75% is
significant (i.e., T11-T16). However, 7000-8000 lines of code
spread across 66 files is still a great deal to analyze when
trying to isolate the cause of a single bug. Our current
approach is to take the best variant and use a manual Java
debugger (e.g., the debugger within Eclipse [14]) to step
through the code to see how the error is produced. Then,
putting the chipped code side by side with the original code,
can give a good idea as to the location of the bug within the
original program.

5.2.2 Symptom Speci£city
Recall from Section 3 that typical symptoms include errors
in output, infinite loops, exceptions, etc. Because Compare
is a shell script, it can be as complex as desired. Most of
our scripts were simple and used a few standard UNIX tools
like grep and cmp, but a few of our Compare scripts also
invoked other programs. So, the Compare script can also
check whether the program, say, modified a particular file
or had a memory leak (by searching for an error message or
unhandled exception in the program’s output). Similarly,
the Run script can include any list of commands.

For similar reasons, ChipperJ might find an unexpected vari-
ant that exhibits the symptom. For example, suppose the
Compare script specifies to search the output for “Null-
PointerException”. ChipperJ might find a good variant that
causes such behavior for reasons different from those for the
original program. For example, consider the code in Fig-
ure 5. ChipperJ might remove lines 3-89 and the variant

1 methD(){
2 C c = null;
3 c = new C(...);
. ...
.
.
90 c.f(...);
91 }

Figure 5: Example for null pointer exception

would still exhibit the NullPointerException symptom. Un-
fortunately, that sheds no light on the immediate cause of
the problem, which presumably is somewhere in lines 4-89.
(However, ChipperJ would also remove code outside of the
method; thus, it would likely be more apparent under what
conditions the method was invoked.) In such a case, the
user could specify a more specific symptom. For example, if
the program does some output on line 80, part of that out-
put could be included as a conjunct in the symptom; if the
program does no output between lines 4-89, the user could
add some. Or, the user can include in the symptom for an
exception several line numbers from its stack trace. We are
also considering adding an option to ChipperJ to facilitate
such cases. ChipperJ can easily instrument the variant pro-
grams with statements that output “reached line X in file
F” to standard output or a log file and then such output
could be included as part of the symptom in the Compare
script.

5.2.3 Undesirable Side Effects
A variant program might have a harmful side effect that the
original program does not. For example, a variant might ex-
ecute code that removes a file whereas the original program
did not execute that code at all. A related problem is that
a variant can affect the environment in which subsequent
variants run. Again suppose that a variant deletes a file.
That file might be needed for subsequent variants to run
properly so those variants would (most likely) be deemed to
be bad and the approach would not yield a reasonable-sized
best variant. The situation here, though, is no worse than
analogous situations in mutation testing (e.g., [12, 25]) or
security testing where suspicious programs are executed in
a cleanroom environment.

5.2.4 Nondeterminism
ChipperJ will not work with programs whose output is non-
deterministic, as is often the case for multithreaded Java
programs. If a particular variant nondeterministically dis-
plays the symptom, then it might be determined as being a
bad variant, thus not allowing ChipperJ to examine variants
that result from the rejected variant.

Program replay techniques (e.g., [23, 26]) might be used
to force deterministic results. However, that would require
substantial additional implementation effort. In some cases,
the user might be able to specify deterministic symptoms
for nondeterministic behaviors.

5.2.5 Program Input
Consider a program that contains two loops, each with a
read statement. If ChipperJ eliminates the first loop, then

the second loop is likely to read the wrong values from the
input stream (i.e., those values intended for the first loop).

ChipperJ does nothing special for programs with input. It
simply generate variants. If ChipperJ eliminates a critical
read statement, then the variant will be found to be bad.
Our experimentation show that this approach works reason-
ably well. If the symptom does not depend on input data,
ChipperJ eliminates the reads. If input is being read in two
loops and the symptom depends on data only read by the
first loop, then ChipperJ eliminates the second loop. On the
other hand, if the symptom depends on data only read by
the second loop, then ChipperJ does not eliminate the first
loop. Instead, ChipperJ simplifies the first loop to just the
loop control and the read statement; i.e., it eliminates all
but what the program needs to properly advance the input
stream.

More sophisticated approaches are possible, and worth ex-
ploring. For example, we can instrument the original pro-
gram to record what input was read by each read statement
in the original program. To ensure that the variant preserves
the input behavior of the original program, the variant must
read in order a subsequence of the recorded input. This ap-
proach is simpler than that needed for replaying input for
concurrent programs (e.g., [27] and [11]), but similar to that
for sequential programs (e.g., [28]).

ChipperJ does not work with programs that require user
input in the form of mouse clicks, the filling in of text boxes,
or some other sequence of specific input events that cannot
be properly run using only the Run script. ChipperJ would
need a way to store and then reuse the input sequence. For
such purposes, ChipperJ could be integrated with a tool like
the XLAB capture/replay tool [33].

6. RELATED WORK
Reference [9] introduces the general notion of data slicing,
on which our work is based. Data slicing aims to help a
programmer locate a program bug by reducing the size of
the data on which the program exhibits the bug. Our work
applies data slicing to an entirely different domain, i.e., pro-
grams are our data. Also, we have actually built ChipperJ,
an automated data slicing tool; Reference [9] presents gen-
eral techniques for data slicing and suggests building such
tools in general, but the authors apparently did not pursue
that idea.

Delta debugging [36] can be viewed as a form of data slicing.
Program chipping and delta debugging (and data slicing in
general [9]) share some common techniques, such as using
binary search (“block splitting” in ChipperJ) to reduce the
size of the input data. The general idea is to use a tool
that takes the input to a program and uses binary search to
isolate the part of the input that is causing a bad output.
Delta debugging is quite effective, as seen in the examples
in Reference [36], such as automatically reducing the size of
HTML input to a buggy version of Mozilla. This particular
example exhibits the power of the delta-debugging technique
because Mozilla is well equipped to handle input that devi-
ates from HTML syntax, which is significant because many
of the variants of the input do not conform to the HTML
syntax.

Table 2: Delta chipping results (external mode only) on a few tests from Table 1
source lines parse tree nodes # of time

test original best original best variants (H:MM:SS.00)
T1 21 19 109 95 23762 3:25:35.51
T5 596 ? 2112 ? > 85000 > 24:00:00.00
T8 1767 ? 5939 ? > 78408 > 24:00:00.00

Delta debugging, though, would not work so well on more
structured input, such as Java programs. It is unable to use
the syntactic structure of the input data (Java programs)
as ChipperJ does and would therefore produce too many
variants than can be reasonably tested. To confirm this as-
sertion, we created a “delta chipper”, which uses the generic
delta debugging algorithm to chip away at Java programs (in
external mode only). Table 2 summarizes the results of run-
ning this delta chipper on a few of the tests in Section 4.5

As expected, compared to ChipperJ, the delta chipper gen-
erated larger best variants, generated many more variants
(most of which had compile time errors because delta chip-
ping removes individual characters), and took considerably
more time. T5 and T8 did not complete within a day, so we
terminated them; they were less than half complete.

As noted earlier, our work is related to program slicing. Pro-
gram slicing was introduced in Reference [34]. Much work
on slicing has followed, e.g., as surveyed in Reference [31];
as exemplified in specific variations of slicing such as de-
scribed in Reference [32], and including interprocedural slic-
ing such as described in References [21] and [4] and program
dicing, introduced in Reference [35] and developed further
since then, e.g., in Reference [10]. Reference [6] introduces
dynamic slicing, which is based on a specific input for the
program being sliced. In that regard, our work is closer to
dynamic slicing. However, with slicing, the user looks for
behavior with respect to a variable or group of variables,
and slicing tools analyze the code and build representations
such as program dependence and control dependence graphs.
Whereas with chipping, the user looks for behavior with re-
spect to the overall program behavior (thus, chipping treats
the program as a “black box”) and chipping tools use only
the program’s parse tree and relatively simple simplification
techniques. Moreover, program slicing is used for a variety
of applications, e.g., differencing [20], whereas program chip-
ping appears useful only for bug isolation. Perhaps our work
is in line with developing less costly forms of slicing [17], al-
beit for the fairly specific problem domain of bug isolation.
Despite these differences, it would be interesting to compare
ChipperJ and more traditional slicing techniques and tools
(e.g., the Bandera Slicer [8]) to see their relative effective-
ness in terms of size of variant or slice, cost of finding variant
or slice, and the complexity of techniques, tools, and use.

Our work relates to previous research in debugging. Spy-
der [5] is the first debugger to integrate dynamic program
slicing with debugging. More recently, xSlice [7] integrates
execution slicing with debugging. Other techniques and
tools (e.g., Tarantula [22]) use visual information to assist

5The delta chipper actually removed the newline characters
leaving only one line of code. But, to allow comparisons with
Table 1, Table 2 shows the number of lines that would have
remained had the newline characters not been removed.

fault localization and provide automated ways to “narrow
the search by selecting suspicious statements that might con-
tain faults” [13]. Our work also has a weaker connection to
algorithmic testing [15], which slices out irrelevant procedure
calls, but requires interaction with the user and operates at
the program variable level. Our work has a similar general
goal to all these previous works, but it uses entirely different
techniques, as noted earlier.

Our work has some connection to work in mutation testing,
which was introduced in Reference [12]. Work on mutation
testing has advanced considerably, e.g., as described in Ref-
erence [25]; some work [19] uses slicing to aid in mutation.
Program chipping generates “variants”, which are similar to
“mutants”: both involve some modification to the original
program. In fact, “bad variants” are similar to “dead mu-
tants”: the former does not exhibit the symptom of interest
and the latter does not match a test’s correct output; both
are dropped from further consideration. However, program
chipping is aimed at isolating symptoms by reducing pro-
gram size versus finding appropriate test cases or analyzing
test case coverage by mutating the source code (usually via,
for example, changing specific operators).

7. CONCLUSION
This paper has introduced the idea of program chipping and
described a chipper for Java programs. The results are en-
couraging, but we need to gain more experience in using
ChipperJ in real practice.

Our experience described in this paper represents a first step
in program chipping and suggests much future work. We
plan to develop further simplifications for the current Chip-
perJ, e.g., for expressions, method invocation, and elimi-
nating entire methods or classes. We also plan to further
investigate the efficacy of some of our present techniques,
such as rechipping (Section 5.1.2).

We will also consider how program chipping might be com-
bined with other approaches, such as traditional program
slicing or debuggers. For example, chipping might be used
first and then more refined slicing applied to the best variant
to reduce the program further. We will explore the tradeoffs
in when and how the two techniques might be used together.

We also plan to develop a hybrid, interactive chipping tool.
Using such a tool, a developer who has some idea (initially
or as simplification proceeds) of where the symptom is oc-
curring, will be able to guide simplification. The developer
will be able to instruct the tool to focus on the particular
section of code and be able to pick particular simplifications
to apply. The tool will be GUI-based and will allow the de-
veloper to easily see the differences between variants as they
are generated.

Acknowledgments
Trung Pham participated in discussions of this work and
tested an early version of ChipperJ.

8. REFERENCES
[1] Proceedings of the ACM SIGPLAN 1990 Conference

on Programming Language Design and
Implementation, White Plains, NY, June 20–22 1990.

[2] Proceedings of the ACM SIGPLAN 1991 Conference
on Programming Language Design and
Implementation, Toronto, Ontario, Canada, June
26–28 1991.

[3] Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools
and Engineering (PASTE’01), Snowbird, Utah, USA,
June 18–19 2001. ACM.

[4] G. Agrawal and L. Guo. Evaluating explicitly
context-sensitive program slicing. In ACM [3], pages
6–12.

[5] H. Agrawal, R. A. DeMillo, and E. H. Spafford.
Debugging with dynamic slicing and backtracking.
Software—Practice and Experience, 23(6):589–616,
1993.

[6] H. Agrawal and J. Horgan. Dynamic program slicing.
In ACM [1], pages 246–256.

[7] Applied Research. xslice: A tool for program
debugging. http:
//xsuds.argreenhouse.com/html-man/xslice.html.

[8] Bandera Project. The Bandera slicer.
http://bandera.projects.cis.ksu.edu/.

[9] T. W. Chan and A. Lakhotia. Debugging program
failure exhibited by voluminous data. Software
Maintenance: Research and Practice, 10:111–150,
1998.

[10] T. Y. Chen and Y. Y. Cheung. On program dicing.
Journal of Software Maintenance, 9(1):33–46, 1997.

[11] F. Cornelis. Linux Input Replay.
http://www.elis.rug.ac.be/~fcorneli/.

[12] R. DeMillo, R. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.
IEEE Transactions on Computers, 12(4):34–41, Apr.
1978.

[13] R. A. DeMillo, H. Pan, and E. H. Spafford. Failure
and fault analysis for software debugging. In
Proceedings of the 20th IEEE International
Conference on Computer Software and Applications
(COMPSAC 97), pages 515–521, Aug. 1997.

[14] eclipse.org. The Eclipse development environment.
http://www.eclipse.org.

[15] P. Fritzson, T. Gyimothy, M. Kamkar, and
N. Shahmehri. Generalized algorithmic debugging and
testing. In ACM [2], pages 317–326.

[16] R. E. Griswold and M. T. Griswold. The Icon
Programming Language. Peer-to-Peer
Communications, third edition, 1996.
http://www.cs.arizona.edu/icon/lb3.htm.

[17] W. G. Griswold. Making slicing practical: the final
mile. In ACM [3].

[18] A. Habra. The General String library.
http://www.tek271.com/free/gsoverview.html.

[19] R. Hierons, M. Harman, and S. Danicic. Using
program slicing to assist in the detection of equivalent
mutants. Software Testing, Verification and
Reliability, 9(4):233–262, Dec. 1999.

[20] S. Horwitz. Identifying the semantic and textual
differences between two versions of a program. In
ACM [1], pages 234–245.

[21] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–60,
Jan. 1990.

[22] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In Proceedings of the 24th IEEE
International Conference on Software Engineering
(ICSE-02), pages 467–477, Orlando, FL, May 2002.

[23] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE
Transactions on Computers, 36(4):471–482, 1987.

[24] T. Lindholm and F. Yellin. The JavaTM Virtual
Machine Specification. Sun Microsystems, second
edition, 2005. http://java.sun.com/docs/books/
vmspec/2nd-edition/html/VMSpecTOC.doc.html.

[25] J. Offutt and R. Untch. Mutation 2000: Uniting the
orthogonal. In Proceedings of Mutation 2000:
Mutation Testing in the Twentieth and the Twenty
First Centuries, pages 45–55, San Jose, CA, Oct. 2000.

[26] R. A. Olsson. Reproducible execution of SR programs.
Concurrency—Practice and Experience,
11(9):479–507, August 1999.

[27] M. Ronsse and K. D. Bosschere. Recplay: a fully
integrated practical record/replay system. ACM
Transactions on Computer Systems, 17(2):133–152,
May 1999.

[28] SimCon. FPT – the Fortran Partner.
http://www.simcon.uk.com/.

[29] C. D. Sterling. Automated bug isolation via program
chipping. Master’s thesis, Dept. of Computer Science,
University of California, Davis, June 2005. in
preparation.

[30] Sun Microsystems. The Java bug database.
http://bugs.sun.com/bugdatabase/index.jsp.

[31] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3:121–189, 1995.

[32] G. A. Venkatesh. The semantic approach to program
slicing. In ACM [2], pages 107–119.

[33] M. Vertes. XLAB: a tool to automate graphical user
interfaces. Linux Weekly News, May 1998.
http://mvertes.free.fr/xlab/xlab.html.

[34] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

[35] M. Weiser and J. R. Lyle. Experiments on
slicing-based debugging aids. In Empirical Studies for
Programmers. Ablex Publishing Corporation, 1986.

[36] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, Feb. 2002.

