
Sustainability Forecasting for Apache Incubator Projects

Likang Yin
lkyin@ucdavis.edu

University of California, Davis
Davis, California, USA

Zhuangzhi Chen
zzch@zjut.edu.cn

Zhejiang University of Technology
Hangzhou, Zhejiang, China

Qi Xuan
xuanqi@zjut.edu.cn

Zhejiang University of Technology
Hangzhou, Zhejiang, China

Vladimir Filkov
vfilkov@ucdavis.edu

University of California, Davis
Davis, California, USA

ABSTRACT

Although OSS development is very popular, ultimately more than
80% of OSS projects fail. Identifying the factors associated with
OSS success can help in devising interventions when a project
takes a downturn. OSS success has been studied from a variety of
angles, more recently in empirical studies of large numbers of di-
verse projects, using proxies for sustainability, e.g., internal metrics
related to productivity and external ones, related to community pop-
ularity. The internal socio-technical structure of projects has also
been shown important, especially their dynamics. This points to
another angle on evaluating software success, from the perspective
of self-sustaining and self-governing communities.

To uncover the dynamics of how a project at a nascent devel-
opment stage gradually evolves into a sustainable one, here we
apply a socio-technical network modeling perspective to a dataset
of Apache Software Foundation Incubator (ASFI), sustainability-
labeled projects. To identify and validate the determinants of sus-
tainability, we undertake a mix of quantitative and qualitative stud-
ies of ASFI projects’ socio-technical network trajectories. We de-
velop interpretable models which can forecast a project becoming
sustainable with 93+% accuracy, within 8 months of incubation
start. Based on the interpretable models we describe a strategy for
real-time monitoring and suggesting actions, which can be used by
projects to correct their sustainability trajectories.

CCS CONCEPTS

· Software and its engineering→ Open source model.

KEYWORDS

OSS Sustainability; Apache Incubator; Sociotechnical System

ACM Reference Format:

Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov. 2021. Sus-

tainability Forecasting for Apache Incubator Projects. In Proceedings of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468563

the 29th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’21), Au-

gust 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468563

1 INTRODUCTION

Open source has democratized software development. Developers
flock to OSS projects hoping to add certain functionality, contribute
to a worthy goal, and sharpen their skills. However, more than
80% of OSS projects become abandoned over time, especially the
smaller and younger projects [44]. Certainly not all OSS projects
are meant to be widely used or even to persist beyond a college
semester. However, even the large, popular OSS software, widely
used in our daily lives and by fortune 500 companies, started out
as small projects. Thus, from a societal perspective, it is important
to ask: Why do some nascent OSS projects succeed and become
self-sustaining while others do not [40]? And can the latter be
helped?

To aid developer communities to build and maintain sustainable
OSS projects, nonprofit organizations like the Apache Software
Foundation (ASF) have been established. ASF runs the ASF Incuba-
tor (ASFI) [15], where nascent projects aiming to be a part of the
ASF community are provided with stewardship and mentor-like
guidance to help them eventually become self-sustaining and even
top-level projects in ASF. Projects in ASFI, called podlings, are re-
quired to adhere to ASF rules and regulations, including keeping all
commits and emails public. When certain conditions are satisfied,
project developers and ASF committees decide if a podling should
be graduated, referred to as a successful sustainability outcome. Oth-
erwise they get retired. Per ASFI, ‘A major criterion for graduation is

to have developed an open and diverse meritocratic community. Grad-

uation tests whether a project has learned enough and is responsible

enough to sustain itself as such a community’1.
Podlings in ASFI receive a mentor, file monthly reports, and

get feedback. In spite of this support, many podlings fail. Most
ASFI committers do not lack coding expertise, but graduating from
the incubator requires more: it asks for effective teamwork and
sustainable, community development. These requirements are most
challenging tomeet. From comments inASFI, we see that developers
are confused by the expectation of ‘The Apache Way’, especially
initially. E.g., from project Flex on 05 Jan 2012, ‘...I think there is
a need to keep things as simple as possible for people who [are]

1https://incubator.apache.org/guides/graduation.html

1056



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

already confused with what’s going on with the move to Apache...’
The frustrations sometimes persist beyond the initial period. A
comment from project Flex on 06 Jan 2012, states ‘...many people
are confused and lost as to what to do. Who is providing that
direction for them?’ In large part, understanding how to achieve
the graduation requirements seems to be the culprit, likely due
to the abstract nature of those concepts. Another reason is that
comparison to others is difficult. From project Rave on 28 June 2011:
‘[sporadic adherence to requirements] makes it very confusing and
difficult to compare against what other projects as some are doing
too little while others are doing too much...’

Thus, there is a need to connect the proverbial dots on how to
get from the point of entry into ASFI to checking all the graduation
requirement boxes. That brings us to the motivation of our paper.
The extrinsically labeled ASFI dataset offers heretofore unavail-
able, fine-grained records of historical trajectories of projects under
policies and regulations of ASFI. We posit that:

The process that ASFI projects follow toward becoming sus-
tainable can be modeled as a function of a small set of project
features, so that the outcome (graduation/retirement) can be
predicted early on, from the successes and failures of others,
allowing for trajectory adjustment if needed.

To deliver on that, in addition to the historical, outcome-labeled
ASFI data, we also need a theoretical framework that can capture
the complexity of OSS development. Over the past 30 years research
in organizational behavior and management has documented the
evolution in project management practices [8], as they have moved
toward more successful models [2]. The socio-technical view of
an organization [30] has emerged as one of the more successful
hybrid models recognizing the benefits that integrated treatment
of the technical aspect (code, machines, device, etc.) and the social
aspect (people, communication, well-being, etc.) has on an organi-
zation [36]. Likewise, OSS projects have been effectively studied
from the socio-technical system (STS) perspective [1], with the social
side capturing humans and their communication channels, and the
technical capturing the content and structure of the software [43].

Here, inspired by the socio-technical systems modeling perspec-
tive, and the availability of extrinsically labeled historical data of
project sustainability from ASFI, our goals are: (1) to identify socio-
technical features distinguishing projects that graduate from the
ASF Incubator from those that do not (i.e., find the determinants
of OSS project sustainability), and (2) to build temporal forecast-
ing models that can predict sustainability outcomes at any time
point in the project development, and thus (3) to offer practical and
timely advice on intervening to correct a project’s course, especially
early on. To approach these goals, we conduct a mix of quantitative
and qualitative empirical studies. We start by gathering project
technical traces (commits) and social traces (emails) from the ASF
Incubator website 2. From those, we construct the temporal social
and technical networks for each project, and perform exploratory
data analyses, deep-dive case studies, build an accurate forecasting
model, and finally implement the interpretable model presenting
timely advice. We illustrate our workflow in Figure 1.

2http://incubator.apache.org/projects/

ASFI 

Mailing Lists

ASFI 

SVN Commits

Social Nets

Technical Nets

LSTM-based 

Model

Quantitative 

Analysis

Qualitative 

Analysis

Part I:

Data Collection 

and Cleaning

Part II: 

Longitudinal Socio-

technical System

Part III:

Deep Learner & 

Actionable Model

Part IV:

Mixed Method 

Analysis 

Actionable 

Model

Figure 1: The workflow of our mixed-methods study.

Our contributions in this paper are:

• We provide a novel longitudinal dataset of hundreds of OSS
projects’ development traces under ASF regulation, with
extrinsically labeled project sustainability status.

• We propose the first OSS project sustainability forecast mea-
suremodeled from tens of socio-technical network and project
features. Our model shows excellent predictive performance
(≥ 93% accuracy as early as 8 months into incubation).

• We find that ASF incubator projects with fewer but more
focused committers and more but distributed (participating
in asynchronous discussions) communicators are more likely
to gain momentum to self-sustainability.

• We describe a strategy for real-time monitoring of the sus-
tainability forecast for any project, derived from an inter-
pretable version of our DNN model.

This paper is a first step toward showing that end-results of
OSS projects’ sustainability trajectories can be effectively forecast
and possibly corrected upward, if needed. Our motivation goes
beyond ASFI as many more nascent projects fail outside of ASFI,
so self-monitoring and self-adjustment may be more pertinent to
them.

2 BACKGROUND AND THEORIES

We present background on the Apache Software Foundation (ASF)
and OSS success, and then we introduce related theories through
which we generate our Research Questions.

2.1 Apache Software Foundation Incubator

Community over code is the tenet of the Apache Software Founda-
tion (ASF) community [22]. Their belief is that if they take good
care of the community, good software will emerge from it.

However, conflicts are ubiquitous in OSS projects [27], and not
even ASF can escape them. To minimize conflicts, ASF requires
projects to make all communication publicly available on the mail-
ing lists, summarized popularly as if it did not happen in the mailing

lists, it did not happen [42]. The communication records benefit
developers as they reflect on previous decisions and trace their
precursors, therefore improving efficiency and productivity.

The ASF community adopts a democratic way in many of their
affairs. For example, contributors are invited to vote +1 (yes), 0

1057



Sustainability Forecasting for Apache Incubator Projects ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(okay), or −1 (no) to project-wide changes. However, ASF commit-
ters can live in different time zones, and their response to a project
decision can delay largely. Regarding that, ASF community adopts
the Lazy Consensus [31]. Moreover, the ASF community also be-
lieves in Earned Rights, that newcomers should be treated the same
way if they have proven their technical skills.

The goal of the ASF Incubator (ASFI) is to help projects become
self-sustained and eventually join ASF. Like many OSS developers,
ASFI committers work at will and there are no formal obligations
on them. Thus, ASFI projects are required to show they are able
to recruit new committers, and fill existing technical debt [38].
However, attracting new committers is difficult as they can be
affected by both social and technical barriers [46]. To address this
issue, the ASFI community has established a set of specific rules
that emphasize providing mentorship to newcomers [47].

During incubation, ASFI projects need to adopt ASF procedures
to develop and cultivate the projects’ community, and standardize
their working style. To graduate from the incubator and finally
become a part of the ASF, projects are required to demonstrate they
can self-govern and be self-sustained [12]. The specific requirement
of sustainability can vary from one project to another [13, 18]. A
project’s graduation is ultimately approved for its self-sustainability
by ASF’s Project Management Committee via several rounds of
public voting3.

2.2 OSS Projects Success and Sustainability

Recently, substantial work has focused on modeling the success of
OSS projects [34, 37, 48]. Even though there is no universally agreed
definition of OSS success [19], there are two main perspectives. The
first one is from the development process viewpoint, which is often
measured by technical metrics of software [21], e.g., code defect
density [39], response time [35], and error resolution rate [28]. The
second one is more from the social angle, including contributor
growth [59], community participation [32], and communication
patterns [56]. In effect, K. Crowston et al. [11] studied the opera-
tionalizing success measures under the context of FLOSS projects.
N. Cerpa et al. [7] provide survey evidence that factors in the logis-
tic regression models are not as predictive as expected. D. Surian et
al. [49] identify discriminative rich patterns from socio-technical
networks to predict project success in the context of SourceForge
projects. J. Coelho et al. [9] conduct mixed-method analysis on
GitHub projects, and they find that most of modern OSS projects
fail due to project characteristics and team issues. M. Valiev et
al. [53] conducted studies on sustained activity within the PyPI
ecosystem, and find that relative position in the dependency net-
work has a significant impact on project sustainability. None of
these consider forecasting over time and thus are not useful for
real-time monitoring, which is the major contribution of this work.

Although OSS success and sustainability measure similar aspects
of projects [58], they are, in fact, not the same thing. There are two
main differences between the two. First, OSS success is measured
statically while sustainability is measured dynamically. Second,
sustainability is a measure related more to the human and social
aspect (e.g., the ability to take responsible collective action, and

3https://incubator.apache.org/guides/graduation.html

an open and inclusive atmosphere, etc.) than the technical aspect
(defect density, technical advantage, etc.).

Therefore, the sustainability of an OSS project becomes even
more important when it is a part of a larger ecosystem [20, 53]. Such
OSS projects are inter-dependent to each other, the sustainability
and stability of one project can introduce tremendous network
effect to its ecosystem.4 Therefore, the sustainability of OSS projects
becomes even more significant as they can influence many other
OSS projects in the ecosystem that rely on them.

2.3 Socio-technical Systems Theory

Socio-technical structure plays an important role in achieving col-
lective success in OSS projects [4, 14, 56]. A Socio-Technical System
(STS) comprises two entities [51]: the social system where mem-
bers continuously create and share knowledge via various types of
individual interactions, and the technical system where the mem-
bers utilize the technical hardware to accomplish certain collective
tasks. The theory of STS is often referenced when studying how
the technical system is able to provide efficient and reliable indi-
vidual interactions [24], and how the social subsystem becomes
contingent in the interactions and further affects the performance
of the technical subsystem [16].

OSS projects have been studied from the network view [14].
González-Barahona et al. [23] proposed using technical networks,
where nodes are the modules in the CVS repository and edges
indicate two modules share common committers, to study the or-
ganization of ASF projects.

Moreover, in socio-technical systems, governance can be applied
through long-term or short-term interventions. Smith et al. [45]
proposed two conceptual approaches: ‘Governance on the outside’
objectifies the socio-technical and is managerial in approach. ‘Gov-
ernance on the inside’ is more reflexive about the role of governance
in co-constituting the socio-technical. From that perspective, the
ASFI community is a unique system that has both outside influence
(regulations from ASF committee) and inside governance (moti-
vated by the project managers).

2.4 Contingency Theory

Contingency theory is the notion that there is no one best way to
govern an organization. Instead, each decision in an organization
must depend on its internal structure, contingent upon the external
context (e.g., stakeholder [52], risk [10], schedule [54], etc.). Joslin et
al. [26] find that project success associates with the methodologies
(e.g., process, tools, methods, etc.) adopted by the project. And not
a single organizational structure is equally effective in all cases. As
the organizational context changes over time, to maintain consis-
tency, the project must adapt to its context accordingly. Otherwise,
conflicts and inefficiency occur [3], i.e., one size does not fit all.

To address the conflicts caused by incompatible fitting to the
project’s context, previouswork suggests thinking holistically. Lehto-
nen et al. [29] consider the project environment as all measurable
spatio-temporal factors when a project is initiated, processed, ad-
justed, and finally terminated, suggesting that the same factor can
have an opposite influence on the projects under a different context.

4Adeveloper abruptly deleting thewidely used, 11-line of left-pad code, led to cascading
disruption of other OSS projects in npm ecosystem.

1058



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

In the domain of software engineering, Joslin et al. [26] considers
project governance to be part of the project context, concluding
that project governance can impact the use and effectiveness of
project methodologies.

In the context of OSS projects seen as socio-technical systems,
contingency theory implies that observing and tracking multiple
facets/features of the projects may lead to more effective models of
system evolution.

3 HYPOTHESES AND RESEARCH QUESTIONS

Our goal is to build effective models for forecasting ASFI project
sustainability. Here, we generate our hypotheses and formulate
research questions based on prior work and the pertinent theories.

3.1 Hypotheses

STS theory suggests that publicly observable participation and de-
centralized contributions to software projects foster sustainable
collaborations. The ASFI ecosystem is in a form of a typical STS
where the technical activities build a shared code artifact and the
social ones mediate knowledge and organizational details to in-
dividuals. Since all activities are logged, various socio-technical
metrics can be calculated.

Our main hypothesis is that the STS formalism and the full
availability of the projects’ longitudinal digital traces, will make it
possible to build an accurate model of sustainability. According to
contingency theory, no single organizational structure is equally
effective under all circumstances. Thus, across ASFI projects, we ex-
pect to see that the same socio-technical factors may have different
contributions to sustainability. Finally, we posit, per contingency
theory, that the roles of some social-technical factors may vary
over time. Moreover, we expect to see that similar ASFI projects
can end with divergent outcomes (graduation or retirement) over
time based on actions they have undertaken.

3.2 Research Questions

We formalize the above into our RQs, as follows. The first is a valida-
tion of contingency theory hypotheses, that there exist measurable
differences between graduated projects and retired projects, along
with multiple features. Namely,

RQ1 Are there significant differences among STS measures, be-
tween graduated projects and retired projects?

Next, STS theory holds that project sustainability is associated
with social and technical network features. Contingency theory
implies there will be multiple such features in play. Thus, we ex-
pect that a quantitative temporal model may be fitted well to the
available ASFI data, so long as a sufficient number of features and
projects are available.

RQ2 How well can we predict the sustainability based on tempo-
ral traces of ASFI projects? And, can we identify the determinants
along with their weights and directions?

To make the model useful in practice it needs more than just
accurate predictions of outcomes, it also needs to generate timely
advice on whether the project should stay the course or implement
specific corrective action to improve the graduation trajectory. We
formulate this as:

RQ3 Canwemonitor project sustainability status in a continuous
manner? When and how should projects react to the monitoring
advice?

4 DATA AND METHODS

We collected historical trace data of commits, emails, incubation
length, sponsor information, and incubation outcome for 263 ASFI
projects, which have available archives of both commits and emails
from 03/29/2003 to 10/31/2019 [57]. Among them, 176 projects have
already graduated, 46 have retired, and 41 are still in incubation.
The latter, projects still in incubation, were not studied in this paper.

We collected the ASFI data from two sources: ASF mailing lists
and SVN commits. The mailing list archives are open access and
can be accessed through the archive web page, http://mail-archives.
apache.org/mod_mbox/. They contain all emails and commits from
the project’s ASF entry date, and are current. We constructed URLs
for individual project files in the ASF incubator as Project URL.
The project URLs use the pattern: project-name/(YYYYMM).mbox.
For example, for project hama, the full URL is http://mail-archives.
apache.org/mod_mbox/hama-dev/201904.mbox. Each such file con-
tains a month of mailing list messages from the project, for the date
specified in the URL. Here dev stands for ‘emails among developers’.

However, we find that many projects, especially these over ten
years old, which used SVN, used a bot in the dev mailing list to
record all commits, thus a message from dev is not always an email.
Similar emails were sent to the ‘commits’ mailing list, which, thus,
contains some emails. Therefore, we collected both dev and commits

mailing lists files for the 222 graduated or retired ASF Incubator
projects through the archive web page5.

4.1 Data Pre-processing

ASF manages and records the communications among people by
globally assigning an exclusive email name to each developer at
the project-level. However, some developers still prefer to use their
personal email/name instead of the assigned one, which in turn
complicates the identification of distinct developers [61]. We per-
formed de-aliasing for those developers with multiple aliases and/or
email addresses, as follows. We first remove titles (e.g., jr.) and com-
mon words in the name (e.g., admin, lists, group) from usernames,
then we match with both the original order and switched first/last
name order whenever names contain exactly one comma to elimi-
nate ambiguous styles. Then we match each developer with her/his
multiple email addresses (if any).

Many projects, especially those over ten years old that used SVN,
utilized a bot for extensive mailings (empirical evidence shows 26%
of popular GitHub projects use bots) [55], thus forming outliers in
the dataset. Some broadcast emails are automatically generated by
the issue tracking tool (e.g., JIRA), and no developer would reply to
them. We eliminated the broadcast messages that no one replied
to, and we find many of them are generated by automated tools.
We find some developers contributed many commits by directly
changing/uploading massive non-source code files (e.g., data, con-
figuration, and image files). Since those can form outliers in the
dataset, commits to files with extension data: .json, .xml, .yml, .yaml,

5Data and scripts are available: https://doi.org/10.5281/zenodo.4564072

1059



Sustainability Forecasting for Apache Incubator Projects ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

.jar; text/configurations: .config, .info, .ini, .txt, .md, and image: .jpg,

.gif, .pdf, .png are eliminated.
As result, we identify 21,328 unique contributors (who either

committed code or posted emails). Among them, 1,469 only com-
mitted code, and 18,205 only posted/replied to discussions without
committing code. The remaining 1,654 contributors engaged in
both activities. We identify 2,764,309 commits, modifying a total
of 404,455 source code files. We collect 879,812 emails, from them
we identify 19,859 developers who participated in discussions (by
sending or receiving emails). Among them, 19,573 proactively en-
gaged in discussion activities (i.e., sending emails), the remaining
286 developers collaborated in a passive way (only received emails).

4.2 STS and Socio-technical Networks

We use socio-technical networks to anchor our study of OSS STS.
Network science approaches have been prominent in studying
complex dynamics of OSS projects [5, 49], although the specific
definition may vary with domain context [33].

In this paper, we define the projects’ socio-technical structure
using social (email-based) and technical (code-based) networks,
induced from their emails to the mailing lists and commits to source
files, as follows. Similar to the approach by Bird et al. [4], we form
a social (email) network for each project, at each month, from
the communications between developers: a directed edge from
developer A to B exists if B has replied to A’s post in a thread or
if A has emailed B directly (which is contained in the łin-reply-
tož field). The technical (code) collaboration networks are formed
for each project, at each month, by including an undirected edge
between developer A and developer B if both developer A and B has
committed to the same coding source file(s) F that month (excluding
the SVN branch names).

4.3 Features/Metrics of Interest

The socio-technical and project features/variables that we chose
for this study have been identified based on our discussion and
consideration of the underlying theories. All our data is longitudinal.
All metrics are aggregated over monthly intervals, for each project,
from the start to the end of its incubation [60]. We started with 29
variables, given their statistics as Supplementary Material.

Variable Selection We used Lasso regression [50] (L1 regular-
ization) to identify a smaller set of 18 linearly independent vari-
ables, plus the outcome, described in the following. We used 𝑅’s
library glmnet [17] for the Lasso regression, with 𝜆 = 0.001.

Outcome: Graduation Status. Graduation grad_status is a bi-
nary variable (0=‘Retired’ or 1=‘Graduated’) indicating the projects
graduation status in the incubator, as discussed above.

Longitudinal Project Metrics: The number of Active Developers
num_act_devs is the count of contributors who have been active
by either making commits or participating in discussions. Num-
ber of commits num_commits is the count of source code commits
made by all committers in the project. The process of excluding
the commits that do not contain source code is described in the
Data Section. The number of Emails num_emails is the number of
emails (including both thread starter emails and reply-to emails).
num_files is the total number of unique source code files created
during the incubation. To measure the continuity of activities, we

define c_interruption and e as the sum of the time intervals of the
top 3 longest interruptions between successive commits and succes-
sive emails, respectively. The commit percentage top_c_fract and
email percentage top_e_fract are the percentages of respective
activities performed by the top 10% contributors.

Longitudinal Socio-Technical Project Metrics: For each project
network, for each month, we constructed the technical and social
networks, and from them calculate the number of active nodes,
c_nodes, and edges c_edges in the technical network; e_nodes
and e_edges in the social network. The prefix c_ in a variable’s
name indicates it is of the technical (code) network, while the prefix
e_ in a variable’s name indicates it is of the social (email) network.
Additionally, we calculated the mean degrees c_mean_degree and
e_mean_degree (sum of all nodes’ degree divided by the number
of nodes) in the technical network and social network, respectively.
We calculate the clustering coefficients c_c_coef, e_c_coef as
the number of connected triplets divided by the number of all
triplets in the correspondingmonthly network. The long-tail-edness
c_long_tail, e_long_tail is calculated as the degree of the 75𝑡ℎ
percentile of nodes in the network, for the monthly networks, in
the technical and social network, respectively. To get a sense of the
range and variability in these variables, we show them aggregated
over all months and projects in Table 1.

4.4 Models

We needed a modeling approach able to learn and forecast from
longitudinal data, have excellent performance, and be interpretable.

4.4.1 LSTM-Based Learning Model. Long short-term memory [25]
is a variant of Recurrent Neural Networks (RNNs), designed to learn
and model sequential data and is less sensitive to the problem of gra-
dient disappearance and gradient explosion when training on long

Table 1: Statistics of the 176 graduated and 46 retired projects

in the ASFI dataset. 𝑐_ and 𝑒_ correspond to technical net-

works and social networks, respectively.

Statistic Mean St. Dev. 5% 95%

grad_status 0.79 0.41 0 1

num_files 1,821.87 3,346.23 122.45 5436.6
num_emails 3,963.12 4,930.54 262.65 12463.6
num_commits 12,451.84 27,373.41 453.8 36359.7
num_act_devs 121.23 119.85 25 415.05

c_interruption 0.20 0.20 0.03 0.60
e_interruption 0.11 0.14 0.01 0.32

top_c_fract 0.65 0.19 0.38 0.94
top_e_fract 0.71 0.11 0.49 0.85

c_nodes 15.44 17.09 2 49.9
c_edges 120.15 276.19 1 531.5
c_c_coef 0.78 0.25 0 1
c_long_tail 10.65 11.93 0 33.85
c_mean_degree 8.14 7.45 1 23.75

e_nodes 113.38 115.07 22 408.15
e_edges 399.23 562.38 47.1 1315.9
e_c_coef 0.43 0.10 0.28 0.58
e_long_tail 10.33 7.15 3 24.95
e_mean_degree 6.07 1.91 3.88 9.62

1060



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

0

20

40

60

Graduated Retired

(a) IncubationMonths (𝑝 < .001)

0

20000

40000

60000

Graduated Retired

(b) Num. of Commits (𝑝 < .004)

0

5000

10000

15000

Graduated Retired

(c) Num. of Emails (𝑝 < .001)

0

25

50

75

100

Graduated Retired

(d) TN Nodes (𝑝 < .001)

0

200

400

600

Graduated Retired

(e) SN Nodes (𝑝 < .001)

Figure 2: The descriptive variables between graduated projects (in green, left) and retired projects (in red, right). The corre-

sponding p-value of the Student’s t-test is in the brackets, suggesting significant statistical differences exist between them.

sequences. To obtain sequence data for each project, we aggregated
historical ASFI records into monthly data, for each month from the
incubation start date to the project graduation/retirement from the
incubator. We interpret the monthly LSTM output probability as
the graduation forecast, i.e., the probability of the project eventually
graduating.

We prepared the data as follows. We randomly divided the
projects into training and test sets in an 8-to-2 ratio. Because we
have variables that are of very different magnitudes, and many
of those are not normally distributed, thus we choose to use the
MinMaxScaler function to standardize all prediction variables.

We implemented a 3-layer LSTMmodel: a 64 neurons LSTM layer,
followed by a 0.3 rate drop-out layer, and a dense layer with the
softmax function to yield the predicted outcome of the classification
task (graduate/retire). If the probability of graduating is higher
than 0.5 then we predict the project will graduate, otherwise, we
predict it will retire.We validated the cutoff choice by examining the
distribution of sustainability forecasts. During training, we used a
binary cross-entropy as the loss function and𝐴𝑑𝑎𝑚 as the optimizer.
Since the length of the temporal data of each project varies, instead
of using zero-padding, which could possibly introduce variance
to the model, we chose to use a slower but more reliable way by
only feeding one training sample at a time. We use the accuracy,
precision, recall, and 𝐹1-measure to evaluate the performance of
the LSTM model using the classification_report function from the
sklearn package.

To get the graduation forecast for a project at month𝑚+1, we cap
the project history at month𝑚, i.e., we only use the first𝑚 months
in the model. We interpret the outcome yield of the LSTM model as
the graduation forecast. Projects are not being calculated and used
in the prediction when the current time exceeds their incubation
lengths. We generated graduation forecasts for each month, and
thus obtained the graduation forecast trajectories. Repeating the
above process 10 times, selecting different training/test split each
time, produced our error bounds.

4.4.2 LIME-Based Interpretable Model. Black-box deep learning
models, like LSTMs, are less ideal for decision making than in-
terpretable approximations of deep learning models. One such
approach is the Local Interpretable Model-agnostic Explanations
(LIME) [41]. Given a pre-trained model and an input instance, LIME
reasons how the black-box model yielded the output, by probing
the model along each of the features. LIME yields a magnitude and

a sign (positive or negative) that characterize the contribution of
each feature toward explaining the outcome.

Assumption LIME assumes that any complex model is linear (i.e.,
interpretable) at a local scale. Therefore, given an input instance,
LIME first artificially generates large enough samples that are pre-
sumably very close to the given sample (by some distance measure).
Then, by training on the predictions of those newly generated sam-
ples given by the complex model, LIME can locally approximate
the complex model using linear models, thereby presenting the
coefficients of variables of the input instance.

Procedure We first constructed a LIME explainer using the Re-
currentTabularExplainer function from the Python LIME package
(version 0.2.0). That package was designed for explaining RNN-type
models with tabular data. For each project, we use 𝑒𝑥𝑝𝑙𝑎𝑖𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
function, setting the parameter num_features to the product of the
incubation length and the number of features. In this way, we can
obtain the coefficients of all features over all time. The parameter
num_samples is set to 5,000 (by default), which is empirically suf-
ficient for convergent results. Next, LIME probes the pre-trained
LSTM model 5,000 times by feeding it the newly generated samples.
LIME uses a similarity/distance function to measure the impor-
tance of each new sample on the locality of the instance to be
explained. Lastly, LIME fits a weighted linear model dataset, and
the explanations all come from the final linear model. Since the
LIME framework requires all samples to have the same shape, we
divided our projects into several buckets where the projects have
at least 𝑛 months of temporal data in the 𝑛-th bucket.

Project-specific vs Overall Modeling We used the LIME results
in two modeling ways: project-specific level and overall level. In the
former, we used LIME to obtain the monthly coefficient of each
variable and then aggregated them over all months to obtain a
project-specific coefficient. In the latter, we aggregated project-
specific coefficients over all ASFI projects to obtain the coefficients
for each variable over all projects.

5 RESULTS AND DISCUSSIONS

5.1 RQ1: Graduated vs. Retired Projects

To perform exploratory data analysis, we first contrast ASFI gradu-
ated and retired projects along the technical (code-based) and social
(email-based) dimensions in our data.

Box-plot comparisons of the incubation months, number of com-
mits, number of emails, number of nodes in the social networks, and
number of nodes in the technical networks are shown in Figure 2.

1061



Sustainability Forecasting for Apache Incubator Projects ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

We observe notable differences as follows. The median incubation
months of retired projects is significantly higher than of the grad-
uated projects, suggesting that retirement is not an easy decision,
and that perhaps necessary time is given to projects to change their
trajectories and achieve graduation.

Graduated projects also tend to have more code commits and
more email communications, implying that, in terms of criteria for
graduation, the ASF community values both technical contribution
(as commits) and social communication (as emails), and both of
them may be of importance in building a sustainable community.
Such results also motivate us to expand our research goals from
descriptive data to inferential data with more complex network
features.

Across both the social and technical networks, the network size
varies for the graduated projects, indicating that projects of any
size can be sustainable, and it also suggests that project size can
be used as a control in modeling. The notable difference between
graduated and retired projects, and the lack of variance in network
sizes in the retired projects suggests recruitment difficulties in the
latter, exposing them to significant risks as people leave.

Answer to RQ1: We observe significant differences across
multiple key measures between graduated projects and retired
projects. Notably, retired projects tend to stay longer in the
incubator than graduated ones, and the productivity and di-
versity of graduated projects are higher compared to retired
projects.

5.2 RQ2: Interpretable Forecasting

Here we present the results of training an LSTM model on our
ASFI data, and an LSTM-derived LIME model on the same data,
using the methods as described above. We use those models for
forecasting by each month into the project the eventual graduation
outcome. First, we show the performance curves of the LSTMmodel,
over time, in Figure 3. The overall accuracy, and F1-value, and
their standard errors (grey area), for the full model and the model
without the socio-technical variables, suggest an excellent and
stable predictive performance of the trained LSTM model, with
significant contribution from the socio-technical networks. As early
as month 8 the accuracy is 93%, and staying above after that.

The total incubation time varies significantly across ASFI projects.
While for most projects the incubation time is between 8 months
and 25 months, some spend more than 30 months in incubation,
while others only 6 months, as shown in the inset plot in Figure 3.
Thus, the model’s performance decreases for projects with below
8 and above 25 incubation months, due to insufficient data above
and below those values.

Next, we apply LIME to understand and interpret the LSTM
model and derive regression-like coefficients for the features in the
socio-technical networks. To illustrate how to interpret the results
at a project-specific level, we show an example of LIME’s output
for a graduated project, ‘Empire-DB’, in Figure 4. Note that the
coefficients are aggregated over all incubation months. Looking at
the median over all months provides model coefficient stability and
avoids emphasizing very small effects which nevertheless dominate
in some months. The magnitudes of the coefficients tend to be small

0.5

0.6

0.7

0.8

0.9

1.0

1 5 9 13 17 21 25

Incubation Month

w/ accuracy
w/ f1
w/o accuracy
w/o f1

0.00

0.01

0.02

0.03

0 30 60 90

Figure 3: Performancemetrics of the full LSTMmodel across

incubation months (top 2 curves), showing the significant

contribution of the socio-technical metrics. Curves are plot-

ted using loess. Grey area shows the standard errors. The red

vertical line shows 93% accuracy at 8 months of incubation.

The inset shows project density over total incubation time.

−0.02
−0.01

0.00
0.01
0.02
0.03

c
_

c
_

c
o

e
f

c
_

e
d

g
e

s

c
_

in
te

rr
u

p
ti
o

n

c
_

lo
n

g
_

ta
il

c
_

m
e

a
n

_
d

e
g

re
e

c
_

n
o

d
e

s

e
_

c
_

c
o

e
f

e
_

e
d

g
e

s

e
_

in
te

rr
u

p
ti
o

n

e
_

lo
n

g
_

ta
il

e
_

m
e

a
n

_
d

e
g

re
e

e
_

n
o

d
e

s

n
u

m
_

a
c
t_

d
e
v
s

n
u

m
_

c
o

m
m

it
s

n
u

m
_

e
m

a
ils

n
u

m
_

fi
le

s

to
p

_
c
_

fr
a

c
t

to
p

_
e

_
fr

a
c
t

c
o

e
ff

ic
ie

n
t

Figure 4: The coefficients of all variables from a gradu-

ated project (‘Empire-DB’), aggregated over all incubation

months, showing that LIME delivers stable estimation at the

project-level.

because the model predicts probabilities within [0, 1], and there are
tens of them.

There, we see that the technical network clustering coefficient
c_c_coef is negatively associated with successful graduation. A
high clustering coefficient in the technical network of people and
source files indicates a high overlap of developers’ activities on the
same files. One possible reason for the negative effect introduced by
c_c_coef is that, work may not be well distributed among the team
members. Another reason might be that the artifact is not well-
conceived. Yet a third reason can be that the number of developers
on the project is small and they must all łtend to firesž wherever
they might be. Interestingly, the fraction of commits (𝑡𝑜𝑝_𝑐_𝑓 𝑟𝑎𝑐𝑡 )
and emails (𝑡𝑜𝑝_𝑒_𝑓 𝑟𝑎𝑐𝑡 ) by the top 10% developers who tend to be
the influencers in projects are positively associated with graduation,
implying that the efforts of the top 10% help sustain the project.
Figure 4 also shows the feature coefficients of a selected project in
both size and direction across all incubationmonths, which provides
further insight, and confidence in the methods utility.

Next, by only counting the signs of the project-level coefficients
across all projects, we can identify whether there is an overall

1062



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

0

50

100

150

c
_
c
_
c
o
e
f

c
_
e
d
g
e
s

c
_
in

te
rr

u
p
ti
o
n

c
_
lo

n
g
_
ta

il

c
_
m

e
a
n
_
d
e
g
re

e

c
_
n
o
d
e
s

e
_
c
_
c
o
e
f

e
_
e
d
g
e
s

e
_
in

te
rr

u
p
ti
o
n

e
_
lo

n
g
_
ta

il

e
_
m

e
a
n
_
d
e
g
re

e

e
_
n
o
d
e
s

n
u
m

_
a
c
t_

d
e
v

n
u
m

_
c
o
m

m
it
s

n
u
m

_
e
m

a
ils

n
u
m

_
fi
le

s

to
p
_
c
_
fr

a
c
t

to
p
_
e
_
fr

a
c
t

P
ro

je
c
t 
C

o
u
n
ts

Figure 5: The overall-level coefficients of all variables of in-

terest (blue is positive, while red is negative to graduation).

It shows that some variables have same effect on almost all

projects, while others do not.

consistent direction in which that feature is contributing to the
prediction. E.g., if a feature is consistently negative to the outcome
across all projects, i.e., that feature’s coefficient is negative in most
project models, then it has the same, overall negative effect.

In Figure 5, we show the count of aggregate signs of feature
coefficients across all projects. There, blue indicates a positive effect
and red a negative one. Visually, if most of the bar is a single color,
then that variable has a consistent effect direction, i.e., same sign
coefficient, among all projects. Overall, perhaps surprisingly, we
find that for almost all projects, the number of nodes in the technical
networks c_nodes has a negative effect on graduation for minor
projects while the number of nodes in the social networks e_nodes
is positively associated with graduation. This is consistent with
prior research findings that communication is more determinant of
success and onboarding than coding activities [6]. Other variable
appear to have inconsistent effect across projects, e.g., num_files
and c_mean_degree.

Since LIME fits model coefficients for all months, we can also
examine the dynamics of feature coefficients. Figure 6 shows that
when broken down into 4 intervals, the effect of 𝑛𝑢𝑚_𝑎𝑐𝑡_𝑑𝑒𝑣𝑠
becomes less positive, and less important, over time, perhaps due to
the project becoming more stable. Contrariwise, the negative effect
of the mean degree in technical networks (𝑐_𝑚𝑒𝑎𝑛_𝑑𝑒𝑔𝑟𝑒𝑒), dimin-
ishes in latter development, arguably, again, because of increased
project stability over time.

Answer to RQ2: Effective models of project sustainability
can be built from tens of socio-technical and project features.
Stable and interpretable models can be derived yielding feature
coefficients at both project-specific and overall levels. Notably,
overall, projects with fewer but more centralized committers
and those with more but distributed communicators are more
likely to become self-sustainable in the ASF incubator.

5.3 Case Study: Change of Fate

To understand in depth why trajectories may change, with the help
of our interpretable model we randomly selected three qualitatively
different example projects (2 graduated and 1 retired), showing up-

−0.06

−0.03

0.00

0.03

1 2 3 4
Quarter of Incubation

C
o
e
ff
ic

ie
n
t

c_mean_degree
num_act_dev

Figure 6: The overall-level coefficient of two selected vari-

ables: mean degree in technical network (in red) and the

number of active developers (in green) in different incubat-

ing quarters.

month = 8

Downturn Detected!

Figure 7: The graduation forecast of the marginal projects.

Commonsrdf (ID: 82, in green) and Etch (ID: 103, in blue) are

graduated projects that almost failed while retired project

Ariatosca (ID: 256, in red) almost succeeded.

or down-turn points in their sustainability trajectories, as illustrated
in Figure 7.

ğ1 In project Commonsrdf (ID: 82), the graduation forecast starts
high but experiences a downturn in the first half of incubation, and
then it rises again. Our model identifies the lack of both email and
commit activities are associated with the downturn. There is also an
overall decreasing trend in the number of active developers (from
27 to 11, then to 4 eventually). To investigate why their promising
trajectory changed, and then changed again, we looked through
their discussions on the mailing list.

In the month with the lowest graduation forecast, the project
released a major version of their software, following which the
committers showed less activity. We also noticed that the ASF
incubator Project Management Committee (PMC) routinely sent
an email to the project asking for the periodically report 6, but
such reports were not requested for more than 2 months after the
release. Lastly, we saw email arguments on the technical direction
for the project’s future development. Unsurprisingly the project
was going to fail if no one observes such situation and takes action
to intervene. However, an email from one of the major contributors,
𝐷𝑒𝑣1, appears to have initiated the turning point. Below we quote
it and the ensuing discussion.

6https://cwiki.apache.org/confluence/display/INCUBATOR/Reports

1063



Sustainability Forecasting for Apache Incubator Projects ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

𝐷𝑒𝑣1 łFolks, I’ve seen very little traffic for the last few months. . .

I am concerned that there is perhaps no longer a viable community

around this podling. . . ž, and seriously asked łDo people still think
this project has/can build the momentum to move forwards towards

graduation?ž
𝐷𝑒𝑣2 ł. . .we lost one of the main pillars of this projects . . . So

our mentors are right. We’re in a situation where the project has no

momentum at all, and honestly I have no idea what’s best to do. . . ž
𝐷𝑒𝑣3 ł. . . there was a small group of 5 core committers to begin

with. As of right now, the number is 22. We’ve actually done pretty

well. . . ž
Then, 𝐷𝑒𝑣4 responded with an email titled ‘Values and Terms’

and suggested a technical directions, with detailed reasoning: ł. . . if
you actually tried to use this (algorithm) would (i) hurt speed, and

(ii) hurt the perception of speed . . . ž and clearly states that łI’d be

inclined to go another step further and add a generic parameter . . . ž
After this discussion, the community became more engaged and

increased some activities, and the community felt more confident
about the upcoming routine report. Eventually, the project gradu-
ated in the end (our forecast went up to 80%).

ğ2 In project Etch (ID: 103) there was a major depletion of senior
developers after amilestonewas reached in themiddle of incubation.
Then commits stopped for almost one year. Our graduation forecast
reflects that: it dropped from 79% to only 19%.

After a long time being inactive, one developer sent a broad-
cast email titled ‘Future of Etch’. Many developers participated in
the discussion thread, with seeming agreement that their project
is either to be retired or changes are needed. The project mentor
brought up the lack of diversity as a possible cause for stagnation,
since all developers came from the same company. Some developers
concurred, and they feel ł...continual pressure to wrangle new com-

mitters...ž, and consider that the ASFI values ł...extroverted tendencies
of the committers rather than the merits of technology...ž.

Eventually, the contributors reached an agreement that the project
technology is and will be valuable in the future. Among them, one
developer stated that they ł...do not want to see it retired...ž The
developers then made a list of future objectives, and worked to
make the community thriving again.

ğ3 Project Ariatosca almost succeeded, but eventually failed (the
graduation forecast dropped from 96% to 47%). We find that the ma-
jor reason is that all senior contributors left the project due to their
busy day work. At the very end of the project, there were new(er)
developers who wanted to contribute to the project. However, since
newcomers could only contribute by creating Pull Requests (PRs),
and PRs required a senior committer to accept and merge the code
changes, they could not submit their code. Attempts at setting meet-
ings with the original developers failed due to busy schedules, and
the project was eventually retired.

5.4 RQ3: Actionable Recommendation

We start with a caveat. Precise actionable models require inter-
ventions and randomized experiments. Our models are not based
on such experiments, and any actionability we derive from them
must, therefore, be less powerful than those. At best, our experi-
ments can be considered natural experiments, a subclass of quasi-
experiments where the class assignment is not controlled by the

experimenter. Thus, any interventions we suggest here must be
validated experimentally in order to avoid large uncertainties in
outcomes. With that caveat in mind, we sought to answer, to the
best of our experimental methods, the following intervention ques-
tion: łWhat action should a project take and when?ž, in order to

increase its graduation forecast in our model.
Herewe propose a pragmatic, laissez-faire-unless-needed prospec-

tive strategy: to continuously monitor the graduation forecast for
significant downturns, and if detected, suggest interventions that
may improve the forecast. We deconstruct the intervention ques-
tion above into two parts: 1) What is a significant downturn? and 2)
how to interpret the variables and coefficients in our fitted model
into actions. For the following, recall that our interpretable sustain-
ability model gives a graduation forecast from the historical project
trace data and the socio-technical project structure, available until
that time. It also yields the coefficient of each significant model
feature along with its direction for every month.

ğ1 Identifying significant downturns.Wewant to identify down-

turns that dominate any naturally occurring noise or jitter in the
forecast. We looked across all projects for how long it takes for a
forecast to bounce-up from any downturn. We found that 149 out of
the 222 projects (about 67.1%) experienced an upturn or downturn
event of a 0.3 magnitude in their forecast probability curve. Of
those projects that have not experienced downturns, the average
incubation time was 16 months, versus 28 months for projects that
have had downturns, implying an association between downturns
and length of stay in the incubator. We note that the upturn events
tend to be associated with ASF mentors’ intervention. This is consis-
tent with one of the responsibilities of ASF mentors: to watch over
the projects they are mentoring and keep them on track. However,
downturn events do not correlate similarly with extrinsic events;
we think they tend to be more related to projects’ internal events,
e.g., ebbing social interest, core committers leaving, etc. Figure 8
shows that the median bounce-up time is about 2.5, and, respec-
tively, 3.5 months for drops of 0% - 5%, and, respectively, > 5% in the
graduation forecast. We also noted that graduated projects seem to
bounce-up faster than retired projects. So, we use the median of the
latter as the baseline, and define a drop in the forecast of greater
than 5% over a period of one or two months to indicate a significant
downturn event. This ad hoc approach, while an approximation, is
a natural signal processing way to account for inherent uncertainty
in the signal.

ğ2 Actions that improve the forecast. Ourmodel yields real- num-

bered coefficients for each significant feature in each month, which
we aggregate for stability over all months, and obtain the medians
as in Fig. 4. Increasing the values of features with positive coef-
ficients and/or decreasing the values of the negative coefficient
features results in an increase of the graduation forecast. Thus,
once a month or two with a significant downturn is detected, the
project developers can look at the most positive and most negative
medianed significant features from the fitted model and consider
increasing, respectively decreasing, them. This is an approximation
and is valid to the extent that the median is representative of the
values over all months, which is more the case in the earlier months
than the latter ones, see Figure 6. The earlier months are the ones

1064



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

Table 2: Positive Actions for Each Feature.

Positive Action (+)

num_act_dev Contribute frequently; Advertise, Recruit.

num_emails Reach out; Ask questions; Encourage communication.

num_commits Commit frequently; commit smaller; use CI.

num_files Split files; refactor code; encourage modularity.

c_interruption Go on vacation often; contribute in bursts.

e_interruption Email seldom; discourage discussion.

top_e_fract Encourage core emailers to respond more.

top_c_fract Core contributors commit exclusively.

c_nodes Establish technical mentorship; encourage commits.

c_edges Commit to same files as others; document code well.

c_c_coef Encourage collaborations, pair programming.

c_mean_degree Encourage commits by minor contributors.

c_long_tail Mentor collaborations with newcomers.

e_nodes Mentor low communicators.

e_edges Reply to questions; ask questions.

e_c_coef Encourage non-hierarchical communications.

e_mean_degree Communicate with minor emailers.

e_long_tail Foster communication-heavy culture.

we care more about in practice, as we care about being most helpful
to nascent projects.

Some of the socio-technical and project features may be difficult
to interpret in practice. To aid with this step, we suggest a project
should compile an action table to summarize possible actions that
may positively (or negatively in the reverse way) change the value
of model features. (Multiple actions may affect the same feature.)
In Table 2 we provide one such action table: a mapping between all
of our model features and a non-exhaustive set of actions that we
identified as likely to move each variable in the positive direction.
(The negative actions are not shown, but are complements of those.)
E.g., the e_c_coef, which counts the number of triangles in the
social network, can be increased by increasing emails to everyone
and not just the prominent developers or thread starters; conversely,
communicating hierarchically in a tree-like fashion would decrease
e_c_coef as it will eliminate triangles.

ğ3 Ecosystem and project-specific fine-tuning. Our strategy can

be further fine-tuned in several ways. First, there are common
patterns in the graduation forecasts over all projects. Figure 9 shows
that for graduated projects (in green) there is an apparent upward
trend in the forecast in the first 6 months, suggesting that the early-
stage development deserves more attention from project managers.
From month 6 to month 12 we do not observe a significant change,
and the decreasing variance also tends to support such an argument.
However, we find increasing variance in months 12 through 18.
One possible reason is that many graduated projects achieve their
milestone in that period, and slow further commits and discussions,
thus lowering the graduation forecast. These considerations can be
taken into account during forecast monitoring, with more frequent
monitoring chosen or increased attention paid at times around
milestones and releases. The ASF committees can also ask for more
frequent project reports, during the first 6 months and 12 months
of incubation, as project reports were seen to be an incentive to
productivity in our case study.

0.0

2.5

5.0

7.5

10.0

0%−5% >5%
Drop in Graduation Forecast

R
e

b
o

u
n

d
 T

im
e

status

graduated
retired

Figure 8: Bounce-up after downturn in graduation forecasts

for graduated (green) and retired projects (red).

We recognize that some socio-technical elements are more dif-
ficult to change compared to others. This is, project-specific, in
that some projects can easier modify some features than can other
projects. E.g., if the interpretablemodel suggests increasing c_edges
and decreasing c_interruption this may be easier done in smaller
projects than larger ones due to the difficulty of influencing many
people at once. Thus these action tables should ideally be project-
specific, designed and updated as the project evolves.

Mechanistically, here are some possible reasons for why features,
e.g., number of commits/files, may have different effects across
projects. First, having much more than the usual amount of code
changes and file touches in a given period of time may be indicative
of refactoring or even change of direction for a project. This can
be the result of a project pivoting which may lead to longer stay
in the incubator and possible retirement. Second, increases in the
number of files may result in insufficient human resources to handle
them (e.g., bugs, documentation, mentoring, and training), resulting
in code quality issues and technical debt, especially for smaller
projects. This can lead to loss of interest in the small community
and eventual disengagement. Third, for overleveraged projects,
increase in commits and/or file touches may mean not having time
for proper communication, which can slow progress and result in
community collapse. In effect, the coefficients of the same factor
can vary under different project contexts.

Lastly, a word of caution. In terms of expectations that including
more features to intervene on,may lead to faster bounce-up, we note
that empirical evidence shows socio-technical features have ways
of getting correlated pairwise over time in the same system. Thus,
even if not correlated, the effect of increasing multiple features
simultaneously may not be additive.

Answer to RQ3: Our strategy can be used as a monitoring
tool that feeds suggestions into developers’ decision process.
Project-specific features can be selected from the suggestions
for interventionwhen experiencing downturns. The algorithm
can be made bespoke by introducing more frequent monitor-
ing around releases/milestones.

5.4.1 Actionable Strategy Example. Here we apply our strategy on
a project from Figure 7: Commonsrdf, and show specific recommen-
dations following a detected downturn.

1065



Sustainability Forecasting for Apache Incubator Projects ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Incubation Month

G
ra

d
u

a
ti
o

n
 F

o
re

c
a

s
t

Figure 9: Graduation forecasts for all graduated (green) and

retired projects (red) over the first 24 incubation months.

While monitoring project Commonsrdf 7 we would have ob-
served a significant downturn at months 4 and 5 (> 5% drop), see
Figure 7. For that project, our interpretable model yields as the 3
features with the highest positive medians overall: top_c_fract,
top_e_fract, and e_nodes; the three with the most negative me-
dian are: c_c_coef, c_interruption, and c_nodes. Consulting
Table 2, it calls for the project to increase the commit and email
contributions by core developers and encourage more committers
to communicate. It also calls for the project to decrease collabo-
rations, decrease commit interruptions, and decrease the number
of developers that commit. A continuous integration may also be
recommended to this project, to keep people on track with smaller,
more frequent commits.

What actually happened in the project is that that initial period
of downturn was missed; as we saw in our case study for this
project, the project manager sent an email titled ’Anybody there?’
in month 8, when productivity was already significantly reduced.
Using our strategy, the downturn could have been identified and
possibly avoided 3 months sooner.

6 THREATS TO VALIDITY AND CONCLUSION

Threats. First, our commit and email data is from only hundreds
of projects ASF incubator projects. Thus, generalizing the impli-
cations beyond ASF, or even beyond the ASF Incubator projects
carries potential risks. Expanding the dataset beyond ASF, e.g., with
additional projects from other open-sourced incubator projects can
lower this risk. Second, we do not consider communications other
than through the ASF mailing lists. However, ASF’s policies and
regulations insist on the use of mailing lists, which lowers this risk.
Lastly, interpreting deep learning models is still an art, and LIME
models are approximations. They may be particularly sensitive to
correlated features. We lower such risk by eliminating correlated
variables before training. Taking the actionable suggestions given
in this paper may result in changes of more than one variable, e.g.,
increase the active developers may also increase the number of
commits.

Conclusion. Understanding why many nascent projects have
failed may help others improve their individual practice, organiza-
tional management, and institutional structure. Here we showed

7http://mail-archives.apache.org/mod_mbox/commonsrdf-dev/

that quantitative network science approaches combined with state-
of-the-art AI methods can effectively model ASF incubator project
sustainability, from a novel longitudinal dataset of socio-technical
contributions in ASFI projects, more narrow in scope than general
OSS projects but with extrinsic graduation/sustainability labels.
We also demonstrated the combined power of mixed methods:
both quantitative and qualitative studies. Through case studies,
we identified specific reasons for success and failure of projects,
complementing our models. Finally, we developed a strategy for
translational use of the models in practice. Our methods make it
straight forward to track a project’s trajectory as it progresses to-
ward sustainability, and even offer advice for correcting trajectories
upwards. Future work is needed to offer validation of this or similar
strategies experimentally.

ACKNOWLEDGEMENTS

We are grateful to the National Science Foundation for funding
this project, under Grant #2020751. This work was also partially
supported by the National Natural Science Foundation of China
under Grant #61973273, and by the Zhejiang Provincial Natural
Science Foundation of China under Grant #LR19F030001.We greatly
thank the FSE 2021 reviewers for their constructive comments.

REFERENCES
[1] Chintan Amrit and Jos Van Hillegersberg. 2010. Exploring the impact of soclo-

technlcal core-periphery structures in open source software development. journal
of information technology 25, 2 (2010), 216ś229.

[2] Erling SAndersen, Anders Dysvik, andAnne Live Vaagaasar. 2009. Organizational
rationality and project management. International Journal of Managing Projects
in Business (2009).

[3] Donald W Barclay. 1991. Interdepartmental conflict in organizational buying:
The impact of the organizational context. Journal of Marketing Research 28, 2
(1991), 145ś159.

[4] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. 2006. Mining email social networks. In Proceedings of the 2006 interna-
tional workshop on Mining software repositories. 137ś143.

[5] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. 2009. Putting it all together: Using socio-technical net-
works to predict failures. In 2009 20th International Symposium on Software
Reliability Engineering. IEEE, 109ś119.

[6] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
2015. Developer onboarding in GitHub: the role of prior social links and language
experience. In Proceedings of the 2015 10th joint meeting on foundations of software
engineering. 817ś828.

[7] Narciso Cerpa, Matthew Bardeen, Barbara Kitchenham, and June Verner. 2010.
Evaluating logistic regression models to estimate software project outcomes.
Information and Software Technology 52, 9 (2010), 934ś944.

[8] Theodore Chaikalis and Alexander Chatzigeorgiou. 2014. Forecasting java soft-
ware evolution trends employing network models. IEEE Transactions on Software
Engineering 41, 6 (2014), 582ś602.

[9] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 186ś196.

[10] Terry Cooke-Davies. 2002. The łrealž success factors on projects. International
journal of project management 20, 3 (2002), 185ś190.

[11] Kevin Crowston, James Howison, and Hala Annabi. 2006. Information systems
success in free and open source software development: Theory and measures.
Software Process: Improvement and Practice 11, 2 (2006), 123ś148.

[12] Kevin Crowston and Ivan Shamshurin. 2017. Core-periphery communication
and the success of free/libre open source software projects. Journal of Internet
Services and Applications 8, 1 (2017), 10.

[13] Leticia Duboc, Stefanie Betz, Birgit Penzenstadler, Sedef Akinli Kocak, Ruzanna
Chitchyan, Ola Leifler, Jari Porras, Norbert Seyff, and Colin CVenters. 2019. Dowe
really know what we are building? Raising awareness of potential Sustainability
Effects of Software Systems in Requirements Engineering. In 2019 IEEE 27th
International Requirements Engineering Conference (RE). IEEE, 6ś16.

[14] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4

1066



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov

(2005), 323ś368.
[15] Juan C Dueñas, Félix Cuadrado, Manuel Santillán, José L Ruiz, et al. 2007. Apache

and Eclipse: Comparing open source project incubators. IEEE software 24, 6
(2007), 90ś98.

[16] Gerhard Fischer and Thomas Herrmann. 2011. Socio-technical systems: a meta-
design perspective. International Journal of Sociotechnology and Knowledge De-
velopment (IJSKD) 3, 1 (2011), 1ś33.

[17] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2009. glmnet: Lasso and
elastic-net regularized generalized linear models. R package version 1, 4 (2009).

[18] Jonas Gamalielsson and Björn Lundell. 2014. Sustainability of Open Source
software communities beyond a fork: How and why has the LibreOffice project
evolved? Journal of Systems and Software 89 (2014), 128ś145.

[19] Bahar Gezici, Nurseda Özdemir, Nebi Yılmaz, Evren Coşkun, Ayça Tarhan, and
Oumout Chouseinoglou. 2019. Quality and Success in Open Source Software: A
Systematic Mapping. In 2019 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 363ś370.

[20] Amir Hossein Ghapanchi. 2015. Predicting software future sustainability: A
longitudinal perspective. Information Systems 49 (2015), 40ś51.

[21] Amir Hossein Ghapanchi, Aybuke Aurum, and Graham Low. 2011. A taxonomy
for measuring the success of open source software projects. First Monday 16, 8
(2011).

[22] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov.
2015. Developer initiation and social interactions in OSS: A case study of the
Apache Software Foundation. Empirical Software Engineering 20, 5 (2015), 1318ś
1353.

[23] Jesús M González-Barahona, Luiz Lopez, and Gregorio Robles. 2004. Community
structure of modules in the Apache project. In Proceedings of the 4h International
Workshop on Open Source Software Engineering. IET, 44ś48.

[24] Thomas Herrmann, Marcel Hoffmann, Gabriele Kunau, and Kai-Uwe Loser. 2004.
A modelling method for the development of groupware applications as socio-
technical systems. Behaviour & Information Technology 23, 2 (2004), 119ś135.

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735ś1780.

[26] Robert Joslin and Ralf Müller. 2016. The impact of project methodologies on
project success in different project environments. International Journal of Man-
aging Projects in Business (2016).

[27] Bakhtiar Khan Kasi. 2014. Minimizing software conflicts through proactive
detection of conflicts and task scheduling. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 807ś810.

[28] Jennifer W Kuan. 2001. Open source software as consumer integration into
production. Available at SSRN 259648 (2001).

[29] Päivi Lehtonen and Miia Martinsuo. 2006. Three ways to fail in project manage-
ment and the role of project management methodology. Project Perspectives 28, 1
(2006), 6ś11.

[30] Hsiu-Fen Lin and Gwo-Guang Lee. 2006. Effects of socio-technical factors on
organizational intention to encourage knowledge sharing. Management decision
(2006).

[31] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, et al. 2011. Apache airavata: a framework for dis-
tributed applications and computational workflows. In Proceedings of the 2011
ACM workshop on Gateway computing environments. 21ś28.

[32] Nora McDonald and Sean Goggins. 2013. Performance and participation in open
source software on github. In CHI’13 Extended Abstracts on Human Factors in
Computing Systems. 139ś144.

[33] Andrew Meneely and Laurie Williams. 2011. Socio-technical developer networks:
Should we trust our measurements?. In Proceedings of the 33rd International
Conference on Software Engineering. 281ś290.

[34] Vishal Midha and Prashant Palvia. 2012. Factors affecting the success of Open
Source Software. Journal of Systems and Software 85, 4 (2012), 895ś905.

[35] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309ś346.

[36] Marc Palyart, Gail C Murphy, and Vaden Masrani. 2017. A study of social interac-
tions in open source component use. IEEE Transactions on Software Engineering
44, 12 (2017), 1132ś1145.

[37] JJH Piggott. 2013. Open source software attributes as success indicators. Univ. of
Twente (2013).

[38] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In 2014 IEEE International Conference on Software Maintenance
and Evolution. IEEE, 91ś100.

[39] Cobra Rahmani and Deepak Khazanchi. 2010. A study on defect density of open
source software. In 2010 IEEE/ACIS 9th International Conference on Computer and
Information Science. IEEE, 679ś683.

[40] Uzma Raja and Marietta J Tretter. 2012. Defining and evaluating a measure of
open source project survivability. IEEE Transactions on Software Engineering 38,
1 (2012), 163ś174.

[41] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should I
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135ś1144.

[42] Peter C Rigby and Ahmed E Hassan. 2007. What can oss mailing lists tell us?
a preliminary psychometric text analysis of the apache developer mailing list.
In Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007). IEEE, 23ś23.

[43] Warren Sack, Françoise Détienne, Nicolas Ducheneaut, Jean-Marie Burkhardt,
Dilan Mahendran, and Flore Barcellini. 2006. A methodological framework
for socio-cognitive analyses of collaborative design of open source software.
Computer Supported Cooperative Work (CSCW) 15, 2-3 (2006), 229ś250.

[44] Charles M Schweik and Robert C English. 2012. Internet success: a study of
open-source software commons. MIT Press.

[45] Adrian Smith and Andy Stirling. 2007. Moving outside or inside? Objectifica-
tion and reflexivity in the governance of socio-technical systems. Journal of
Environmental Policy & Planning 9, 3-4 (2007), 351ś373.

[46] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. 1379ś1392.

[47] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67ś85.

[48] Chandrasekar Subramaniam, Ravi Sen, and Matthew L Nelson. 2009. Determi-
nants of open source software project success: A longitudinal study. Decision
Support Systems 46, 2 (2009), 576ś585.

[49] Didi Surian, Yuan Tian, David Lo, Hong Cheng, and Ee-Peng Lim. 2013. Predict-
ing project outcome leveraging socio-technical network patterns. In 2013 17th
European Conference on Software Maintenance and Reengineering. IEEE, 47ś56.

[50] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267ś288.

[51] Eric Trist. 1981. The evolution of socio-technical systems: A conceptual framework
and an action research program. Ontario Ministry of Labour.

[52] J Rodney Turner and Ralf Müller. 2004. Communication and co-operation on
projects between the project owner as principal and the project manager as agent.
European management journal 22, 3 (2004), 327ś336.

[53] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 644ś655.

[54] Stephen Wearne and AAR Stanbury. 1989. A study of the reality of project
management: WG Morris and GH Hough, John Wiley, UK (1987)£ 29.95, ISBN
0471 915513 pp 295. International Journal of Project Management 7, 1 (1989), 58.

[55] Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher, Igor S Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots:
Characterizing and understanding bots in oss projects. Proceedings of the ACM
on Human-Computer Interaction 2, CSCW (2018), 1ś19.

[56] Jing Wu, Khim-Yong Goh, and Qian Tang. 2007. Investigating success of open
source software projects: A social network perspective. ICIS 2007 Proceedings
(2007), 105.

[57] L. Yin, Z. Zhang, Q. Xuan, and V. Filkov. 2021. Apache Software Foundation
Incubator Project Sustainability Dataset. In 2021 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR) (MSR). IEEE Computer Society,
Los Alamitos, CA, USA, 595ś599. https://doi.org/10.1109/MSR52588.2021.00081

[58] Marcelo Serrano Zanetti. 2012. The co-evolution of socio-technical structures
in sustainable software development: Lessons from the open source software
communities. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 1587ś1590.

[59] Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank
Schweitzer. 2013. The rise and fall of a central contributor: Dynamics of social
organization and performance in the gentoo community. In 2013 6th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE, 49ś56.

[60] Feng Zhang, Ahmed E Hassan, Shane McIntosh, and Ying Zou. 2016. The use
of summation to aggregate software metrics hinders the performance of defect
prediction models. IEEE Transactions on Software Engineering 43, 5 (2016), 476ś
491.

[61] Jiaxin Zhu and Jun Wei. 2019. An empirical study of multiple names and email
addresses in oss version control repositories. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 409ś420.

1067


	Abstract
	1 Introduction
	2 Background and Theories
	2.1 Apache Software Foundation Incubator
	2.2 OSS Projects Success and Sustainability
	2.3 Socio-technical Systems Theory
	2.4 Contingency Theory

	3 Hypotheses and Research Questions
	3.1 Hypotheses
	3.2 Research Questions

	4 Data and Methods
	4.1 Data Pre-processing
	4.2 STS and Socio-technical Networks
	4.3 Features/Metrics of Interest
	4.4 Models

	5 Results and Discussions
	5.1 RQ1: Graduated vs. Retired Projects
	5.2 RQ2: Interpretable Forecasting
	5.3 Case Study: Change of Fate
	5.4 RQ3: Actionable Recommendation

	6 Threats to Validity and Conclusion
	References

